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Abstract

With the advent of miniaturized sensing technology, which can be body-worn, it
is now possible to collect and store data on different aspects of human movement
under the conditions of free living. This technology has the potential to be used
in automated activity profiling systems which produce a continuous record of
activity patterns over extended periods of time. Such activity profiling systems
are dependent on classification algorithms which can effectively interpret body-
worn sensor data and identify different activities. This article reviews the
different techniques which have been used to classify normal activities and/or
identify falls from body-worn sensor data. The review is structured according
to the different analytical techniques and illustrates the variety of approaches
which have previously been applied in this field. Although significant progress
has been made in this important area, there is still significant scope for further
work, particularly in the application of advanced classification techniques to
problems involving many different activities.

Keywords: activity monitoring, classification, fall detection, machine
learning

1. Introduction

Physical activity has been defined as ‘any bodily movement produced by skeletal muscles
that results in energy expenditure above resting level’ (Caspersen et al 1985). Activity
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classification is a recent concept involving the use of technology to automatically recognize
different activities and, in some cases, to collate this information into a continuous record. The
need for automated activity classification systems has been identified in a number of different
fields, from health-related research to pervasive computing, as discussed below.

With the shift towards more sedentary lifestyles in both developed and developing nations,
there is a need for research investigating the links between common diseases and levels of
physical activity. Conditions such as cardiovascular disease (Barengo et al 2004), hypertension
(Blair et al 1984), diabetes mellitus (Manson et al 1991) and depression (Yancey et al 2004)
have all been linked to physical inactivity. Although some epidemiological studies have used
self-reporting (diaries) to quantify activity patterns, these methods have been shown to be
unreliable (Ainsworth et al 1993, Washburn and Montoye 1986). Instead, fully automated
activity classification offers a more objective approach to quantifying levels of physical
activity.

Activity classification systems can also be used to investigate the effectiveness of initiatives
aimed at increasing physical activity (van Sluijs et al 2007). A better understanding of why
people choose to exercise and how individuals can be motivated to increase their levels of
physical activity is crucial if the current health epidemic resulting from physical inactivity is to
be reversed (Dugdill et al 2009). Furthermore, activity classification systems could be used to
provide feedback to motivate individuals to adhere to daily or weekly physical activity targets
(Baker and Mutrie 2005).

Accurate information on daily activity patterns has the potential to improve the treatment
and differential diagnosis of neurological, degenerative and respiratory disorders. To date,
automated activity classification systems have been used in patients with Parkinson’s disease
(Dunnewold et al 1997, Moore et al 2008) and to validate the use of different motor
subtypes in delirium (Leonard et al 2007). They have also been shown to be valid in the
assessment of physical activity levels in patients with multiple sclerosis (Ng and Kent-Braun
1997), osteoarthritis (Brandes et al 2008) and chronic pulmonary disease (Pitta et al 2006).
Furthermore, automated activity classification systems have considerable potential to be used
to assess effectiveness of treatments. For example, in stroke, accelerometer-based systems
can be used to recognize real-world upper extremity movement which could then be used to
derive treatment outcomes (Uswatte et al 2000).

With an ageing population the incidence of falls is increasing. As many elderly persons
now live alone, falls can go undetected and injured individuals left unaided for lengthy periods
of time (Gurley et al 1996). Research has shown that the earlier a fall is reported the lower
the rate of morbidity and mortality (Gurley et al 1996, Wild et al 1981). Clearly, any system
which can accurately detect a fall and automatically call for help could be of major benefit.
A fall is not an intentional movement; however, within the context of activity classification,
it can be considered a specific form of activity. As such, the analytical techniques used in
activity classification are also applicable to fall detection systems.

In addition to health-related applications, activity-profiling systems could play a
fundamental role in ubiquitous computing scenarios (Coutaz et al 2005, Streitz and Nixon
2005). In such applications, information from a variety of sensors is used to determine the
context of a situation, so that an appropriate service can be provided. For example, a mobile
phone may detect when a person is driving or involved in vigorous physical activity and
automatically divert a call.

Body-worn sensors are well suited to collecting data on activity patterns over extended
periods of time. In contrast to other approaches, such as laboratory-based systems or video
analysis, they can be used under conditions of free living with minimal inconvenience to the
user. With recent developments in sensor miniaturization, it is now possible to collect data
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on many aspects of human motion, such as segmental acceleration, angular velocity and foot
pressure. However, for such data to be of value, effective algorithms are required which can
interpret the data in the context of a range of different activities. Body-worn sensor data can
be used for estimating functional parameters, such as gait speed and energy expenditure, and
for activity classification to produce a continuous activity record. The focus of this review
is activity classification. Other methods for interpreting body-worn sensor data are reviewed
elsewhere, for example Chen and Bassett (2005) and Kavanagh and Menz (2008).

The automated identification of activities using body-worn sensor data is a challenging
area of work. Apart from the obvious practical limitations on the number, location and
nature of sensors that people will tolerate, there are several issues that directly impact the
success of any given algorithm. Problems arise due to the variability in sensor characteristics
for the same activity across different subjects and for the same individual. Errors can also
arise due to variability in sensor signals caused by differences in sensor positioning and
from environmental factors such as sensor temperature sensitivity. Any successful algorithm
must overcome all these factors. The ideal activity classification scheme works off-the-shelf,
using data from a range of previous subjects to identify activities from an unseen individual.
However, sometimes this is not possible and an intra-subject classification scheme is currently
all that can be achieved for some problems. With this approach, example data are required for
a given individual before classification can be performed.

The aim of this review is to present a conceptual introduction to the different computational
techniques that have been applied to activity classification. For this reason, the review is
organized by analytical technique rather than by classification problem. The wide variation in
choice of activities between previously published studies means it is not possible to identify a
single, optimal solution for any given classification problem. Nevertheless, where appropriate
we have tried to provide the reader with a degree of guidance as to the advantages of each of
the classification techniques.

Most approaches to activity classification, using body-worn sensors, involve a multi-stage
process. Firstly, the sensor signal is divided into a number of small time segments, referred
to as windows, each of which is considered sequentially. For each window, one or more
features are derived to characterize the signal. These features are then used as input to a
classification algorithm which associates each window with an activity. This review article
has been structured according to this multi-stage process. After body-worn sensors are briefly
discussed, the different techniques used to define data windows are outlined in section 3. In
section 4, we present different approaches to generating features from sensor data, and in
section 5, the classification techniques are described.

2. Body-worn sensors

2.1. Inertial sensors

The vast majority of activity classification systems have used inertial sensors, notably
accelerometers and rate gyros. Most accelerometers respond to gravity as well as to their
true acceleration and, therefore, if the acceleration of the body segment is small with respect
to g (9.81 m s−2), as is the case when measuring body sway or static posture, these devices
can be used to estimate the inclination of a body segment from the vertical. When the
acceleration component becomes large, more sophisticated approaches to separating the
orientation component (g) from body segment acceleration are necessary. For a detailed
description of accelerometry, the reader is directed to a comprehensive review by Mathie et al
(2004b).
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Rate gyro-based measurements of angular velocity are subject to significant calibration
errors, electronic noise and temperature effects (Woodman 2007). This means that if the
output is simply integrated to estimate a change in orientation, then the gyro error will be
integrated leading to a continuously increasing error. Therefore, integration of rate gyro
outputs to estimate orientation changes can only be done over short time periods. A number of
approaches have been proposed to overcome this problem including the use of a state estimator
with input from a tri-axial gyroscope and a tri-axial accelerometer (Luinge and Veltink 2005)
and the use of wavelet analysis (section 4.4) to remove both drift and high frequency noise
from gyroscope signals (Najafi et al 2002) before integrating to obtain orientation.

Inertial sensors can be complemented by a magnetic compass or magnetometer (Parkka
et al 2006), which can enable more accurate orientation measurement about the vertical axis
(Sabatini 2006) and by GPS (Murakami and Makikawa 1997) to enable location tracking.

2.2. Other sensors

Although inertial sensors have been used in the vast majority of activity classification studies,
other sensors which may be considered include devices for measuring segment angles, such as
inclinometers (Dai et al 1996) and goniometers (Kostov et al 1995); skin temperature (Krause
et al 2003); galvanic skin resistance (Dolgov and Zane 2006); heart rate (Bussmann et al
1998b); humidity (Lester et al 2006) or respiratory rate (Parkka et al 2006).

Recently the concept of ‘smart textiles’ has been proposed, in which miniature sensors are
distributed and integrated into clothing (Wijesiriwardana et al 2003). The strict limitation on
the size of such integrated sensors means it may not be currently possible to use accelerometers
or rate gyroscopes. As an alternative, smaller binary sensors, such as tilt switches, have been
proposed (van Laerhoven and Gellersen 2004, van Laerhoven et al 2006).

Simple foot pressure switches can be used to identify gait events such as heel strike and
toe off (Mansfield and Lyons 2003). However, as they do not give additional information
on limb movement, it is not possible to classify different activities from these signals alone.
More detailed information, such as net ground reaction force, can be obtained from pressure
sensitive insoles which can assess the pressure distribution across the planter aspect of the foot
(Veltink et al 2005, Zhang et al 2005).

3. Windowing techniques

Most activity classification methods use windowing techniques to divide the sensor signal
into smaller time segments (windows). Activity classification algorithms are then applied
separately to each window. In real-time applications, windows are defined concurrently with
data collection and a continuous real-time activity profile is produced. When the sensor data
are processed off-line, the windows are defined first and classification algorithms applied
sequentially to each window. This information is then combined to give an activity profile
along the entire signal.

