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1. Introduction

In order to motivate the use of active vibration control, consider the future inter-
ferometric missions planned by NASA or ESA (one such a mission, called ”Terres-
trial Planet Finder” aims at detecting earth-sized planets outside the solar system;
other missions include the mapping of the sky with an accuracy one order better
than that achieved by Hypparcos).

The purpose is to use a number of smaller telescopes as an interferometer to
achieve a resolution which could only be achieved with a much larger monolythic
telescope. One possible spacecraft architecture for such an interferometric mission
is represented in Fig.1; it consists of a main truss supporting a set of independently
pointing telescopes.

Figure 1: Schematic view of a future interferometric mission.

The relative position of the telescopes is monitored by a sophisticated metrol-
ogy and the optical paths between the individual telescopes and the beam combiner
are accurately controlled with optical delay lines, based on the information coming
from a wave front sensor. Typically, the distance between the telescopes could be
50 m or more, and the order of magnitude of the error allowed on the optical path
length is a few nanometers; the pointing error of the individual telescopes is as low
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as a few nanoradians (i.e. one order of magnitude better than the Hubble space
telescope). Clearly, such stringent geometrical requirements cannot be achieved
with a precision monolithic structure, but rather by active means as suggested in
Fig.1. Let us first consider the supporting truss: given its size and environment,
the main requirement on the supporting truss is not precision but stability, the
accuracy of the optical path being taken care of by the wide-band vibration iso-
lation/steering control system of individual telescopes and the optical delay lines
(described below). Geometric stability includes thermal stability, vibration damp-
ing and prestressing the gaps in deployable structures (this is a critical issue for
deployable trusses). In addition to the geometric requirements mentioned above,
this spacecraft would be sent in deep space (perhaps as far as the orbit of Jupiter)
to ensure maximum sensitivity; this makes the weight issue particularly important.

Another interesting subsystem necessary to achieve the stringent specifications
is the six d.o.f. vibration isolator at the interface between the attitude control
module and the supporting truss; this isolator allows the low frequency attitude
control torque to be transmitted while filtering out the high frequency distur-
bances generated by the unbalanced centrifugal forces in the reaction wheels. The
same general purpose vibration isolator may be used at the interface between the
truss and the independent telescopes; in this case however, its vibration isolation
capability is combined with the steering (pointing) of the telescopes. The third
component relevant of active control is the optical delay line; it consists of a high
precision single degree of freedom translational mechanism supporting a mirror,
whose function is to control the path length between every telescope and the beam
combiner, so that these distances are kept identical to a fraction of the wavelength
(e.g. λ/20).

Performance and weight savings are the prime motivations of the foregoing
example. However, as technology develops and with the availability of low cost
electronic components, it is likely that there will be a growing number of applica-
tions where active solutions will become cheaper than passive ones, for the same
level of performance.

The reader should not conclude that active will always be better and that a
control system can compensate for a bad design. In most cases, a bad design will
remain bad, active or not, and an active solution should normally be considered
only after all other passive means have been exhausted. One should always bear in
mind that feedback control can compensate external disturbances only in a limited
frequency band that is called the bandwidth of the control system. One should
never forget that outside the bandwidth, the disturbance is actually amplified by
the control system.

In recent years, there has been a growing interest for semi-active control, par-
ticularly for vehicle suspensions; this has been driven by the reduced cost as com-
pared to active control, due mainly to the absence of a large power actuator. A
semi-active device can be broadly defined as a passive device in which the prop-
erties (stiffness, damping, ...) can be varied in real time with a low power input.
Although they behave in a strongly nonlinear way, semi-active devices are inher-
ently passive and, unlike active devices, cannot destabilize the system; they are
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Figure 2: Smart structure.

also less vulnerable to power failure. Semi-active suspension devices may be based
on classical viscous dampers with a variable orifice, or on magneto-rheological
(MR) fluids.

2. Smart materials and structures

An active structure consists of a structure provided with a set of actuators and
sensors coupled by a controller; if the bandwidth of the controller includes some
vibration modes of the structure, its dynamic response must be considered. If
the set of actuators and sensors are located at discrete points of the structure,
they can be treated separately. The distinctive feature of smart structures is that
the actuators and sensors are often distributed and have a high degree of integra-
tion inside the structure, which makes a separate modelling impossible (Fig.2).
Moreover, in some applications like vibroacoustics, the behaviour of the structure
itself is highly coupled with the surrounding medium; this also requires a coupled
modelling.

From a mechanical point of view, classical structural materials are entirely
described by their elastic constants relating stress and strain, and their thermal
expansion coefficient relating the strain to the temperature. Smart materials are
materials where strain can also be generated by different mechanisms involving
temperature, electric field or magnetic field, etc... as a result of some coupling
in their constitutive equations. The most celebrated smart materials are briefly
described below:

• Shape Memory Alloys (SMA) allow one to recover up to 5 % strain from
the phase change induced by temperature. Although two-way applications
are possible after education, SMAs are best suited for one-way tasks such
as deployment. In any case, they can be used only at low frequency and
for low precision applications, mainly because of the difficulty of cooling.
Fatigue under thermal cycling is also a problem. The best known SMA is
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the NITINOL; SMAs are little used in vibration control and will not be
discussed in this book.

• Piezoelectric materials have a recoverable strain of 0.1 % under electric field;
they can be used as actuators as well as sensors. There are two broad
classes of piezoelectric materials used in vibration control: ceramics and
polymers. The piezopolymers are used mostly as sensors, because they re-
quire extremely high voltages and they have a limited control authority; the
best known is the polyvinylidene fluoride (PV DF or PV F2). Piezoceramics
are used extensively as actuators and sensors, for a wide range of frequency
including ultrasonic applications; they are well suited for high precision in
the nanometer range (1nm = 10−9m). The best known piezoceramic is the
Lead Zirconate Titanate (PZT).

• Magnetostrictive materials have a recoverable strain of 0.15 % under mag-
netic field; the maximum response is obtained when the material is subjected
to compressive loads. Magnetostrictive actuators can be used as load car-
rying elements (in compression alone) and they have a long lifetime. They
can also be used in high precision applications. The best known is the
TERFENOL-D.

• Magneto-rheological (MR) fluids consists of viscous fluids containing micron-
sized particles of magnetic material. When the fluid is subjected to a mag-
netic field, the particles create columnar structures requiring a minimum
shear stress to initiate the flow. This effect is reversible and very fast (re-
sponse time of the order of millisecond). Some fluids exhibit the same be-
haviour under electrical field; they are called electro-rheological (ER) fluids;
however, their performances (limited by the electric field breakdown) are
significantly inferior to MR fluids. MR and ER fluids are used in semi-active
devices.

