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Abstract

We present a mapping approach to scene un-
derstanding based on active stereo vision. We
generalise traditional static multi-camera rec-
tification techniques to enable active epipolar
rectification and intuitive representation of the
results. The approach is shown to enable the
use of any static stereo algorithms with active
multi-camera systems. In particular, we show
the use of the framework to apply static depth-
mapping techniques to the active case.

Further, we outline the benefits of using an oc-
cupancy grid framework for the fusion and rep-
resentation of range data, and find that it is
especially suited for active vision. Finally, we
provide a preview of our approach to dynamic
occupancy grids for scene understanding.

1 Introduction

Over recent years, stereo vision has proved an economical
sensor for obtaining three-dimensional range information
[Banks, 2001]. Traditionally, stereo sensors have used
fixed geometric configurations. This passive arrange-
ment has proven effective in obtaining range estimates
for regions of relatively static scenes. In reducing pro-
cessor expense, most depth-mapping algorithms match
pixel locations in separate camera views within a small
disparity range, e.g. ±32 pixels. This means that depth-
maps obtained from static stereo configurations are of-
ten dense and well populated over portions of the scene
around the fixed horopter, but they are not well suited
to dynamic scenes or tasks that involve resolute depth
estimation over larger scene volumes.

In undertaking task-oriented bahaviours we may want
to give attention to a subject that is likely to be moving
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relative to the cameras. A visual system able to adjust its
visual parameters to aid task-oriented behaviour – an ap-
proach labeled active [Aloimonos, 1988] or animate [Bal-
lard, 1991] vision – can offer impressive computational
benefits for scene analysis in realistic environments [Ba-
jczy, 1988]. By actively varying the camera geometry it is
possible to place the horopter and/or vergence point over
any of the locations of interest in a scene and thereby
obtain maximal depth resolution about those locations.
Where a subject is moving, the horopter can be made
to follow the subject such that information about the
subject is maximised. Varying the camera geometry not
only improves the resolution of range information about
a particular location, but by scanning the horopter, it
can also increase the volume of the scene that may be
densely depth-mapped. Figure 1 shows how the horopter
can be scanned over the scene by varying the camera
geometry for a stereo configuration. This approach is
potentially more efficient and useful than static methods
because a small disparity range scanned over the scene is
potentially cheaper and obtains more dense results than
a single, unscannable, but large disparity range from a
static configuration. Additionally, multiple views of the
scene from different depth-mapping geometries can be
combined to re-enforce the certainties associated with a
model of the scene.

We aim to utilise the advantages of active vision
by developing a framework for using existing static
multiple-camera algorithms, such as depth-mapping, on
active multi-camera configurations. We propose a simple
method that enables active multi-camera image rectifi-
cation such that static algorithms can be easily applied
and the results can be easily interpreted. We analyse
the general case where any number of cameras in any
geometric configuration can be used, e.g, any relative
translations and rotations between multiple cameras.

Further, we develop an occupancy grid framework for
integrating range information in dynamic scenes, and
we justify and outline our approach to obtaining robot-
centred occupancy grids using active stereo.



Figure 1: Scanning the horopter over the scene: The
locus of zero disparity points defines a plane known as
the horopter. For a given camera geometry, searching
for pixel matches between left and right stereo images
over a small disparity range defines a volume about the
horopter. By varying the geometry, this searchable vol-
ume can be scanned over the scene. In the top frame,
only the circle lies within the searchable region. As the
horopter is scanned outwards by varying the vergence
point, the triangle, then the cube become detectable.

1.1 Outline

Section 2 concerns active rectification. We provide
a brief background to the classic pinhole camera and
epipolar geometry models we have adopted. We present
our approach to active epipolar rectification, describe the
active platform we use, and present a step-by-step guide
to active epipolar rectification.

Section 3 describes active depth-mapping and the con-
struction of occupancy grids. A brief background on
occupancy grids and their benefits, and why they are
suited for our purposes, is provided. We then present
our occupancy grid method for active depth-mapping.

Section 4 describes our approach to the use of dynamic
occupancy grids with 3D range data.

Results of the active rectification and occupancy grid
construction process are shown in Section 5 before we

Figure 2: Pinhole camera model.

conclude, Section 6.

2 Active Rectification

2.1 Rectification Background

We review the adopted pinhole camera model and epipo-
lar geometry.

