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We investigate the phase behavior and kinetics of a monodisperse mixture of active (i.e., self-propelled)

and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a

purely active system, motility of the active component triggers phase separation into a dense and a dilute

phase; in the dense phase, we further find active-passive segregation, with “rafts” of passive particles in a

“sea” of active particles. We find that phase separation from an initially disordered mixture can occur with

as little as 15% of the particles being active. Finally, we show that a system prepared in a suitable fully

segregated initial state reproducibly self-assembles an active “corona,” which triggers crystallization of the

passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of

directed self-assembly using active particles.

DOI: 10.1103/PhysRevLett.114.018301 PACS numbers: 82.70.Dd, 64.75.Xc, 64.75.Yz

Understanding the collective behavior of systems com-

posed of self-propelled (“active”) constituents is of great

importance both from a fundamental physics perspective and

for understanding many biological systems, such as bacterial

suspensions, fish schools, and bird flocks [1]. One example

of such collective behavior is seen in so-called active

Brownian particles—self-propelled particles whose propul-

sion direction relaxes through rotational diffusion—which

have been shown to phase separate into a dense and a dilute

phase even in the absence of attractive or aligning inter-

actions [2–12]. The driving force behind this phase separa-

tion is a positive accumulation feedback triggered by a slow

down of particles due to collisions, which can be represented

by a propulsion speed vðρÞ that decreases with the local

particle density ρ [5,15,16]. The phase behavior of such

systems is controlled by the total average particle packing

fraction ϕ0 and the Péclet number Pe ¼ 3v0τr=σ, which
essentially controls the ratio between motility and diffusion,

where v0 is the propulsion speed of an isolated particle, τr is
its rotational relaxation time, and σ is its diameter.

Experimentally, it is very challenging to reach the

high packing fractions (ϕ0 ≈ 0.5) required for phase

separation using only active particles [17]. Therefore, the

phase-separation behavior of suspensions where the micro-

swimmers are mixed with regular passive colloidal particles

is of great practical interest. To date, most studies on active-

passive mixtures have focused on the motion of individual

passive tracer particles in swimmer suspensions [18–21].

Only a small number of investigations have addressed the

behavior of dense mixtures of active and passive agents;

these have found interesting novel phenomena including

active-passive segregation between rodlike particles [22],

crystallization of hard-sphere glasses [23], emergence of

flocking and turbulence [24], and a facilitation of attraction-

induced phase separation [25].

In this Letter, we provide a comprehensive numerical

study of the complex phase behavior of mixtures of

monodisperse isometric repulsive active Brownian particles

and their passive counterparts in two dimensions. First, we

show that a mixture prepared in a uniform phase is unstable

to activity-induced phase separation, even when the frac-

tion of active particles xA is modest. We also find that the

clusters formed are not homogeneous, but are predomi-

nantly active at the periphery and passive in their interior

(see Fig. 1). Compared to the dynamics of the purely active

case, the dynamics of active-passive mixtures shows

enhanced fluctuations, with frequent fission and fusion

of clusters. Most strikingly, we show that, by carefully

choosing our initial condition, the mixture self-assembles

into a disk-shaped core of passive particles surrounded

by an active shell; the active particles further stimulate

a compression wave that induces crystallization of the

passive component.

In our two-dimensional Brownian dynamics simula-

tions, all particles (active as well as passive) are treated

as monodisperse repulsive disks interacting through

a truncated and shifted Lennard-Jones potential UðrÞ ¼
4ε½ðσ=rÞ12 − ðσ=rÞ6� þ ε with an upper cutoff at r ¼ 21=6σ,

beyond which U ¼ 0. Here, ε determines the interaction

strength as well as the Lennard-Jones time scale

τLJ ¼ σ2=ðεβDtÞ; r is the center-to-center distance between
two particles, and β ¼ 1=ðkBTÞ is the inverse thermal

energy. We studied this model by solving the overdamped

Langevin equations (thus neglecting hydrodynamic inter-

actions between particles)

∂tri ¼ βDtðFi þ FApiÞ þ
ffiffiffiffiffiffiffiffi

2Dt

p

Λt; ð1Þ

∂tθi ¼
ffiffiffiffiffiffiffiffi

2Dr

p

Λr; ð2Þ
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where riðtÞ is the position and θiðtÞ is the orientation of the
ith particle at time t [26], in a box with periodic boundary

conditions. Fi is the total conservative force on particle i,
which results from UðrÞ, FA is the constant magnitude of

the self-propulsion force FApi on particle i (FA ¼ 24ε=σ
for active and FA ¼ 0 for passive particles, see Ref. [7]

for details), and pi ¼ ðcos θi; sin θiÞ is its direction.

