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Abstract

We present a complete system for automatic align-
ment and calibration of a stereo pan-tilt camera plat-
form on a mobile robot. The system uses visual data
from one or two controlled rotations of the head, and
a single forward motion of the robot. We show how
the images alone provide head alignment information,
camera calibration, and head geometry. We also dis-
cuss automatic zeroing of steering angle for a single
steering wheel AGV. Results are provided from tests
on the working system.

1 Introduction

Consider a mobile robot equipped for the purposes
of visual navigation with a stereo camera platform de-
signed to pan, tilt and verge. If this head provides
odometry it may be able to make accurate angular ro-
tations, but this may be of little value without some
absolute measure of angle relative to the robot itself.
It is necessary to zero the angular measures when the
cameras are parallel, horizontal, and facing forward,
or aligned. In addition, for the system to be useful
it is, in most applications, necessary to know how the
3D world projects to 2D images (camera calibration),
and how the cameras move when the head is rotated
(the head geometry, or location of the head’s axes).
We are interested in how to initialise a mobile robot
automatically in a procedure requiring no interaction
and no prior knowledge.

The approach we adopt involves active vision, in
which we use controlled motion in conjunction with
visual processing to achieve alignment and calibration.
For our experiments we used the robot GTI and stereo
head Yorick (Figure 1), and the work assumes the head
takes the more usual of the possible configurations –
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Figure 1: Head Yorick and vehicle GTI

combined pan and tilt axes and separate vergence axes
for each camera. However our approach could be easily
adapted to other configurations.

We treat alignment as a 3-stage process: (i) en-
suring the cameras are facing the same part of the
scene so that stereo correspondence is possible; (ii)
controlled pan and tilt motions which provide a set of
three stereo image pairs, which we show is sufficient
information to align the elevation and vergence axes;
(iii) a forward motion of the robot providing two im-
ages, sufficient information to align the pan axis with
the forward direction.

The key novel aspects of this work lie in stages (ii)
and (iii), which are covered first. Here we build prin-
cipally on work on self-alignment of a stereo head [6],
and recent calibration work [2, 4, 9], integrating vari-
ous techniques, and describing algorithms that ensure
good and consistent performance.

Section 2 outlines some essential notation and the-
ory. Section 3 summarises the alignment theory and
shows how to extract camera calibration and head ge-
ometry as part of the process. We also discuss imple-
mentation detail, since the reliability of the process
depends heavily on robust processing and careful use
of constraints. Section 4 then describes how the pan
axis can be aligned so that the cameras are facing
in the forward direction. In section 5 we outline a



method for moving a camera to fixate on a scene fea-
ture (move it to the centre of the image) with no prior
knowledge of camera calibration or geometry. This is
essential for a practical alignment procedure.

It is desirable to remove any reliance the system
has on the initial state of the robot. Consequently, in
section 6 we show how to ensure the cameras are facing
the same part of the scene, essential for alignment to
be possible (stage (i) above); and section 7 discusses
the use of visual information to align a steering wheel
if, as with our vehicle GTI, that is how the robot is
manoeuvred.

Finally in section 8 we present and discuss the re-
sults of our tests with simulated and real image data.

2 Preliminaries

Projective geometry is the mathematical tool used
to provide the theoretical basis for much of the work.
Points and planes are represented by homogeneous
vectors, essentially ordinary vectors extended by a sin-
gle parameter, which ambiguates their scale. 3-vectors
representing 2D image points and lines are written
in lower case bold (v), and 4-vectors (3D points and
planes) in upper case bold (Π). 2D transformations,
then, are represented by 3×3 matrices, and 3D trans-
formations by 4× 4 matrices, written in teletype style
(A, B). The use of homogeneous coordinates means
all such matrices also have arbitrary scale, and there-
fore “=” means equality up to a scale factor. A 3 × 4
projection matrix P maps 3D points to image points.
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Figure 2: The epipolar geometry of two views

Figure 2 shows two views of a world point X from
camera centres C and C′. Two such views are related
by their epipolar geometry. It can be seen that the
possible correspondences for x, the projection of X in
view 1, lie on the epipolar line l′, the intersection of the
epipolar plane (shaded) and the second image plane.
As the figure illustrates, all such lines pass through
the epipoles e and e′, which also define the direction
of the translation t since they lie on the line joining
C and C′.