This brief list of commercially available smart materials is just a flavor of what is
to come: phase change materials are currently under development and are likely
to become available in a few years time; they will offer a recoverable strain of
the order of 1 % under an electric field, one order of magnitude more than the
piezoceramics.

The range of available devices to measure position, velocity, acceleration and
strain is extremely wide, and there are more to come, particularly in optome-
chanics. Displacements can be measured with inductive, capacitive and optical
means (laser interferometer); the latter two have a resolution in the nanometer
range. Piezoelectric accelerometers are very popular but they cannot measure
a d.c. component. Strain can be measured with strain gages, piezoceramics,
piezopolymers and fiber optics. The latter can be embedded in a structure and
give a global average measure of the deformation; they offer a great potential for
health monitoring as well. We will see that piezopolymers can be shaped to react
only to a limited set of vibration modes (modal filters).
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Figure 3: Principle of feedback control.

3. Control strategies

There are two radically different approaches to disturbance rejection: feedback
and feedforward. Although this text is entirely devoted to feedback control, it is
important to point out the salient features of both approaches, in order to enable
the user to select the most appropriate one for a given application.

3.1. FEEDBACK

The principle of feedback is represented in Fig.3; the output y of the system is
compared to the reference input r and the error signal, e = r − y, is passed into a
compensator H(s) and applied to the system G(s). The design problem consists
of finding the appropriate compensator H(s) such that the closed-loop system is
stable and behaves in the appropriate manner.

In the control of lightly damped structures, feedback control is used for two
distinct and somewhat complementary purposes: active damping and model based
feedback.

The objective of active damping is to reduce the resonant peaks of the closed-
loop transfer function

F (s) =
y(s)

r(s)
=

GH

1 + GH
(1)

In this case F (s) is very close to G(s), except near the resonance peaks where the
amplitude is reduced. Active damping can generally be achieved with moderate
gains; another nice property is that it can be achieved without a model of the
structure and with guaranteed stability, provided that the actuator and sensor are
collocated and have perfect dynamics. Of course actuators and sensors always
have finite dynamics and any active damping system has a finite bandwidth.

The control objectives can be more ambitious and we may wish to keep a
control variable (a position, or the pointing of an antenna) to a desired value in
spite of external disturbances d in some frequency range. From

y(s)

d(s)
=

1

1 + GH
(2)

we readily see that reducing the effect of external disturbances requires large values
of GH in the frequency range where the disturbance is significant. From Equ.(1),
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Figure 4: Effect of the control bandwidth on the net damping of the residual modes.

we see that GH ≫ 1 implies that the closed-loop transfer function F (s) is close
to 1, which means that the output y tracks the input r accurately. In general, to
achieve that, we need a more elaborate strategy involving a mathematical model
of the system which, at best, can only be a low-dimensional approximation of the
actual system G(s). There are many techniques available to find the appropriate
compensator and only the simplest and the best established will be reviewed in
this text. They all have a number of common features:

• The bandwidth ωc of the control system is limited by the accuracy of the
model; there is always some destabilization of the flexible modes outside ωc

(residual modes). The phenomenon whereby the net damping of the residual
modes actually decreases when the bandwidth increases is known as spillover
(Fig.4).

• The disturbance rejection within the bandwidth of the control system is al-
ways compensated by an amplification of the disturbances outside the band-
width.

• When implemented digitally, the sampling frequency ωs must always be two
orders of magnitude larger than ωc to preserve reasonably the behaviour of
the continuous system. This puts some hardware restrictions on the band-
width of the control system.

3.2. FEEDFORWARD

When a signal correlated to the disturbance is available, feedforward adaptive fil-
tering constitutes an attractive alternative to feedback for disturbance rejection;
it was originally developed for noise control [21], but it is very efficient for vibra-
tion control too [12]. Its principle is explained in Fig.5. The method relies on
the availability of a reference signal correlated to the primary disturbance; this
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Figure 5: Principle of feedforward control.

Type of control Advantages Disadvantages

Feedback

Active damping • no model needed • effective only near
• guaranteed stability resonances

when collocated

Model based • global method • limited bandwidth (ωc ≪ ωs)
(LQG,H∞...) • attenuates all • disturbances outside ωc

disturbances within ωc are amplified
• spillover

Feedforward

Adaptive filtering • no model necessary • reference needed
of reference • wider bandwidth • local method

(x-filtered LMS) (ωc ≃ ωs/10) (response may be amplified
in some part of the system)

• works better for • large amount of real time
narrow-band disturb. computations

Table 1: Comparison of control strategies.

signal is passed through an adaptive filter, the output of which is applied to the
system by secondary sources. The filter coefficients are adapted in such a way
that the error signal at one or several critical points is minimized. The idea is
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to produce a secondary disturbance such that it cancels the effect of the primary
disturbance at the location of the error sensor. Of course, there is no guarantee
that the global response is also reduced at other locations and, unless the response
is dominated by a single mode, there are places where the response can be ampli-
fied; the method can therefore be considered as a local one, in contrast to feedback
which is global. Unlike active damping which can only attenuate the disturbances
near the resonances, feedforward works for any frequency and attempts to cancel
the disturbance completely by generating a secondary signal of opposite phase.

The method does not need a model of the system, but the adaption procedure
relies on the measured impulse response. The approach works better for narrow-
band disturbances, but wide-band applications have also been reported. Because
it is less sensitive to phase lag than feedback, feedforward control can be used at
higher frequency (a good rule of thumb is ωc ≃ ωs/10); this is why it has been so
successful in acoustics.

The main limitation of feedforward adaptive filtering is the availability of a
reference signal correlated to the disturbance. There are many applications where
such a signal can be readily available from a sensor located on the propagation
path of the perturbation. For disturbances induced by rotating machinery, an
impulse train generated by the rotation of the main shaft can be used as reference.
Table 1 summarizes the main features of the two approaches.

