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Abstract Isolating the sensitive equipment from vi-

brating base or the foundation from machinery vibra-

tion is of practical importance in a number of engi-

neering fields. With the development of the vibration

control techniques and increasing requirements for the

higher-performance vibration isolation in industry and

everyday life, active vibration isolation exhibits the

best performances. In this paper, active vibration iso-

lation reducing vibration transmitted from vibrating

base to sensitive equipment and from machinery to

foundation was investigated. Controller as static out-

put feedback was considered to design components of

active isolation system. An active control is provided

by using H∞ control criteria to design this controller.

This criterion is presented as a cost function and then

optimized by Particle Swarm Optimization (PSO) al-

gorithm. The approach is validated using numerical

simulation. Results show that this static output feed-

back H∞ controller using PSO algorithm can get good

performance to reduce the effect of unwanted vibra-

tion and disturbances.
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1 Introduction

Vibration that is transmitted to the foundation (sup-

porting structure) from machinery or to sensitive

equipment from vibrating base can be problems in

large varieties of engineering applications. Vibrat-

ing, rotating and impacting systems create machine-

induced vibration or shock, which is transmitted into

their support systems. For instance, industry rotat-

ing machines and equipments that are not properly

balanced produce centrifugal forces creating steady

state vibration. Machines generating pulses or im-

pacts, such as forging presses, hammers and com-

pressors are the most sources of vibration and shock.

The shock is transmitted through the mounting system

to foundation, soil and surrounding environment. The

transmitted vibration generates disturbance to neigh-

boring equipment and the residential area. On the

other hand, vibration affects the reliability and per-

formance of systems, such as high precision equip-

ment, machine-tools, and measuring instruments. The

accuracy of measurement and validity of tests are in-

fluenced by vibrations and disturbances.

An effective method for reducing vibration is by us-

ing a vibration isolation system. The main objective of

the vibration isolation system is to reduce transmission

of vibratory forces to the machine or the foundation.

Additionally, it is also important to ensure that rela-

tive displacement, acceleration of machine and struc-

ture are minimized as far as possible. These limita-

tions are observed when a passive isolation mount is
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used [1]. With such passive mounts there is a trade-

off between low and high-frequency isolation perfor-

mances. Statically, the solution of such major problem

is to make the mount as stiff as possible to better sup-

port the equipment and dynamically, as soft as possible

to better isolate the equipment. It is difficult to carry

out with passive elastomeric mounts, as described by

Crede [2] and Ungar [3]. To provide a more approving

static and dynamic stiffness compromise, active isola-

tion solutions such as skyhook damping [4] must be

used, which are usually based on mounts and actua-

tors.

Generally the best isolation performance is achieved

by using an active system in combination with a pas-

sive mount. There are mainly two approaches towards

developing an active vibration control mount: the

feedforward approach and the feedback approach [1].

Feedforward control involves feeding a signal related

to the disturbance input into the controller which then

generates a signal to drive a control actuator in such

a way as to decrease the disturbance [1, 5]. On the

other hand, feedback control uses signals measured

from the system response to drive a control actuator

so as to assure the response. The use of feedback con-

trol for vibration isolation has been studied by sev-

eral researchers [6–8]. The static output feedback is

one of the most important issues in control theory and

applications. The reason for this is that it represents

the simplest closed-loop control that can be realized

in practice. Consequently, many researchers have ad-

dressed the problem of static output feedback control

design [9]. Fuller et al. [10] give a deep understanding

and background of active isolation of vibration. Var-

ious control strategies are discussed including feed-

forward and feedback concepts for systems. When an

active isolator is designed, two configurations are pos-

sible. The actuator can be placed either in series or in

parallel with the passive mount. Beard et al. [11] in-

vestigated the first configuration by coupling a piezo-

electric actuator in series with a passive mount. Due

to the small deflection capacity of piezoelectric actu-

ators, the use of such actuation is limited to the iso-

lation of very small amplitude motion of base struc-

ture. In many positions, the base vibration doesn’t ex-

ceed millimeters. As a result, an actuator with a longer

fling, such as electromagnetic shaker, is required. An

experimental study was conducted by Serrand and El-

liott [12] on the active vibration isolation of a rigid

equipment structure using two electromagnetic shak-

ers, which were installed in parallel with two passive

mounts.

