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Active vibration control of a nonlinear beam

with self- and external excitations
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Abstract. An application of the nonlinear saturation control (NSC) algorithm for a self-excited strongly nonlinear beam structure

driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with non-

linear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation

close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a

nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an

active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time

scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained

from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the

controller’s parameters for effective vibrations suppression are presented.

Keywords: Active control, saturation, self-excited vibrations, external harmonic force, interactions, nonlinear beam oscillations,

multiple scales method

1. Introduction

Applications of controllers using the saturation phenomenon to reduce a system’s vibrations have been inten-

sively developed in recent years. At first the advantage of this phenomenon was clear for mechanical structures.

Golnaraghi [6] proposed a system, where a sliding mass-spring-dashpot mechanism, placed at the free end of a can-

tilever beam, was used to reduce the free vibrations of such a beam. Nonlinear quadratic coupling between the beam

and the slider, and also 2:1 internal resonance (with the frequency of the slider being twice the fundamental beam

frequency) led to energy transfer between the beam and the slider. The author investigated this system with and

without damping. The inclusion of damping caused an absorption of the beam’s vibrational energy, dissipated by

the slider. A similar approach was demonstrated by Duquette et al. [3,4]. However, in that case the controller’s role

was played by a DC motor with a pendulum attached to the motor shaft. This system was mounted at the free end of

a flexible cantilever beam. The authors presented their results of analytical and numerical investigations (in part 1)

and experimental tests were subsequently shown (in part 2). Harmonic, subharmonic and superharmonic responses

of the beam were observed for selected parameters. Oueini et al. [13] presented a controller based on the saturation

phenomena, operated as a vibration absorber for a linear model of a cantilever beam. A piezoelectric element was

used as an actuator and a strain gauge as a sensor. By using the multiple time scales method the influences of loop

gains and damping of the controller were both studied. Additionally sensitivity to the controller’s initial conditions

and the saturation phenomena was examined. Jun et al. [7] applied a saturation controller to a nonlinear plant using

standard PZT patches. Based on analytical solutions these authors showed that the nonlinear absorber (NSC) was
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globally stable, as distinct from a linear model where increasing the feedback gain value might instead lead to in-

stability. However, for a nonlinear absorber the power requirement was found to be greater than that for the linear

system. Xu et al. [25] investigated the effect of a time delay in a structure consisting of a linear beam and the NSC

absorber. The analytical results based on the multiple scales method revealed much more complex dynamics for the

system. The presence of the time delay widened or reduced the frequency bandwidth of effective vibration reduction.

Warminski et al. [22] analysed the influence of the controller parameters, and also the hard or soft geometrical plant

nonlinearities, to the dynamical response of the system undergoing NSC. Moreover, the effectiveness of the selected

control algorithms to vibration suppression of a strongly nonlinear beam structure was compared and discussed.

The results were obtained by means of analytical, numerical and experimental tests. Macro fibre composite (MFC)

actuators were implemented for the real system and these allowed the required vibration level to be activated.

An application for a controller based on the saturation phenomenon for self-excited systems was presented by El-

Badawy and Nasr El-Deen [5]. They demonstrated possible vibration suppression of a self-excited system, described

by a van der Pol model. The analytical solutions exhibited a significant influence coming from the controller’s

damping, and confirmed that for a perfectly tuned system (where the frequency of the controller was half of the

fundamental plant’s frequency) the response of the system was independent of the original system parameters. Jun

et al. [8] took into account the same van der Pol oscillator with NSC, but additionally they investigated the influence

of feedback gains. Moreover, both perturbation and direct numerical integration solutions were presented.

The saturation based control method gives good results if the dynamics of the plant are known and the controller is

properly tuned (Cartmell [2], Nayfeh [10]). However, in many examples two (or more) different vibration types exist

simultaneously, and then additional interactions may occur. Systems with self- and parametric or external excitations

have been intensively studied by Tondl and Ecker [19], Tondl and Nabergoj [20] or Pust and Tondl [15]. They have

found that interactions between self- and periodically excited systems lead to a quasi-periodic response, but in se-

lected frequency domains the frequency quenching phenomenon is seen to take place. This phenomenon, sometimes

called frequency locking, occurs after an inverse Neimark-Sacker bifurcation. The quenching phenomenon of self-

excited systems which have important practical meanings in fluid-structure interactions, was extensively studied by

Abadi [1] and Verhulst [21]. In some examples a self-exited system may be simultaneously excited parametrically

and externally. Then, the frequency locking zones may change radically for some combinations of parameters. It has

been shown by Szabelski and Warminski [16–18] that a small external force may change the system’s response. In

such a case an internal loop occurs in the amplitude-frequency response curve. This phenomenon leads to five pos-

sible steady states in the frequency locking zones. Moreover, apart from the regular dynamics, interactions between

self- parametric or external excitations may lead to chaotic or hyperchaotic dynamics (Warminski [23,24]).