Furthermore, Dt and Dr ¼ 1=τr ¼ 3Dt=σ
2 denote the

translational and rotational diffusion coefficients of the

particles, respectively; ΛtðtÞ and ΛrðtÞ are unit-variance

Gaussian white-noise terms [27].

Figure 1 (see also movies in the Supplemental Material

[28]) shows the late-time local area fractions ϕA and ϕP of

active (ϕA) and passive (ϕP) particles in initially homo-

geneous mixtures with N ≈ 760 000 particles as well as

the corresponding probability distributions PðϕA;ϕPÞ for

active-particle fractions xA ∈ f0.25; 0.5; 0.75g. For all xA
the mixture phase separates into a dense “liquid” phase and

a dilute “gas” phase. The probability plots also suggest that

(i) the area fraction ϕA;g of active particles in the gas phase

remains essentially constant as xA is varied (unlike the

corresponding passive area fraction ϕP;g which varies

markedly), and (ii) the total area fraction ϕA;l þ ϕP;l in

the liquid phase remains constant and close to unity as

indicated by the diagonal straight lines in PðϕA;ϕPÞ.
From the snapshots in Fig. 1 it is also apparent that the

distribution of active and passive particles within the dense

phase is inhomogeneous, with the active particles being

significantly enriched at the boundaries of the dense

domains. The interfacial layer remains essentially purely

active for all xA. Since the flux balance between this layer

and the gas determines ϕA;g, this corroborates our finding

that ϕA;g remains constant as xA is varied. However, even in

the interior of the dense phase, there is clearly an inho-

mogeneous distribution of the two species, with the passive

particles agglomerating into domains. As can be seen from

Fig. S1 and movies in the Supplemental Material [28], the

domain size of these “passive rafts” inside the “active sea”

initially increases with time and eventually reaches a

(noisy) steady-state plateau value of approximately 20σ.

Such spontaneous segregation between otherwise identical

active and passive particles has only been observed before

in the context of rodlike particles [22]; our results suggest

that it is the result of activity alone and occurs also for

mixtures of isometric particles (see further information in

the Supplemental Material [28]). This phenomenon may be

seen as a manifestation, at a larger density and with equal-

sized particles, of the effective attraction observed between

passive colloids [29] and between hard walls [30,31] in a

bacterial bath.

We also note that the overall dynamics of active-passive

mixtures is very different from that of the corresponding

purely active systems [5] (see movies in the Supplemental

Material [28]). Most importantly, the dynamics of phase-

separating mixtures is much more violent, with clusters

constantly moving, fissioning, and merging.

Figure 2 shows phase diagrams in the Pe-xA and Pe-ϕ0

planes, where ϕ0 is the total particle area fraction and 0 ≤

xA ≤ 1 is the fraction of the particles that are active.

Interestingly, spontaneous phase separation occurs with

xA values as small as 0.15, or equivalently with ϕA ¼ 0.09

[see Fig. 2(a)]. Such area fractions should be easily

achievable in experiments, although the corresponding

FIG. 1 (color online). Left and center columns: Density plots of

the local area fractions of active (ϕA) and passive (ϕP) particles

for Pe ¼ 300, ϕ0 ¼ 0.6, and three different values of the fraction

xA of active particles, obtained at late times (t ¼ 5000τLJ) after a

quench from a random initial configuration. The box size is

1000σ × 1000σ, corresponding to N ≈ 760 000 particles. Right

column: Two-dimensional probability distribution PðϕA;ϕPÞ
obtained by averaging the corresponding simulations over the

time window 4500τLJ ≤ t ≤ 5000τLJ.

FIG. 2. (a) Phase diagram in the Pe-xA plane for ϕ0 ¼ 0.6.

(b) Phase diagram in the Pe-ϕ0 plane for xA ¼ 0.5. Filled symbols

denote phase-separated systems, as determined by visual in-

spection, and open symbols denote homogeneous systems. All

results were obtained by a quench from random initial configu-

rations, using systems of size 150σ × 150σ, corresponding toN ≈

15000 particles for ϕ0 ¼ 0.6. The dashed lines indicate phase

boundaries predicted by Eq. (3) with κ ¼ 4.05.
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Péclet number required for phase separation is relatively

high (≈500 according to our simulations, as opposed to

≈60 for a purely active system [5]).