An active isolator can be implemented using var-

ious feedback control strategies, among which in-

dependent velocity feedback control is one of the

most popular. The absolute velocities of the equipment

structure are measured at each mounting point and di-

rectly feedback to the actuators. Kim et al. [13] and

Huang et al. [14] presented a theoretical and exper-

imental investigation of an active vibration isolation

system. In their studies, a velocity feedback control

was employed, whereby each electrodynamics actua-

tor is operated independently by feeding back the ab-

solute velocity at the same location. Preumont et al.

[15, 16] compared the force feedback and acceleration

feedback implementation of a skyhook damper used to

isolate a flexible structure from a disturbance source.

The complete modeling of the active vibration isola-

tion system is presented by Muller et al. [17]. How-

ever, their model was restricted to vertical motion of

the system. Beadle et al. [18] derived the complete

model and identified the parameters for the loaded as

well as for the unloaded case. The isolation system is

modeled by two rigid plates which are connected by

four horizontal and four vertical actuators which have

integrated accelerometers.

In addition, in optimization problems, we envisage

many cases in which a problem can be formulated as a

global optimization problem with very complex con-

straint, nonlinear and multi peaked characteristics. It

is necessary, to find a global solution for this opti-

mization problem. Some methods such as Genetic Al-

gorithms, Simulated Annealing, Particle Swarm Opti-

mization and so on, are mainly designed to be applied

to these problems. In 1995, Eberhart and Kennedy [19]

introduced Particle Swarm Optimization (PSO), a sub-

set of Swarm Intelligence methods. This algorithm

was inspired by collective behavior of insects and

animals. Currently, PSO is a well known, effective

approach for solving complex optimization problems

[20, 21].

This paper is organized as follows. In Sect. 2, con-

trol model and the formulation of the problem are in-

troduced. Active vibration isolation by using active

mount to reduce vibrations transmitted from machin-

ery to foundation and base as well as foundation to

sensitive equipment is investigated. For this simula-

tion, two different models are presented. In the first

model, active isolation mount installed between vi-

brating machine and foundation is used to reduce
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Fig. 1 Active isolation system to reduce transmission vibration from Machine to the base. (a) The example of forging hammer for this

case, (b) the schematic of system model

transmitted vibrations from machinery to the founda-

tion and base. In the second model, isolation system

is used to reduce vibrations transmitted from vibra-

tional environment to sensitive equipment. In this ac-

tive anti-vibrational system, signals are obtained by

sensitive vibrational detectors and feedback to the ac-

tuator through a feedback controller which is provided

a compensation force to reduce transmitted of vibra-

tion. Controller in use is as static output feedback.

The criterion considered in this paper to design con-

troller and improve performance of isolation system is

H∞ control criterion. This criterion is obtained as cost

function, and should be optimized. Particle Swarm

Optimization (PSO) method is used to optimize this

problem. The PSO algorithm is stated in Sect. 3. Sec-

tion 4 presents the simulation results for two models

and performance evaluations. Conclusions are given in

Sect. 5.

2 Model description and problem statement

The main objective of the vibration isolation system is

to reduce force and displacement transmitted from ma-

chinery to the foundation or from vibrating base to the

equipment. This paper, in particular, investigates these

two types of active isolation system. For this active

isolation problem, in this section two different models

are considered. These configurations can be used to

represent many commonly encountered vibration iso-

lation problems.