4. Open-loop frequency response

Consider a lightly damped flexible structure provided with a point force actuator
and a displacement sensor. The open-loop frequency response function (FRF) can
be expanded in modal coordinates as

G(ω) =
n∑

i=1

φi(a)φi(s)

µi(ω2
i − ω2 + 2jξiωiω)

(3)

where ωi is the natural frequency of mode i, µi its modal mass, ξi its modal
damping, and φi(a) and φi(s) are the modal amplitudes at the actuator and sen-
sor locations, respectively; in principle, the sum extends to all the modes of the
structure. If one wish to truncate the modal expansion above the frequency range
of interest, it is very important to keep the static contribution of the high frequency
modes:

G(ω) ≃
m∑

i=1

φi(a)φi(s)

µi(ω2
i − ω2 + 2jξiωiω)

+
n∑

i=m+1

φi(a)φi(s)

µiω2
i

(4)

The second sum is often called residual mode; it is independent of ω and introduces
a feedthrough component in the FRF. It can be shown that this term plays an
important role in the location of the open-loop zeros of the system. Upon writing
Equ.(4) for ω = 0, it is readily obtained that the residual mode can be written
alternatively

R =
n∑

i=m+1

φi(a)φi(s)

µiω2
i

= G(0) −
m∑

i=1

φi(a)φi(s)

µiω2
i

(5)
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4.1. COLLOCATED SYSTEMS

Consider an undamped system with collocated actuator and sensor. Since φi(a) =
φi(s), Equ.(4) becomes

G(ω) ≃
m∑

i=1

φ2
i (a)

µi(ω2
i − ω2)

+ R (6)

We note that the residues are all positive. The behaviour of G(ω) is represented

Figure 6: FRF of an undamped structure with collocated actuator and sensor.

in Fig.6; the amplitude of G(ω) goes to ±∞ at the resonance frequencies ωi (cor-
responding to a pair of imaginary poles in the system). Besides, as G(ω) is an
increasing function of ω2, in every interval between consecutive resonance fre-
quencies, there is a frequency ω0i where the amplitude of the FRF vanishes; these
frequencies are known in structural dynamics as anti-resonance; they correspond
to purely imaginary zeros. Thus an undamped structure with collocated actuator
and sensor has alternating poles and zeros on the imaginary axis (Figure 7.a). The
transfer function can be written alternatively

G(s) = k

∏

zeros(s
2 + ω2

0i)
∏

poles(s
2 + ω2

i )
(7)

If some damping is added, the poles and zeros are slightly moved into the left
half plane as indicated in Fig.7.b, without changing the dominant feature of in-
terlacing. A collocated system always exhibits Bode and Nyquist plots similar to
those represented in Fig.8. Each flexible mode introduces a circle in the Nyquist
diagram; it is more or less centered on the imaginary axis which is intersected at
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Figure 7: Pole/zero pattern of a structure with collocated actuator and sensor. (a) Un-
damped. (b) Lightly damped. (Only the upper half of the complex plane is
shown, the diagram is symmetrical with respect to the real axis)

ω = ωi and ω = ω0i; the radius of each circle is proportional to the inverse of the
modal damping, ξ−1

i . In the Bode plots, a 1800 phase lag occurs at every natural
frequency, and is compensated by a 1800 phase lead at every imaginary zero; the
phase always oscillates between 0 and −π, as a result of the interlacing property
of the poles and zeros. It is worth pointing out that the zeros (anti-resonance) of
a collocated system are identical to the resonance frequencies of the system with
an additional restraint at the actuator/sensor location.

Figure 8: Nyquist diagram and Bode plots of a lightly damped structure with collocated
actuator and sensor.
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5. Laminar piezoelectric actuator

5.1. SMART PIEZOELECTRIC SHELL

Consider a two-dimensional piezoelectric lamina in a plane (x, y); the poling di-
rection is z (normal to the lamina) and the electric field is also applied along z.
In the piezoelectric principal axes, the constitutive equations read

{T} = [C]{S} −
{ e31

e32

0

}

E (8)

D = {e31 e32 0}{S} + εE (9)

where

{T} =







σx

σy

σxy






{S} =







εx = ∂u
∂x

εy = ∂v
∂y

γxy = ∂u
∂y

+ ∂v
∂x







(10)

are the stress and strain vector, respectively, [C] is the matrix of elastic constant, E
is the component of the electric field along z, D is the z-component of the electric
displacement and ε the dielectric constant and e31 and e32 are the piezoelectric
constants.

Figure 9: Piezoelectric shell.

Next, consider a piezoelectric lamina bounded on a shell structure (Fig.9). If
the global axes coincide with the piezoelectric axes of the lamina, the constitutive
equations can be integrated over the thickness of the shell in the form (e.g. [17])

{
N
M

}

=

[
A B
B D

]{
S0

κ

}

+

[
I3

zm I3

]{ e31

e32

0

}

V (11)

D = {e31 e32 0}[I3 zmI3]

{
S0

κ

}

− ε

hp
V (12)



A. Preumont

Q = e31

∫

C

(~u0.~n
︸︷︷︸

+ zm
∂w

∂~n
︸ ︷︷ ︸

slope

)dl

displacement normal

to the contour

Figure 10: Sensor equation for an isotropic piezo.

Np = −e31V
︸ ︷︷ ︸

normal force

Mp = −e31zmV
︸ ︷︷ ︸

bending moment

Figure 11: Equivalent piezoelectric forces for an isotropic piezo.

Figure 12: Equivalent piezoelectric loads of a rectangular piezoceramic patch on a beam.
(a) Beam theory. (b) Shell theory.
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where {N} is the vector of in-plane resultant forces and {M} the vector of
bending moments;

{N} =

∫ h/2

−h/2

{T}dz {M} =

∫ h/2

−h/2

{T}z dz (13)

{S0} is the deformation vector of the mid-plane and {κ} is the vector of curvatures:

{S0} =







∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x







{κ} =







∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y







(14)

The matrices A,B,D are the classical stiffness matrices of the shell theory (e.g. [3]);
hp is the thickness of the piezoelectric lamina and zm is the distance between its
mid-plane and the mid-plane of the shell.

If the piezoelectric lamina is connected to a charge amplifier, the voltage be-
tween the electrodes is set to V = 0 and the sensor equation (12) can be integrated
over the electrode to produce the sensor output

Q =

∫

Ω

[e31

∂u0

∂x
+ e32

∂v0

∂y
+ zm(e31

∂2w

∂x2
+ e32

∂2w

∂y2
)]dS (15)

where the integral extends over the surface of the electrode (the part of the piezo
not covered by the electrode does not contribute to the signal). The first part of
the integral is the contribution of the membrane strain while the second one is due
to bending. If the piezoelectric properties are isotropic (e31 = e32), the surface
integral can be further transformed into a contour integral using one of the Green
integrals:

Q = e31

∫

C

( ~u0.~n + zm
∂w

∂~n
)dl (16)

This integral extends over the contour of the electrode (Fig.10); the first contri-
bution is the component of the mid-plane in-plane displacement normal to the
contour and the second one is associated with the slope along the contour.