Three different windowing techniques have been used in activity monitoring, sliding
windows, event-defined windows and activity-defined windows. With the sliding window
method, the signal is divided into windows of fixed length with no inter-window gaps
(figure 1(a)). A range of window sizes have been used in previous studies from 0.25 s
(Huynh and Schiele 2005) to 6.7 s (Bao and Intille 2004), with some studies including a
degree of overlap between adjacent windows (Bao and Intille 2004, Preece et al 2008b). The
sliding window approach does not require pre-processing of the sensor signal and is therefore
ideally suited to real-time applications. Due to its implementational simplicity, most activity
classification studies have employed this approach.
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In order to use event-defined windows, pre-processing is required to locate specific events,
such as heel strike or toe-off. These events are then used to define successive windows
(figure 1(b)). Given that such events may not be uniformly spaced in time, the size of these
windows is not fixed. A number of different approaches have been proposed for identifying
heel strike and toe-off from body-worn sensor signals. For example, it is possible to define
search windows from either a low pass filtered version of the original signal (Aminian et al
1999a, Selles et al 2005) or segmental angles (Jasiewicz et al 2006), within which maxima
or minima correspond to gait events. Another approach is to identify the times at which the
anterio-posterior component of the trunk acceleration changes sign. Heel strike is then located
at a given time offset from these points (Mansfield and Lyons 2003, Zijlstra 2004, Zijlstra and
Hof 2003).

The use of activity-defined windows is dependent on determining the times at which the
activity changes. These points are then used to define windows of sensor data, each of which
correspond to a different activity (figure 1(c)). A number of methods have been proposed
to identify activity-transition points prior to explicitly identifying the specific activities. For
example, wavelet analysis can be used to identify localized changes in frequency characteristics
(Nyan et al 2006a, Sekine et al 2000a) which correspond to a change between activities. Once
defined, classification is performed for each window, sometimes using only a subset of the
data contained within the window (Nyan et al 2006a).

4. Feature generation

Previous activity classification studies have used a wide range of approaches to generate
features which characterize windows of body-fixed sensor data. These features are then used
as inputs to classification schemes (section 5). In this section, the different feature generation
techniques are presented within a number of different sub-categories. Firstly, heuristic features,
for both the recognition of everyday activities and falls, are discussed. In this review, we use
the term heuristic to refer to features which have been derived from a fundamental and often
intuitive understanding of how a specific movement or posture will produce a characteristic
body-worn sensor signal. In sections 4.2–4.4, time-domain, frequency-domain and time–
frequency (wavelet) features are described. In contrast to the heuristic approach, these
features are not typically related to specific aspects of individual movements or postures.
Instead they simply represent different ways of characterizing the information within the time-
varying signal. For a given classification problem it is often difficult to identify optimal time-
and frequency-domain features. Therefore, methods for selecting optimal features from a
larger set and methods for reducing dimensionality of features can be used for pre-processing
before advanced classification algorithms are applied. These two techniques are described in
sections 4.5 and 4.6.

4.1. Heuristic features

The signal measured by an accelerometer comprises two components. The first ‘static
acceleration’ is due to the effect of gravity and gives a measure of the inclination of the
sensor to the vertical. The second ‘dynamic acceleration’ results from the acceleration of
the body segment to which the unit is attached. In the absence of motion, the measured
acceleration (in units of g) is equal to the cosine of the sensor orientation angle relative to the
vertical. This angle is often used as an input to classification algorithms, particularly those
designed to differentiate between static postures (Aminian et al 1999b, Maxwell 2002) and
identify postural transitions (Najafi et al 2003).



R6 Topical Review

Window 1 Window 2 Window 3 Window 4

time

Fixed

window size

(c)

Window 1

time

Toe Of f

Heel Strike

Window 2 Window 3 Window 4

Window 1

time

Activity transition 

point

Window 2 Window 3

(b)

(a)

Figure 1. Defining (a) sliding windows, (b) event-based windows and (c) activity-defined windows
along a continuous body-worn sensor signal.
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Change in segmental orientation can be obtained by integrating a gyroscope signal,
provided some method is used to eliminate drift. This feature can then be used to identify
different postures and postural transitions (Najafi et al 2002, 2003). A gyroscope utilizes the
Coriolis force to quantify segmental angular velocity. Activities which exhibit unique patterns
of angular velocity can thus be identified from a gyroscope signal with a simple classification
algorithm, such as a threshold-based classifier. This idea was exploited by Coley et al (2005)
who demonstrated that the peak shank angular velocity in the anterior–posterior direction
at midstance was positive during stair ascent but negative during level walking and stair
descent.

All movement patterns result in time varying segmental accelerations. A number of
different methods have been used to derive features which quantify the amplitude of these
accelerations. Before these features are derived, the signal is first high pass filtered (typically
0.2–0.5 Hz) to remove any baseline offset. The range of different features includes the signal
magnitude area (SMA—the area under the high pass filtered acceleration curve) (Mathie
et al 2003, Preece et al 2008c), peak-to-peak acceleration (Makikawa and Iizumi 1995), mean
rectified value (Bussmann et al 1998a, 1998b) and root mean square (Veltink et al 1996). This
type of feature is often used to differentiate between static and dynamic activity (Mathie et al
2003).

As well as being used as input to classification algorithms, the SMA can be used to
quantify the level of intensity of physical activity. This measure is normally expressed in units
known as activity counts. It is now well established that, for a given activity, a linear model
can be used to relate metabolic energy expenditure to the number of activity counts (Bouten
et al 1997, Hendelman et al 2000, Terrier et al 2001). For an excellent review of this area the
reader is directed to Chen and Bassett (2005).

The development of robust algorithms which can accurately differentiate between
everyday activities and falls using body-worn sensor data is a rapidly growing area of study.
The vast majority of previously developed algorithms have utilized heuristic features exploiting
one or more intrinsic characteristics of a fall, such as velocity (Bourke et al 2008), acceleration
(Bourke et al 2007), orientation (Hwang et al 2004) or even sound (Doukas and Maglogiannis
2008). During a fall, there is an initial period of free fall, during which velocity increases
rapidly. This is then followed by a rapid deceleration, as contact is made with the ground. In
addition, there is also a measurable change in the orientation of a number of body segments.
Using accelerometers or gyroscopes mounted at the wrist (Degen et al 2003), waist (Karantonis
et al 2006), chest (Bourke and Lyons 2008, Bourke et al 2007) or head (Lindemann et al 2005),
it is possible to characterize these different events. Typically, a threshold-based classifier
(section 5.1) is then applied to differentiate between falls and everyday activities.

4.2. Time-domain features

Time-domain features are derived directly from a window of sensor data and are typically
statistical measures. Example time-domain features used in activity monitoring include the
mean, median, variance, skewness, kurtosis (Baek et al 2004, Herren et al 1999) and inter-
quartile range (Maurer et al 2006). Other studies have used high and low pass filters to
separate accelerometer signals on a frequency basis. Separate means for the low frequency
and rectified high frequency components are then used as inputs to the classification schemes
(Fahrenberg et al 1997, Foerster and Fahrenberg 2000, Lee et al 2003).

As an alternative to the above, Veltink et al (1996) developed a classification scheme based
on measures of signal morphology. With this approach, a cross-correlation coefficient was used
to quantify the similarity of an event-defined window of data to a previously obtained template
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signal for each activity. In general, it has been suggested that measures of correlation between
different accelerometer axes may improve activity recognition (Aminian et al 1995, Herren
et al 1999). Following this idea, Bao and Intille (2004) used cross-correlation coefficients
to quantify the similarity between acceleration signals from different axes on the same body
segment and across different segments.

4.3. Frequency-domain features

In order to derive frequency-domain features, the window of sensor data must first be
transformed into the frequency domain, normally using a fast Fourier transform (FFT). The
output of a FFT typically gives a set of basis coefficients which represent the amplitudes of
the frequency components of the signal and the distribution of the signal energy. Different
methods can then be used to characterize the spectral distribution from these coefficients. For
example, median frequency (Foerster and Fahrenberg 2000) or a subset of the different FFT
coefficients can be used (Preece et al 2008a, 2008b). Alternatively, information from a number
of coefficients can be combined to give a single feature. Examples include spectral energy,
which is the sum of the squared FFT coefficients (Huynh and Schiele 2005, Sugimoto et al
1997), and frequency-domain entropy, which is the normalized information entropy of the
FFT components (Bao and Intille 2004). This latter feature allows for differentiation between
activities which have simple acceleration patterns and those with more complex patterns. For
example, as cycling involves a uniform movement of the legs, a frequency-domain analysis
of thigh acceleration shows a single dominant frequency. In contrast, running may result in
more complex acceleration pattern and often displays many major FFT components. This
difference leads to a much higher frequency-domain entropy for running in comparison to
cycling (Bao and Intille, 2004).

4.4. Wavelet analysis (time–frequency features)

Unlike Fourier analysis which can only be used to extract information on the frequency content
of a signal, wavelet analysis can be used to investigate both time and frequency characteristics.
Like Fourier analysis, wavelet analysis can be formulated via a continuous or discrete wavelet
transform. Previous work on activity monitoring has employed the discrete wavelet transform
(DWT), therefore our discussion will focus on this method. The discrete wavelet transform
is normally implemented using the filter bank interpretation. In this approach, the original
signal is successively decomposed into separate low and high pass filtered signals, referred to
as approximation and detail coefficients respectively.