In the first model, active isolation control is used

to reduce unwanted effects of vibrations caused by in-

dustrial machinery to the foundation and base. A good

example of these cases is the forging hammer as de-

picted in Fig. 1(a). Hammer and press foundations are

subjected to powerful dynamic effects during the op-

eration of the supported equipment. These effects may

extend to the surrounding and other sensitive machines

or neighboring residential areas. The design objectives

for foundations supporting equipment are to reduce

the vibration amplitudes and the forces transmitted to

the soil in order to minimize any disturbance to the

neighborhood and surroundings. In order to achieve

these objectives, active vibration isolation systems are

used to support equipment. The mathematical model

of these systems is shown in Fig. 1(b). In this model

ma is the mass of machinery and mb is the mass of

foundation or supporting structure. The spring with a

stiffness ka , and a damper with a damping ca repre-

sent uncontrolled components of isolation system. The
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spring and damping constants kb , and cb represent the

stiffness and damping of the foundation system.

Active part of the isolation system is an actuator

with a physical force (u), usually applied by mag-

netic or hydraulic actuator to control system perfor-

mance. Signals are measured and feedback to the ac-

tuator through a feedback controller which is provided

compensation force to reduce the transmitted vibra-

tion. w(t) is disturbance and vibration created in the

system. In industrial machinery this disturbance is of-

ten created in reciprocating, rotating and impacting

systems. Finally, Za and Zb are machinery and foun-

dation displacement, respectively.

The governing equations of motion are given by:

ma z̈a = −ka(za − zb) − ca(ża − żb) + w(t) − u(t),

mbz̈b = ka(za − zb) + ca(ża − żb)

− kbzb − cbżb + u(t).

(1)

Considering state variables as follows:

x1 = za − zb, x2 = zb,

x3 =
dza

dt
, x4 =

dzb

dt
,

(2)

where x1, x2, x3 and x4 are relative and absolute dis-

placement of foundation, and velocity of machinery

and foundation, respectively. So, state vector is defined

as x = [x1 x2 x3 x4]
T . State equation of system intro-

duced by (1) is as follows:

ẋ = Ax + B1w + B2u, (3)

where constant matrices A,B1, and B2 are defined as:

A =

⎛

⎜

⎝

0 0 1 −1

0 0 0 1

−ka/ma 0 −ca/ma ca/ma

ka/mb −kb/mb ca/mb −(ca + cb)/mb

⎞

⎟

⎠
,

B1 =

⎛

⎜

⎜

⎝

0

0

1/ma

0

⎞

⎟

⎟

⎠

, B2 =

⎛

⎜

⎜

⎝

0

0

−1/ma

1/mb

⎞

⎟

⎟

⎠

.

The main objective of this active isolation system is

to reduce transmitted forces through the foundation

to soil and surrounding environment. Additionally, it

is also important to ensure that displacement and ac-

celeration of foundation as well as relative displace-

ment between the machine and the foundation and

machine acceleration are minimized as far as possi-

ble. Therefore, the controlled output, z, are defined as

Fb = (kbzb + cbżb), zb , z̈b , (za − zb), and z̈a . The con-

trol state equations of output are presented as:

z = C1x + D11w + D12u (4)

where matrices C1,D11, and D12 are as follows:

C1 =

⎛

⎜

⎜

⎝

0 kb 0 cb

0 1 0 0

ka/mb −kb/mb ca/mb −(ca + cb)/mb

1 0 0 0

−ka/ma 0 −ca/ma ca/ma

⎞

⎟

⎟

⎠

,

D11 =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

0

0

1/ma

⎞

⎟

⎟

⎟

⎟

⎠

, D12 =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1/mb

0

−1/ma

⎞

⎟

⎟

⎟

⎟

⎠

.

Minimizing the above mentioned outputs simultane-

ously is impossible and in most cases, decreasing

one output causes the other one to increase. Con-

stant α,β,λ, ζ , and γ are defined to desirable bal-

ance between outputs of the system. These weight-

ings are used to control the trade-off between the con-

trol objectives. In this way, by weight considered for

each output we identify the importance of that out-

put. Matrices C1,D11, and D12 were rewritten as fol-

lows:

z =

⎛

⎜

⎜

⎜

⎜

⎝

α(kbzb + cbżb)

β(za)

λ(z̈a)

ζ(za − zb)

γ (z̈a)

⎞

⎟

⎟

⎟

⎟

⎠

= C1x + D11w + D12u

C1 =

⎛

⎜

⎜

⎝

0 αkb 0 αcb

0 β 0 0

λka/mb −λkb/mb λca/mb −λ(ca + cb)/mb

ζ 0 0 0

−γ ka/ma 0 −γ ca/ma γ ca/ma

⎞

⎟

⎟

⎠

,

D11 =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

0

0

γ /ma

⎞

⎟

⎟

⎟

⎟

⎠

, D12 =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

λ/mb

0

−γ /ma

⎞

⎟

⎟

⎟

⎟

⎠

.