The epipolar geometry is fully determined by suf-
ficient point correspondences. Selection and match-
ing of point features in two views is now a standard,
accurate procedure in computer vision. From the ge-
ometry, projection matrices can be calculated for each
view and matched image points backprojected to give
3D structure. However, this structure is projective,
in that it is related to euclidean structure by some
4 × 4 invertible transformation matrix HPE, ie. pro-
jective points XP are related to euclidean points by
X = HPEXP. HPE incorporates a translation, rotation,
scaling, skew in 3 directions, and a warping so that
parallel lines converge to a point.

3 Alignment of Vergence and Tilt Axes

3.1 Theory

Figure 3 shows the camera rotating about one of the
head axes, illustrating how the planes perpendicular
to the axis are invariant to the motion. Π∞ is the
plane at infinity, which can be seen as the plane on
which all lines at infinity (such as the horizon line) lie,
and where all parallel lines converge. Hence the axis
of this pencil of planes is a line on Π∞, and is also
invariant to any translation since it depends only on
the orientation of the planes. If the camera is fixated
anywhere on this line it will be aligned perpendicular
to the rotation axis. Our goal is to align the cameras
perpendicular to the pan and elevation axes.
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Figure 3: Illustrating the line on the plane at infinity invariant
to a euclidean transformation

The rigid motion of the camera can be expressed
as a 4× 4 matrix D. D has four eigenvectors which are
points invariant to the motion. The two real points lie
on the rotation axis, and the two complex points lie
on the line at infinity.

D transforms euclidean points X′ = DX. There-
fore points in projective space, XP and X′

P (related to
euclidean points by the update matrix HPE) transform
according to the projective mapping H, where

H = H−1
PE
DHPE. (1)



The eigenvectors of H define the invariant lines in
projective space [6, 9]. The key point here is that since
projective structure can be calculated from image cor-
respondences, we can also calculate H from image cor-
respondences, using the relationship X′

P = HXP, and
hence (via its eigenvectors) determine the location of
the invariant lines.

Our experience has shown that due to measurement
errors and noise, H as calculated may not yield two
real and two complex eigenvectors. We can elaborate
on the form of (1) by setting one of the projection
matrices (say the left) to P = [I 0], as is common

and without loss of generality. Then HPE =
[
K−1 0
a� d

]

where K is the left camera calibration matrix, an up-
per triangular matrix containing information such as
the focal length and aspect ratio, and [a� d]� is the
plane at infinity (in projective space). (1) can now be
written

H =
[
K−1 0
a� d

]−1 [
R t
0� 1

] [
K−1 0
a� d

]
(2)

where R and t are the rotation and translation ele-
ments of D respectively.

The eigenvector requirements for H can be satisfied
by enforcing this decomposition within a non-linear
minimisation. We obtain a starting point for this iter-
ative method via a novel factorisation of the estimated
H which improves somewhat on that of [4]. A mini-
mum of two such H matrices are required for a unique
decomposition which provides the true calibration pa-
rameters, and the motions D. In addition, the axis of
rotation is the line between the two real eigenvectors
of D, so if D represents a rotation about a single head
axis we can recover the geometry of that axis.

To summarise: correspondence between the left
and right views of a scene provides projective struc-
ture. Similar correspondence following a rotation of
the head about one of its axes provides the same points
transformed by H, which can therefore be calculated.
Two rotations give two H matrices, and the H ma-
trices provide alignment information, camera calibra-
tion, and head geometry.

3.2 Algorithm Summary

Here we refer to a stereo pair of images as a view,
distinct from the individual images themselves.