This paper concentrates on an application of a nonlinear saturation controller to a system where two kinds of exci-

tation appear simultaneously. One of them is harmonic excitation caused by support motion of the cantilever beam,

the second comes from nonlinear damping with a negative linear part, and this models self-excitation. Additional

geometrical and inertial nonlinearities of the beam are also taken into account. The dynamics of this controlled non-

linear structure are compared with those of a nonlinear plant model with classical linear and positive damping. To

the authors’ knowledge there have been no studies presented in the literature of this kind of system. The first-order

approximate analytical solutions thus obtained are compared with the results of direct numerical integration.

2. Model of the structure

The model of the beam structure, together with characteristic parameters, is presented in Fig. 1. The beam is made

of a glass-epoxy composite material with a chosen fibre orientation of 0/90/45/–45/45/90/0 and physical parameters

taking the following values: Young’s modulus E = 0.255 × 105 MPa, mass density ρ = 2100 kg/m3, width b =
12.8 mm, height h = 1 mm and length of the beam L = 236 mm. At the end of the composite beam a lumped

mass M is attached. By varying this mass one may change the characteristics of the system. The cantilever beam

is mounted on an armature of an electrodynamic shaker, this being a source of excitation along the X axis. The

kinematic excitation is written as

x = x0 sin(Ωt) (1)
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Fig. 1. Model of the nonlinear beam with self- and external excitations.

The nonlinear mathematical model which can be used for large beam deflection analysis has been adopted from the
literature (Nayfeh [10], Jun et al. [8], El-Badawy and Nasr El-Deen [5]). Considering only the first bending mode,
the differential equation of the beam (the plant) is written in the dimensionless form:

ẍ1 + (−α1ẋ1 + β1ẋ
3

1) + ω2

01x1 + γ1x
3

1 + δ(x1ẋ
2

1 + x2

1ẍ1) = x0µΩ
2 sin(Ωt) + U (2)

where x1 is the generalized coordinate. Nonlinear damping (self-excitation) is represented by Rayleigh’s function,
where α1 is the negative viscous damping coefficient and β1 is the cubic damping coefficient. The nonlinear damp-
ing term is considered as a phenomenological model of self-excited vibrations. The dimensionless linear natural
frequency ω01 is a ratio of the natural frequency of the composite beam with the lumped mass with respect to that
of the reference beam without the lumped mass. This means that ω01 = 1 if M = 0. Coefficients γ1, δ describe
the geometrical and inertia nonlinearities, respectively. The kinematic support motion x0 sin(Ωt) produces external
excitation x0 µ Ω2 sin(Ωt) where x0 and Ω are the amplitude and frequency respectively of the support motion, and
µ is a constant.

On the right hand side of the differential Eq. (2) is an added control force U . In this paper the nonlinear saturation
control (NSC) method is investigated, therefore the control law is given by

U = g1x
2

2 (3)

where g1 is a positive control feedback gain. The input signal in the quadratic term x2
2 is defined by (Nayfeh [10])

ẍ2 + α2ẋ2 + ω2

02x2 = g2x2x1 (4)

In the NSC controller of Eq. (4) the parameters ω02, α2 are the controller’s natural frequency and damping coef-
ficient, respectively. The parameter g2 is the control gain. According to the saturation control strategy (Oueini et
al. [13], Nayfeh [10]) the controller is tuned to the plant frequency such that: ω02 = 1

2
ω01.