(4a)

In this model we define all weighting coefficients

equal to one.
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Some measurable variables are used as controller

input. In this system, relative displacement of machine

and velocity of foundation are considered as measur-

able variables. The input controller equations can be

expressed as the following:

y = C2x + D21w + D22u (5)

where, constant matrices C2, D21, and D22 are as fol-

lows:

C2 =

(

1 0 0 0

0 0 0 1

)

,

D21 =

(

0

0

)

, D22 =

(

0

0

)

.

We can express (3), (4a), and (5) in the simplified fol-

lowing form:

⎛

⎝

ẋ

z

y

⎞

⎠ =

⎛

⎝

A | B1 B2||
C1 | D11 D12|
C2 | D21 D22

⎞

⎠

⎛

⎝

x

w

u

⎞

⎠ . (6)

Controller selected to improve system performance is

a static output feedback as follows:

u = Ky =
[

k1 k2

]

[

za − zb

żb

]

. (7)

Considering (5) and (7) we can write:

u = K(I − D22K)−1(C2x + D21w). (8)

Substituting (8) in (3) and (4), the state equations for

close-loop system are obtained as:

(

ẋ

z

)

=

(

Acl Bcl

Ccl Dcl

)(

x

w

)

. (9)

So that:

Acl = Fl

[(

A B2

C2 D22

)

,K

]

,

Bcl = Fl

[(

B1 B2

D21 D22

)

,K

]

,

Ccl = Fl

[(

C1 D12

C2 D22

)

,K

]

,

Dcl = Fl

[(

D11 D12

D21 D22

)

,K

]

,

(10)

where:

Fl

[(

X11 X12

X21 X22

)

, Y

]

= X11 + X12Y(I − X22Y)−1X21 (11)

Close loop transfer function of the system will be

as follows. Also, general structure of the closed loop

feedback control of the system is presented in Fig. 2,

whose simplified model is shown in Fig. 3.

Tzw(s) = Dcl + Ccl(sI − Acl)
−1Bcl (12)

According to the H∞ control theory, by mini-

mizing ‖Tzw(jω)‖∞ we can keep value of outputs

near zero. Indeed, solving this problem means to find

K = [k1 k2] in such a way that ‖Tzw(jω)‖∞ will be

the minimum value possible [22]. In this way, we can

hope that undesirable input will have minimum ef-

fect on outputs of the system and independently of the

value of w, so that we can keep outputs value near

zero. Stability of the polynomial of poles of Tzw(s) is

the necessary condition for each controller and indeed,

which is proposed as a constraint in optimization prob-

lem. On the other hand, there is some limitation on

control gain [K]. In other words, we can’t consider

absolute value of vector components [K] more than

a given limit. Maximum absolute value of a vector

component is equal to the infinite norm of that vec-

tor. So, this limitation present another constraint as

‖K‖∞ ≤ Kmax. Such a constraint is very complex and

the common methods in mathematics are unable to sat-

isfy it in objective function. One of the best options to

solve such a problem is using artificial intelligence op-

timization methods. For the same reason, in this paper

PSO method is used to solve this control problem. The

PSO method for solving this optimization problem is

presented in the next section.