Camera Model

The pinhole camera model represents the camera by its
optical centre C and image plane I. The image plane is
reflected about the optical centre to be located in front
of the camera. A line passing through a point in the
real world at coordinates w ∈W and the camera optical
centre at c ∈ W intersects the image plane I at image
coordinates i. The distance along the optical axis from
the optical centre c ∈ W to the image plane centre i0 ∈
W is equivalent to the camera focal length f . Figure 2
shows the pinhole camera model.

The linear transformation from three-dimensional
homogeneous world coordinates w̃ = [x, y, z, 1]⊤ to
two-dimensional homogeneous image coordinates ĩ =
[u, v, 1]⊤ is the perspective projection P̃ [Hartley, 2004]:

ĩ ∼= P̃ w̃ (1)

The perspective projection matrix can be decomposed
by QR factorisation into the product:

P̃ = A [R|t] (2)

where rotation matrix R and translation vector t denote
the extrinsic camera parameters that align the camera
reference frame with the world reference frame, and A

depends only on the intrinsic camera parameters [Hart-
ley, 2004].

R is the standard 3 by 3 rotation matrix constructed
from rotations about the x, y and z axes. A is of the
form:

A =
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Figure 3: Epipolar geometry.

where αu and αv are equivalent to the focal length, ex-
pressed in units of pixels along the horizontal and ver-
tical image plane axes respectively: αu = −fku and
αv = −fkv. (u0, v0) is the image plane coordinate of
principal point i0. γ is the skew factor that models any
deviation from orthogonal u− v axes. Traditionally, the
origin of the u− v axis is in the top left corner of image
plane I.

Epipolar Geometry

A point i in the image plane I corresponds to a ray
in three-dimensional space W . Given two stationary
pinhole cameras, Ca and Cb, pointed towards the same
three-dimensional world point w, points in the image
plane Ia of camera Ca will map to lines in the image
plane Ib of camera Cb, and vice versa. Such lines are
called epipolar lines. All epipolar lines in image plane
Ib will be seen to radiate from a single point called the
epipole, which lies in the plane of Ib, but depending on
camera geometry, may or may not lie within the view-
able bounds of Ib. The epipole is the mapping of the
world coordinates of the optical centre of camera Ca to
the extended image plane Ib of camera Cb. The baseline
connects optical centres of Ca and Cb, and intersects the
image planes at the epipoles. Figure 3 shows the de-
scribed epipolar geometry.

Stereo algorithms may require locating the same real
world point w in two camera image planes Ia and Ib.
This involves a two-dimensional search to match point
iwa
∈ Ia with the corresponding point iwb

∈ Ib. Once the
epipolar geometry is known, this two-dimensional search
is reduced to a one-dimensional search for iwb

∈ Ib along
the epipole in Ib that corresponds to iwa

∈ Ia. In the
special case that image planes are coplanar, both epioles
are at infinity and epipolar lines will appear horizon-
tal in each image frame. In this case, the correspon-
dence problem is further simplified to a one-dimensional
search along an image row. Any set of images can be
transformed such that this special case is enforced. This
process is called epipolar rectification. Figure 4 shows
the geometry required to enforce parallel epipolar lines
[Hartley, 2004].

Figure 4: Rectified epipolar geometry.

2.2 Approach to Active Epipolar
Rectification

We seek to epipolar rectify images from active multi-
camera rigs. Further, we wish to piece together the
epipolar rectified images to create a mosaic image of the
scene for each camera from consecutive frames where
parallel epipolar geometry is maintained throughout.
This is done so that relative relations between the ob-
served parts of the scene are preserved. The rectified mo-
saic image, or regions of it, can then be fed into standard
multi-camera functions that rely on parallel epipoles for
efficiency. As an example, this mosaicing active rectifica-
tion approach will be shown to function with a standard
depth-mapping algorithm, and thereby actively build an
occupancy grid representation of the scene.