If we consider the original signal (S) with maximum frequency fmax, then the first
approximation coefficient (cA1) is obtained by passing the original signal through a low
pass filter with passband [0, fmax/2]. Similarly, to obtain the first detail coefficient (cD1), the
original signal is filtered using a high pass filter with passband [fmax/2, fmax]. The wavelet
coefficients cA1 and cD1 represent the first level of wavelet decomposition. Subsequent levels
of decomposition are obtained by high and low pass filtering the approximation coefficient
from the previous level. This process is illustrated schematically in figure 2 and on an example
signal in figure 3. At each level of wavelet decomposition, the filtered signal is downsampled by
a factor of 2 in order to produce the approximation and detail coefficients. Thus, if the original
signal contains N samples, then the first approximation and detail coefficients will be of length
N/2. Similarly, the length of the approximation and detail coefficients at the second level of
decomposition will be N/4. This process of subsampling reduces the number of time samples
and effectively decreases time resolution. This successive halving of the frequency band
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Figure 2. Wavelet decomposition tree. S refers to the original signal and cA1 and cD1 to the
approximation and detail coefficients at the first level of decomposition. These two coefficients
are obtained by low pass and high pass filtering of the original signal respectively. Subsequent
levels of wavelet decomposition are obtained by filtering the approximation coefficient from the
previous level.

0

-2
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cA1
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Figure 3. An example of the accelerometer signal along with the approximation and detail
coefficients at the first and second levels of decomposition. It can be seen that the high pass
filtering associated with the detail coefficient results in the removal of the non-zero offset present
in the original signal.

with each level of wavelet decomposition increases frequency resolution. This compromise
between time and frequency resolution allows the wavelet transform to provide not only good
frequency resolution at low frequencies (higher levels of decomposition) but also better time
resolution at higher frequencies (lower levels of decomposition).
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Table 1. Different applications of wavelet analysis in activity classification.

Signal enhancement Najafi et al (2002, 2003),
Paraschiv-Ionescu et al (2004)

Identification of transition points Nyan et al (2006a), Sekine et al (2000a)
Generation of time–frequency features Nyan et al (2006a), Sekine et al (2000a,

2000b, 2002), Tamura et al (1997), Wang
et al (2007), Preece et al (2008b)

Wavelet analysis allows a body-worn sensor signal to be decomposed into a number of
individual coefficients, each of which contains data on a specific frequency band. As these
coefficients characterize the original signal along its entire length, they contain information
on temporal changes in frequency content. Thus, unlike Fourier analysis, wavelet techniques
can be used to analyse and characterize non-stationary signals (those in which frequency
context changes over time). There are a number of different types of DWT, such as the Haar,
Daubachies and Coiflets transform, the difference between these different transforms being
in the filters used for decomposition. For a more complete description of the fundamental
principles underlying wavelets, the reader is directed to Rioul and Vetterli (1991), Walker
(1999) and Graps (1995).

Wavelet analysis has been applied to three different types of problem within activity
monitoring. These are signal enhancement, identification of activity transition points and
generation of time–frequency features subsequently used for classification (table 1). Each
of these applications is now discussed in detail. For signal enhancement, multi-resolution
analysis is used to reconstruct the original signal from the decomposed approximation and
detail signals. By performing this reconstruction and omitting/modifying specific detail
and approximation signals, it is possible to enhance and focus on the frequency band of
interest. In activity monitoring applications, this has been used to remove both high frequency
noise and low frequency offsets, such as drift, from the original signal (Najafi et al 2002).
Specific parameters are then derived which characterize the reconstructed signal. This method
has primarily been used in threshold-based classification schemes (section 5.1) which use
heuristic features to characterize some aspect of movement or posture (Najafi et al 2003,
Paraschiv-Ionescu et al 2004).

Wavelet analysis can be used to identify the points in a body-worn sensor signal at which
there is a change in the frequency content. Recent work by Sekine et al (2000a) and Nyan
et al (2006a) demonstrated that, by identifying such points, it was possible to determine the
transition times between three different types of gait. Sekine et al (2000a) used wavelet
packet analysis to decompose the signal and then reconstructed a low frequency version of
the original signal. With wavelet packet analysis, the detail coefficients (figure 2) are also
split into approximation and detail signals (Mallat 1999). Manually set thresholds were then
applied to the original signal to identify changes in frequency content and thus walking pattern.
Rather than reconstructing the original signal, Nyan et al (2006a) determined transitions from
a correlation signal. This was obtained by multiplying the wavelet approximation signals at the
two highest levels of decomposition. The technique of multiplying wavelet coefficients, known
as direct spatial correlation, can be used to sharpen major signal edges while suppressing
noise (Xu et al 1994). By comparing a rescaled version of the correlation signal with the
approximation signal at the largest scale, they were able to determine the points at which
the walking pattern changed. Both Sekine et al (2000a) and Nyan et al (2006a) specified
activity-defined windows from the previously determined transition points. Classification was
then performed separately for each window.

Several studies have compared time–frequency features between different activities
(Sekine et al 2000a, 2000b, Tamura et al 1997). These parameters are typically obtained
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by calculating one or more statistical measures from the approximation or detail coefficients
at specific decomposition levels. For example, Tamura et al (1997) calculated the sum
of the squares of the approximation coefficients at two different decomposition levels for
accelerometer signals collected during level walking and ascending/descending stairs. Using
the same activity set, Sekine et al (2002) derived a fractal dimension parameter, describing
variance progression, from the detail coefficients of a seven-level wavelet decomposition. In
both these studies, the wavelet parameters were shown to be significantly different between
the three activities.

A number of studies have demonstrated the possibility of using wavelet analysis in activity
classification. For example, Sekine et al (2000a, 2000b) and Nyan et al (2006a) used wavelet
parameters based on the sum of the squares or RMS of specific detail coefficients as inputs to
threshold-based classification algorithms. In a similar spirit Wang et al (2007) derived wavelet
parameters using simple statistical measures, such as SD and RMS, of specific approximation
and detail coefficients which were subsequently used as input to an artificial neural network.
In a recent paper by Preece et al (2008b), the performance of a number of wavelet-based sets
was compared to previously used time- and frequency-domain features for the classification
of eight different activities. In general, the wavelet features tended to be outperformed by
the time- and frequency-domain features. This result suggests that, although wavelet analysis
can be used to analyse non-stationary signals, it may not be the most effective method for
characterizing short windows of sensor data over which there is minimal variation in frequency
content.

4.5. Feature selection methods

Different individuals may perform the same movement in a variety of different ways. This
can lead to substantial variability in the features derived from body-fixed sensor data (Heinz
et al 2003). Hence, for effective classification, it is important to identify a set of features
which have high discriminative ability (Kiani et al 1997). A good feature set should show
little variation between repetitions of the same movements and across different subjects but
should vary considerably between different activities. Furthermore, it is important to minimize
any redundancy between features as this can result in unnecessarily increased computational
demands and, also, reduced accuracy with some classification methods (Duda et al 2001,
Theodoridis and Koutroumbas 2006).

A number of different techniques, of varying complexity, have been used to select
appropriate features for activity classification. For example, Parkka et al (2006) used simple
visual and statistical analysis to assess the distribution of a given feature for different activities.
Features which changed markedly between activities and showed little overlap were selected
for subsequent analysis. In their study of six daily activities, Maurer et al (2006) used
correlation-based feature selection. With this approach optimal features are defined as those
which exhibit high within-class but low between-class correlations. Another method for feature
selection is a forward–backward search in which features are sequentially added and removed
from a larger set. Optimal features are identified depending on the resulting classification
accuracies for each feature subset. This approach was used by Pirttikangas et al (2006) to
identify the best sensors/features for the classification of 17 different activities

Huynh and Schiele (2005) compared a range of different acceleration-derived features,
including mean, variance, spectral energy and FFT coefficients. The acquired data patterns
were subjected to k-means clustering in the feature space. Clustering is a method to locate
concentrations of data points well separated from each other, and to extract the cluster centres
that represent those patterns. Huynh and Schiele (2005) measured the cluster homogeneity
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to assess whether individual activities tended to cluster together. In order to automatically
recognize activities, they labelled the centroid of each cluster with the dominating activity,
and they used a nearest neighbour rule to assign a class to a new pattern (section 5.4).
Their analysis showed that, in general, FFT coefficients were best for differentiating between
dynamic activities, but they were unable to identify single FFT coefficients which performed
best for all activities.

4.6. Dimensionality reduction methods

As an alternative to selecting a subset of the existing features, it is often possible to combine
the original features to define a new set of variables. There are two benefits associated with
such a procedure. Firstly, the often unnecessarily large numbers of features, resulting from
many sensors, can be reduced. Secondly, the new reduced set of variables frequently has
better discriminative ability for classification problems. One of the most common techniques
for reduction is principal component analysis (PCA) (Chau 2001a, Duda et al 2001, Webb
2002). PCA locates the directions of maximal variance and the data are projected onto
those directions. This achieves decorrelation of the resulting variables and removal of likely
statistical interactions. Additionally, all the directions of smaller variance can be ignored,
so a dramatic reduction is often achieved, without sacrificing useful information content.
Independent component analysis (ICA) (Duda et al 2001, Theodoridis and Koutroumbas
2006) extends PCA to non-Gaussian data, where the sought directions produce variables that
are statistically independent from each other. The variables are still reduced as in PCA, but
a general linear transformation, as opposed to the rotation of PCA, is performed and often
enhances the classification ability of many algorithms.