1. Record three sets of stereo views: an initial view,
and those following a rotation about the eleva-
tion and pan axes alone (the rotated views). 3◦

rotation is sufficient. Carry out robust two-image

feature matching, and calculate the epipolar ge-
ometry and hence projective structure for each
view.

2. Generate putative (or potential) feature matches
between initial and rotated views, that is, match
paired features between the views (equivalent to
matching projective structure). This can be done
using standard matching between pairs of images
(the two left images, left and right etc.).

3. Use these matches to seed a RANSAC outlier
rejection process to calculate H. The RANdom
Sampling And Consensus algorithm [3, 8] selects a
random minimal sample from the seed set and cal-
culates H by the Direct Linear Transform. It then
checks for consistency with the remaining seeds,
eventually outputting the largest set of inliers and
associated H. This important step eliminates in-
correct matches (outliers) which invalidate the
procedure. The consistency check uses symmetric
transfer error, the distance in each of four images
between each matched point, and the projection
of its 3D projective match from the other view,
following transformation by H (or H−1).

The minimisation of the next stage will find the
best H consistent with the decomposition of (1),
but we can provide a starting point for the pro-
cedure here with an enforced decomposition into
HPE and D as in [5].

4. Bundle adjustment:

(a) Calculate H using Levenberg-Marquardt it-
eration with the inliers from RANSAC. The
solution vector should consist of the 16 en-
tries of HPE, and 6 entries for D (3 rotation
angles and 3 translation values). This again
ensures consistency. The error measure is
transfer error.

(b) Carry out guided matching using transfer er-
ror to select a new set of inlying quadruplets
consistent with H.

(c) Repeat until the set of quadruplets is un-
changed. After two rotations, the two H
matrices can be decomposed in a manner
consistent with each other to give the true
HPE and the two D matrices.

If desired the results can be improved using a fur-
ther bundle adjustment on both H matrices simul-
taneously in which they share parameters for HPE.

5. Eigendecompose each H and find the complex con-
jugate eigenvectors V3 and V4. Obtain two real



points on the line between these, V3 + V4 and
(V3 − V4)i.

6. Project these points into both images of the cur-
rent view, giving two image points v3 and v4 in
each. The line between these points in the image
is v3 × v4.

7. The two H matrices give two lines, λ and µ. Fix-
ate on the intersection of these lines, x = λ × µ
(see §5). This assumes rotation about the camera
centres, which does not affect alignment error sig-
nificantly (an accurate calibration could be used
to calculate rotation angles more exactly).

3.3 Degeneracy

If the scene is planar or there is insufficient distance
between left and right cameras we cannot calculate
projective structure. However the images are directly
related by a 3 × 3 transformation, and this will have
an invariant line which is the projection of the line at
infinity invariant to the head motion [5]. Alignment is
therefore still possible in the degenerate case, but not
covered here.

4 Alignment of the Pan Axis

Here we turn to stage (iii) as set out in the In-
troduction. The pan axis is to be aligned with the
forward direction of the robot. Previous work used
optical flow and iterative visual servoing to find this
direction [1]. We use a single stage algorithm, calcu-
lating the epipolar geometry from images taken before
and after a forward motion of the robot.

As stated in section 2, the epipole e, which can
be calculated from image correspondences, encodes
the translation direction. The calibration information
from the previous step can be used to convert e into a
3-vector, t = K−1e. Assuming the elevation and ver-
gence axes are already aligned, the pan axis offset θ is
the angle between t and the z-axis, given by

cos θ = [0 0 1] t / ‖t‖. (3)

Alternatively we can again assume the head axes
pass through the camera centres and simply fixate on
the epipole itself (§5). This may well be more accurate
unless the calibration information used is exact.