First, the intrinsic camera parameters must be deter-
mined for each camera. In order to rectify a set of im-
ages from any number of cameras, the real-world rigid
transformations between camera positions must then be
determined. This may be done by any number of meth-
ods. Visual techniques such as the SIFT algorithm [Se,
2001] or Harris corner detection [Harris, 1999] can be
used to identify features common to each camera view,
and thereby infer the geometry. Alternatively, encoders
can be used to measure angular rotations. A combi-
nation of visual and encoder techniques could also be
adopted to obtain the camera relationships to a more
exacting degree. Once the extrinsic geometric relations
between any number of cameras is known, we can deter-
mine the epipolar geometry. We can then either calculate
the required distortion for each image to enforce parallel
rectified epipolar geometry, or we may record the epipo-
lar geometry so that we can search along non-horizontal
epipolar lines. For intuitive representation of the present
frame within the context of previously acquired frames
(a mosaic), and to simplify algorithmic searches to 1D
row scans, we choose to warp the images to enforce paral-
lel epipolar geometry. Figure 5 is an example of warping
the images to enforce parallel epipolar geometry.



Figure 5: A scene viewed through blinds showing the
output of the active rectification process. Top: original
left and right images. Bottom: images warped such that
parallel epipolar geometry is enforced.

2.3 Research Platform

CeDAR, the Cable-Drive Active-Vision Robot [Truong,
2000], incorporates a common tilt axis and two pan axes
each exhibiting a range of motion of 90o. Angles of all
three axes are monitored by encoders that give an effec-
tive angular resoloution of 0.01o for each axis. A PC is
adopted as a server/controller for head motion. Images
from both cameras are captured by another video server
PC. 640x480 pixel images at 30Hz and motion server
feedback are distributed over ethernet to a client PC for
processing.

An important kinematic property of the CeDAR
mechanism is that the pan axes rotate about the opti-
cal centre of each camera, minimising kinematic transla-
tional effects. This property of the stereo camera config-
uration reduces complexity in the epipolar rectification
process. Figure 6 shows the CeDAR platform.

2.4 Active Epipolar Rectification

CeDAR is a stereo configuration so we consider only two
cameras, though any number may be used so long as the
transformations between cameras are known.

Intrinsic Parameters

We assume that the focus of each camera remains rela-
tively constant throughout use so that the intrinsic pa-
rameters can be regarded as constant. For convenience,
we obtain the intrinsic camera parameters for left and
right cameras, Al and Ar, from Matlab Camera Calibra-
tion Toolbox single camera calibrations.

Figure 6: CeDAR (Cable-Drive Active-Vision Robot).

For our cameras we obtain:

Al =
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Extrinsic Parameters

For processor economy, we believe that it is not necessary
to quantify the extrinsic parameters too precisely. Er-
rors associated with extrinsic parameter estimation will
affect the accurate construction of an occupancy grid
from each stereo pair of images. Bayesian integration
of many such occupancy grids over time and from many
different viewing geometries will reduce the effect of inac-
curate extrinsic parameter measurement. The Bayesian
approach means we must assume the error in the esti-
mates approximates zero mean Guassian error.

Hence we keep the camera translations constant and
use encoders to measure camera rotations. This elimi-
nates computational costs associated with image-based
methods of extracting more precise extrinsic parameters.
Experimentation has shown us that the encoder resolu-
tion is sufficiently accurate for us to assume that system-
atic errors, such as encoder drift, are insignificant.

For two cameras, rectifying the images to a plane par-
allel to the baseline ensures that parallel epipolar geom-
etry is enforced. For more than two cameras in a config-
uration such that there is no single baseline, we need to
declare a baseline and rectify the camera views to this
line. Since we are considering the case of a stereo config-
uration, a common baseline exists and rotations around
the optical centres are sufficient to align retinal planes
and enforce parallel geometry. For multiple camera con-
figurations where there are more than two cameras and



no common baseline, rotations around camera optical
centres will enforce parallel epipolar geometry but will
not ensure that rows in each image align. In this case, the
scaling effect of translations perpendicular to the base-
line would also have to be accounted for. In the case of a
stereo rig such as that we are considering, this problem
does not exist.

We proceed to build Rl and Rr from the extrinsic pa-
rameters θx, θy, θz read from the encoder data at the
time that the images were obtained.