Previous authors have applied dimensionality reduction methods to different aspects of
activity classification problems. For example, Mantyjarvi et al (2001) preprocessed data from
two tri-axial accelerometers using PCA and ICA, and used this as input to a wavelet-based
feature generation technique. For a five-activity problem, high levels of classification accuracy
(83–90%) were obtained using a neural network classifier. Following similar principles,
Krause et al (2003) used PCA to reduce the high dimensionality of a 128 FFT feature set
(section 5.11). Using a slightly different approach Huynh and Schiele (2006b) developed
an algorithm based on multiple eigenspaces. This technique extends PCA in the sense that
it uses multiple spaces spanned by subsets of the PCA eigenvectors. Using this method,
Huynh and Schiele (2006b) were able to decipher structure in accelerometer data without any
user annotation or information on the activities involved. In subsequent work, Huynh and
Schiele (2006a) applied this approach to data collected by Kern et al (2003) using tri-axial
accelerometers distributed across the body. The multiple eigenspaces algorithm provided a
low-dimensional description of original sensor data which was then used as input to an SVM
(section 5.6) classification algorithm.

5. Classification schemes

Once features have been derived to characterize a window of sensor data, they are used as
input to a classification algorithm. The degree of complexity of these different classification
schemes varies from simple threshold-based schemes to more advanced algorithms, such
as artificial neural networks or hidden Markov models. With these advanced classification
algorithms, appropriately implemented software learns to recognize and associate patterns in
the input features with each activity. As such, this field of study is often referred to as machine
learning. Machine learning techniques are generally considered to fall within one of two
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categories, either supervised or unsupervised (Duda et al 2001, Theodoridis and Koutroumbas
2006, Webb 2002). With supervised learning, a significant amount of fully labelled activity
data is required in order to ‘train’ the classification algorithm. Once the training phase is
complete, the classifier is able to assign an activity label to an unknown window of sensor
data. With unsupervised approaches no activity labels are required for the training dataset.
Instead, all the sensor data are passed to the algorithm which automatically identifies a number
of states or data clusters, each of which may correspond to a particular activity.

Within the field of activity classification, the classical cross-validation (CV) (Duda et al
2001) can be adapted to evaluate the accuracy of the system in two ways: between-subject
and within-subject evaluation. In the former case, the classifier is first trained with data from
all subjects except a few and then tested with data from the excluded subjects. The accuracy is
then calculated as the proportion of correctly classified windows of data across all activities.
The process of excluding some subjects and performing a train–test cycle is repeated until all
subjects have participated in the testing datasets. The finally overall accuracy is then calculated
as the average accuracy across all train–test cycles. When one subject is used for the testing,
for a number of cycles equal to the number of subjects, this is called leave-one-subject-out CV.
For within-subject evaluation, training is performed using a portion of windows for a specific
subject, while testing takes place with the remaining samples of the same subject. This process
is then repeated, each time using a different portion of the subject samples for testing. The
overall accuracy is determined from the average of all the cycles for all available subjects.

Although an overall accuracy is often provided, more detailed views of the classifier’s
performance can be given through sensitivity and specificity. These are calculated separately
for each activity by determining whether each data window in the test dataset has been
identified as the correct activity or not. Sensitivity represents the ability of the classifier to
select instances of a certain activity class, whereas specificity represents the true negative
rates of an activity. These measures are based on the analysis of the confusion matrix, which
summarizes the predicted and actual instances for each class.

This section begins with a brief discussion of threshold-based classification. Following
this, in sections 5.2–5.10, the different supervised learning approaches are described. There
has only been a very small amount of work applying unsupervised techniques to activity
classification, therefore this work is reviewed in a single section, 5.11. Finally, in section 5.12,
we present an overview of the different classification techniques. Table 2 lists the different
classification methods along with corresponding published studies.

5.1. Threshold-based classification

With threshold-based classification, a derived feature is simply compared to a predetermined
threshold to determine whether a particular activity is being performed. This approach has
been used successfully to differentiate between static postures, such as standing, sitting and
lying, using angles derived from accelerometers placed on combinations of the pelvis/trunk
(Boyle et al 2006, Culhane et al 2004, Uiterwaal et al 1998), lower limb segments (Busser
et al 1997, Bussmann et al 1998c, Culhane et al 2004, Makikawa and Iizumi 1995) and
chest (Aminian et al 1999b, Najafi et al 2003). Threshold-based classification has also been
used successfully to identify postural transitions using data on the change in segmental angles
derived from either accelerometers (Najafi et al 2003) or gyroscopes (Najafi et al 2002, 2003).
These algorithms are typically sensitive to the exact choice of threshold angle (Najafi et al
2003). Therefore, as an alternative, Najafi et al (2003) proposed a simple kinematic model in
which vertical displacement of the chest sensor was estimated from double integration of the
acceleration signal.
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Table 2. Different machine learning techniques used in activity classification.

Threshold-based classificationa Culhane et al (2004), Uiterwaal et al (1998), Boyle et al (2006), Bussman
et al (1998c), Makikawa and Iizumi (1995), Busser et al (1997), Najafi et al
(2002, 2003), Aminian et al (1999b), Coley et al (2005), Sekine
et al (2000a, 2000b), Nyan et al (2006a)

Hierarchical methods Fahrenberg et al (1996), Fahrenberg et al (1997), Lee et al (2003), Mathie
et al (2004a), Karantonis et al (2006), Parkka et al (2006), Ermes et al (2008)

Decision trees Bao and Intille (2004), Maurer et al (2006), Parkka et al (2006), Ravi et al
(2005), Ermes et al (2008)

k-nearest neighbour Foerster et al (1999), Foerster and Fahrenberg (2000), Bao and Intille (2004),
Maurer et al (2006), Bussmann et al (2001), Huynh and Schiele (2005), Preece
et al (2008b), Zhang et al (2006c), Zhang et al (2006a)

Artificial neural networks Zhang et al (2005), Parkka et al (2006), Pirttikangas et al (2006), Kiani et al
(1998), van Laerhoven and Gellersen (2004), Mantyjarvi et al (2001), Ermes
et al (2008), Baek et al (2004), Wang et al (2007)

Support vector machines Doukas and Maglogiannis (2008), Krause et al (2005), Ravi et al (2005),
Huynh and Schiele (2006a), Zhang et al (2006b), Zhang et al (2006a)

Naive Bayes and Gaussian mixture
models

Bao and Intille (2004), Maurer et al (2006), Kern et al (2003), Ravi et al
(2005), Huynh and Schiele (2006a), Wu et al (2007), Allen et al (2006)

Fuzzy logic Salarian et al (2007), Lee and Mase (2002), Boissy et al (2007)
Markov models Pober et al (2006), Krause et al (2003), Krause et al (2005), Lester et al

(2005), (2006), Lukowicz et al (2004), Ward et al (2006), Van Laerhoven and
Cakmakci (2000)

Combining classifiers Lester et al (2005), (2006), Ravi et al (2005), van Laerhoven and Gellersen
(2004)

Unsupervised learning Nguyen et al (2007), Van Laerhoven and Cakmakci (2000), Krause et al (2003)

a See table 3 for studies using threshold-based classification for fall detection.

It is common to differentiate between static postures and dynamic activity by using
a feature which quantifies variation in the acceleration signal (section 4.1) (Mathie et al
2003, Maxwell 2002, Veltink et al 1996). Although advanced classification schemes are
normally required to recognize different dynamic activities, a small number of researchers
have successfully applied threshold-based algorithms to this problem. For example, Coley
et al (2005) were able to differentiate stair ascent from level walking or stair descent using
an algorithm based on the peak angular velocity of the shank. This feature was calculated
after a wavelet-based algorithm had been used to identify stance phase (Aminian et al 2002).
Similarly, using wavelet-based features (section 4.4), both Sekine et al (2000a, 2000b) and
Nyan et al (2006a) were able to differentiate between three different gaits.

Threshold-based classification has been successfully applied to the detection of falls. A
fall can be considered an extreme instance of a postural transition. As explained in section 4.1,
a range of different characteristics have been used to develop heuristic features which are then
used in threshold-based classification schemes. This range of different characteristics has
been summarized in table 3.

Both Nyan et al (2006b) and Bourke and Lyons (2008) studied angular velocity and angular
acceleration characteristics during a fall. They found significantly larger values during a fall
than in everyday activities, demonstrating the potential for accurate fall identification. Wu
(2000) studied the horizontal and vertical velocity characteristics of falls using an optical
motion capture system and showed that trunk vertical velocities associated with falls were two
to three times those of everyday activities. More recently, Bourke et al (2008) used an inertial
measurement unit (accelerometer and gyroscope) to measure vertical velocity and then applied
a threshold of 1.3 ms−1 to identify falls with 100% accuracy. Other researchers have obtained
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Table 3. Different fall characteristics used in threshold-based fall detection.