3. Perturbation analysis

Approximate analytical solutions are sought by means of the multiple time scales method (Nayfeh [11]). Assum-
ing that the system is weakly nonlinear and then introducing a formal small parameter ε, the set of Eqs (2)–(4) is
transformed to the form

{

ẍ1 + ω2
01x1 = ε

[

α̃1ẋ1 − β̃1ẋ
3
1 − γ̃1x

3
1 − δ̃

(

x1ẋ
2
1 + x2

1ẍ1

)

+ x̃0µΩ
2 sin (Ωt) + g̃1x

2
2

]

ẍ2 + ω2
02x2 = ε (−α̃2ẋ2 + g̃2x2x1)

(5)
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where the dimensionless parameters of the system are assumed to be ordered by the formal small parameter ε as

follows

α1 = εα̃1, β1 = εβ̃1, γ1 = εγ̃1, δ1 = εδ̃1, x0 = εx̃0, g1 = εg̃1, α2 = εα̃2, g2 = εg̃2

The above ordering takes into account the fact that plant’s response is relatively small, thus the nonlinear terms γ̃1x
3
1

and δ̃
(

x1ẋ
2
1 + x2

1ẍ1

)

are small even if values of γ1 and δ are relatively high.

For simplicity the tilde is hereafter neglected. The solution for the coordinates x1 and x2 is assumed in the usual

form of a series in the small parameter ε

x1(t, ε) = x10(T0, T1) + εx11(T0, T1) + . . .

x2(t, ε) = x20(T0, T1) + εx21(T0, T1) + . . .
(6)

Coordinates xj0 (T0, T1), xj1 (T0, T1), (j = 1, 2) are, respectively, the zeroth and first order perturbations. Dimen-

sionless time is also expressed by a series of the small parameter,

t = T0 + εT1 . . . (7)

where T0, T1 are respectively the fast and slow time scales. Such time scale definitions result in the following

formulae for the first and the second time derivatives

d

dt
=

∂

∂T0

+ ε
∂

∂T1

= D0 + εD1 . . . (8)

d2

dt2
=D2

0 + 2εD0D1 + . . . (9)

where Dm
n =

∂m

∂Tn

means the mth order partial derivative with respect to the nth time-scale.

We seek solutions near the fundamental natural frequency of the beam taking into account the controller which is

tuned for internal resonance ω02 = ω01/2. The frequency of excitation Ω is close to the first natural frequency of

the beam and is twice the natural frequency of the controller (close to the principal parametric resonance). Under

such conditions the response of the beam is harmonic, while the response of the controller is subharmonic.

Assuming that Ω ≈ ω01, we can write

ω2

01 = Ω2 − εσ1 (10)

where σ1 is the frequency detuning parameter.

Substituting solutions Eq. (6) into Eq. (5), taking into account the derivative definitions Eqs (8) and (9), and

expressing the natural frequency according to Eq. (10), then after grouping terms with respect to order ε we get a

set of differential equations in the successive perturbation orders.

ε0 – order

D2

0x10 +Ω2x10 = 0

D2

0x20 +
1

4
Ω2x20 = 0 (11)

ε1 – order

D2

0x11 +Ω2x11 = σ1x10 − 2D0D1x10 + g1x
2

20 + α1D0x10 − β1 (D0x10)
3

− δx10

[

(D0x10)
2
+ x10D

2

0x10

]

− γx3

10 + x0µΩ
2 sinΩT0

D2

0x21 +
1

4
Ω2x21 =

1

4
σ1x20 − 2D0D1x20 − α2D0x20 + g2x10x20 (12)
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The solutions of Eq. (11) have the conventional complex form

x10(T0, T1, T2) = A1(T1, T2) exp(iΩT0) + Ā1(T1, T2) exp(−iΩT0)

x20(T0, T1, T2) = A2(T1, T2) exp(iΩT0) + Ā2(T1, T2) exp(−iΩT0)
(13)

where i =
√
−1 is the imaginary unit, A1, A2 are the complex amplitudes of the plant and the controller respectively

and Ā1, Ā2 their complex conjugates. Solutions Eq. (13) are substituted into Eq. (12) and, after grouping the terms

in their proper exponential functions, we get

D2

0x11 +Ω2x11 = 2g1A2Ā2 −
(

γ1 − 2δΩ2 − iβ1Ω
)

A3

1e
i3ΩT0 + ST11e

iΩT0 + cc

D2

0x21 +
1

4
Ω2x21 =

3

2
g2A1A2 + ST21e

i 1
2
ΩT0 + cc (14)

where cc means complex conjugate functions. ST11, ST21 are those terms which will generate secular terms in the

solution of Eq. (14). Therefore, to avoid this situation the ST11, ST21 have to be set to zero, thus we have

