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Abstract

The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural
brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that
form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain
poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form
synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born
granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The
connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells
dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the
synaptic integration of new neurons into cell type-specific olfactory circuits.
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Introduction

Themammalian brain ensures adaptive behavior through its large

capacity for cellular and circuit plasticity. The diverse scales of neural

plasticity range from single synapse modification [1–3] to network

remodeling that accompanies ongoing neurogenesis [4–7]. Plasticity

mechanisms accommodate changing environmental stimuli that are

continuously relayed to the brain via multiple sensory modalities.

Among sensory systems, the olfactory system possesses a large

capacity for circuit plasticity through continued generation of new

neurons in adult life. Such continuous incorporation of new neurons

implies persistent, large-scale remodeling of synaptic connections,

the nature of which is not well known.

Within the olfactory system, the axons of olfactory sensory

neurons (OSNs) expressing the same odorant receptor [8]

converge onto discrete glomeruli in the main olfactory bulb

(MOB) [9,10]. Organized around glomeruli, groups of mitral/

tufted cells, as well as various interneurons, form connected

networks that extend into all layers of the olfactory bulb [11].

These networks likely represent unitary modules for odor

information processing [11–14] and may be functionally analo-

gous to barrels in the somatosensory cortex or ocular dominance

columns in the visual system.

The functional organization within and between MOB

glomerular units has been the subject of intense investigation.

Lateral interactions between glomeruli are mediated primarily by

dendrodendritic synapses between mitral cells and granule cells

[15–20], and the electrophysiological properties of these synapses

have been well characterized [13,21,22]. Although mostly studied

as singly recorded neurons or synaptically coupled pairs, these

experiments support the notion that populations of neurons

associated with multiple glomeruli are highly interconnected.

Among the most studied forms of intrabulbar circuitry, granule

cells provide inhibitory feedback onto spatially distant glomeruli by

forming synapses with the lateral dendrites of mitral cells [13,15].

In addition, synaptic inputs from both local short axon cells (SACs)

and distant cortical neurons provide direct regulation of granule-

mitral cell synapses [23–26]. Despite a central role in olfactory

processing, the relative connectivity of individual granule cells to

different cell types, the spatial organization of granule cell synaptic

partners, and the regulation of granule cell connectivity by sensory

stimulation remain unclear.

New GABAergic granule and periglomerular cells in the MOB

are continually generated throughout adulthood [27–29]. Whereas

many adult-born neurons fail to establish and maintain dendro-

dendritic synapses and ultimately undergo apoptosis [30–32],
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granule cells born during early stages of postnatal development

tend to be long-lived and form stable synaptic connections [33].

We thus sought to define the patterns of cellular connectivity

formed by postnatal-born granule cells in the MOB and determine

how new granule cell microcircuits are influenced by sensory

input. In the present study we employed monosynaptic circuit

tracing using pseudotyped rabies virus together with a conditional

red-fluorescence mouse reporter strain to label newborn olfactory

bulb interneurons and their presynaptic partners in vivo [34]. We

show that postnatal-born granule cells make synaptic connections

with cortical inputs and multiple olfactory bulb cell types. The

pattern of monosynaptic connectivity shows a clustered organiza-

tion that is characterized by extensive presynaptic inputs from

anatomically distinct short axon cells. Moreover, increased sensory

experience by odor enrichment enhances SAC connectivity onto

postnatal-born granule neurons. These results define the presyn-

aptic repertoire of novel inputs onto newborn granule cells, and

support a model whereby clustered patterns of organization in the

olfactory bulb extend from local short axon cells to cohorts of deep

granule cells that span the laminae of the olfactory bulb. The

identification of numerous short axon cells presynaptic to new

granule cells reveals unanticipated cellular interactions that occur

during granule cell (GC) synapse development. Experience-driven

changes in SAC-GC connectivity provides a circuit basis for

refining or remodeling synaptic inputs upon exposure to a

complex sensory environment through ongoing neurogenesis.