In the second model objective is reducing the ef-

fects of unwanted vibrations and disturbance transmit-

ted from the vibrating foundation and environment to

sensitive machinery and equipment. A good example

of these systems is the Scanning Electron Microscope

(SEM) as depicted in Fig. 4(a). Electron microscopes

are designed to resolve features of materials down to

a few nanometers in size. The final image is built up

from the number of electrons emitted from each spot

on the sample. Micro-vibrations can generate internal

relative motion along a beam path that either blurs
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Fig. 2 General structure of control system

Fig. 3 Simplified model of static output feedback controller

an optical image or causes an electron beam to de-

viate from its intended path. Therefore, it is essen-

tial to isolate electron microscopes from unwanted vi-

brations. These systems can be modeled using a two-

mass model as shown in Fig. 4(b). In this case ma is

the mass of equipment. mb is the mass of foundation

and supporting base. Inactive components of suspen-

sion are a spring with stiffness ka , and a damper with

damping ca . Equivalent damping and stiffness coef-

ficients of foundation are also defined as cb and kb ,

respectively. Za and Zb are equipment and foundation

displacement, respectively. Active part of the isolation

system is an actuator with a physical force (u). w(t) is

disturbances created in the system.

Similarly, for the second model, we calculate ma-

trices ẋ, z, and y. Governing equations are expressed

as follows:

ma z̈a = −ka(za − zb) − ca(ża − żb) + u(t),

mbz̈b = ka(za − zb) + ca(ża − żb)

− kb(zb) − cb(żb) − u(t) + w.

(13)

Considering a set of state variables as follows:

x1 = za − zb, x2 = zb,

x3 = ża, x4 = żb,
(14)

where x1, x2, x3 and x4 are relative displacement, ab-

solute displacement of foundation, and velocity of

equipment and foundation, respectively. State vector

is defined as x = [x1 x2 x3 x4]
T . State equation of sys-

tem introduced by (13) is as follows:

ẋ = Ax + B1w + B2u. (15)
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Fig. 4 Active isolation system to reduce transmission vibration from surrounding environment (vibrating base) to the equipment.

(a) The example of SEM, (b) the schematic of system model

Where, constant matrices A,B1, and B2 are defined as

the following:

A =

⎛

⎜

⎝

0 0 1 −1

0 0 0 1

−ka/ma 0 −ca/ma ca/ma

ka/mb −kb/mb ca/mb −(ca + cb)/mb

⎞

⎟

⎠
,

B1 =

⎛

⎜

⎜

⎝

0

0

0

1/ma

⎞

⎟

⎟

⎠

, B2 =

⎛

⎜

⎜

⎝

0

0

1/ma

−1/mb

⎞

⎟

⎟

⎠

.

General objective of controlling above system is re-

ducing displacement and acceleration of machinery

and sensitive equipment. Therefore, outputs of the

controlled system are defined as za and z̈a , respec-

tively. Output equation is presented as the following:

z = C1x + D11w + D12u. (16)

We have matrices C1,D11, and D12 as follows:

C1 =

(

1 1 0 0

−ka/ma 0 −ca/ma ca/ma

)

,

D11 =

(

0

0

)

, D12 =

(

0

1/ma

)

.

In this system, measurable variables are considered as

relative displacement of equipment respected to vibra-

tional foundation and velocity of foundation, which

can be expressed as the following equations:

y = C2x + D21w + D22u. (17)

Where, constant matrices C2,D21, and D22 are as fol-

lows:

C2 =

(

1 0 0 0

0 0 0 1

)

,

D21 =

(

0

0

)

, D22 =

(

0

0

)

.

Similarly to first model, equations (15), (16), and (17)

are expressed in the simplified form of (6). Consid-

ering static output feedback controller, the state equa-

tions and close loop transfer function of the system are

obtained in general form of (9) and (12). According

to the H∞ control theory, minimizing ‖Tzw(jω)‖∞

and considering constraint in optimization problem

can satisfy the performance requirement. In this paper

the PSO method is used to solve control problem. In

the next section, the PSO method is presented briefly.

3 The Particle Swarm Optimization (PSO)

algorithm

PSO algorithm, which is one of random optimization

methods available among artificial intelligence ones,

Author's personal copy



444 Meccanica (2012) 47:437–453

belongs particularly to a smaller set of algorithms

and methods called swarm intelligence. This algorithm

was inspired by social behavior of animals and insects

such as bird flocking and fish schooling. For exam-

ple, when a bird among others obtains a better oppor-

tunity to feed, other birds tend to follow it. This al-

gorithm was introduced by Kennedy and Eberhart in

1995 and today has many applications in solving nu-

merous problems from different branches of science.