−σ1A2 − g1A
2

2 +
1

2
ix0µΩ

2 − iα1ΩA1 +
(

3iβΩ3 + 3γ1 − 2δΩ2
)

A2

1Ā1 + 2iΩD1A1 = 0

−
1

4
σ1A2 − g2A1Ā2 +

1

2
iα2ΩA2 + iΩD1A2 = 0 (15)

Next by rejecting the ST11, ST21 terms we may determine the particular solutions of Eq. (14)

x11 =
2

Ω2
g1A2Ā2 +

1

8Ω2

(

−iβ1Ω
3 + γ1 − 2δΩ2

)

A3

1e
i3ΩT0 + cc

x21 = −
1

2Ω2
g2A1A2e

i 3
2
ΩT0 + cc (16)

Then we may formulate the modulation equations for the complex amplitudes A1, A2. The amplitude derivatives

with respect to time take the forms

dA1

dt
= εD1A1

dA2

dt
= εD1A2 (17)

Derivatives D1A1 and D1A2 are found from Eq. (15), and then using Eq. (17) we get

dA1

dt
= ε

1

2Ω

{

−
1

2
x0µΩ

2 + (α1Ω− iσ1)A1 − ig1A
2

2 +
(

3iγ1 − 2iδΩ2 − 3β1Ω
3
)

A2

1Ā1

}

dA2

dt
= ε

{

−
A2

4Ω
(2α2Ω + iσ1)−

ig2A1Ā2

Ω

}

(18)

Expressing the complex amplitudes A1, A2 in the polar form

A1 =
1

2
a1e

iφ1 A2 =
1

2
a2e

iφ2 (19)

and then separating the real and imaginary parts of Eq. (18), we get the modulation equations for amplitudes a1, a2
and phases φ1, φ2.

The modulation equations, which represent the so-called slow flow have the form

da1
dt

= ε

(

−
1

2
x0µΩcosφ1 +

1

2
α1a1 −

3

8
β1Ω

2a31 −
1

4Ω
g1a

2

2 sin (φ1 − 2φ2)

)

dφ1

dt
= ε

(

−
σ1

2Ω
+

3γ1a
2
1

8Ω
−

1

4
δΩa21 −

g1a
2
2

4Ωa1
cos (φ1 − 2φ2) +

x0µΩ

2a1
sinφ1

)

da2
dt

= ε

(

−
1

2
α2a2 +

1

2Ω
g2a1a2 sin (φ1 − 2φ2)

)
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dφ2

dt
= ε

(

−
σ1

4Ω
−

g2a1
2Ω

cos (φ1 − 2φ2)
)

(20)

By taking into account the particular solutions Eqs (13) and (16), and the complex amplitudes in the polar form

Eq. (19), then according to Eq. (6) we obtain approximate solutions to first order approximation

x1 = a1 cos (ΩT0 + φ1) + ε
1

2Ω2

[

g1a
2

2 +
1

8

(

−δΩ2 +
1

2
γ1

)

a31 cos 3 (ΩT0 + φ1)

+
1

16
β1Ω

3a31 sin 3 (ΩT0 + φ1)

]

x2 = a2 cos

(

1

2
ΩT0 + φ2

)

+ ε
1

4Ω2
g2a1a2 cos

(

3

2
ΩT0 + φ1 + φ2

)

(21)

Amplitudes a1, a2 and phases φ1, φ2 have to be found from the modulation Eq. (20), or in the steady state from the

equivalent algebraic equations.

4. Stability analysis

The stability of the periodic solutions is analysed by using the approximate slow-flow first order differential

Eq. (20), which can be written in shortened form as follows

da1
dt

=F1 (a1, φ1, a2, φ2)

dφ1

dt
=F2 (a1, φ1, a2, φ2)

da2
dt

=F3 (a1, φ1, a2, φ2)

dφ2

dt
=F4 (a1, φ1, a2, φ2)

(22)

where the functions F1, F2, F3, F4 are the right hand sides of Eq. (20). In the steady state, Eq. (22) are equal to zero,

therefore

F1 (a1, φ1, a2, φ2) = 0

F2 (a1, φ1, a2, φ2) = 0

F3 (a1, φ1, a2, φ2) = 0

F4 (a1, φ1, a2, φ2) = 0

(23)