If the elevation axis is not aligned, t will not be
horizontal. The angle between t and the xz-plane is
the elevation alignment error. So in the usual case
where the pan axis is perpendicular to the ground,
this method can be used to align the elevation axis
as well as the pan. Thus in fact just two stereo pairs

of images captured before and after a simultaneous
forward motion of the robot and rotation about the
elevation axis provide sufficient information to align
all three axes – the invariant line to the motion (at
infinity) aligns the vergence axes, the epipole aligns
the others.

5 Fixation from zero prior knowledge

Our alignment algorithm relies to some extent on
the ability to fixate parts of the scene when the cam-
era calibration is unknown or uncertain. However this
ability is also useful in other applications. Our novel
approach makes use of some simple assumptions in or-
der to move the image point we wish to fixate (u, v)
near to the target location (u0, v0) (usually the centre
of the image). Then we use a method known as pyra-
mid correlation to re-find the fixation point, to update
our motion parameters and make further moves in an
iterative process until the point and target are coinci-
dent.

Assume the camera rotates about the optical cen-
tre, and (u, v), (u0, v0) and the optical centre form
a right angled triangle (which is reasonable as long
as (u0, v0) is close to the image centre), then the re-
quired angles of horizontal and vertical rotation, θ and
φ respectively, are given by

tan θ =
u − u0

αu
tanφ =

v − v0

αv

where αu and αv are the focal lengths in horizontal
and vertical pixel units (they are the same if the pixels
are square). Once a move has been made and the
fixation point found, these can be calculated from the
above equations. The algorithm goes as follows:

1. Start with overestimated guesses for the focal
lengths. This ensures the first move will not over-
shoot.

2. Rotate the camera by θ and φ.

3. Calculate the true image motion by pyramid cor-
relation, a thorough search in logarithmically less
time than a correlation over the whole image:

Process the pre- and post-motion images by re-
peatedly smoothing and subsampling by two to
generate image pyramids [7]. Then correlate the
images at each level from the smallest, searching
only ±1 pixel around the position of maximum
correlation at the previous level. The position
of maximum correlation between the largest im-
ages is the overall offset, ie. the fixation point has
moved by this amount.



4. Use θ, φ, and the offset to calculate more accurate
values for αu and αv, and repeat the process.

If required to fixate a point off the image, instead
fixate a point close to the edge of the image to obtain
accurate values for the focal lengths, then make one
final move to the fixation point. This will not be per-
fectly accurate – in this application, the self-alignment
algorithm may need to be run again.

6 Verging to the same part of the scene

The pyramid correlation technique of the previ-
ous section can be used for rapidly verging the cam-
eras to the same part of the scene. This is essen-
tial since the vergence/tilt alignment algorithm re-
lies on feature matching between the left and right
cameras. Only a few common scene features are re-
quired between images, so the process need not be
accurate. This means the images can be subsampled
quite considerably, making the correlation procedure
much faster. This technique could also be used to find
highly-textured regions of the scene for feature match-
ing.

7 Aligning a steering wheel

If the robot has a steerable wheel this must be
straight for the pan axis alignment of §4 to work. For
completeness we outline how automatic alignment of
the wheel can be achieved. We assume the wheel has
odometry to measure relative angle.
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Figure 4: Geometry of steering wheel alignment.

Figure 4 shows the geometry of robot motion, in
which it rotates about a vertical axis intersected by
the extended wheel axels. O is the coordinate origin,
chosen by choice of projection matrix to be the left
camera centre (§3.1). R and θ are the initial rotation
axis and steering angle; R1 and R2 are the axes after
the steering wheel has been rotated through ∆θ1 and
∆θ2, which are known. r and r1 can be calculated

from stereo image correspondence after two motions
(two H matrices gives two D matrices which gives two
screw axes). It is simple to show that this is sufficient
to calculate i, and j (the forward direction), and θ if
s is known. Otherwise one further motion, giving r2,
is required to calculate s and θ, meaning 8 images are
needed in total.

8 Experimental Results
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Figure 5: Results of alignment simulations. The image size is
768× 576 pixels.

