
Activity Based Metadata for Semantic Desktop Search

Paul Alexandru Chirita, Rita Gavriloaie, Stefania Ghita,
Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover,
Deutscher Pavillon, Expo Plaza 1, 30539 Hanover, Germany

{chirita, gavriloaie, ghita, nejdl, paiu}@l3s.de

Abstract. With increasing storage capacities on current PCs, searching the World
Wide Web has ironically become more efficient than searching one’s own per-
sonal computer. The recently introduced desktop search engines are a first step
towards coping with this problem, but not yet a satisfying solution. The reason
for that is that desktop search is actually quite different from its web counter-
part. Documents on the desktop are not linked to each other in a way compara-
ble to the web, which means that result ranking is poor or even inexistent, be-
cause algorithms like PageRank cannot be used for desktop search. On the other
hand, desktop search could potentially profit from a lot of implicit and explicit
semantic information available in emails, folder hierarchies, browser cache con-
texts and others. This paper investigates how to extract and store these activity
based context information explicitly as RDF metadata and how to use them, as
well as additional background information and ontologies, to enhance desktop
search.

1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past decade,
and so has the number of files we usually store on our computer. It is no wonder that
sometimes we cannot find a document any more, even when we know we saved it
somewhere. Ironically, in quite a few of these cases nowadays, the document we are
looking for can be found faster on the World Wide Web than on our personal com-
puter.

Web search has become more efficient than PC search due to the boom of web search
engines and due to powerful ranking algorithms like the PageRank algorithm introduced
by Google [16]. The recent arrival of desktop search applications, which index all data
on a PC, promises to increase search efficiency on the desktop. Still, these search ap-
plications are weaker than their web counterparts as they cannot rely on PageRank-like
ranking mechanisms which have revolutionized web search. Unfortunately, they also
fall short of utilizing desktop specific characteristics, especially context information.
Some of these missed opportunities include:

– Email context is not utilized by the existing search algorithms, even though this
clearly drops useful information. For example, one email might contain a question
describing the object one is looking for, and another email in the same thread might
include the answer to that question in the form of an attached document.

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 439–454, 2005.
c©Springer-Verlag Berlin Heidelberg 2005



440 P.A. Chirita et al.

– Email attachments lose all contextual information as soon as they are stored on
the PC, even though emails usually include additional information about their at-
tachments, such as sender, subject, comments. We might discuss a paper with a
colleague during a brainstorming session, and then afterwards send her the elec-
tronic version via email, together with a few helpful comments. After a while, our
colleague might not remember details about the paper itself, but rather recall with
whom she discussed it or which question was raised in the discussion and included
as comment in the email. It would be helpful to find the stored paper not only based
on its content, but also associatively based on that context1.

– Folder hierarchies are barely utilized by the search algorithms, even though we
might have spent considerable time to build sophisticated classification hierarchies
for the documents we store. For example, pictures taken in Hanover are prob-
ably stored in a directory entitled ”Germany”, “Lower Saxony” or ”Hanover”,
and it would be nice if we could utilize this information when we search for the
pictures.

– Browser caches include all information about user’s browsing behaviour, which
are useful both for finding relevant results (for example, if we remember how to
find the project’s home page, but not the corresponding API specification), and for
providing additional context for results. It would also be very useful if our search
application not only returns one specific scientific paper we downloaded from the
CiteSeer repository, but all the referenced and referring papers which we down-
loaded on that occasion as well.

As studies have shown that people tend to associate things to certain contexts [9],
all this information should be utilized during search. So far, however, neither has this
information been collected, nor have there been attempts to use it.

In this paper we discuss how to enhance and contextualize desktop search based on
semantic metadata collected from different contexts available and activities performed
on a personal computer. We explore three important contexts: electronic mail, folder
hierarchies, and web cache. Analogously, other contexts might be exploited as well. We
describe the semantics of these different contexts by appropriate ontologies and show
how to extract and represent the corresponding context information as RDF metadata
which can be used by a search application together with a full text index of our docu-
ments.