Angular velocity during free fall Nyan et al (2006b), Bourke and Lyons (2008)
Angular acceleration during free fall Bourke and Lyons (2008)
Linear velocity during free fall Wu (2000), Bourke et al (2008), Degen et al (2003), Lindemann et al (2005)
Impact deceleration Hwang et al (2004), Lindemann et al (2005), Bourke et al (2007), Chen et al

(2005), Karantonis et al (2006), Degen et al (2003), Doughty et al (2000)
Linear acceleration during free fall Bourke et al (2007)
Change in orientation Hwang et al (2004), Bourke and Lyons (2008), Chen et al (2005)

an estimate of linear velocity by directly integrating the signal from an accelerometer (Degen
et al 2003, Lindemann et al 2005) and again applied simple thresholds to identify falls.

The most common characteristic used to identify the presence of a fall is the rapid
deceleration which occurs as the faller contacts the ground (Chen et al 2005). Different
thresholds have been reported for different accelerometer placements (Doughty et al 2000).
Thresholds of 6 g, 3.5 g and 2.7 g have been reported for accelerometers mounted at the ear,
trunk and thigh, respectively (Lindemann et al 2005, Bourke et al 2007). Bourke et al (2007)
further compared the accuracy of fall detection using two threshold rules, one applied to the
impact deceleration and the other to the acceleration during free fall. Their results showed the
impact deceleration to be a more effective means of identifying falls from everyday activities,
with 100% specificity compared to 91% specificity for free fall acceleration.

A number of studies have demonstrated improved fall detection accuracy when a number
of different threshold rules are combined together. For example, Lindemann et al (2005)
used a tri-axial accelerometer located in the ear and combined two acceleration-based
and one velocity-based threshold. In a similar spirit Bourke and Lyons (2008) combined
three threshold-based rules using angular velocity, angular acceleration and orientation and
demonstrated that falls could be differentiated from everyday activities with 100% accuracy.
Other studies have combined acceleration thresholds with a measure of change in orientation
(Chen et al 2005, Hwang et al 2004), again reporting high levels of accuracy. After detection
using threshold-based methods, the occurrence of a fall is often confirmed by checking for a
period of inactivity (Doughty et al 2000). For example Hwang et al (2004) suggested a period
of 10 s and Karantonis et al (2006) a period of 60 s.

5.2. Hierarchical methods

To implement a hierarchical classification scheme, a binary decision structure is constructed
which consists of a number of consecutive nodes. At each node, a binary decision is made
depending on the input features. This decision results in either a definite classification being
made or in a transition to another node, where further differentiation between activities is
performed. The exact nature and parameters of the decision made at each node is obtained
via manual inspection and analysis of the training data, which means that this approach is
very time consuming. An example decision structure is illustrated in figure 4. Although this
example uses only simple threshold-based rules, it is possible to base the node decision on
any mathematical operation.

Fahrenberg et al (1996, 1997) classified four activities using a hierarchical approach.
Their classification scheme used threshold rules which were applied to time-domain features
obtained from accelerometers mounted on the chest, wrist, shank and thigh. For a within-
subject design, they were able to identify every activity with almost 100% accuracy (Fahrenberg
et al 1997). Although similarly high accuracy (97%) was obtained for the between-subject
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Figure 4. An example hierarchical decision structure. Classification is based on simple threshold
rules for each of the four input parameters. These are (1) waist HP mean, (2) wrist HP mean,
(3) thigh HP mean AC and (4) thigh median frequency (HP refers to a high pass filtered signal).

design, they were unable to differentiate between level walking and stair walking. A similar
approach was used by Lee et al (2003) to differentiate between five static and four dynamic
activities using a single waist-mounted accelerometer.

More recently, Parkka et al (2006) applied a threshold-based hierarchical classification
scheme to differentiate between eight different dynamic activities (table 4). In a follow-
on study, Ermes et al (2008) investigated not only the same set of activities but also
included football and compared the performance of the hierarchical approach to other standard
classification schemes (table 4). They also developed a hybrid classification scheme in which
each node of the hierarchical structure consisted of an artificial neural network. When all
data were used for evaluation purposes, this hybrid model was shown to outperform both an
artificial neural network and the hierarchical classifier.

The hierarchical approach was also used by Mathie et al (2004a) in a study using a
single tri-axial accelerometer. In addition to threshold-based rules, they used probabilistic
methods and signal morphology techniques to make the classification decision at each node.
They demonstrated that this approach could be used to differentiate between a large range
of postures, activities and postural transitions across 26 healthy subjects. Furthermore, by
including an additional node which identified abnormal peaks in the accelerometer signal,
they could identify possible falls. A simplified and computationally efficient version of this
algorithm was later developed by Karantonis et al (2006) which used only simple threshold-
based decisions at each node and demonstrated the potential of their hierarchical approach for
real-time fall detection.

5.3. Decision trees

The decision tree approach is similar to hierarchical classification. However, rather than
the decision structure being constructed manually by the user, rigorous algorithms exist to
automate the process and create a compact set of rules (Duda et al 2001, Webb 2002). These
algorithms work by examining the discriminatory ability of the features one at a time to create
a set of rules which ultimately leads to a complete classification system. For further details of
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Table 4. Studies comparing different classifiers.

Publication (number
of subjects)

Activities (number of
activities)

Accelerometer
placements

Inter-subject classification accuracy

Bao and Intille
(2004) (20 subjects)

Walking, sitting, cycling, running,
vacuuming, folding laundry and
more (20)

Shank, thigh,
upper arm,
wrist and hip

Decision tree (84%) kNN (83%)
Naive Bayes (52%)

Parkka et al (2006)
(16 subjects)

Lying, sitting, walking, Nordic
walking, rowing, cycling and more
(8)

Chest and
wrist

Decision tree (86%) Hierarchical
(82%) Neural network (82%)

Maurer et al (2006)
(6 subjects)

Sitting, standing, walking,
ascending/descending stairs and
running (6)

Wrist Decision tree (87%) Naive Bayesa

(<87%) kNNa (<87%)

Pirttikangas et al
(2006) (13 subjects)

Typing, watching TV, drinking,
walking upstairs, cycling and more
(17)

Both wrists,
thigh and
necklace

Neural network (93%) kNN (90%)

Ermes et al (2008)
(12 subjects)

Lying, sitting, walking, Nordic
walking, rowing, playing football
and more (9)

Hip and wrist Neural network (87%) Hierarchical
(83%) Decision tree (60%)

Ravi et al (2005)
(2 subjects)

Standing, running, sit-ups,
vacuuming, brushing teeth,
walking and more (8)

Waist Naive Bayes (64%) SVM (63%)
Decision trees (57%) kNN (50%)

Lester et al (2005)
(2 subjects)

Walking, driving, jogging,
ascending/descending in an
escalator and more (10)

Shoulder Naive Bayes (67%) HMM (47%)
HMM and binary classifiers (95%)

Allen et al (2006)
(6 subjects)

Sitting, standing, lying, walking
and four postural transitions (8)

Waist Gaussian mixture modelb (91%)
Hierarchical (71%)

a No data were presented on classification accuracy.
b Some subject-specific training was used for this classifier.

the different types of decision tree algorithms, the reader is directed to Godfrey et al (2008),
Quinlan (1996) and Duda et al (2001).

Decision trees have been applied to a wide range of classification problems (Ermes
et al 2008, Parkka et al 2006, Ravi et al 2005). One of the most comprehensive studies
was carried out by Bao and Intille (2004) who used both time and frequency features to
differentiate between 20 activities (table 4). Using five sensors, they obtained an accuracy
of 86%. However, additional analysis showed an accuracy reduction of only 3% if only data
from a thigh and wrist sensor was used. Maurer et al (2006) investigated the performance
of different features and classifiers in the recognition of six different activities (table 4). The
long-term goal of their research was to develop a real-time classification algorithm using data
from only one wrist-mounted sensor. Ultimately, they used time-domain features which can
be calculated with less computational power than frequency-domain features, as input to their
decision tree classifier.

5.4. k-nearest neighbour

With a k-nearest neighbour (kNN) classification scheme (Duda et al 2001, Theodoridis
and Koutroumbas 2006), a multi-dimensional feature space is constructed, in which each
dimension corresponds to a different feature. The feature space is first populated with all
training data points, each of which corresponds to a particular activity. Unknown windows
of sensor data are represented in the feature space and the k-nearest points (or neighbours)
of training data identified. Classification is then determined by the majority of the k-nearest
neighbours which correspond to a given activity. The value of k typically varies from 1 to
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Figure 5. A simple illustration of the k-nearest neighbour approach using a 2D feature space.
Training data from three separate activities, level walking, walking upstairs and running, have been
shown along with an unknown data point which is classified as walking upstairs.

a small percentage of the training data and is selected using trial and error, or ideally using
cross-validation procedures. Figure 5 illustrates the k-nearest neighbour approach, where a
2D feature space has been constructed. In general, the kNN approach can be applied to any
number of dimensions.

Foerster et al (1999) were the first to apply the kNN approach to activity classification.
They derived simple time-domain features from three uni-axial accelerometers. Using a
within-subject design they were able to differentiate between nine common activities. In
subsequent work Foerster and Fahrenberg (2000) used a reduced sensor set but extended
their original approach, combining a kNN classifier with a hierarchical decision structure and
including a frequency-domain feature. At each node of their hierarchical decision structure,
they constructed an appropriate feature space using a subset of features. With this approach
they were able to accurately classify a wider range of activities than in their previous work
(Foerster et al 1999).