Similarly, for a piezoelectric actuator made of isotropic material, the equivalent
piezoelectric loads consist of a in-plane force, normal to the contour of the elec-
trode, and a constant moment, acting along the contour of the electrode (Fig.11):

Np = −e31V Mp = −e31zmV (17)

5.2. SMART PIEZOELECTRIC BEAM

Figure 12 considers the particular case where the piezo patch is mounted on a
beam. Of all the piezoelectric forces defined by Equ.(17) and represented in
Fig.12.b, only the bending moment Mp normal to the beam axis will contribute
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significantly to the transverse displacements of the beam (Fig.12.a); this is the
corresponding equivalent load of the beam theory.

In a more general configuration where a beam is covered with a piezoelectric
layer with an electrode of width bp(x), the equivalent piezoelectric load consists
of a distributed load proportional to the second derivative of the width of the
electrode (e.g. [23]):

p = −e31zmV b′′p(x) (18)

Similarly, if the piezo layer is used as a sensor, the amount of electric charge
generated by the beam deformation is given by

Q = −e31zm

∫ b

a

∂2w

∂x2
bp(x) dx (19)

where a and b are the limit of the electrode along the beam. Equ.(19) is a particular
case of Equ.(15), with the assumptions of the beam theory.

5.3. SPATIAL MODAL FILTERS

Equation (18) allows to tailor an actuator to produce a single mode excitation [18].
Indeed, it can be shown that the electrode profile

b′′p(x) ∼ m φl(x) (20)

(where m is the mass per unit length) excites only mode l; this is a consequence
of the orthogonality condition of the mode shapes.

Conversely, a sensor with an electrode profile

bp(x) ∼ EI φ′′

l (x) (21)

Figure 13: Modal filters for the first two modes of a beam for various boundary conditions:
(a) cantilever; (b) simply supported.
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will be sensitive only to mode l. Note that for an uniform beam, the modal actuator
and the modal sensor have the same shape, because φIV

i (x) ∼ φi(x). Figure
13 illustrates the modal filters used for a uniform beam with various boundary
conditions; the change of sign indicates a change in the polarity of the strip, which
is equivalent to negative values of bp(x). As an alternative, the part of the sensor
with negative polarity can be bonded on the opposite side of the beam. The reader
will notice that the electrode shape of the simply supported beam is the same as
the mode shape, while for the cantilever beam, the electrode shape is that of the
mode shape of a beam supported at the opposite end.

6. Active truss

Figure 14: Active truss. The active struts consist of a piezoelectric linear actuator colin-
ear with a force transducer.

Consider the active truss of Fig.14; when a voltage V is applied to an uncon-
strained linear piezoelectric actuator, it produces an expansion δ.

δ = d33nV = gaV (22)

where d33 is the piezoelectric coefficient, n is the number of piezoelectric ceramic
elements in the actuator; ga is the actuator gain. This equation neglects the
hysteresis of the piezoelectric expansion. If the actuator is placed in a truss,
its effect on the structure can be represented by equivalent piezoelectric loads
acting on the passive structure. As for thermal loads, the pair of self equilibrating
piezoelectric loads applied axially to both ends of the active strut (Fig.14) has a
magnitude equal to the product of the stiffness of the active strut, Ka, by the
unconstrained piezoelectric expansion δ:

p = Kaδ (23)
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Assuming no damping, the equation governing the motion of the structure excited
by a single actuator is

Mẍ + Kx = b p = b Kaδ (24)

where b is the influence vector of the active strut in the global coordinate system.
The non-zero components of b are the direction cosines of the active bar. As for
the output signal of the force transducer, it is given by

y = T = Kaδe (25)

where δe is the elastic extension of the active strut, equal to the difference between
the total extension of the strut and its piezoelectric component δ. The total
extension is the projection of the displacements of the end nodes on the active
strut, ∆ = bT x. Introducing this into Equ.(25), we get

y = T = Ka(bT x − δ) (26)

Note that, because the sensor is located in the same strut as the actuator, the
same influence vector b appears in the sensor equation (26) and the equation of
motion (24). If the force sensor is connected to a charge amplifier of gain gs, the
output voltage v0 is given by

v0 = gsT = gsKa(bT x − δ) (27)

Note the presence of a feedthrough component from the piezoelectric extension
δ. Upon transforming into modal coordinates, the frequency response function
(FRF) G(ω) between the voltage V applied to the piezo and the output voltage of
the charge amplifier can be written [23]:

v0

V
= G(ω) = gsgaKa{

n∑

i=1

νi

1 − ω2/Ω2
i

− 1} (28)

where Ωi are the natural frequencies, and we define

νi =
Ka(bT φi)

2

µiΩ2
i

=
Ka(bT φi)

2

φT
i Kφi

(29)

The numerator and the denominator of this expression represent respectively
twice the strain energy in the active strut and twice the total strain energy when
the structure vibrates according to mode i; νi(≥ 0) is therefore called the modal
fraction of strain energy in the active strut. From Equ.(28), we see that νi de-
termines the residue of mode i, that is the amplitude of the contribution of mode
i in the transfer function between the piezo actuator and the force sensor; it can
therefore be regarded as a compound index of controllability and observability of
mode i. νi is readily available from commercial finite element programs; it can
be used to select the proper location of the active strut in the structure: the best
location is that with the highest νi for the modes that we wish to control [?]. The
FRF (28) has alternating poles and zeros on the imaginary axis (or near, if the
structural damping is taken into account)(Fig.15).
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Figure 15: Open-loop FRF G(ω) of the active truss (a small damping is assumed).

7. Active damping with collocated pairs

7.1. INTRODUCTION

The role of damping is to reduce the settling time of the transient response to
impulsive loads, and the resonant response to broad band stationary excitations.
In this section, we examine various ways of achieving active damping augmentation
with collocated actuator/sensor pairs. As we have seen in section ’4.’, this special
configuration leads to alternating poles and zeros near the imaginary axis; thanks
to this property, a number of active damping schemes with guaranteed stability
have been developed and tested with various types of actuators and sensors (Table
2); they can be implemented in a decentralized manner, each actuator interacting
only with its collocated sensor.