Figure 5 shows results for verge/tilt (§3), and
pan/tilt (§4) alignment simulations, for varying noise
levels and initial head positions. The alignment errors
are the angles from true of our simulated cameras,
which were modelled on those of our stereo head, fol-
lowing alignment. Calibration accuracy is summarised
by reconstruction error, expressed as a percentage of
distance of a point from the camera. The errors in
the scene reconstructed after applying the calculated
pan and elevation give an idea of the accuracy of the
relevant D matrices, and thus of the head geometry.

The results are encouraging, suggesting alignment
error will stay below 1◦ for typical real image pixel
noise. The reconstruction accuracies are also very
good for so few images. By way of comparison, the
error in calculated camera focal lengths also increased
linearly with noise, reaching just 1.7% for a noise stan-
dard deviation of 3 pixels. Further experiments also
showed the errors increasing if fewer point matches
were made, but remaining acceptable even for just 50
points (0.6◦ RMS elevation error, 5.7% RMS recon-
struction error for 1.5 pixels noise). Finally we note



error φ θl θr f l al cl fr ar cr

in: (◦) (◦) (◦) (%) (%) (%) (%) (%) (%)
(a) 1.8 1.4 2.6 4.9 7.6 3.7 7.0 10.1 3.5
(b) 2.4 3.0 3.3

Figure 6: The real scene and related verge/tilt alignment re-
sults with real data (RMS errors). (a) Fixation point lay within
the image, (b) it did not. The lines in the images are those re-
sulting from a verge/tilt alignment calculation for which this is
one of the stereo pairs. Superscripts l and r represent left and
right cameras. φ, θ, f , and a are the elevation, vergence, fo-
cal length and aspect ratio respectively. c signifies the principal
point where the error given is a percentage of mean focal length.

that outliers could cause completely erroneous results,
even just 1 or 2 matches in 200 incorrect by 10 pix-
els or more. This emphasises the importance of the
outlier rejection process.

The pan axis alignment algorithm is less accurate,
as expected since it uses just two images, but still vi-
able. The graphs show how the accuracy depends con-
siderably on the initial pan, and the distance moved.
For accuracy we can either move the robot as far as
possible or simply repeat the procedure.

The algorithms were tested on the real scene of
Figure 6. A range of initial alignments were tested,
and the RMS errors taken (fig. 6). The results for
verge/tilt alignment and calibration are worse than
the simulation suggested, most likely due to the ad-
ditional inaccuracies when using real scene data in-
curred by feature detection and matching. Many im-
provements could be made for handling real scenes,
but the algorithm is essentially for alignment, provid-
ing a calibration estimate only. The alignment results
from this implementation are certainly good enough
for most conceivable applications, and the calibration
is also adequate to aid many tasks, such as naviga-
tion. Note also from figure 6 that the iterative fixation
added only one or two degrees of error for off-image
fixation points.

Pan axis alignment also faired well: The robot was
moved forward approximately 10cm (scene distance
∼1m). This enabled the pan axis to align itself with
an RMS error of 1.7◦ for initial pans of 20◦ or less,
and of 3.5◦ for initial pans up to 60◦. The tests used
the iterative fixation, and all fixation points were off-

image for initial pans above 10◦, illustrating how little
error this uncalibrated procedure incurred even when
it was required to make a ‘guessed’ final motion.

In practice the system is more sensitive to the num-
ber of feature matches than simulation suggests, mak-
ing 100 to 150 matches the practical minimum for
good results. For scenes devoid of matchable features,
other techniques (such as direct methods) could be
used to calculate the relevant mathematical relation-
ships. Accuracy can always be improved by making
further motions.

9 Summary and Conclusions

We have described the elements of a complete pro-
cedure for initialisation of a mobile robot with stereo
pan-tilt head, for which the only prior knowledge re-
quired is that the head has the common 4 degree of
freedom axis configuration. We have demonstrated
the procedure working in practice with sufficient ac-
curacy for a wide variety of tasks including navigation,
limited only by the number of robustly matchable fea-
tures in the scene.
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