The next section gives an overview over existing approaches which try to exploit
metadata in search algorithms, and classifies them according to how they use metadata
to enhance search. Section 3 then shows how to describe contexts and their correspond-
ing metadata by means of appropriate ontologies and association rules, and how to use
these metadata in four different search scenarios where a simple full text index em-
ployed by current desktop search engines fails to find the information we are looking
for. Finally, section 4 describes the architecture of our semantic desktop search envi-
ronment, as well as our prototype.

1 Desktop Search is in fact ”a search into our past”, and it should therefore exploit the associative
functionality of the human memory.



Activity Based Metadata for Semantic Desktop Search 441

2 Using Semantic Metadata in Search: A Classification

2.1 Using Metadata to Enrich Search Results

One of the most interesting semantic search efforts is probably being performed in the
TAP project [8]. TAP builds upon the TAPache module, which provides a platform for
publishing and consuming data from the Semantic Web. Its knowledge base is updated
with the aid of the onTAP system, which includes 207 HTML page templates, being
able to read and extract knowledge from 38 different high quality web sites. The key
idea in TAP is that for specific searches, a lot of information is available in catalogs and
backend databases, but not necessarily on Web pages crawled exhaustively by Google.
The semantic search based results are independent of the results obtained via traditional
information retrieval technologies and aim to augment them.

While searching for musicians and other well-known entities like cities, countries
and others can draw upon the fact that a lot of information about them is available
in backend databases, whose data sets can be joined based on the ID of that entity,
the situation is different in the educational context, where topic classification is the
most important characteristics of a page. This latter approach is used in our personal
reader system [3], which finds additional pages related to the pages contained in a
course, and again provides these as additional information to the core information pre-
sented.

2.2 Using Metadata to Connect and Visualize Information

In ”The Social Semantic Desktop” [2], the authors envision that the next step towards
communication is a desktop application based on the Semantic Web, which could draw
connections between all the types of data people interchange. For example, an entry in
an agenda would be correlated with the author of an article or to the context associated
to an email. Altogether, the entire information existing in a social network would be
connected to each desktop. Such a structure would then help people organize and find
information, due to the enhancement brought by metadata into the system.

The Fenfire project [5] proposes a solution to interlink any kind of information on
one’s desktop. That might be the birthday with the person’s name and the articles she
wrote, or any other kind of information. The idea is to make the translation from the
current file structure to a structure that allows people to organize their data closer to
the reality and to their needs, in which making comments and annotations would be
possible for any file.

Haystack [17] pursues similar goals as Fenfire. One important focus is on working
with the information itself, not with the programs it is usually associated with. For
example, only one application should be enough to see both a document, and the email
address of the person who wrote it. Therefore, a user could build her own links to
Semantic Web objects (practically any data), which could then be viewed as thumbnails,
web pages, taxonomies, etc.

A third project building an information management environment for the desktop
is Gnowsis [19]. The main idea behind applications in this environment is the use of
a central information server which allows users to administer and directly access all
the information on their computer (for example the author of a file, her email address,



442 P.A. Chirita et al.

etc.). Gnowsis envisions appropriate ontologies at four levels. The first one is used
on the server, as it needs custom formats for the internal operation data and for its
configuration files. The second one is for each application and the data stored by it. For
example, in Outlook Express the types of data that can be found are emails, contacts
and appointments. On the third level we have public ontologies, created by others to
describe people, projects or documents (e.g. Dublin Core or FOAF). On the uppermost
level, the user can create user-specific ontologies to fit her needs. For each level, only
general architectural information is given, but no specific details or examples about the
proposed ontologies, though.

In the context of another interesting prototype, the interface proposed by [21] im-
proves image search by providing and using faceted metadata. Users can add flat or
hierarchical categories of information to images, and then use them for filtering search
results. Again, the idea is to provide an enhanced access to information, based on the
different kinds of collected metadata.

2.3 Using Context Metadata to Find Information

[15] describes a very interesting approach for exploiting additional metadata for re-
trieving pictures. Their main idea is to rely on mostly automatically generated metadata
(location, time and other digital photo metadata) and some manual annotations (events
etc.) and to enhance these metadata automatically to provide information about actual
light status (night, day, dawn, dusk), weather status and temperature, and additional
aspects on the events, and then use these metadata to find stored images.