7.2. DIRECT VELOCITY FEEDBACK [5,6]

Consider an undamped structure controlled with a set of point force actuators u
collocated with a set of velocity sensors ẏ; the governing equations are

structure:

Mẍ + Kx = f + Bu (30)

sensor:

ẏ = BT ẋ (31)
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gD(s) Force Strain Linear
(d31 piezo) (d33 piezo)

Lead
Displacement g s

s + a

Direct Velocity F.
Velocity g

DVF: g/s
Acceleration

g
s2 + 2ξfωfs + ω2

f

Positive Position F.

Strain
−gω2

f

s2 + 2ξfωfs + ω2
f

(d31 piezo)
Integral Force F.

Force −g/s

Table 2: Collocated active damping compensators for various actuator/sensor pairs. The
column indicates the type of actuator, and the row the type of sensor.

control:
u = −Gẏ (32)

where B is the control influence matrix and G is the positive definite matrix
of control gains. The fact that BT appears in the sensor equation is due to
collocation. Combining the three equations, we find the closed-loop equation

Mẍ + BGBT ẋ + Kx = f (33)

Therefore, the control forces appear as a viscous damping (electrodynamic damp-
ing). The damping matrix C = BGBT is positive semi definite, because the
actuators and sensors are collocated.

7.2.1. Lead compensator

Let us examine the SISO case a little closer. In this case, the matrix B degenerates
into a control influence vector b . The open-loop transfer function between the
control force u and the collocated displacement y is

G0(s) =
Y (s)

U(s)
=

∑

i

bT φiφ
T
i b

µi(ω2
i + s2)

(34)
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where the sum extends to all the modes. We know that the corresponding poles
and zeros alternate on the imaginary axis.

Because the amplitude of the derivative compensation increases linearly with
the frequency, which would lead to noise amplification at high frequency, it is not
desirable to implement the compensator as in Equ.(32), but rather to supplement
it by a low-pass filter to produce:

D(s) = g
s

s + a
(35)

A pole has been added at some distance a along the negative real axis. This
compensator behaves like a derivator at low frequency (ω ≪ a). The block diagram
of the control system is shown in Fig.16; a displacement sensor is now assumed and
the structural damping is again omitted for simplicity. Typical root locus plots
are shown in Fig.17 for two values of the low-pass filter corner frequency a. The

Figure 16: Block diagram of the modified direct velocity feedback.

Figure 17: Root locus plots for two values of the low-pass filter corner frequency a (only
the upper half is shown).
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closed-loop pole trajectories go from the open-loop poles to the open-loop zeros
following branches which are entirely contained in the left half plane. Since there
are two poles more than zeros, there are two asymptotes at ±900. The system is
always stable, and this property is not sensitive to parameter variations, because
the alternating pole-zero pattern is preserved under parameter variations.

7.3. ACCELERATION FEEDBACK [28,29]

The easiest way to use the acceleration is to integrate it to obtain the absolute
velocity; the direct velocity feedback can then be used. In practice, however,
piezoelectric accelerometers use charge amplifiers which behave as high-pass filters;
this does not affect significantly the results if the corner frequency of the charge
amplifier is well below the vibration mode of the structure. Next, we consider an
alternative controller which also enjoys guaranteed stability and exhibits a larger
roll-off at high frequency.

7.3.1. Second order filter

Figure 18: Acceleration feedback for a SISO collocated system.

The block diagram of the second order filter applied to a SISO collocated
system with acceleration sensor is shown in Fig.18; the corresponding root locus is
shown in Fig.19 for two values of the filter frequency ωf ; in both cases, ξf = 0.5 is
used. In Fig.19.a, ωf is selected close to the natural frequency of mode 2 while in
Fig.19.b, it is selected close to mode 1. Comparing the two figures, we see that all
the modes are positively damped, but the mode with the natural frequency close
to ωf is more heavily damped. Thus, the performance of the compensator relies
on the tuning of the filter on the mode that we wish to damp (this aspect may
become problematic if the system is subject to changes in the parameters). The
maximum achievable damping ratio increases with ξf ; a value of ξf between 0.5
and 0.7 is recommended. For closely spaced modes, stability is still guaranteed,
but a large damping ratio cannot be achieved simultaneously for the two modes;
besides, small variations of the filter frequency may significantly change the root
locus and the modal damping.

If several modes must be damped, several compensators may be used in parallel
as represented in Fig.20, where the ωfi are tuned on the targeted modes.
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Figure 19: Root locus of the acceleration feedback for a m.d.o.f. structure. (a) The control
is targeted at mode 2. (b) The control is targeted at mode 1. (Different scales
are used for the real and imaginary parts)

Figure 20: Targeting several modes with a SISO acceleration feedback.

As compared to the Direct Velocity Feedback, gD(s) = g/s, the new com-
pensator has a larger roll-off at high frequency (−40 dB/decade instead of
−20 dB/decade), which may decrease the risk of destabilizing high frequency
modes. The need for tuning the filter frequency ωf may be a drawback if the
natural frequency is not known accurately, or is subject to changes.
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7.4. POSITIVE POSITION FEEDBACK [10,14]

The Positive Position Feedback (PPF) is appropriate for a structure equipped with
strain actuators and sensors; the objective is, once again, to use a second order
filter to improve the roll-off of the control system, allowing high frequency gain
stabilization. The block diagram is represented in Fig.21. As compared to Fig.18,
the output y is now proportional to the displacements (e.g. strain sensor) and a
minus sign appears in the controller block (together with the minus sign in the
feedback loop, this produces a positive feedback.). Figure 22.a and .b show the
root locus when the controller is tuned on mode 1 and mode 2, respectively. We
see that the tuning property of the controller is very similar to that of Fig.18 and,
even in presence of a feedthrough component, the open-loop transfer function has
a roll-off of −40dB/decade. However, there is a stability limit which is reached
when the open-loop static gain is equal to 1.

Figure 21: Positive Position Feedback for a SISO collocated system.

Figure 22: Root locus of the PPF. (a) The control is targeted at mode 1. (b) The control
is targeted at mode 2.
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7.5. INTEGRAL FORCE FEEDBACK [27]

Consider the active truss of Fig.14; the open-loop FRF of Equ.(28) has alternating
poles and zeros and has no roll-off at high frequencies. This system can be actively
damped by a positive Integral Force Feedback (Fig.23); the corresponding root locus
is shown in Fig.24.

Figure 23: Block diagram of the integral force feedback.

Figure 24: Root locus of the integral force feedback.