The PSO algorithm employs a swarm of multiple par-

ticles, each of which has their own position and ve-

locity (transfer vector). All of the particles share in-

formation obtained from the other particles, and inter-

action among the particles makes the search efficient.

Although only simple operations compose the PSO al-

gorithm, the PSO algorithm can solve complex opti-

mization problems efficiently [19–21].

The algorithm starts by generating an initial popu-

lation. Particles are distributed in search space, whose

function is to be optimized. Each particle has two main

properties of position and speed (transfer vector). Po-

sition of each particle is a point (or vector) from search

space and speed of particle motion is also considered

as a vector. In initial stage of algorithm, points are cre-

ated in space randomly and have random (but limited)

speeds. In each stage, speed and position of each par-

ticle are changed. Each particle has its own position

and computes the value of the objective function in

position of space where it lies. Then using combina-

tion of information of its current position and the best

position where already it has been as well as informa-

tion of one or more particles of the best ones available

in population, it selects a direction to move. During

different stages of solving algorithm, at last, particles

converge to the best feasible solution.

Transfer vector and the positions of the i th particle

in j + 1th stage of the particle are listed to the follow-

ing equations:

vi
j+1 = wvi

j + c1r1(x
i,best
j − xi

j )

+ c2r2(x
gbest

j − xi
j ), (18)

xi
j+1 = xi

j + vi
j+1. (19)

xi
j and vi

j are position and speed of i th particle in j th

stage of solving algorithm, respectively. Constant co-

efficient w called inertia coefficient is a number in

interval [0,1]. This coefficient has an important role

in detecting better solutions by algorithm. Also x
i,best
j

Fig. 5 Structure of the PSO algorithm

is the best position experienced by i th particle to j th

stage and x
gbest

j is the best position experienced by all

particles to j th iteration. c1 and c2 are constant coef-

ficients called learning coefficients whose sum is usu-

ally less than 4 and often both of them are selected

as 2. r1 and r2 are also random numbers in interval

[0,1] with uniform distribution [23–27].

As we can see from Fig. 5, direction of the parti-

cle motion is a linear combination and, of course, with

random coefficient from vectors which at last result in

particle position being improved. In this way, a good

search is performed in the space and appropriate solu-

tions are evolved for optimization problem.

In some case, information of the best neighbor is

also used. In this way, relation (19) is rewrite as fol-

lows:

vi
j+1 = wvi

j + c1r1(x
i,best
j − xi

j ) + c2r2(x
gbest

j − xi
j )

+ c3r3(x
i,nbest
j − xi

j ), (20)

where x
i,nbest
j is the position of the best neighbor of

i th particle in j th stage of solving algorithm. c3 and r3

have also conditions similar to those of previous coef-

ficients.

In the next section simulation results of the perfor-

mance of PSO in solving active control problem are

reported.

4 Simulation results and performance evaluation

In order to demonstrate the effectiveness of this

method two different models, which was shown in

Fig. 1 and Fig. 4, has been considered. The perfor-

mance of the active models is compared with those of
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Table 1 Parameter values for simulated models

Model one: Active isolation model to reduce transfer of vibration from machinery to the foundation and base (Fig. 1)

Mass of machinery ma = 560 kg

Mass of foundation or base mb = 1000 kg

Damping coefficient of the isolation system ca = 10 N/ms−1

Stiffness of the isolation system ka = 1.5e4 N/m

Damping coefficient of foundation cb = 100 N/ms−1

Stiffness of foundation kb = 2.5e5 N/m

Model two: Active isolation model to reduce transfer of vibrations from vibrating base to the sensitive equipment and machine

(Fig. 4)

Case (a) Case (b)