Since our configuration has a common baseline, trans-
lations tl, tr are not required for rectfication and are set
to zero vectors. Following the static rectification method
outlined in [Fusiello, 2000], we first create the current left
and right projection matrices P̃ol, P̃ol according to:

P̃ol = Al[Rl|tl]

P̃or = Ar[Rr|tr] (4)

Determine Desired Projection Matrices P̃nl, P̃nr

We want to rectify to the direction perpendicular to the
baseline and pointing in the z-direction. In this case,
angles θx, θy, θz are zero in the desired rotation matrices
Rl0, Rr0. Desired translations tl0, tr0 are also zero. We
can then create the desired new left and right projection
matrices P̃nl, P̃nl:

P̃nl = Al[Rl0|tl0]

P̃nr = Ar[Rr0|tr0] (5)

Determine Rectification Transformations Tl, Tr

Now that the current and desired projection matrices are
know for each camera, the transformation T mapping P̃o

onto the image plane of P̃n is sought.
Each projection matrix P̃ can be written in the form

[Fusiello, 2000]:

P̃ =





q⊤1 q14

q⊤2 q24

q⊤3 q34



 = [Q|q] (6)

substituting this form of P̃ into equation 1 gives
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This can be re-arranged to its Cartesian form:

u =
q⊤1 w + q14

q⊤3 + q34

v =
q⊤2 w + q24

q⊤3 + q34
(8)

From equation 7, the cartesian coordinates c of the op-
tical centre C is reduced to:
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 c̃ (9)

where (uo, vo) is the image frame origin (0, 0) and c̃ is
the homogeneous coordinate of the optical centre. We
re-arrange the above to obtain the Cartesian form:

c = −Q−1q (10)

So P̃ can be written:

P̃ = [Q| −Qc]. (11)

In parametric form, the set of 3D points w, associated
with image point ĩ ∼= P̃ w̃ becomes:

w = c + λQ−1ĩ (12)

where λ is a scale factor. From Eq.6 we can write for P̃o

and P̃n:

w = c + λoQ
−1
o ĩo

w = c + λnQ−1
n ĩn (13)

hence:

ĩn = λQnQ−1
o ĩo (14)

and so:

T = QnQ−1
o (15)

T is determined for each camera.

Apply Rectification

Tl is then applied to the original left image, and Tr to
the original right image. Transform T usually transforms
the original images to a location outside of the bounds
of the original image, so we first apply T to the corner
points of the original image to find the expected size and
location of the transformed image. We can then allocate
memory for the size of the new image and apply an offset
translation to transform T such that the resultant rec-
tified image has the same origin as the original image.
The offset is found by transforming the principal point
in the original image.

Mosaic Images

The pixel coordinates of where to add this newly recti-
fied image to the mosaic are determined by negating the
transformed principal point offset applied above. We
chose a mosaic image size that is large enough to display
the region of volume of the scene in which we are inter-
ested. Figure 7 is an example of the mosaicing process.



Figure 7: Online output of the active rectification pro-
cess: mosaic of rectified frames from right CeDAR cam-
era.

3 Active Depth-Mapping for

Occupancy Grid construction

3.1 Occupancy Grid Background

Occupancy grids were first used in robotics to generate
accurate maps from simple, low resolution sonar sensors
at the Carnegie Melon University Mobile Robot Labo-
ratory in 1983 [Elfes, 1989]. Occupancy grids were used
to accumulate diffuse evidence about the occupancy of
a grid of small volumes of nearby space from individual
sensor readings and thereby develop increasingly confi-
dent and detailed maps of a robot’s suuroundings. In
the past decade the use of occupancy grids has been ap-
plied to range measurements from other sensing modal-
ities such as stereo vision.

Initial efforts in computer vision attempted to iden-
tify scene structure and objects from features such as
lines and vertices in images. Stereo disparity maps are
still created from stereo images by identifying patches
of object surfaces in multiple views of scenes. Some-
what sparse and noisy data is commonly used to judge
the existence of mass at a location in the scene. If used
unfiltered, decisions based directly on this data could
adversely affect the sequence of future events that act
on such data. Few attempts were made in using the
stereo data to strengthen or attenuate a belief in the lo-
cation of mass in the scene. Representing the scene by
a grid of small cells enables us to represent and accumu-
late the diffuse information from depth data into increas-
ingly confident maps. Belief in any data point can then
be related to that point’s surroundings. This approach
reduces the brittleness of the traditional methods.

The occupancy grid approach represents the robot’s
environment by a two or three dimensional regular grid.

An occupancy grid cell contains a number representing
the probability that the corresponding cell of real world
space is occupied, based on sensor measurements. Sen-
sors usually report the distance to the nearest object in a
given direction, so range information is used to increase
the probabilities in the cells near the indicated object
and decrease the probabilities between the sensed object
and the sensor. The exact amount of increase or de-
crease to cells in the vicinity of a ray associated with a
disparity map point forms the sensor model.