7.5.1. Modal damping

Combining the structure equation (24), the sensor equation (26) and the control
law

δ =
g

Kas
y (36)

the closed-loop characteristic equation reads

[Ms2 + K − g

s + g
(bKabT )]x = 0 (37)
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From this equation, we can deduce the open-loop transmission zeros, which coin-
cide with the asymptotic values of the closed-loop poles as g → ∞. Taking the
limit, we get

[Ms2 + (K − bKabT )]x = 0 (38)

which states that the zeros (i.e. the anti-resonance frequencies) coincide with
the poles (resonance frequencies) of the structure where the active strut has been
removed (corresponding to the stiffness matrix K − bKabT ).

To evaluate the modal damping, Equ.(37) must be transformed in modal co-
ordinates with the change of variables x = Φz. Assuming that the mode shapes
have been normalized according to ΦT MΦ = I and taking into account that
ΦT KΦ = diag(Ω2

i ) = Ω2, we have

[Is2 + Ω2 − g

s + g
ΦT (bKabT )Φ]z = 0 (39)

The matrix ΦT (bKabT )Φ is, in general, fully populated; if we assume that it is
diagonally dominant, and if we neglect the off-diagonal terms, it can be rewritten

ΦT (bKabT )Φ ≃ diag(νiΩ
2
i ) (40)

where νi is the fraction of modal strain energy in the active member when the
structure vibrates according to mode i; νi is defined by Equ.(29). Substituting
Equ.(40) into (39), we find a set of decoupled equations

s2 + Ω2
i −

g

s + g
νiΩ

2
i = 0 (41)

and, after introducing
ω2

i = Ω2
i (1 − νi) (42)

it can be rewritten
s2 + Ω2

i −
g

s + g
(Ω2

i − ω2
i ) = 0 (43)

By comparison with Equ.(37), we see that the transmission zeros (the limit of
the closed-loop poles as g → ∞) are ±jωi. The characteristic equation can be
rewritten

1 + g
(s2 + ωi

2)

s(s2 + Ωi
2)

= 0 (44)

The corresponding root locus is shown in Fig.25. The depth of the loop in the left
half plane depends on the frequency difference Ωi − ωi, and the maximum modal
damping is given by

ξi
max =

Ωi − ωi

2ωi
(45)

it is obtained for g = Ωi

√

Ωi/ωi. For small gains, it can be shown [27] that

ξi =
gνi

2Ωi
(46)
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Figure 25: Root locus of the closed-loop pole for the IFF.

Figure 26: Active truss with piezoelectric struts (ULB).
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This interesting result tells us that, for small gains, the active damping ratio in
a given mode is proportional to the fraction of modal strain energy in the active
element. This result is very useful for the design of active trusses; the active struts
should be located in order to maximize the fraction of modal strain energy νi in
the active members for the critical vibration modes. The preceding results have
been established for a single active member; if there are several active members
operating with the same control law and the same gain g, this result can be
generalized under similar assumptions. It can be shown that each closed-loop
pole follows a root locus governed by Equ.(44) where the pole Ωi is the natural
frequency of the open-loop structure and the zero ωi is the natural frequency of
the structure where the active members have been removed.

7.5.2. Experimental results

The test structure is shown in Fig.26. Figures 27 and 28 illustrate typical results.
The modal damping ratio of the first two modes is larger than 10 %. Note that,
in addition to being simple and robust, the control law can be implemented in a
analog controller which performs better in microvibrations.

Figure 27: Force signal from the two active struts during the free response after impulsive
load.
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Figure 28: FRF between a force in A and an accelerometer in B, with and without control.

8. Active tendon control

The use of cables to achieve lightweight structures is not new; it can be found in
Herman Oberth’s early books on astronautics. The use of guy cables is probably
the most efficient way to stiffen a structure, in terms of weight. They can also be
used to prestress a deployable structure and eliminate the geometric uncertainty
due to the gaps. Cables structures are also extensively used in civil engineering.
One further step consists of providing the cables with active tendons to achieve
active damping in the structure. This approach has been developed in [1,2,23–26].

8.1. ACTIVE DAMPING OF CABLE STRUCTURES

Figure 29: Control strategy for active damping of cable structures.
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When using a displacement actuator (e.g. a piezo) and a force sensor, the
(positive) Integral Force Feedback (36) belongs to the class of ”energy absorbing”
control : indeed, if

δ ∼
∫

Tdt (47)

the power flow from the control system is W = −T δ̇ ∼ −T 2 ≤ 0. This means that
the control can only extract energy from the system, and this applies to nonlinear
structures as well; all the states which are controllable and observable are asymp-
totically stable for all positive gains (infinite gain margin). The control concept
is represented schematically in Fig.29 where the spring-mass system represents an
arbitrary structure. Note that the damping introduced in the cable is usually very
low, but experimental results have confirmed that it remains always stable, even
at the parametric resonance (when the natural frequency of the structure is twice
that of the cables).

8.2. MODAL DAMPING

Figure 30: Cable structure: root locus of the closed-loop poles.
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If we assume that the dynamics of the cables can be neglected, that their
interaction with the structure is restricted to the tension in the cables, and that
the global mode shapes are identical with and without the cables, one can develop
an approximate linear theory for the closed-loop system; the following results
can be established, which follow closely those obtained for active trusses in the
foregoing section (we assume no structural damping):

• The open-loop poles are ±jΩi where Ωi are the natural frequencies of the
structure including the active cables; the open-loop zeros are ±jωi where
ωi are the natural frequencies of the structure where the active cables have
been removed.

• If the same control gain is used for every local control loop, as g goes from 0 to
∞, the closed-loop poles follow the root locus defined by Equ.(44) (Fig.30).
Equ.(45) and (46) also apply in this case.

8.3. ACTIVE TENDON DESIGN

Figure 31: Various designs of active tendon or active strut (ULB).
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Figure 31 shows two possible designs of the active tendon: the first one (bottom
left) is based on a linear piezoactuator from PI and a force sensor from B&K; a
lever mechanism (top view) is used to transform the tension in the cable into a
compression in the piezo stack, and amplifies the translational motion to achieve
about 100 µm. This active element is identical to that in an active strut. In
the second design (bottom center and right), the linear actuator is replaced by
an amplified actuator from CEDRAT Research, also connected to a B&K force
sensor and flexible tips. In addition to being more compact, this design does not
require an amplification mechanism, and a tension of the flexible tips produces a
compression in the piezo stack, which expands in the transverse direction, at the
center of the elliptical structure.

8.4. EXPERIMENTAL RESULTS

Figure 32: Free floating truss with active tendons.