Another semantic search algorithm is proposed by [18]. It debuts with a classical
text-based search on the metadata, whose output is then extended using the RDF net-
work induced by the relations between semantic concepts, and finally reordered with
techniques adapted from information retrieval.

[20] presents a new approach to content-based image retrieval. To improve the re-
trieval performance, the authors use a self-adjustable meta-database, which records the
optimized relevance feedback information, representing the results obtained from pre-
vious queries from users that give a feedback on the relevance of the retrieved pictures.
This kind of information partitions the images into classes denoting relevant images for
future queries. The features taken into account by the algorithm are only low-level ones,
though, such as HSV color-histograms or directional histograms.

3 Integrating Context Metadata Within Desktop Search

3.1 How Do Users Search?

Now how can we enhance desktop search with additional metadata? Clearly, if we know
how users search, we can support their queries in an appropriate way. Recent studies of
user web search behavior [4] have shown that the user goals can be classified into three
main categories:



Activity Based Metadata for Semantic Desktop Search 443

– Navigational: the user is searching for a specific web site, whose URL she forgot.
– Informational: the user is looking for information about a topic she is interested in.
– Resource Seeking: the user wants to find a specific resource (e.g. lyrics of a song, a

program to download, a map service, etc.).

On our computer we are mainly interested in navigational queries, i.e. the user
knows she stored a resource somewhere on the PC and now wants to find it again.
Other less frequent, but possible, search goals are resource seeking (for example when
searching for a previously installed application which plays MPEG-4 movies) and the
close-directed subclass of informational queries [4] (searching for a resource annotated
with a given description, such as ”introduction to logic programming”). The other types
of informational queries are almost inexistent on the desktop, as one generally has at
least a vague picture of what is stored, and thus knows whether resources on a specific
topic do exist on the PC or not2.

Now clearly, when searching for something on our desktop we want to be able
to exploit as much additional context as possible. In the following sections, we will
discuss which context information is available for desktop search, how we can describe
this context information using appropriate ontologies and how we can represent this
information by explicit or inferred RDF metadata.3

After a brief presentation of current conventional approaches to desktop search (Sec-
tion 3.2), we will analyze three important contexts which can be exploited to enhance
desktop search: emails in Section 3.3, directory structures in 3.4, and the web cache in
3.5 and 3.6. For each context, we describe ontologies representing the available context
information, and discuss both explicitly available metadata, as well as metadata that can
be inferred and materialized using appropriate association rules.

3.2 Current Approaches to Desktop Search

The difficulty of accessing information on our computers has prompted several first
releases of desktop search applications during the last months. The most prominent ex-
amples include Google desktop search [7] (proprietary, for Windows) and the Beagle
open source project for Linux [6]. Yet they include no metadata whatsoever in their sys-
tem, but just a regular text-based index. Nor does their competitor MSN Desktop Search
[14]. Finally, Apple Inc. promises to integrate an advanced desktop search application
(named Spotlight Search [1]) into their upcoming operating system, Mac OS Tiger.
Even though they also intend to add semantics into their tool, only explicit information
is used, such as file size, creator, last modification date, or metadata embedded into
specific files (images taken with digital cameras for example include many additional
characteristics, such as exposure information or whether a flash was used). While this is
indeed an improvement over regular search, it still misses contextual information often

2 If she knows that ”something” is there, then the search becomes “navigational” or ”resource
seeking”. If she knows there is nothing stored on the given topic, she would not search for it
on her desktop.

3 Note, that even inferred metadata have to be materialized in order to enable efficient search.



444 P.A. Chirita et al.

resulting or inferable from explicit user actions or additional background knowledge,
as discussed in the next sections.

In the following we will introduce four important search contexts, each with a small
scenario, where ordinary full-text search fails, but additional context metadata provide
the necessary information for finding the document we search for. For each context we
will describe RDFS ontologies defining the metadata relevant for that context, as well
as association rules and possible background knowledge which infer and materialize
additional metadata.