A similar approach was used by Bussmann et al (2001) who defined a 21-dimensional
feature space using data derived features from three different accelerometers. Rather than
applying the standard kNN approach, they used training data for each activity to specify
a maximum and minimum value along each axis. This effectively defined a volume
corresponding to each activity within the feature space. For an unknown window of activity
data, classification was determined by the closest activity volume within the feature space.
With this approach, they were able to identify a wide range of movements and postures with
good levels of accuracy (89–93%). More recently, the kNN approach has been compared to
other classification schemes (Bao and Intille 2004, Maurer et al 2006) (table 4) and used as
part of an algorithm for comparing different features for activity classification (Huynh and
Schiele 2005, Preece et al 2008b).

Zhang et al (2006c) used the kNN approach to differentiate between falls and everyday
activities. With their classification scheme, windows of accelerometer data were identified
immediately before any period during which no sensor motion was detected. Non-negative
matrix factorization was then used to extract features from the sensor data which were used
as input to the classifier. This factorization is used to decompose the data matrix into a vector
basis matrix and a coefficient matrix, under certain constraints, so that new features can be
obtained. The results showed that, in most scenarios, it was possible to differentiate between
falls and common activities with >95% accuracy.
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5.5. Artificial neural networks

An artificial neural network (ANN) can be likened to a flexible mathematical function
configured to represent complex relationships between its inputs (independent variables) and
outputs (dependent variables). The ANN is initially presented with a set of training data and
some form of optimization process is employed to enable known outputs to be predicted for a
given set of inputs. Once trained, the ANN can then be used to obtain the outputs for any set
of inputs. In the field of activity classification, the inputs are normally features derived from
sensor data with the outputs being the different classes of activities. As well as being used
for classification problems, ANNs can also be used to estimate continuously varying outputs
from a set of input variables (Aminian et al 1995, Goulermas et al 2005, 2008, Herren et al
1999). ANNs have been widely used within the field of human movement research (Chau
2001b, Ohno-Machado and Rowland 1999). For further background information, the reader
is directed to Haykin (1999) and Bishop (1999).

One of the most common ANNs is referred to as a multi-layer feedforward neural network
or multilayer perceptron (MLP) (Bishop 1999, Haykin 1999). This consists of inputs and
outputs which are interconnected via special nodes, distributed in so-called hidden layers. The
flow of information through the network is controlled by the weighting of the links between the
nodes and the transfer function within each node. This type of network is trained by iteratively
optimizing the weights in order to accurately produce the desired training outputs from the
corresponding inputs. Zhang et al (2005) used this approach in a four-activity problem using
data from pressure sensitive insoles. By using features derived via parameterizing the ground
reaction force as input to the ANN, Zhang et al (2005) were able to accurately (>97%) identify
the type of activity as well as predict the speed of walking and running. Other studies which
have used an MLP include Baek et al (2004), Mantyjarvi et al (2001) and Wang et al (2007)
with a further three studies (Ermes et al 2008, Parkka et al 2006, Pirttikangas et al 2006)
comparing the accuracies obtained using an MLP to those obtained with other classification
approaches (table 4).

An alterative to the feedforward ANN is the probabilistic neural network (Specht 1990).
Unlike most ANNs which require an extensive training period, this type of network enables
classification to be rapidly performed using example patterns stored in memory (Specht 1990).
Kiani et al (1998) employed this approach, training their ANN using template waveform
patterns for each activity, rather than using features derived from sensor signals. Although
their classification scheme was straightforward to implement, an individually designed network
was required for each subject.

Spiking (Gerstner and Kistler 2002) or pulsed neural networks (PNN) (Maass and Bishop
2001) are another class of ANNs which have been applied to activity classification problems.
Whereas most ANNs accept a relatively small number of continuously varying inputs, PNNs
work with a much larger number of binary inputs and can be implemented very efficiently in
hardware. Van Laerhoven and Gellersen (2004) compared the performance of a PNN, using
inputs from tilt switches, with an approach which used standard accelerometer data and a self-
organizing map (van Laerhoven and Cakmakci 2000) (section 5.11). Although tilt switches
did not perform as well as the accelerometer-based approach, relatively good classification
accuracy was demonstrated for a range of daily activities, especially static postures.

5.6. Support vector machines

Support vector machines (SVMs) (Cristianini and Shawe-Taylor 2000, Vapink 1998) constitute
a popular machine learning method which is based on finding optimal separating decision
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hyperplanes between classes with the maximum margin between patterns of each class.
Additionally, by using the so-called kernel functions, they can project the data from the
original feature space they lie in, to another higher dimensional space. In this way, a linear
separation in the new space becomes equivalent to a non-linear classification in the original
space. An optimization technique is used to find the optimal separating hyperplanes that
perform the required classifications.

SVMs have only been applied in a small number of activity classification studies. Huynh
and Schiele (2006a) combined a multiple eigenspaces approach (section 4.6) with SVM and
were able to consistently outperform a naive Bayes approach even with very small numbers
of training data. In another study, Krause et al (2005) used an SVM and showed better
performance of frequency-domain over time-domain features for the recognition of eight daily
activities.

Three studies have used SVM techniques to differentiate between simulated falls and
other activities. Doukas and Maglogiannis (2008) collected data from a microphone and
tri-axial accelerometer and were able to accurately differentiate between falls and walking
and running in two subjects. Zhang et al (2006b) also used features derived from a waist-
mounted accelerometer and demonstrated a fall recognition accuracy of 96% across 12
subjects. In another study, Zhang et al (2006a) collected data from a tri-axial accelerometer
embedded in a mobile phone which was either carried in the subject’s pocket or hung around
their neck. Classification was performed by first identifying potential falls using a SVM
algorithm. True falls were then confirmed by using features, extracted with a dimensionality
reduction approach (section 4.6), as input to a kNN classifier. With this approach, they
demonstrated high recognition accuracy (>92%), although this dropped to 84% when they
attempted to identify falls from other high intensity activities, such as running and jumping.

5.7. Naive Bayes and Gaussian mixture models

The Bayesian classifier is based on the estimated conditional probabilities or likelihoods of
the signal patterns available from each activity class. Given such likelihoods, the probability
of a new unknown pattern having been generated by a specific activity can be estimated
directly. With a naive Bayes classifier, the input features are assumed to be independent of
each other. With this assumption, it is possible to express the likelihood function for each
activity as the product of n simple probability density functions, where n is the number of
features. These functions are typically expressed as one-dimensional normal distributions.
Although the assumption of feature independence is often violated, the Bayesian approach is
popular due to its simplicity and ease of implementation. A more general version of the naive
Bayesian is discriminant analysis, where cross-correlations between features are taken into
account. For further details the reader is directed to Duda et al (2001) and Theodoridis and
Koutroumbas (2006).

Mixed results have been reported when the Bayesian approach to activity classification
has been compared to other methods (table 4). For example, Maurer et al (2006) and Ravi
et al (2005) found this approach to either outperform or match the classification accuracy of
other methods, whereas Bao and Intille (2004) found low levels of classification accuracy.
Bao and Intille (2004) suggested that the reason for this poor performance may have been
the questionable assumptions that acceleration features can be considered conditionally
independent and modelled by a normal distribution. Other studies which have used the
Bayesian approach are Huynh and Schiele (2006a), Kern et al (2003) and Wu et al (2007). In
this latter study, Wu et al (2007) developed a generic classification method which could discern
when to use available sensors to achieve a specified level of certainty. They demonstrated
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Figure 6. Three example membership functions used to specify the input to a fuzzy classification
scheme. The vertical line represents a particular value of deceleration and corresponds to a separate
fuzzy truth value for each of the three functions (0 for high impact, 0.2 for medium impact and 0.8
for low impact).

their approach through a case study in which they distinguished between different types of
limp using accelerometers and knee-angle sensors.

A Gaussian mixture model (GMM) (Haykin 1999) operates along similar principles to a
Bayesian classifier. However, the likelihood function is not assumed to be a single Gaussian
probability density. Instead, it is assumed to be of unknown shape and functional form
and thus approximated by a weighted mixture of Gaussian functions. The weights and the
parameters (centres and covariances) of the mixture components are calculated using the
expectation-maximization (EM) algorithm. Allen et al (2006) employed this approach using
time-domain features to construct separate GMMs for a number of movements/postures.
To train the GMMs and calculate the parameters, they used an approach similar to EM but
which employed a statistical estimate proposed in the field speech recognition. Classification
of test data was achieved by selecting the GMM (activity) with the highest probability of
having produced that particular set of features. Allen et al (2006) showed that, provided
subject-specific training was used, the GMM outperformed a hierarchical classifier (table 4).

5.8. Fuzzy logic

Fuzzy logic is derived from fuzzy set theory and uses reasoning which is approximate rather
than precisely defined. It allows mapping from a set of inputs to one or more outputs via a
set of if–then statements called rules. For an activity classification problem, features derived
from body-worn sensor signals constitute the inputs, with the outputs being fuzzy truths
corresponding to each class of activity. Information flows through a fuzzy system via a
number of steps. Firstly, the inputs (or features) are assigned membership to fuzzy sets via
appropriate membership functions. In contrast to classical set theory in which a data point’s
membership is either in or out, by allowing the membership function to range between 0 and
1, fuzzy set theory permits partial membership in multiple sets. Figure 6 illustrates example
membership functions which could be used to describe the size of an impact deceleration in
terms of three sets: low, medium or high impact. As an example, a dotted vertical line has been
used to specify a deceleration value which has the membership function values of 0, 0.2 and
0.8 for high, medium and low, respectively. Once each input has been assigned membership
of a fuzzy class, the rules can be applied to produce a corresponding output. For an activity
classification problem, this output is a membership value, or fuzzy truth, ranging from 0 to
1 for each class of activity. The classification result is then normally taken to be the activity
with the maximum fuzzy truth.