By introducing perturbations δa1,δφ1, δa2, δφ2 to the fixed points, the variational differential equations have the

form

dδa1
dt

=

(

δF1

δa1

)

δa1 +

(

δF1

δφ1

)

δφ1 +

(

δF1

δa2

)

δa2 +

(

δF1

δφ2

)

δφ2

dδφ1

dt
=

(

δF2

δa1

)

δa1 +

(

δF2

δφ1

)

δφ1 +

(

δF2

δa2

)

δa2 +

(

δF2

δφ2

)

δφ2

dδa2
dt

=

(

δF3

δa1

)

δa1 +

(

δF3

δφ1

)

δφ1 +

(

δF3

δa2

)

δa2 +

(

δF3

δφ2

)

δφ2

dδφ2

dt
=

(

δF4

δa1

)

δa1 +

(

δF4

δφ1

)

δφ1 +

(

δF4

δa2

)

δa2 +

(

δF4

δφ2

)

δφ2

(24)
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Fig. 2. Analytical and numerical results for the system without control. Analytical solution: solid line – stable solution, dotted line – unstable

solution. Numerical simulation: circles – amplitude of periodic motion, diamonds – maximum and minimum amplitude of positive part of

envelope of quasi-periodic motion; x0 = 0.01.

with the characteristic determinant of Eq. (24) expressed as follows

∣

∣

∣

∣

∣

∣

∣
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∣

∣
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∣
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δF1

δa1
− λ

δF1

δφ1

δF1

δa2

δF1

δφ2

δF2

δa1

δF2

δφ1

− λ
δF2

δa2

δF2

δφ2

δF3

δa1

δF3

δφ1

δF3

δa2
− λ

δF3

δφ2

δF4

δa1

δF4

δφ1

δF4

δa2

δF4

δφ2

− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (25)

The stability of the approximate solutions Eq. (20) depends on the roots λ of the characteristic Eq. (25). The solutions

are obviously stable if the roots of the characteristic equation have negative real parts.

5. Analytical and numerical results

Numerical simulations and analytical investigation have been performed for a composite beam with the physical

parameters given in Section 2. On this basis the dimensionless parameters of the system take these values:α1 = 0.01,

β1 = 0.05, ω01 = 3.06309, γ1 = 14.4108, δ = 3.2746, µ = 0.89663. The amplitude and frequency of excitation are

varied, respectively, in these ranges: x0 ∈ (0, 0.1),Ω ∈ (2.4, 3.6). The NSC controller parameters are chosen to be:

g1 = 0.01, g2 = 2, ω02 = ω01/2 and the damping coefficient of the controller α2 is varied from 0 to 0.6.

5.1. Nonlinear system without control

In order to design a proper control strategy we firstly investigate the dynamics of the nonlinear beam without

control. The resonance curve for a steady state has been determined from Eq. (20) by setting them to zero. The

stability of the approximate analytical solutions has been determined by calculating the roots of the characteristic

Eq. (25). Then the analytical results are compared with those of direct numerical integration of Eq. (5). In Fig. 2 the

analytical results are denoted by solid or dotted lines which correspond to stable or unstable solutions, respectively.

The resonance curve is divided into five regions, two of which are stable and three are unstable. The first part of
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(a) (b)

Fig. 3. Time series (a) and fast Fourier transform (b) for quasi-periodic beam motion; x0 = 0.01, Ω = 2.75.

(a) (b)

Fig. 4. Time series (a) and fast Fourier transform (b) for periodic beam response; x0 = 0.01, Ω = 3.06309.

the analytical curve, from point A to B, is unstable, with the roots of the characteristic equation being conjugate

complex numbers with positive real parts. This solution corresponds to an unstable focus. The trajectory goes from

this unstable focus to a quasi-periodic attractor found by numerical simulation and marked by diamonds, which

represent the maximal and minimal amplitudes of the positive part of the time series envelope. The example time

series and its Fast Fourier Transform (FFT) for Ω = 2.75 are both presented in Fig. 3. The same type of motion

is obtained for the part of the curve from point E to F. The quasi periodic motion goes to periodicity through the

second kind of reverse Hopf bifurcation (a Neimark-Sacker bifurcation) at points B and E. At these points the self-

excitation frequency is quenched by the external force, and the beam vibrates periodically in the intervals BC and

DE. In these regions the roots of the characteristic equation are conjugate complex numbers, or real numbers with

negative real parts. Numerical simulations confirmed periodic motions in this area, marked by a circle in Fig. 2.