3.3 Exploiting E-Mail Context

Scenario. Alice is interested in distributed page ranking, as her advisor asked her to
write a report to summarize the state of the art in this research area. She remembers that
during the last month she has discussed with a colleague about a distributed PageR-
ank algorithm, and also that the colleague sent her the article via email. Though the
article does not mention distributed PageRank, but instead talks about distributed trust
networks, it is basically equivalent to distributed PageRank as her colleague remarked
in this email. Obviously she should be able to find the article based on this additional
information.

Context and Metadata. There are several aspects relevant to our email context. Sender
and receiver fields of the email are clearly relevant pieces of information. Further in-
formation can be captured if we analyze the date of the email or the ”reply to” field,
which gives thread information and is useful to determine social network information
in general, for example which people discussed which topic etc.

Metadata should be generated automatically while the user works. For example,
when an email is received, the system automatically generates email RDF metadata,
instantiating e.g. ”To”, ”From” and ”Comment” metadata from the email fields, and
associating them to the document(s) attached to this email.

Fig. 1. Email prototype



Activity Based Metadata for Semantic Desktop Search 445

Useful RDFS Ontologies. Basic properties for this context are properties referring to
the date when an email was sent or the date it was accessed, the subject of the email and
the email body. The status of an email can be described as seen/unseen or read/unread.
We also have a property of the type reply to which represents thread information. The
has attachment property describes a 1:n relation because a mail can have one or more
attachments. The to and from properties connect to Class MailAddress which con-
nects to Class Person. A Person is usually associated to more than one MailAddress
instances. For attachments we keep the connection to the email it was saved from, be-
cause when we search for an attachment we want to use all attributes originally con-
nected to the email it was attached to. The stored as attribute is the inverse relation of
the File:stored from property we will see later.

Corresponding Association Rules. Association rules infer and materialize additional
metadata information. For example, when creating the annotations, for each stored file
we also associate a subject, derived from the subject of the email the file was attached
to. The corresponding association rule, written in Datalog style, looks as follows:

subject(File, Subject) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment),
subject(Mail, Subject).

Similarly, we also associate date and body text to the attached documents:

accessed(File, Date) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment), accessed(Mail, Date).

body(File, Body) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment), body(Mail, Body).

as well as the name of the sender of the original email:

from(File,Name) ← stored as(Attachment, F ile),
has attachment(Mail, Attachment),
from(Mail, MailAddress),
belongs to(MailAddress, Person), name(Person,Name)

In email threads connected through the reply to relationship, we also inherit email
subjects and bodies in addition to the original email subject / body:

subject(Mail, Subject).
subject(Mail, Subject) ← reply to(Mail, Mail1), subject(Mail1, Subject).
body(Mail, Body).
body(Mail, Body) ← reply to(Mail, Mail1), body(Mail1, Body).

Note that these association rules generate and materialize the appropriate metadata
before the query is evaluated, and thus materialized metadata can be used directly dur-
ing search, similar to the full text of the file / document. In our example, we can retrieve
the correct document by using body text and sender information associated to this doc-
ument, inherited from the original email.



446 P.A. Chirita et al.

3.4 Exploiting File Hierarchy Context

Scenario. In our second scenario, Alex spent his holiday in Hanover, Germany, taking
a lot of digital pictures. He usually saves his pictures from a trip into a folder named
after the city or the region he visits. However, he has no time to rename each image, and
thus their file names are the ones used by his camera (for example ”DSC00728.JPG”).
When he forgets the directory name, no ordinary search can retrieve his pictures, as
the only word he remembers, ”Germany”, does neither appear in the file names, nor in
the directory structure. It would certainly be useful if an enhanced desktop search with
“pictures germany” would retrieve his Hanover pictures.

Context and Metadata. In this example we need to consider file type and directory
name information, and we need to be able to go beyond simple keyword search, tak-
ing part-of relationships and synonyms into account. To enrich the context metadata
provided by file and directory names, we use WordNet [13], a lexical reference system
which contains English nouns, verbs, adjectives and adverbs organized into synonym
sets, each representing one underlying lexical concept. Different relations link the syn-
onym sets. In our case, we use the following additional relationships:

– Hypernym: Designates a class of specific instances. X is a hypernym of Y if Y is a
(kind of) X.