Figure 32 shows the test structure; it is representative of a scale model of the
JPL-Micro-Precision-Interferometer [20] which consists of a large trihedral passive
truss of about 9m. The free-floating condition during the test is simulated by
hanging the structure from the ceiling of the lab with soft springs. In this study,
two different types of cables have been used: a fairly soft cable of 1mm diameter
of polyethylene (EA ≈ 4000N) and a stiffer one of synthetic fiber ”Dynema”
(EA ≈ 18000N); in both cases, the tension in the cables was chosen in order to
set the first cable mode at 400rad/sec or more, far above the first five flexible
modes for which active damping is sought. The table inset into Fig.32 gives the
measured natural frequencies ωi (without cables) and Ωi (with cables), for the two
sets of cables.
Figure 33 compares the experimental closed-loop poles obtained for increasing
gain g of the control with the root locus prediction of Equ.(44). The results are
consistent with the analytical predictions, although a larger scatter is observed
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Figure 33: Experimental poles vs. root-locus prediction for the flexible modes of the free
floating truss. (a) EA = 4000N . (b) EA = 18000N .

Figure 34: Typical FRF with and without control (EA = 4000N).

with stiffer cables. Note, however, that the experimental results tend to exceed
the root locus predictions. Figure 34 compares typical FRF with and without
control. An analytical study was conducted in [25] to investigate the possibility
of using three Kevlar cables of 2mm diameter connecting the tips of the three
trusses of the JPL-MPI. Using the root locus technique of Fig.30, a damping ratio
between 14% and 21% was predicted in the first three flexible modes.
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9. Active damping generic interface

The active strut discussed in section ’6.’ can be developed into a generic 6 d.o.f.
interface which can be used to connect arbitrary substructures. Such an interface

Figure 35: Stewart platform with piezoelectric legs as generic active damping interface.
(a) General view. (b) With the upper base plate removed. (c) Interface acting
as a support of a truss.
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is shown in Fig.35; it consists of a Stewart platform with cubic architecture [13].
Each leg consists of an active strut similar to that shown at the center of Fig.31:
piezotranslator of the amplified design collocated with a force sensor, and con-
nected to the base plates by flexible tips acting like spherical joints. The cubic
architecture provides a uniform control capability in all directions, a uniform stiff-
ness in all directions, and minimizes the cross-coupling amongst actuators (which
are mutually orthogonal). The control is decentralized with the same gain for all
loops. Figure 35.c shows the generic interface mounted between a truss and the
supporting structure. Figure 36 shows the evolution of the first two closed-loop
poles of this system when we increase the gain of the decentralized controller; the
continuous line shows the root locus prediction of Equ.(44); Ωi are the open-loop
natural frequencies while ωi are the high-gain asymptotes of the closed-loop poles.

Figure 36: Experimental poles and root locus prediction from Equ.(44) for the structure
of Fig.35.c.
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10. Active vibration isolation

Many operating equipments (e.g. a car engine or an attitude control reaction
wheel assembly in a spacecraft) generate oscillatory forces which can propagate in
the supporting structure. Conversely, sensitive equipments may be supported by
a structure which vibrates appreciably (e.g. a telescope in a spacecraft). In both
cases, a vibration isolation is necessary and it turns out that the two problems
have the same solution.

10.1. PASSIVE ISOLATION

Figure 37: Passive isolator transmissibility FRF for various values of the damping ξ.

Let us consider the dirty body/clean body isolation problem (Fig.37), where the
dirty body motion xd constitutes the disturbance and the clean body displacement
xc is the system output; the passive isolation system consists of a spring and
damper. The transmissibility of the isolation system is defined as

Xc(s)

Xd(s)
=

1 + 2ξs/ωn

1 + 2ξs/ωn + s2/ω2
n

(48)

The amplitude diagram is represented in Fig.37 for various values of the damp-
ing ratio. We observe that
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• All the curves are larger than 1 for ω <
√

2 ωn and become smaller than 1
for ω >

√
2 ωn. Thus the critical frequency

√
2 ωn separates the domains of

amplification and attenuation of the isolator.

• When ξ = 0, the high frequency decay rate is 1/s2, that is -40 dB/decade,
while very large amplitudes occur near the corner frequency ωn (the natural
frequency of the spring-mass system).

• The damping reduces the amplitude at resonance, but also tends to reduce
the effectiveness at high frequency; the high frequency decay rate becomes
1/s (-20dB/decade).

The design of a passive isolator involves a trade-off between the resonance
amplification and the high frequency attenuation; the ideal isolator should have
a frequency dependent damping, with high damping below the critical frequency√

2 ωn to reduce the amplification peak, and low damping above
√

2 ωn to improve
the decay rate. The objective in designing an active isolation system is to achieve
no amplification below ωn and a decay rate of -40dB/decade at high frequency, as
represented in Fig.37.

10.2. THE ”SKY-HOOK” DAMPER

Figure 38: (a) Soft isolator with acceleration feedback. (b) Equivalent ”sky-hook” damper.

Consider the single axis isolator of Fig.38.a; it consists of a soft spring k acting
in parallel with a force actuator Fa (note that there is no damping in the isolator).
An accelerometer measures the absolute acceleration of the clean body, ẍc and an
integral controller is used, in such a way that

Fa = −gsXc (49)

We observe that the resulting control force is proportional to the clean body ab-
solute velocity; this is why this control is called ”sky-hook damper” (Fig.38.b). It
is easy to establish that the closed-loop transmissibility reads

Xc(s)

Xd(s)
=

[
M

k
s2 +

g

k
s + 1

]−1

(50)
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It has a corner frequency at ωn =
√

k/M , its high frequency decay rate is 1/s2,
that is -40dB/decade, and the control gain g can be chosen in such a way that
the isolator is critically damped (ξ = 1); the corresponding value of the gain is
g = 2

√
kM . In this way, we achieve a low-pass filter without overshoot with a roll-

off of -40dB/decade. This transmissibility follows exactly the objective represented
in Fig.37. On the other hand, the open-loop transfer function of the isolator
(between the control force Fa and the clean body acceleration Ẍc) can be written

G(s) =
s2Xc(s)

Fa(s)
=

ms2

Mms2 + k(M + m)
(51)

The open-loop poles are the natural frequencies of the system without control.
The rigid body modes do not appear in the transfer function (51) because they
are not controllable from Fa. The root locus of the closed-loop poles as the gain
g of the controller increases is shown in Fig.39.

Figure 39: Root locus of the sky-hook damper.