Figure 4 presents the time series and FFT for a harmonic beam response for the selected frequency of excitation

Ω = 3.06309. Solutions from points C to D are unstable with the roots of the characteristic equation being real

numbers with different signs which correspond to an unstable saddle point. The effect of amplitude jumps occur,

over a very narrow range of excitation frequency ∆Ω = 0.033. If the frequency of the excitation is increased the

beam amplitude jumps from C to the upper branch next to D. If the frequency is decreased the amplitude jump is

from point D to the lower branch next to point B.

The beam model is strongly nonlinear. High and positive value of parameter γ1 may suggest that the analytical

curve should have the stiffening characteristic, inclined in the direction of higher frequencies. However, the results

presented in Fig. 2 show a tendency opposite to this intuition. The curve has a softening characteristic which can be
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Fig. 5. Analytical and numerical results for the system with control.

Analytical solution: solid line – stable solution, dotted line – unsta-

ble solution. Numerical results: circle markers – amplitude of periodic

motion, diamond markers – maximum and minimum amplitude of

positive part of envelope of quasi-periodic motion; x0 = 0.01, α2 =

0.00306.

Fig. 6. Analytical and numerical results for the NSC controller re-

sponse. Analytical solution: solid line – stable solution, dotted line –

unstable solution. Numerical results: circles – amplitude of periodic

motion, diamonds – maximum and minimum amplitude of positive

part of envelope of quasi-periodic motion; x0 = 0.01, α2 = 0.00306.

explained by the strong influence of the nonlinear inertia terms. However, the performed numerical calculations for

different structural parameters (beam’s length and top mass values), show the final direction of the curve depends

on the influence of both the geometrical (parameter γ1) and the inertia (parameter δ) nonlinearities.

5.2. Nonlinear system with nonlinear saturation control

In order to control both the self- and externally excited vibrations of the cantilever beam a nonlinear saturation

controller is proposed. This method has been successfully applied to systems with positive viscous damping. In

such a case provided that the parameters of the controller are properly chosen, the dynamic properties of the plant

can be changed in the resonance region considered. Generally the literature provides recommendations for the case

when the controlled object (the plant) is modelled by a linear system. If the desire is to minimise vibrations for

a selected excitation frequency Ω, then the controller should have a natural frequency of ω02 = Ω/2 and the

damping coefficient α2 should be close to zero (Pai et al. [14], Mitura et al. [9]). There are no literature studies

for the NSC control of nonlinear plant with both external and self-excitations. In this section the effectiveness of

saturation control of a strongly nonlinear beam with self and external excitations is tested. The parameters of the

NSC controller are taken to minimise the beam response close to the first natural frequencyω01 = 3.0631. Therefore

the natural frequency of the controller is tuned to ω02 = ω01/2 and its damping coefficient is assumed to have a

small value of α2 = 0.00306. The analytical results and their numerical verification are presented in Fig. 5 for

the beam and in Fig. 6 for the controller response. A solid line denotes stable analytical results and the dotted line

depicts unstable analytical solutions, respectively. The solutions of the beam’s response, the curve A-B-C-G-E-J-

F in Fig. 5, corresponds to the characteristics of the system without NSC control, as in Fig. 4, but in contrast to

the system without control they are unstable in the interval C-G-E. In general, for the curve A-B-C-G-E-J-F the

NS controller is not activated. The controller’s amplitudes for this curve are equal to zero (Fig. 6), but it is worth

mentioning that from point B to C and from J to E the zero controller solutions are stable (Fig. 6). Indeed, in this

area the controller is deactivated, and its amplitude values obtained from direct numerical simulation (marked by

circles) are equal to zero. The unstable solutions (A-B, J-F and C-G-E) go to quasi-periodic motion, both for the

beam and the controller. The quasi-periodic response is marked by vertical lines with diamonds which define the

maximal and minimal values of the amplitudes.