– Holonym: Designates the superset of an object. A is a holonym of B if B is a part
of A.

– Synonyms: A set of words that are interchangeable in some context. X is a synonym
of Y if Y can substitute X in a certain context without altering the meaning.

Useful RDFS Ontologies. Obviously, our context metadata for files include the basic
file properties like date of access and creation, as well as the file owner. File types can

Fig. 2. File prototype



Activity Based Metadata for Semantic Desktop Search 447

be inferred automatically, and provide useful information as well (in our case, the file is
of type “JPEG image data”). Additionally, a file might be a visited web page which we
stored on our computer or an attachment saved from an email. This stored from property
is of great importance because this represents information that current file systems miss,
the provenance of information. We also keep track of the whole file path, including the
directory structure. Finally, we extend the strings used in name and type metadata using
WordNet information: synonyms, hypernyms, and holonyms. For each term we add the
information provided by WordNet in order to enrich the context of the stored file.

Corresponding Association Rules. The use of WordNet induces the following associ-
ation rules:

name(File, String1) ← name(File, String2), synonym to(String2, String1).
name(File, String1) ← name(File, String2), holonym to(String2, String1).
name(File, String1) ← name(File, String2), hypernym to(String2, String1).

Furthermore, we associate directory names as additional names to the contained
files as well. The rules allow us to add explicit part-of information (“Hanover is part of
Germany”), as well as synonym information (“picture” is a synonym to “image”), and
enable us to successfully solve the search problem discussed in our scenario.

3.5 Exploiting the Web Cache Context for Visualization

Scenario. Even though Web search engines are providing surprisingly good results,
they still need to be improved to take user context and user actions into account. Con-
sider for example Paul, who is looking for the Microsoft internships web page, which
he has previously visited, coming from the Microsoft main home page. If he does not
remember the right set of keywords to directly jump to this page, it certainly would be
nice if enhanced desktop search, based on his previous surfing behavior, would support
him by returning the Microsoft home page, as well as providing the list of links from
this page he clicked on during his last visit.

Context and Metadata. The context we have to use here can be extracted from Paul’s
web cache, so we want to annotate each cached web page with additional informa-
tion both for its basic properties (URL, access date, etc.), as well as more complex
ones such as the used in-going and out-going links to other neighboring pages, reflect-
ing Paul’s surfing behavior. This way, when browsing a certain cached page, enhanced
desktop search can also provide information about the context in which that document
has been useful for the user, i.e. how it was reached or which links were followed from
there.

Useful RDFS Ontologies. Correspondingly, the central class in this scenario’s ontology
is the class VisitedWebPage. Upon visiting a web page, the user is more interested in the
links she has used on that page, rather than every possible link which can be followed
from there. Thus, the metadata contains only the hyperlinks accessed for each stored
web page:



448 P.A. Chirita et al.

Fig. 3. WebPage prototype

– departed to is a relation of the type one to many (as the user could have accessed
many pages from a web page) which shows the hyperlinks the user clicked on the
current web page;

– arrived from is a relation representing the page(s) the user came from.

Also here, we have added properties related to the time of access and place of storage
in the hard disk cache. For specific scenarios we can define subclasses of this base class,
which include scenario specific attributes, for example recording the browsing behavior
in CiteSeer, which we will discuss in the next section.

Corresponding Association Rules. There are no specific association rules materializ-
ing inferred metadata we need for our scenario. Instead we use our metadata for enrich-
ing search results. Displaying context information for enhanced browsing under this
scenario uses a similar layout as the TAP search screen, with the web pages or docu-
ments from the cache provided in the main window, and an additional frame to display
the context information using the departed to and arrived from relations.