Mass of foundation or structure mb = 560 kg mb = 560 kg

Mass of machinery or sensitive equipment ma = 10 kg ma = 100 kg

Damping coefficient of foundation cb = 10 N/ms−1 cb = 100 N/ms−1

Stiffness of foundation kb = 1.5e5 N/m kb = 1.5e5 N/m

Damping coefficient of the isolation system ca = 100 N/ms−1 ca = 10 N/ms−1

Stiffness of the isolation system ka = 2.5e4 N/m ka = 2.5e4 N/m

its passive isolation. Moreover, in order to verify the

isolation effectiveness, two structural responses, i.e.

the frequency and time response, are chosen as the per-

formance indices to be compared in the following dis-

cussions. The parameter values used in the simulation

models are summarized in Table 1. In addition, param-

eters considered for PSO algorithm are w = 0.99jw0,

w0 = 1, c1 = 3, and c2 = 1. Moreover, it is assumed

Npop = 250 and Tmax = 200 where, Npop is the to-

tal number of particles available in PSO and Tmax is

maximum iteration number and is used for checking

termination criterion in this algorithm. As we can see,

inertia coefficient has been determined in such a way

that it is decreased. Also, there are some limitations

on interest in control [K] used in feedback direction.

Maximum absolute value of a vector component is

equal to the infinite norm of that vector. Limitation

present on components [K] is applied on algorithm

as ‖K‖∞ ≤ Kmax. On the other hand, cost function

used in algorithm, which obtains its optimum value, is

defined as follows:

f (k1, k2) =

⎧

⎨

⎩

‖Tzw(jω|K = [k1 k2])‖∞,

Tzw(s) is stable,

∞, otherwise.

(21)

For some values of [K] which cause instability of the

system, value of the cost function has been considered

as a penalty in the form of infinity (∞) to ensure that

controller found by algorithm doesn’t cause instability

of the system and closed looped system is stable.

For the first model, simulation are done with

applying two conditions as ‖K‖∞ ≤ 14000 or

‖K‖∞ ≤ 50000. For these two states, the optimum

values of feedback matrix gain are obtained as follows:

Kopt,1 =
[

−14000 107.8
]

s.t. ‖K‖∞ ≤ 14000,

Kopt,2 =
[

−14999 −327.4
]

s.t. ‖K‖∞ ≤ 50000.

Optimum values are obtained for ‖Tzw(jω)‖∞ in two

states above are the followings:

K =
[

−14000 107.8
]

⇒ ‖Tzw(jω)‖∞ = 72.667,

K =
[

−14999 −327.34
]

⇒ ‖Tzw(jω)‖∞ = 3.5596.

It is necessary to note that PSO algorithm has found

the best feasible solutions under conditions above

for the problem and has converged to the univer-

sal optimum of it. Convergence trend of algorithm

and reduction of the cost function for constraint

‖K‖∞ ≤ 50000 can be seen in Fig. 6. Apart from

physical limitations, universal minimum of the above

cost function, from a mathematical point of view,

is in K = [−14999 −327.34] for which it will be

‖Tzw(jω)‖∞ = 3.5596.

The behavior of a control system usually can be

characterized by its frequency response.
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Fig. 6 Downward trends the cost function in different stages of solving PSO algorithm

Fig. 7 Frequency response of transmitted forces through the foundation (supporting structure) to soil and surrounding environment

due to disturbance input

Figure 7 compares the frequency response of the

transmitted force using active isolation for two above

control gain with those of the passive isolation system.

The figure shows that the transmitted force is re-

duced at the active control system within the frequency

range and it has very good performance. It is obvious

in the frequency region including the resonance fre-

quency.

Figures 8, 9 and 10 show time response of trans-

mitted force at the frequency of 2.59 and 0.79 Hz

(close to the resonant frequency) and 0.48 Hz, respec-

tively. These figures indicate that the transmitted force
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Fig. 8 Time response of transmitted forces through the foundation to surrounding environment due to disturbance input for frequency

of 2.59 Hz

Fig. 9 Time response of transmitted forces through the foundation to surrounding environment due to disturbance input for frequency

of 0.79 Hz
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Fig. 10 Time response of transmitted forces through the foundation to surrounding environment due to disturbance input for frequency

of 0.48 Hz

through the foundation due to disturbance input is re-

duced and responses of active isolation system are

very better than the uncontrolled system.