Figure 2(a) also shows that the phase boundary between

the uniform and the phase-separated region closely follows

a fit to the function xA ∼ 1=Pe (dashed line). To understand
this behavior, we start from the observations of Fig. 1 that

ϕA;g is approximately independent of xA and that the total

density of the dense phase is close to the close-packing

density ϕcp ¼ π=ð2
ffiffiffi

3
p

Þ ≈ 0.907 (this is also true for the

corresponding purely active system [3]). Following the

kinetic model developed by Redner et al. in Ref. [3], we

equate the incoming and outgoing fluxes kin and kout of
active particles at the interface of a dense cluster. The use

of kin ¼ 4ϕA;gv0=ðπ2σ2Þ and kout ¼ κDr=σ, where κ is a

dimensionless parameter introduced to take into account the

fact that particles leave the dense phase in bursts [3], yields

ϕA;g ¼ 3π2κ=ð4PeÞ. In the purely active case, the binodal line
is given by the relationshipϕ0 ¼ ϕA;g [3]. In the case of active-

passive mixtures, the condition is instead ϕ0xA ¼ ϕA;g,

leading to the following expression for the binodal:

ϕ0xA ¼ 3π2κ

4Pe
: ð3Þ

The dashed lines in Fig. 2 show Eq. (3) with κ ≈ 4.05, close

to the value found for xA ¼ 1 [3]. For the case of constant

ϕ0 and varying xA [see Fig. 2(a)], the agreement is

excellent, showing that the basic kinetic assumptions made

above (and originally proposed to describe a purely active

system) provide a workable model for active-passive

mixtures with xA as low as 0.15 and for a significantly

larger range of Péclet numbers than studied previously [3].

For the case of constant xA ¼ 0.5 and varying ϕ0, the

agreement between simulation results and Eq. (3) is good

down to ϕ0 ≈ 0.45, below which point the simulated

systems stop phase separating altogether [see Fig. 2(b)].

This discrepancy arises because the approximations inher-

ent in Eq. (3) are known to be inappropriate as Pe → ∞,

where phase separation does not occur if the decrease of

vðρÞ with ρ is not steep enough [5,8,15,16]. This also

explains why in practice there exists a lower value of xA
required for spontaneous phase separation, while in prin-

ciple Eq. (3) predicts phase separation to occur even for

xA → 0 as Pe→ ∞.

To describe this lower “spinodal line” it is therefore

necessary to extend the continuum theories developed in

Refs. [6,16] towards active-passive mixtures. While we

postpone the detailed treatment of this problem to a future

study [32], we show in the Supplemental Material [28] that

the simple assumption of a linear dependence of the pro-

pulsion speed v on each of the area fractions ϕA and ϕP,

i.e., v ¼ v0ð1 − aϕA − bϕPÞwith constant parameters a and
b, together with the assumption that ϕP remains uniform

during the initial spinodal instability, leads to the spinodal

condition ϕ0 > 1=½2axA þ bð1 − xAÞ� [33]. Simulations in

the one-phase region of the phase diagram confirm the

linear dependence of v on both area fractions and yield

the approximate values a ¼ 1.08 and b ¼ 1.21 (see the

Supplemental Material [28]). For xA ¼ 0.5, this gives a

spinodal density ϕ0 ≈ 0.59, in reasonable agreement with

the value ϕ0 ¼ 0.45–0.50 observed in Fig. 2(b); the slight

mismatch can be attributed to the fact that spontaneous phase

separation will occur slightly outside the spinodal due to the

high noise level.

Figures 1 and S1 (see the Supplemental Material [28])

clearly indicate that there is a tendency towards segregation

between active and passive isometric particles. Starting

from this premise, and with a view towards speeding up

pattern formation, we set out to study the behavior of a

system initialized from a state where active and passive

particles are fully segregated with the passive particles

forming a disk-shaped cluster surrounded by the active

particles (see Fig. 3 and movies in the Supplemental

Material [28]). With this initial state, we find a very

different dynamics with respect to the one previously

analyzed (compare Fig. 1 with Fig. 3). Now, the passive

particles are quickly pushed together by a pressure wave

that starts at the active-passive boundary and travels inward

into the passive phase (see also Fig. 4). After the wave has

reached the center of the cluster, there is a second relaxation

period, resulting in a very dense phase consisting almost

exclusively of passive particles. Thereafter, the active

particles gradually condense onto the interface, creating

a “corona”of active densephase,whose thickness self-adjusts

so as to yield the same value of ϕA;g as seen for the random

initial configuration (see Fig. 1). This final, compressed

configuration remains stable for the whole duration of the

simulation (corresponding to ≈400 characteristic diffusion

times τ≡ σ2=Dt or ≈900 s in a system of micron-sized

spherical colloids), in contrast to the much more violent

dynamics observed throughout the simulation for random

initial configurations. Simulations of smaller systems (see the

Supplemental Material [28]), however, indicate that the

passive domain will eventually dissolve and the system will

FIG. 3 (color online). Density plots showing the local area

fractions of active (ϕA) and passive (ϕP) particles at different times

after a quench, starting with a fully segregated initial configura-

tion. The system parameters are as in Fig. 1 with xA ¼ 0.5.
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reach the same mesoscopically segregated steady state as

seen when starting from random initial conditions.