3.6 Exploiting the Web Cache Context to Enrich Search Results

Scenario. If we have more information about the web pages visited, we can provide
even better context information. Suppose that Alice browses through CiteSeer for pa-
pers on a specific topic, following reference links to and from appropriate papers, and
downloads the most important documents onto her computer. Now as soon as they are
stored in one of her directories, her carefully selected documents are just another bunch
of files without any relationships. They have completely lost all information present in
CiteSeer, in this case which paper references specific other papers or is referenced by
another paper, and which papers Alice deemed important enough not only to look at but
also to download. It is the task of a semantic desktop search environment to preserve
that information and make it available as explicit metadata.

Context and Metadata. As discussed, stored files on today’s computers do not tell us
whether they were saved from a web page or from an email, not to mention the URL of
the web page, out-going or in-going visited links and more specific information infer-
able from this information and a model of the web page context browsed, as discussed
in our scenario. All this information should be covered by our metadata to connect the
stored files to their original contexts, and thus allow the user to exploit all the previous
knowledge and context she gathered around them.



Activity Based Metadata for Semantic Desktop Search 449

Fig. 4. Publication prototype

Useful RDFS Ontologies. In our scenario we make use of additional knowledge about
how CiteSeer pages are connected. We therefore create a subclass of VisitedWebPage
called Publication, and add suitable properties as described in figure 4. The Publica-
tion class represents a CiteSeer document web page. It records the CiteSeer traversed
links from that page using the references property and the CiteSeer documents which
the user visited before using the referenced by property. It is easy to notice that these
pages represent a subset of the metadata captured by the departed to and arrived from
relations. PDF file and PS file are subclasses of File, and are connected to Publication
with subproperties of “stored as”, namely “stored as pdf ” and “stored as ps”.

Corresponding Association Rules. In our semantic desktop search environment we
use these metadata to enrich the search results by displaying the context of the document
found in the form of downloaded papers referencing that document, or downloaded
papers referenced by the document. This can be expressed for example by an association
rule such as the following one:

downloaded references(Document, F ile) ←
stored as(Publication1, Document),
references(Publication1, Publication2),
stored as(Publication2, F ile).

4 Desktop Search Architecture and Prototype

4.1 Generating Input Metadata

Event Triggered Metadata Generation. The main characteristic of our desktop search
architecture is metadata generation and indexing on-the-fly, triggered by modification
events generated upon occurrence of file system changes. This relies on notification
functionalities provided for example by the kernel. Events are generated whenever a
new file is copied to hard disk or stored by the web browser, when a file is deleted or



450 P.A. Chirita et al.

modified, when a new email is read, etc. Much of this basic notification functionality
is provided on Linux by an inotify-enabled Linux kernel, which we use in our proto-
type.

Metadata Generator Applications. Depending on the type and context of the file /
event, metadata generation is then performed by appropriate metadata generator appli-
cations, as described in the next paragraphs. These applications build upon an appropri-
ate RDFS ontology as described in the previous sections describing the RDF metadata
to be used for that specific context. Generated metadata are either extracted directly
(e.g. email sender, subject, body) or are generated using the appropriate association
rules plus possibly some additional background knowledge (e.g. the WordNet ontology
in our prototype). All of these metadata are exported in RDF format, and added to a
metadata index, which is used by the search application together with the usual full-text
index.

The architecture of our prototype environment is depicted in Figure 5. It includes
three prototype metadata generator applications, based on the scenarios described in the
previous section 3. We will shortly describe them in the following paragraphs.

Email Metadata Generator. Our current email prototype is built on top of the Java-
Mail API [10]. It processes the incoming emails into a separate class, derived from
the Message class defined in JavaMail. The associated metadata is easily generated
according to figure 1, as the Message class already provided helpful methods in this di-
rection (e.g. ”getTo”, ”getRecipients”, ”getSubject” and ”getSentDate”). Further meta-
data are generated when attachments are stored in the file system. Metadata are stored
as RDF using the Jena toolkit [11]. Jena is a Java framework for building Seman-
tic Web applications. It provides a programmatic environment for RDF and RDFS,
including a rule-based inference engine which we use to implement our association
rules.