Taking as an example the controller’s response for Ω = 2.75 it can be noticed that the spectrum does not have

a frequency peak of ω02 = 1.531545 (Fig. 7). This is untypical behaviour of the NSC controller. This nonstandard

effect leads to an increase in the beam vibrations. Comparing the amplitudes of the system with control (Fig. 5), and
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(a) (b)

Fig. 7. Time series (a) and FFT (b) for quasi-periodic controller response; x0 = 0.01, Ω = 2.75.

(a) (b)

Fig. 8. Time series (a) and FFT (b) for quasi-periodic controller response; x0 = 0.01, Ω = 3.06309.

the quasi-periodic motion of the system without control (Fig. 2), one sees a larger beating phenomenon, but with

maximum amplitudes of the envelope at the same level.

The region where the controller is activated is shown by the curve D-C-K-H-L-E-I in Fig. 5. As can be seen the

NSC controller makes the solutions located close to the natural frequency unstable (part H), which results in an

undesired large, quasi-periodic, beam response. The controller does not work properly in this case and its response

degenerates to quasi-periodicity.

Analysing the spectrum of the quasi-periodic time series it can be observed that the peak at frequency ω02 always

exists in that domain, as shown in Fig. 8 for Ω = 3.06309. In the ranges D-C and E-I there are two solutions, one

stable and one unstable, but the amplitudes of both solutions have the same values. Therefore in Fig. 5 only the

stable solutions are visible. The responses in the intervals C-D and E-I are not desirable because the beam response

is larger there than for the system without control. Vibration reduction occurs for the frequency range in the domain

C-K-H-L-E, however only the solutions in the C-K and E-J domains are actually stable. Around the point H (in the

domain K-H-L) the beam’s amplitudes are close to zero, but unfortunately they are unstable.

In order to change the unwanted situation the analytical and numerical calculations have been repeated for higher

values of controller damping, α2 = 0.106. The results obtained present an improvement to the controller’s perfor-

mance. At first the solutions C-D and E-I from Fig. 5 are reduced (Fig. 9), and the arms of the curve are shorter.

Secondly the region C-K-H-L-E in Fig. 5 is stable in this case. As regards the controller, we want it to be activated,

so its trivial solution should not be stable. In fact the unwanted stable trivial solutions have also been eliminated as is

visible in Fig. 10. One also notices from Fig. 9 that the beam’s response in no larger than that of the system without
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Fig. 9. Analytical and numerical results for the system with control.

Analytical solution: solid line – stable solution, dotted line – unstable

solution. Numerical results: circles – amplitude of periodic motion,

diamonds – maximum and minimum amplitude of positive part of en-

velope of quasi-periodic motion; x0 = 0.01, α2 = 0.106.

Fig. 10. Analytical and numerical results for the NSC controller. An-

alytical solution: solid line – stable solutions, dotted line – unstable

solutions. Numerical results: circles – amplitude of periodic motion,

diamonds – maximum and minimum amplitude of positive part of en-

velope of quasi-periodic motion; x0 = 0.01, α2 = 0.106.

Fig. 11. Controller response versus controller damping and amplitude of excitation; Ω = 3.06309.

control, for the full frequency domain.

The approximate analytical results of Eq. (23) may be used to determined the influence of the controller damping

α2 and the amplitude of excitation x0 on the controller response. It is assumed that the structure is perfectly tuned,

thus Ω = ω01 = 2ω02. After some simple calculations it is shown that the amplitude of the controller is a function of

damping α2 and the amplitude of excitation x0. The results are presented in Fig. 11. It is shown there that for small
amplitudes of excitation and a big value of damping the controller is not activated. The second observation is that if

the controller is activated its response for small damping values is almost independent of the α2 values, and, after

a certain threshold of α2, the amplitude goes to zero. As regards the amplitude of excitation a significant influence

from this is also observed.

It is possible to determine an analytical formula based on Eq. (23) for the critical value of the amplitude of
excitation (i.e. the threshold) when the controller is activated, as follows

x0 >
α2

√

16g4
2
α2
1
− 24g2

2
α1α2

2
β1ω4

01
+ α4

2
ω2
01

(9γ2
1
− 12γ1δω2

01
+ 4δ2ω4

01
+ 9β2

1
ω6
01
)

4g3
2
µ

(26)
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(a) (b)

Fig. 12. Bifurcation diagrams of the beam response versus the self-excitation coefficient α1, (a) x0 = 0.01, (b) x0 = 0.02.