Combining information about a scene from other sen-
sors with stereo depth data is usually a difficult task.
Another strength of the occupancy grid approach is that
this integration becomes simple. A Bayesian approach to
sensor fusion enables the combination of data indepen-
dent of the particular sensor used [Moravec, 1989]. A
single occupancy grid can be updated by measurements
from sonar, laser or stereoscopic vision range measure-
ments. In this approach, the sensors are able to com-
plement and correct each other, when inferences made
by one sensor are combined with others. For example,
sonar provides good information about the emptiness of
regions, but weaker statements about occupied areas.
It can also recover information about featureless areas.
Conversly, stereo vision provides good information about
textured surfaces in the image.

3.2 Occupancy Grid Construction

We use the Bayesian methods described by [Moravec,
1989] to integrate sensor data into the occupancy grid.
Sensor models are used to incorporate the uncertainty
characteristics of the particular sensor being used.

Bayesian Occupancy Grids

Let s[x, y] denote occupancy state of cell [x, y]. s[x, y] =
occ denotes an occupied cell and s[x, y] = emp denotes
an empty cell. P (s[x, y] = occ) denotes the probability
that cell [x, y] is occupied. P (s[x, y] = emp) denotes the
probability that cell [x, y] is empty.

Given some measurement M , we use the incremental
form of Bayes Law to update the occupancy grid proba-
bilities [Elfes, 1989]:

P (occ)k+1 =
P (M | occ)

P (M)
P (occ)k

P (emp)k+1 =
P (M | emp)

P (M)
P (emp)k (16)

where emp denotes s[x, y] = emp, occ denotes s[x, y] =
occ, and

P (M) = P (M | occ)P (occ)

+ P (M | emp)P (emp) (17)



Figure 8: Example 1D profile of a real sensor.

Figure 9: A 1D ideal sensor model.

Sensor Models

Let r denote the range returned by the sensor and d[x, y]
denote the distance between the sensor and the cell at
[x, y]. For a real sensor, we must consider Kolmogoroff’s
theorem [Moravec, 1989] as depicted in Figure 8. For an
ideal sensor, Figure 9, we have:

P (r | occ) =







0 if r < d[x, y]
1 if r = d[x, y]
0.5 if r > d[x, y]

P (r | emp) = 0 (18)

We adopt the ideal sensor model for integrating data into
the occupancy grid.

3.3 Approach to Active Depth-Mapping
for Occupancy Grid Construction

We have chosen to utilise a 3D occupancy grid represen-
tation of the scene because of the data fusion and spatial
certainty advantages described earlier. The simplicity in
incorporating data into the structure enables us to con-
struct an occupancy grid model of the relevant volume
of the scene by scanning the horopter over it. We do not
just obtain an instantaneous impression of the region of

the scene for which we presently have a depthmap, in-
stead we are able to retain a memory of where mass was
previously observed in the scene, even if we are not giv-
ing attention to that region of the scene anymore. The
structure also allows us to define a task-oriented occu-
pancy grid volume and resolution. We only update the
cells in the occupancy grid that represent the region of
the scene relevant to our task-oriented behaviors. Infor-
mation about the scene that falls outside this bound is
suppressed, including data from depthmap images that
falls beyond the defined region of relevancy. For these
reasons, we see occupancy grids as a method particu-
larly suited for incorporating information obtained from
active vision depth-mapping.

Implementation

There is more than one way to express the probability
that an occupancy grid cell is occupied. Likelihoods and
log-likelihoods can also represent the state over different
ranges. The ranges are listed below:

• Probabilities, P (H): 0 ≤ P (H) ≤ 1

• Likelihoods, L(H) = P (H)
P (¬H) : 0 ≤ L(H) ≤ ∞

• Log-likelihoods, log L(H): −∞ ≤ log L(H) ≤ ∞.

We can re-write Eq.16:

P (occ)

P (emp)
←

P (M | occ)

P (M | emp)

P (occ)

P (emp)
(19)

In terms of likelihoods this becomes:

L(occ)← L(M | occ)L(occ) (20)

Taking the log of both sides:

log L(occ)← log L(M | occ) + log L(occ) (21)

Log-likelihoods provide a more efficient implementa-
tion for incorporating new data into the occupancy grid
by reducing the update to an addition [Elfes, 1989].