File Metadata Generator. Upon creation of a new file, its path is decomposed into a
sequence of tokens, one for each level of the directory tree existing on the hard disk.
Each of these tokens is added as metadata description to the file, together with the usual
file attributes, as described in section 3.4. We use WordNet to add additional metadata
(WordNet senses) both to the file name and to each token of the path, thus capturing
all meaningful information implicitly available through the file and folder names. Our
file prototype is again implemented in Java, and uses the JWNL API [12] to access the
WordNet relational dictionary. As in the previous module, we also use the Jena API to
generate the RDF file that contains the annotation corresponding to the file structure, in
which each indexed file is a resource.

As future work, we intend to extract additional specific information stored in several
widely used file types. For example, many image formats provide specific additional
metadata, such as exposure information. Another possible improvement for this gener-
ator is to use additional background knowledge about seasons etc., as well as to let the
user manually add more annotations to files or directories. We could then search for the
pictures we took during the last winter in Germany, or during a special event in our life,
like a birthday.



Activity Based Metadata for Semantic Desktop Search 451

Fig. 5. Prototype Application Architecture

Web Cache Metadata Generator. In the web cache prototype, the annotation of the
cached web pages is triggered by browsing web pages which were not previously stored
in the local cache. Generation starts with the basic annotations for each web page (e.g.
access date) and then proceeds with the annotations representing the connections be-
tween web pages (for example from which page did the user arrive at the current one,
or which hyperlinks of the current page are traversed). Again, we use the Jena API to
export the annotations in RDF format.

For specific sites, the metadata generator uses additional ontologies. In our proto-
type this is done when using the CiteSeer repository. These ontologies then trigger ad-
ditional metadata generation, which can be used during search, as well as for enriching
search results.



452 P.A. Chirita et al.

4.2 Displaying and Enriching Search Results

Enhanced semantic desktop search provides a search service similar to its web sibling.
However, rather than searching only one through the full-text index, it also searches the
additional metadata index, with each metadata item linked to the resource it has been
derived from.

The regular search interface is as simple as the one provided by Google, i.e. an
input text box for the searched terms and a search button. This type of search looks for
the keywords in both indexes automatically. Results are then presented as in TAP [8]:
the left side of the output window displays the hits matched from the text index, and
the right side contains additional information provided through the metadata associated
with the chosen result document.

The items displayed on the right hand side obviously depend on the type of the result
document. For the web cache scenario this allows us to show not only the previously
browsed pages, but also the entire context in which they have been used and accessed
(for example where did the user go from each page, or which referenced papers the user
downloaded related to a found document). This helps a lot, as the user now has all the
orienteering steps [9] right in front of her.

An additional advanced search interface allows the user to restrict her search to one
of the two indexes. Moreover, she can define filters, by choosing where to search (only
in the emails, files or the web cache), each category also allowing other additional filters
according to its ontology (e.g. To, From, Reply To, Subject, Attachment, etc. in the email
scenario).

5 Conclusions and Further Work

Advanced desktop search needs semantics and metadata. Applying search engine tech-
nology on the desktop is useful, but not sufficient, because sophisticated heuristics and
algorithms like PageRank, which are very successful on the web, do not work on the
desktop. On the other hand, our personal desktop environment provides a lot of context
not available on the web, which can be used to implement sophisticated semantic search
functionalities on our desktop surpassing those possible on the web.

This paper presents concept, architecture and prototype for a semantic desktop
search environment, which promises to exploit the information present in these con-
texts, accumulated by user activities and additional background knowledge. Our search
environment relies on ontologies describing appropriate metadata for different contexts
relevant on the desktop and uses these semantic annotations to both extend search func-
tionalities and enrich search results.

The semantic desktop search environment contains two distinct modules. The first
one is the index, which consists of a metadata repository including all metadata associ-
ated to each resource on the desktop, as specified in the appropriate context ontologies,
and a regular search engine full-text index of these resources. The second module is the
search module, which combines keyword search on the full-text index with semantic
search on the metadata repository to provide both improved functionalities for finding
information on our PC, as well as enriching the search results and visualizing existing
contexts using the additional knowledge stored in the metadata repository.