Using fuzzy logic, it is possible to reason with imprecise concepts. As such, fuzzy logic is
sometimes better suited for dealing with real-world problems than conventional logic which is
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normally used in hierarchical or decision tree classification schemes. Despite this, fuzzy logic
has only been applied to a limited number of activity classification problems. Lee and Mase
(2002) applied this approach, first using simple heuristic features to identify different static
postures, and then using the fuzzy classifier to differentiate between different movements.
They defined membership functions in terms of the standard deviations of the sensor signals
and the short-term changes in orientations, calculated from the gyroscope signal. By using
a set of rules based around the min operation (the fuzzy equivalent of AND), Lee and Mase
(2002) were able to distinguish between different gaits with good accuracy (>90%).

The Mamdani fuzzy inference method is one of the most common techniques for
developing a fuzzy logic classifier. With this approach, it is possible to specify certain
membership functions and then to develop a set of rules which allow the training inputs
(features) to be mapped to the training outputs (activity classes). Salarian et al (2007) used
this method as part of a three-stage activity classification scheme. This scheme first used a
statistical classifier to identify sit-to-stand and stand-to-sit transitions, and then employed a
threshold-based approach to identify periods of walking and lying. Finally, a fuzzy classifier
was used to identify periods of sitting and standing. This classifier was developed using
membership functions constructed from a knowledge of activity states before and after the
period of interest. Classification accuracies obtained using this approach were shown to be
better than those obtained using simple threshold rules (Najafi et al 2002).

Boissy et al (2007) used Mamdani’s fuzzy inference to identify falls. Data from a tri-axial
accelerometer were used as input to a fuzzy classifier and the amplitude of each acceleration
component was used to determine membership values for the classes: low, medium and high
(figure 6). A total of 27 rules were used to produce the output, which was expressed in terms
of a three-class membership function (‘no’, ‘maybe’ and ‘yes’) representing the occurrence
of a fall. The value of this output function was then combined with the knowledge of body
orientation using conventional Boolean logic to determine whether a fall had occurred. By
collecting a large dataset of fall and non-fall events from 10 subjects, they were able to
demonstrate average fall detection accuracies ranging between 86 and 93%, depending on
sensor location.

5.9. Markov chains and hidden Markov models

For certain classification problems, some transitions between activities are more likely to occur
than others. For example, it is highly unlikely that an individual would sit down directly after
descending stairs, but would be likely to start walking. A Markov chain is a discrete time
stochastic process in which each activity is represented as a different state. Markov chains
can be used to represent the likelihood of transitions between different activities.

A HMM is similar to the Markov chain, but the state of the model at any given time is
unknown (or hidden) and can only be determined from observable parameters which depend
on the state. In contrast to the Markov chain, the HMM can be used directly for activity
classification problems. The observable parameters are the features derived from body-worn
sensor data, with the states corresponding to the different activities. Unlike a Markov chain,
states in a HMM can correspond to more than one activity. As with previous classification
techniques, a HMM is first trained using example data. Once trained, it can then be used
to determine the most likely sequence of state transitions (and thus activities) which could
have resulted from an observed sequence of features. HMMs are trained by determining state
transitions along with the probabilities that each possible set of observations (features) will be
observed for a given state. These probabilities are obtained using the Baum–Welch algorithm
(McLachilan and Peel 2000). In activity classification studies, HMMs have been used as a
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single classifier (Pober et al 2006) and as part of a two-stage classification scheme (Lester
et al 2005, 2006, Ward et al 2006). They have the advantage over other classifiers that they
can be used to model any constraints that are imposed on the sequence in which activities can
occur.

Pober et al (2006) used a HMM to recognize four different activities using only one
computationally simple input feature (SMA (section 4.1)). In their model, they used three states
per activity and achieved an overall classification accuracy of 80%, with most misclassifications
arising due to confusion between level and uphill walking. Lukowicz et al (2004) and Ward
et al (2006) used HMMs to classify a range of workshop activities, such as using a saw or
screw driver, from body-worn accelerometers and microphones. Features derived from the
accelerometer data were used as input to an HMM and the output combined with that of a
separate classifier for the sound data. Using this approach, they were able to identify the
different workshop activities with an accuracy of 74–78% with subject-specific training (Ward
et al 2006).

Lester et al (2005, 2006) used the HMM formulation as part of a two-layer classification
for differentiating between a range of daily activities. The output probabilities from a large
number of static binary classifiers (section 5.10) were used as input to the HMM. The addition
of the HMM layer allowed the classifier to account for sequence constraints thereby increasing
the accuracy of activity recognition by as much as 10–15% (Lester et al 2006). It also had the
effect of smoothing out sporadic errors which occurred when the simple static classifiers were
used alone, ensuring temporal smoothness in the final activity profile.

For applications in which the aim is not to determine a continuous activity profile from a
set of observed features, but simply to know transition probabilities to subsequent activities, a
simple Markov chain can be used. Krause et al (2005) used Markov chains to determine
the optimal strategy for selectively sampling sensor data, demonstrating the potential to
reduce power consumption. Specifically, for activities which were known to have short
duration, a short sampling interval was selected, whereas for longer duration activities, the
sampling interval was increased. Markov chains have also been used as part of unsupervised
learning algorithms (Krause et al 2003, van Laerhoven and Cakmakci 2000); for details see
section 5.11.

5.10. Combining different classifiers

Meta-level classification schemes have recently gained popularity within the biomedical
community. They improve the performance of individual classifiers by combining their
output using different techniques. These include majority voting (where the majority class
is accepted), stacked generalization (which trains the base classifiers and then uses their
predictions as data to a new learning stage) or boosting (which assigns weights to the training
patterns to combine the performance of weak classifiers) (Theodoridis and Koutroumbas 2006,
Webb 2002). Ravi et al (2005) used a meta-level classification scheme in a pilot study with
two subjects who performed eight common activities. Five base-level classifiers were used
in their study, including SVMs, decision trees, kNN and naive Bayes. In general, when an
inter-subject design was used, the boosted SVM was shown to outperform other meta-level
classification schemes.

AdaBoost is a type of adaptive boosting that incrementally trains classifiers by suitably
increasing the pattern weights to favour the misclassified data. Thus, it combines multiple
weak classifiers to create a single more powerful one and has been used by Lester et al (2005,
2006) and van Laerhoven and Gellersen (2004). Lester et al (2005, 2006) studied ten common
daily activities deriving a large number of statistical and frequency-domain features from
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a range of sensors. They then constructed a set of weak binary classifiers, each of which
accepted only a single feature as input and obtained a classification result from a weighted
combination of the weak classifiers. They compared the performance of two different weak
classifiers: a discriminative decision-stump (a binary decision tree classifier constrained to
the use of a single feature) and a generative naive Bayes model (section 5.7) and found the
Bayesian approach to perform best. Classification accuracy was then improved by using the
output from the weak classifiers as input to a HMM (section 5.9).

5.11. Unsupervised learning

Unsupervised learning techniques (Duda et al 2001, Theodoridis and Koutroumbas 2006)
can be used for the analysis and interpretation of body-worn sensor data without the need of
activity labels for each data window. In contrast to supervised methods, where the classifier
is trained to identify unseen windows of sensor data, unsupervised approaches are used to
identify clusters of related patterns in the feature space. Ideally each of these clusters will
correspond to a different activity or subclass. Such techniques have the advantage that they
allow exploratory data analysis and investigation of the importance of individual features.
Also, once the cluster structure has been determined, a process of labelling of the clusters,
followed by a supervised learning layer is often adopted. This can largely reduce the cost of
labelling large datasets. By combining unsupervised with supervised approaches, it is possible
to develop off-the-shelf systems which can be trained by the user with only occasional input.
This allows for considerable flexibility and adaptation to new scenarios inevitably encountered
by the real-world user. In addition, unsupervised learning has the potential to be used as the
first stage of a system for detecting adverse events, such as falls, which may differ significantly
from typical daily activity patterns. Despite their potential usefulness in the field of activity
monitoring, their application has been limited to only a few studies.

Van Laerhoven and Cakmakci (2000) were the first to demonstrate the potential of
unsupervised learning techniques in activity monitoring. They defined a feature space from
a number of simple time-domain features obtained from two thigh-mounted accelerometers.
A Kohonen self-organizing feature map (SOM) was then used to identify localized patterns
within the feature space. A SOM can be considered an array of discrete nodes or neurons,
used to store projections of the original data to a much lower dimensional feature space. It
does so by recognizing and maintaining the groupings and proximity characteristics of the
data in the original space. During unsupervised learning, each original pattern is projected
onto the network topology and the strongest pattern activation is used to update the weights in
the corresponding neighbourhoods. Through this process, the clusters and patterns of points
within the original high dimensional feature space are identified and mapped to well-defined
regions of the two-dimensional SOM. Once the original data have been grouped in this way,
they can be labelled with minimal user input and then a supervised classification layer added
to recognize unknown windows of sensor data.