3.4 Occupancy Grid Construction From
Active Depth-mapping

We utilise the described active rectification procedure to
obtain the current epipolar rectified images. The mo-
saicing method provides an understanding of how im-
ages of the scene relate to each other, in terms of pixel
displacements from the origin of the mosaic. From this
procedure we obtain the overlapping region of the cur-
rent left and right rectified views. A disparity map is
obtained from the overlapping region of these images,
and a mosaic depthmap image is obtained. For pro-
cessor economy, we use an area based SAD correlation
disparity operation [Banks, 2001] to obtain the disparity
maps.



Figure 10: On-line OpenGL display of the occupancy
grid obtained from a single pair of stereo images at a
single point in time. Closer objects are red, more distant
objects are green. The brightness of the cell denotes the
belief that it is occupied. The slider bars are used to
view the scene from any position.

For each pixel in the disparity image, we obtain the
world coordinates according to:

Z =
fB

D

X =
uZ

f

Y =
vZ

f
. (22)

where D denotes the image frame disparity at that pixel
location, B the length of the baseline and (u, v) are the
image frame coordinates of the disparity pixel. This tells
us which occupancy grid the point lies in. We combine all
disparity matches in the disparity image by applying our
sensor model to the occupancy grid cells located about
this 3D location. The model is tailored for each of the
3D points associated with disparity matches, according
to its range and bearing. The sensor model increments
the certainty associated with the occupancy grid cell in
which the (X, Y, Z) coordinates of the range point falls.
Cells around this point and between the cameras and this
point are incremented or decremented according to the
sensor model. Figure 10 shows an example occupancy
grid produced by this process.

4 The Dynamic Occupancy Grid

Framework

4.1 Dynamic Occupancy Grid Background

Traditionally, dynamics have been introduced into the
occupancy grid framework by continually incorporating
static occupancy grid data over time and introducing a
high rate of decay that reduces the belief that each cell is
occupied over time. Clearly, this method does not prop-
agate uncertainties associated with moving mass, or pre-
serve the belief in previously observed mass in the scene.
A more data-driven approach to the dynamic occupancy
grid framework is desired.

4.2 Approach to Dynamic Occupancy Grid

We are presently working towards a dynamic occupancy
grid framework that maintains all the benefits of the
static approach. The approach enables the propagation
of log-likelihood uncertainties associated with moving
mass in the scene.

By inferring a maximum likelihood motion model of
mass between consecutive occupancy grid frames, we can
propagate uncertainty and understand how objects are
moving in the scene, which should prove to be a sig-
nificant aid in object segmentation and tracking. The
maximum likelihood motion model can be verified and
improved by combining it with image space measurement
of velocities from optical flow and depth flow [Kagami,
2000]. Methods such as V-disparity analysis [Labayrade,
2002], or Hough space analysis [Tian, 1997] could then
be used to extract rigid bodies translating or rotating
togeather.

A dynamic occupancy grid framework is also benefi-
cial in that translations and rotations of the stereo rig
can easily be incorporated, and do not immediately re-
duce occupancy grid cell certainties as they would in the
static case. Additionally, if the robot moves, all mass in
the occupancy grid can be shifted accordingly, and the
belief in its location adjusted. For example, an encoder
may measure the motion of the robot with an associ-
ated uncertainty; mass certainties for the occupancy grid
can then be spread out according to the accuracy of the
encoder and the motion it reports. This encoder mea-
surement can be combined with the maximum likelihood
mass motion model.

5 Results

Figures 11 and 12 present images of the online construc-
tion of an occupancy grid from data acquired at a par-
ticular point in time. Figure 11 shows the rectification
process. The depthmap and occupancy grid constructed
from these images are shown in Figure 12.



Figure 11: Top left: original left and right images. Top right: rectified images. Bottom: Mosaics of images captured
until this moment, left and right cameras. Parallel epipolar lines are enforced throughout the mosaics.

6 Conclusion

We have presented a method for active epipolar rectifica-
tion. The method has been shown to allow static stereo
algorithms to run on an active stereo platform. We have
presented an effective framework for active-vision depth-
mapping, and have shown that occupancy grids are an
effective method of fusing and representing range data,
especially with respect to active vision. We have pro-
vided a preview of our approach to dynamic occupancy
grids for scene understanding. Further implementation
and results constitute present and future work.
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