10.3. FORCE FEEDBACK

If the clean body is rigid, its acceleration is proportional to the total force trans-
mitted by the interface, F = Fa + Fk. As a result, the sky-hook damper can
be obtained alternatively with the control configuration of Fig.40, where a force
sensor has been substituted to the acceleration sensor.

The control strategies based on acceleration feedback and on force feedback
appear as totally equivalent for the isolation of rigid bodies. However, the force
feedback has two advantages. The first one is related to sensitivity: force sensors
with a sensitivity of 10−3N are commonplace and commercially available; if we
consider a clean body with a mass of 1000 kg (e.g. a telescope), the corresponding
acceleration is 10−6m/s2. Accelerometers with such a sensitivity are more difficult
to find; for example, the most sensitive accelerometer available in the Bruel &
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Figure 40: Force feedback isolator.

Kjaer catalogue is 2.10−5m/s2(model 8318). The second advantage is stability
when the clean body is flexible. In this case, the sky-hook damper appears to
be only conditionally stable (for small gain) when the clean body becomes very
flexible, so that the corner frequency of the isolator overlaps with the natural
frequencies of the clean body. On the contrary, the stability of the force feedback
remains guaranteed.

10.4. 6 D.O.F. ISOLATOR

Figure 41: Multi-purpose soft isolator based on a Stewart platform (JPL).

The foregoing section describes a single axis active isolator which combines
a −40dB/decade attenuation rate in the roll-off region with no overshoot at the



A. Preumont

corner frequency. To fully isolate two rigid bodies with respect to each other,
we need six such isolators, judiciously placed, that could be controlled either in
a centralized or (more likely) in a decentralized manner. For a number of space
applications, generic multi-purpose 6 d.o.f. isolators have been developed with a
standard Stewart platform architecture (Fig.41) [19,30]. The Stewart platform uses
6 identical active struts arranged in a mutually orthogonal configuration connect-
ing the corner of a cube (same cubic architecture than in section ’9.’). In addition
to the properties discussed in the foregoing section, this cubic architecture also
tends to minimize the spread of the modal frequencies of the isolator.

10.5. DECENTRALIZED CONTROL OF THE 6 D.O.F. ISOLATOR

Assuming that the base is fixed and that the payload attached to the upper part
of the isolator is a rigid body, the dynamic equation (for small rotations) of the
isolator is

Mẍ + Kx = Bu (52)

where x = (xr, yr, zr, θx, θy, θz)
T is the vector describing the small displacements

and rotations in the payload frame, u = (u1, ..., u6)
T is the vector of active control

forces in strut 1 to 6, and B is their influence matrix in the payload frame. M is
the mass matrix and K = kBBT is the stiffness matrix.

If each leg is equipped with a force sensor as in Fig.40, the output equation
reads

y = −kBT x + u (53)

This equation expresses the fact that the total force is the sum of the spring
force and the control force. Once again, we note that the same matrix B appears
in Equ.(52) and (53) because the sensors and actuators are collocated. Using a
decentralized integral force feedback with constant gain, the controller equation
reads

u = −g

s
y (54)

Combining Equ.(52), (53) and (54), the closed-loop equation reads

Ms2x + Kx =
g

s + g
kBBT x

and, taking into account that K = kBBT ,

[Ms2 + K
s

s + g
]x = 0 (55)

If we transform into modal coordinates, x = Φz, and take into account the orthog-
onality relationships of the mode shapes, the characteristic equation is reduced to
a set of uncoupled equations

(
s2 + Ω2

i

s

s + g

)
zi = 0 (56)

Thus, every mode follows the characteristic equation
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s2 + Ω2
i

s

s + g
= 0

or

1 + g
s

s2 + Ω2
i

= 0 (57)

The corresponding root locus is shown in Fig.42. It is identical to Fig.39 for a
single-axis isolator; however, unless the 6 natural frequencies are identical, a given
value of the gain g will lead to different pole locations for the various modes and
it will not be possible to achieve the same damping for all modes. This is why it
is recommanded to locate the payload in such a way that the spread of the modal
frequencies is minimized.

Figure 42: Root locus of the modes of the six-axis isolator with integral force feedback.

10.6. VEHICLE SUSPENSION

Figure 43 shows a quarter-car model of a vehicle. Although this 2 d.o.f. model
is too simple for performing a comprehensive analysis of the ride motion, it is
sufficient to gain some insight in the behaviour of passive and active suspensions
in terms of vibration isolation (represented by the body acceleration ẍ), suspension
travel (x−x0) and road holding (represented by the tyre deflexion x0−d). Typical
numerical values used in the simulation reported later are also given in the figure
(taken from [7]). The stiffness kt corresponds to the tyre; the suspension consists
of a passive part (spring k + damper c) and an active one, assumed to be a perfect
force actuator acting as a sky-hook damper in this case (the active control force
is applied on both sides of the active device, to the body and to the wheel of the
vehicle).

Figure 44 shows the FRF from the roadway vertical velocity ḋ to the car body
acceleration ẍ for the passive suspension alone; several values of the damping co-
efficient c are considered. The first peak corresponds to the body resonance (also
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Figure 43: Quarter-car model and sky-hook damper.

Figure 44: FRF of the passive suspension (ẍ/ḋ) for various values of the damping coef-
ficient.

called sprung mass resonance) and the second one to the wheel resonance (un-
sprung mass resonance). The passive damping cannot control the body resonance
without reducing the isolation at higher frequency. Next, a sky-hook damper
(f = −gẋ) is added. Figure 45 shows the corresponding FRF from ḋ to ẍ for
various values of the control gain. Note that the body resonance can be damped
without reducing the isolation at higher frequency but the peak in the FRF corre-
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Figure 45: FRF of the active suspension (ẍ/ḋ) for various values of the gain g of the
sky-hook damper (all the other parameters have the nominal values listed in
Fig.43).

Figure 46: Comparison of |ẋ/ḋ| and |(ẋ − ẋ0)/ḋ|.
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sponding to the wheel resonance cannot be changed by the active control. Figure
46 compares the amplitude of the FRF ẋ/ḋ and (ẋ − ẋ0)/ḋ for two values of the
gain. This figure shows that the absolute velocity of the body ẋ rolls-off much faster
(i.e. has much lower frequency components) than the relative velocity (ẋ − ẋ0).
This point is important in the design of semi-active suspension devices which try
to emulate the sky-hook damper by acting on the flow parameters of the damper
acting on the relative velocity.
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