After associating specific regions of their SOM with one of seven activities, Van Laerhoven
and Cakmakci (2000) added a supervised layer which comprised a kNN classifier and a Markov
chain. Unknown windows of sensor data were assigned a potential label via projection onto
the SOM after which the kNN method was used to locate the closest activity cluster. Finally
the transition probabilities, modelled by the Markov chain, were used to determine whether a
particular transition was likely and the classification result modified accordingly.

Krause et al (2003) also used a SOM to develop an unsupervised learning algorithm
for interpreting data collected from five different types of sensor located within a single
arm-mounted unit. Due to the high dimensionality of their feature space, they employed an
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initial PCA stage (section 4.6) to reduce the dimensionality of their data before applying the
SOM. Once potential clusters had been identified within the SOM, a Markov chain was used
to represent transition probabilities between clusters and a graph reduction strategy used to
eliminate transient states, i.e. those with low transition probabilities. With this approach,
Krause et al (2003) were able to automatically identify clusters corresponding to a range of
different activities.

Unsupervised approaches can be used to identify unusual events from sensor data
containing a range of repeated activities. This could be of value for a fall detection system,
where there are typically no available training data (sensor outputs during a fall). Recently,
Nguyen et al (2007) presented a preliminary study demonstrating the potential of unsupervised
clustering for the recognition of both usual and unusual events. For their study, they used data
from a waist-mounted accelerometer as input to an algorithm which combined hidden Markov
models and Gaussian mixture models to perform data segmentation and clustering without
prior knowledge. Each particular activity was represented by a HMM whose density function
was estimated using a Gaussian mixture model. They investigated the degree to which similar
activities clustered together and showed that optimal results were obtained using ‘raw features’
in comparison to other time-domain features. Although their study was carried out on a single
subject, they demonstrated the potential for an unsupervised fall detection system. Future
work is required to better understand the potential of this approach.

5.12. Overview of machine learning classification techniques

Almost all previously published activity classification studies differ in the type and number of
activities and in the location, type and number of body-fixed sensors. Furthermore, there is
considerable variation in the number and type of features which are derived from the sensor
signals. This is the case both for studies investigating a range of normal activities and those
concerned with the identification of falls from everyday activities. The variability in activities,
sensors and features means that it is not possible to directly compare classification accuracies
between different studies. However, a number of studies have compared the performance of
two or more classifiers using exactly the same set of input features and therefore allow us to
gain some insight into the relative performance of individual classifiers. These studies are
summarized in table 4.

Initial inspection of table 4 suggests that either decision trees or neural networks may give
the highest levels of classification accuracy for a number of representative activity classification
problems. However, in some studies, differences in accuracy between classifiers are often as
low as 1–4%, which may not be statistically significant. Furthermore, some studies report
differing findings on the relative accuracy of different classifiers. For example, Parkka et al
(2006) studied eight activities and found that maximal classification accuracy could be obtained
with a decision tree classifier. In a subsequent study of a similar set of activities, performance
of the decision tree classifier was considerably lower, with the best performance from an
artificial neural network. Similarly, although two studies (Lester et al 2005, Ravi et al 2005)
obtained relatively good performance with a naive Bayesian classifier, Bao and Intille (2004)
found poor performance using this approach.

Taken together, the studies summarized in table 4 may suggest that there is no classifier
which performs optimally for a given activity classification problem. However, many of the
different techniques have been evaluated using small numbers of subjects. Therefore, there
is a need for further studies investigating the relative performance of the range of different
classifiers for different activities and sensor features and with large numbers of subjects. For
example, techniques such as SVM and Gaussian mixture models show considerable promise
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but have not been applied to large datasets. Fuzzy logic and Markov models also have the
potential to be of value in future algorithms as they can be implemented as either a single
classifier or as part of a hybrid classification algorithm.

The choice of classifier for any given problem will be determined by a number of
considerations. As well as accuracy, factors such as ease of development and speed of real-
time execution will influence the final choice. The following paragraphs briefly summarize the
different techniques, giving a simple overview of the potential advantages and disadvantages
of each method.

The hierarchical approach has been widely used as it is an intuitive approach which can be
modified after development to include additional activities (Mathie et al 2004a). Although it
can take a long time to develop, it is normally executed with minimal computational power and
is therefore well suited to real-time applications. Unlike the hierarchical approach, decision
trees use automated algorithms, and are thus faster to develop and considerably less user
intervention is required. Again, once developed, this classifier can be used effectively in
real time (Maurer et al 2006). With both the hierarchical and decision tree approach, the
classification scheme can be represented graphically and so the underlying rules are easy to
understand and interpret.

Classification schemes using the kNN approach can be developed rapidly, are highly
versatile and can be used to classify a large range of different activities. However, on-line
execution may be slower than decision trees due to the distance evaluation requirements.
Similar to the kNN approach, artificial neural networks are a very flexible, powerful approach
which have the potential to be used for a range of different classification problems as well as for
predicting functional parameters. Although they have demonstrated high levels of accuracy
for a number of classification problems (table 4), they can be slow to train and some types
of networks difficult to implement. SVMs are also a very powerful and popular method and,
although they have shown significant potential, they have not been applied to many activity
monitoring problems. With this approach, it is possible to work reliably with difficult and
noisy classification datasets, but they may be very slow to train with large datasets and difficult
to set their kernel type and kernel parameters.

Naive Bayes classifiers are simple to develop and can be executed rapidly. However, they
are based on the weak assumption of feature independence. Although they have been shown
to work well on studies with small numbers of subjects, they tend to be outperformed by other
classifiers in larger studies (table 4). Gaussian mixture models are more powerful than the
naive Bayes method. However, it is often difficult to set the number of mixtures to obtain
optimal density functions. Promising results have been obtained using this approach in one
study (Allen et al 2006) and further work is required to establish whether it is applicable to
other activity classification problems.

Fuzzy logic holds considerable promise for activity classification problems as it enables
reasoning with imprecise concepts. Potential disadvantages of this approach are the difficulties
in construction of appropriate membership functions and uniquely interpreting and combining
fuzzy rules. A small number of previous studies have demonstrated good classification
accuracies using fuzzy logic, particularly in fall detection, but further work is required to
determine the full potential of this approach.

Markov chains are graphical models which contain information on the probability of
transition between different activity states. Although a simple chain cannot be directly used for
classification, it can often lead to improved accuracy when combined with other classification
techniques. Hidden Markov models are a development of the simple Markov chain and
represent a powerful approach for identifying a sequence of activities from a sequence of
measured features. With this technique, classification of a particular window of sensor data
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depends not only on the observed features but also on the likelihood of a transition from a
previous activity. Hidden Markov models have been shown to be effective both as a single
classifier and for improving the performance of other classifiers.

Combining classifiers is another very promising approach. As multiple classifiers applied
to the same dataset create different decision boundaries, they can exhibit different sensitivity
to different patterns. Therefore, combining them can provide complementary decisions and
improve the overall accuracy. Although the overall algorithm can be relatively complex,
the advantage is that much simpler existing algorithms can be combined to create a strong
classifier, and hence its application to activity monitoring seems very promising.

Unsupervised learning operates along different principles to the previously discussed
techniques. This approach can be used to explore the data and, hence, provide insight
into the structure of activity data within the feature space. It can therefore play a valuable
role in the development of supervised classification schemes. When unsupervised methods
are combined with a supervised layer, it is possible to rapidly develop individual specific
classification algorithms which can be readily adapted to include new activities. However, this
approach will always require some input from the user. With the limited number of studies
utilizing this approach, there is a considerable need for further work in this area.

6. Conclusion

This review has presented an overview of the different techniques which have been used
for activity classification from body-worn sensor data. Information has been organized into
two principal sections, the first dealing with feature generation and simple threshold-based
classification and the second dealing with more advanced classification techniques. Within
this framework, features were categorized as heuristic, time-domain, frequency-domain or
time–frequency (wavelet). Heuristic features are derived from a fundamental understanding
of how a specific movement or posture will produce a characteristic body-worn sensor signal.
By using such features in simple threshold-based classification schemes, it is possible to
accurately differentiate between static postures and dynamic activity and to identify falls
with high levels of accuracy (Bourke and Lyons 2008, Bourke et al 2008). In order to
differentiate between large numbers of dynamic movements and postures, it is necessary to
use advanced classification schemes which accept one or more features as input. In section 5,
a range of different classification techniques has been reviewed. Although a small number of
studies, comparing the performance of different classifiers, suggest that either decision trees
or artificial neural networks may give the highest classification accuracy, differences are often
small. Furthermore, there are many other methods such as support vector machines, fuzzy
logic and hidden Markov models which have shown promise in small pilot studies but have
yet to be tested in larger-scale studies. Therefore considerable further work is required to
establish the suitability of the different techniques for a range of classification problems.

Most previously published activity monitoring studies vary considerably in the choice
of sensor placements and in the range of activities analysed, which means that comparisons
of the results from different studies should be treated with caution. Future work in activity
monitoring may therefore benefit from the use of a standard predefined set of activities
and sensor placements (Ward et al 2005). In line with this idea, Noury et al (2007) recently
proposed a standard set of potential fall scenarios which could be used as a common framework
to evaluate fall detection algorithms. The identification of similar sets of activities for other
problems, such as epidemiological studies, rehabilitation and ubiquitous computing, may lead
towards an improved understanding of the relative effectiveness of the different classification
algorithms presented in this review.
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