Activity Based Metadata for Semantic Desktop Search 453

Comparing the possibilities for a semantic desktop search environment to semantic
search on the web, we believe that semantic web technologies might ultimately be more
important on the desktop than on the web. This is because, first, our desktop environ-
ment is “limited” in the sense that we will be able to describe most relevant contexts
rather easily, and thus will be able to provide more complete ontologies / metadata spec-
ifications for the desktop environment than for the web in general. Second, even with
200GB hard disks in our computers, the amount of data and metadata itself is limited
compared to the information available on the web, so more sophisticated algorithms for
using semantic annotations are feasible on the desktop than on the web.

We are currently working on integrating our metadata repository and tools into one
of the existing approaches to desktop search, Gnome Beagle [6], where we can re-use
their conventional infrastructure for full-text search on the desktop. Additionally, we
are extending our available context ontologies and metadata generation functionalities
beyond the current status as described in this paper, in conjunction with several user
surveys meant to capture both the requirements of a larger set of users, as well as to
measure the improvements provided by adding semantic annotations to desktop search.

References

1. Apple spotlight search. http://developer.apple.com/macosx/tiger/spotlight.html.
2. Stefan Decker and Martin Frank. The social semantic desktop. In DERI Technical Report

2004-05-02, 2004.
3. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. Personalization in distributed elearning envi-

ronments. In Proceedings of the 13th World Wide Web Conference, 2004.
4. Rose D. E. and Levinson D. Understanding user goals in web search. In Proc. of WWW

2004, May 17-22, 2004, New York, USA, 2004.
5. Benja Fallenstein. Fentwine: A navigational rdf browser and editor. In Proceedings of 1st

Workshop on Friend of a Friend, Social Networking and the Semantic Web, 2004.
6. Gnome beagle desktop search. http://www.gnome.org/projects/beagle/.
7. Google desktop search application. http://desktop.google.com/.
8. R. Guha, Rob McCool, and Eric Miller. Semantic search. In Proceedings of the twelfth

international conference on World Wide Web, pages 700–709. ACM Press, 2003.
9. Teevan J., Alvarado C., Ackerman M. S., and Karger D. R. The perfect search engine is not

enough: A study of orienteering behavior in directed search. In In Proc. of CHI, 2004.
10. Javamail api. http://java.sun.com/products/javamail/.
11. Jena api. http://jena.sourceforge.net/.
12. Jwnl api. http://sourceforge.net/projects/jwordnet.
13. G.A. Millet. Wordnet: An electronic lexical database. Communications of the ACM,

38(11):39–41, 1995.
14. Msn desktop search application. http://beta.toolbar.msn.com/.
15. Mor Naaman, Susumu Harada, Qian Ying Wang, Hector Garcia-Molina, and Andreas

Paepcke. Context data in geo-referenced digital photo collections. In Proceedings of the
12th annual ACM International Conference on Multimedia, 2004.

16. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford University, 1998.

17. Dennis Quan and David Karger. How to make a semantic web browser. In Proceedings of
the 13th International WWW Conference, 2004.



454 P.A. Chirita et al.

18. Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragao. A hybrid approach for
searching in the semantic web. In Proceedings of the 13th International World Wide Web
Conference, 2004.

19. Leopold Sauermann. Using semantic web technologies to build a semantic desktop. Master’s
thesis, TU Vienna, 2003.

20. Yimin Wu and Aidong Zhang. Category-based search using metadatabase in image retrieval.
In IEEE International Conference on Multimedia and Expo, 2002.

21. Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted metadata for image
search and browsing. In Proceedings of the conference on Human factors in computing
systems, 2003.


	Introduction
	Using Semantic Metadata in Search: A Classification
	Using Metadata to Enrich Search Results
	Using Metadata to Connect and Visualize Information
	Using Context Metadata to Find Information

	Integrating Context Metadata Within Desktop Search
	How Do Users Search?
	Current Approaches to Desktop Search
	Exploiting E-Mail Context
	Exploiting File Hierarchy Context
	Exploiting the Web Cache Context for Visualization
	Exploiting the Web Cache Context to Enrich Search Results

	Desktop Search Architecture and Prototype
	Generating Input Metadata
	Displaying and Enriching Search Results

	Conclusions and Further Work
	References