(a) (b)

Fig. 13. Poincaré map (a) and fast Fourier transform (b) of the beam response; x0 = 0.01, Ω = 3.06309, α2 = 0.00306, α1 = 0.005.

If the amplitude of excitation satisfies condition Eq. (26) then the controller is activated. When the amplitude of
excitation is smaller than predicted by condition Eq. (26), the response of the controller is equal to zero. However,
activation of the controller is the necessary but not sufficient condition to cause of the reduction of beam vibrations
(Figs 5 and 6).

6. Numerical bifurcation analysis

In order to investigate influence of the most important structural parameters advanced numerical bifurcation anal-
ysis, using the ’Dynamics’ software (Nusse, York [12]) has been performed. Figure 12 presents bifurcation diagrams
obtained for the controller damping ratio α2 = 0.00306 when the structure is perfectly tuned (Ω = ω01 = 2ω02).
Two amplitudes of excitation are taken into account, x0 = 0.01 (Fig. 12(a)) and x0 = 0.02 (Fig. 12(b)). The stro-
boscopic projection against frequency Ω of the beam’s response is plotted against the negative damping coefficient.
When α1 < 0 the beam’s damping is positive, and self-excitation doesn’t occurs. In this case the NSC algorithm
works properly and a low level of beam response is ensured.

For positive values of α1 a non-periodic response is observed, shown as a black area in Fig. 12. To recognise the
type of system response the Poincaré maps are plotted for selected α1 values. Figure 13 presents the results obtained
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(a) (b)

Fig. 14. Poincaré map (a) and fast Fourier transform (b) of the beam response; x0 = 0.01, Ω = 3.06309, α2 = 0.00306, α1 = 0.01.

(a) (b)

Fig. 15. Poincaré map (a) and fast Fourier transform (b) of the beam response; x0 = 0.01, Ω = 3.06309, α2 = 0.00306, α1 = 0.015.

(a) (b)

Fig. 16. Poincaré map (a) and fast Fourier transform (b) of the beam response; x0 = 0.01, Ω = 3.06309, α2 = 0.00306, α1 = 0.02.

for the amplitude of excitation x0 = 0.01 and negative damping for α1 = 0.005. It is clearly visible that the response

of the beam is quasi-periodic. For α1 = 0.01 more complex dynamics are observed (Fig. 14) but the response is still

quasi-periodic. FFT shows more peaks comparing with the situation presented in Fig. 13. The increase in parameter

α1 to 0.015 leads to chaotic behaviour of the system (Fig. 15), for which the attractor on the Poincaré map has a
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fractal structure with a broad frequency spectrum. Further increase in the negative damping coefficient leads again

to a quasi-periodic response (Fig. 16).

7. Conclusions

This paper deals with the dynamics and control of a nonlinear beam which is simultaneously self- and externally

excited. It has been shown that interactions between self- and external excitation lead to instabilities in the neigh-

bourhood of the fundamental resonance zone. After transitioning through a second kind of Hopf bifurcation the

system may then vibrate quasi-periodically.

In order to reduce vibrations a nonlinear saturation controller is applied and its effectiveness is tested. The an-

alytical and numerical solutions which have been obtained show that the controller may work ineffectively when

operating close to the natural frequency region. In this region the steady state solutions are unstable and instead a

quasi-periodic response is obtained. We may conclude that close to the resonance, and for small controller damping,

the quasi-periodic response of the beam may occur, leading to a dangerous increase in beam vibrations. This is in

contrast to the case of the structure with positive linear damping where minimization of the controller damping im-

proves the NSC efficiency. To avoid this situation the influence of controller damping is studied in detail. The results

show that the increase in controller damping may cancel the undesirable instability. Therefore to get use for vibration

reduction the damping of the controller with respect to self- and external excitation should be properly selected to

avoid system instabilities close to the fundamental natural frequency. Damping of the controller should be selected

as small as possible but above the threshold depending on the intensity of self-excitation. If the frequency of the

controller, which should be at half of the plant frequency, is not well tuned, or the external excitation is far from the

resonance zone, then the beam’s response is higher than for the structure without control. Bifurcation analysis also

predicts chaotic dynamics of the system when self-excitation is varied over a wide range.
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