On the other hand, the frequency and time response

obtained from the active control with higher control

condition (‖K‖∞ ≤ 50000) show that is more effec-

tively than the control condition as ‖K‖∞ ≤ 14000,

because the optimal control gain is obtained for con-

straint ‖K‖∞ ≤ 50000 as Kopt = [−14999 −327.34].

It is clear that increasing control condition more than a

specific limit doesn’t produce significant difference in

quality of solutions. Therefore, increasing control con-

dition is reasonable only to a specific limit and based

on engineering justification.

Figures 11–14 show frequency response of founda-

tion acceleration and displacement as well as machin-

ery deflection and acceleration. It can be seen from

these figures that the two H∞ controllers systems sat-

isfy the different performances and the effects of dis-

turbance reduction by using active control. The foun-

dation acceleration and displacement as well as ma-

chinery deflection and acceleration are very better than

the uncontrolled system especially in the range of res-

onance. Therefore, this active control system can re-

duces the peaks in the frequency response.

Similar to the previous model, for the second model

in case (a), simulation are done with applying two con-

ditions as ‖K‖∞ ≤ 10000 and ‖K‖∞ ≤ 100000. For

these two states, the optimum values of static output

feedback controller are obtained as follows:

Kopt,1 =
[

10000 −2399.6
]

s.t. ‖K‖∞ ≤ 10000,

Kopt,2 =
[

24905 −100.22
]

s.t. ‖K‖∞ ≤ 100000.

Optimum values obtained for ‖Tzw(jω)‖∞ in two

states above are the followings:

K =
[

10000 −2399.6
]

⇒ ‖Tzw(jω)‖∞ = 0.10082,

K =
[

24905 −100.22
]

⇒ ‖Tzw(jω)‖∞ = 0.040421.

Also for case (b) simulation has been done with ap-

plying conditions as ‖K‖∞ ≤ 30000. For this state,

the optimum value of feedback controller of the static

output is obtained as follows:

Kopt,1 =
[

24993 −9.5837
]

s.t. ‖K‖∞ ≤ 30000.

Optimum value obtained for ‖Tzw(jω)‖ in this case is

the following:
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Fig. 11 Frequency response of foundation acceleration due to disturbance input

Fig. 12 Frequency response of foundation displacement due to disturbance input
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Fig. 13 Frequency response of relative displacement between the machine and the foundation due to disturbance input

Fig. 14 Frequency response of machine acceleration due to disturbance input
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Fig. 15 Frequency response of equipment displacement due to disturbance input (case a)

Fig. 16 Frequency response of equipment acceleration due to disturbance input (case a)
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Fig. 17 Frequency response of equipment displacement due to disturbance input (case b)

Fig. 18 Frequency response of equipment acceleration due to disturbance input (case b)

Author's personal copy



Meccanica (2012) 47:437–453 453

K =
[

24993 −9.5837
]

⇒ ‖Tzw(jω)‖∞ = 0.00006088.

The frequency responses for above controllers from

disturbance input are depicted in Figs. 15–18. It can

be seen from these figures that the active vibration iso-

lation system has good isolation performance against

the disturbance acting on the system within the fre-

quency range. These diagrams indicate the effects of

disturbance reduction by using active control system.

Therefore, this active control system can reduces the

peaks in the frequency response.

5 Conclusions

Based on the solvability of PSO algorithm in opti-

mization problem, the static output feedback H∞ con-

troller to design active vibration isolation system has

been used. Two different models based on reducing

transmission of vibration and disturbance from ma-

chinery to the foundation and also from foundation to

the sensitive equipment has been considered. Active

control based on static output feedback and H∞ crite-

rion was presented as a cost function and optimizing

is performed by using PSO algorithm, which is effec-

tive approach to solve optimization problem. This ap-

proach was validated by numerical simulation and it

was shown that the controller can cause the signifi-

cant reduction in the resonance responses. The simu-

lation results show the effectiveness of the presented

approach.
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