To further analyze the compression of the passive phase

driven by the active component, in Fig. 4(a) we present an

analysis of the traveling pressure wave front, obtained from

a simulation started in a fully segregated slab geometry in

order to facilitate the analysis. The wave front position xðtÞ
is well described by ðx − x0Þ ∼ t1=2, where x0 ¼ xð0Þ is the
initial position of the active-passive interface. To under-

stand this scaling, we assume that the effect of the active

component on the passive one can be lumped into a

constant two-dimensional “active pressure” Pa [34–37].

As our dynamics is overdamped, this active pressure will

lead to the propagation of a compression wave, whose

velocity _xðtÞ at the wave front can be estimated as

_xðtÞ ¼ ρl

ρl − ρg

Fa

MðtÞγ ; ð4Þ

where Fa ¼ LPa is the active force acting on a slab

segment of length L, MðtÞ is the total mass of the particles

carried along by this segment of the wave front, γ is the

damping rate (in units of inverse time) of the implicit

solvent, and ρl and ρg denote the number densities of the

dense and dilute phases, respectively. The prefactor involv-

ing the densities takes into account the relative velocities of

the front and the back of the wave and can be derived

through a straightforward mass conservation argument (see

the Supplemental Material [28]).

We now note that the total massM of the slab segment is

proportional to the total area swept by the wave front,

MðtÞ ¼ mρgL½xðtÞ − x0�, where m is the mass of a single

particle. Inserting this expression into Eq. (4) yields the

differential equation

_x ¼ Paρl

mγρgðρl − ρgÞðx − x0Þ
; ð5Þ

with the solution

xðtÞ ¼ x0 þ
�

2Paρl

mγρgðρl − ρgÞ

�

1=2

t1=2: ð6Þ

The fitting parameter Pa for the solid line in Fig. 4(a)

corresponds to Pa ≈ 120ε=σ2. With the single-particle

propulsion force Fa ¼ 24ε=σ, this means that the pressure

during the compression is comparable to about five layers of

active particles compressing the slab, in broad agreement

with what we observe in the simulations (see movies in the

Supplemental Material [28]). Finally, the pair-distribution

functions and hexagonal order parameters shown in Fig. 4(b)

clearly show that the final state of the two-dimensional

passive suspension is a crystalline one. These results suggest

that judicious mixing with active particles can be used as a

tool to control self-assembly of passive colloids, at least in

two dimensions.

In this Letter, we have presented a systematic study of

mixtures of active and passive Brownian particles with

varying composition and density. Apart from being of

fundamental interest from a nonequilibrium physics per-

spective, understanding such mixtures is a prerequisite for

experiments intended to create novelmaterials through active

phase separation and self-assembly. We have shown that

activity-induced phase separation is indeed possible for a

wide range of system parameters and for active-to-passive

ratios as small as 1∶6, as long as the Péclet number is large

enough. This is encouraging from an experimental viewpoint

given the difficulties associated with the manufacturing and

fuel supply of large quantities of active colloids [17]. We

have further shown that the choice of appropriate initial

conditions, where the two species are segregated, leads to a

FIG. 4 (color online). (a) Time-dependent position xðtÞ − x0 of
the shockwave front traveling through a slab of passive particles

after a quench, for xA ¼ 0.5; xðtÞ was measured by averaging the

density in the y direction to create a one-dimensional density

profile with a well-defined wave front. The inset shows the thin

crystalline layer that forms at the wave front. (b) Pair-distribution

function gðrÞ of the passive particles before (red dashed line)

and long after (black solid line) the quench. The inset shows

the magnitude of the local hexagonal order parameter

ψ6ðriÞ ¼ N−1
i

PNi

j¼1
expð6iθijÞ in the interior of the passive

phase, where i is the imaginary unit, θij is the angle between

an arbitrary reference axis and the displacement vector between

particles i and j, and the sum runs over all Ni particles within a

cutoff radius of 1.3σ from particle i.
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remarkable directed assembly process, whereby the active

particles drive a compression wave through the passive

phase, which leads to the creation of a passive colloidal

crystal. The active particles then coalesce and form a highly

fluctuatingwetting layer around the crystal. These results call

for a future experimental exploration of active-passive

mixtures and open up new potential routes to directed

assembly using active particles.
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