Results

Monosynaptic Tracing Reveals Synaptic Connectivity
Onto Postnatal-Born Granule Cells
Functional wiring in the olfactory bulb begins during embryo-

genesis and continues throughout postnatal life. Whereas embry-

onically derived interneurons of the MOB originate from the

lateral ganglionic eminance and dorsal telencephalon [35–38],

those born postnatally are generated exclusively from the

subventricular zone (SVZ) of the lateral ventricle [39–42].

Although much is known about the cellular patterns of MOB

interneuron development [35,43,44], the patterns of synaptic

connectivity onto new granule cells are poorly understood. To

determine the postnatal patterns of synaptic connectivity onto

newborn granule cells, we performed in vivo monosynaptic circuit

tracing [34]. For this we generated a conditional reporter mouse

harboring a Cre/loxP-dependent allele (Figs. 1a, S1a, and S1b)

capable of driving high levels of cytosolic tdTomato expression

upon introduction of the plasmid G-IRES-TVA-IRES-Cre

(Fig. 1b) that encodes components for targeted rabies virus (RV)

infection, monosynaptic virus propagation, and Cre-mediated

conditional reporter activation. In this design, neurons are

genetically targeted for infection by expression of the TVA

receptor, which binds selectively to RV particles pseudotyped with

EnvA coat proteins [45]. Since the engineered RV mutant lacks

the G coat protein, plasmid expression of the wildtype rabies-G

coat protein enables precisely one round of ‘‘live’’ virus packaging

and trans-synaptic infection of presynaptic cells [34,46–50].

Retrograde spread of virus is strictly monosynaptic since only

cells that receive G-IRES-TVA-IRES-Cre are capable of

synthesizing live virus, whereas presynaptic targets do not contain

the G protein and thus are incapable of producing infective RV

particles. Replacement of the viral gene encoding the G capsid

protein with an EGFP reporter renders presynaptic partners of

RV-targeted cells brightly labeled [34,51].

To test the functionality of our tracing system, we injected the

G-IRES-TVA-IRES-Cre tri-cistronic construct into the lateral

ventricles of embryonic day 14.5 (E14.5) ROSA26-stopflox-tdTomato

mice, electroporated neuronal progenitors in the ventricular zone,

and made ex vivo cortical slice cultures [52] (Figs. S1c–i). After two

days, EnvA-pseudotyped SADDG-EGFP RV particles [34] were

applied to cultured brain slices to infect neurons expressing G-

IRES-TVA-IRES-Cre. Three days later, we observed widespread

tdTomato expression throughout layers 4 and 5 and in the walls of

the ventricles (Figs. S1c, S1f, and S1i), indicating neurons

expressing Cre recombinase via the G-IRES-TVA-IRES-Cre

cassette. In addition, we observed EGFP expression in a small

number of tdTomato-positive neurons directly infected by

SADDG-EGFP RV, which appeared yellow (Figs. S1h and S1i).

Finally, we observed a large cohort of EGFP-expressing neurons

lacking tdTomato expression, showing trans-synaptic spread of

SADDG-EGFP RV to presynaptic partners of RV-infected cells

(Figs. S1g–i).

After confirming that our tricistronic rabies G-IRES-TVA-

IRES-Cre construct (Fig. 1b) functioned in conjunction with the

ROSA26-stopflox-tdTomato mouse line (Fig. 1a), we implemented this

model system to examine the synaptic connectivity formed onto

postnatal-born granule cells in the olfactory bulb. To target

newborn granule cells for RV infection and subsequent mono-

synaptic tracing, we injected the G-IRES-TVA-IRES-Cre con-

struct into the SVZ of postnatal day 2 (P2) mice and applied an

external voltage across the brain to electroporate neuronal

progenitors (Fig. 1c, left) [53]. After 30 d, at which point many

of the electroporated cells have migrated to the MOB and formed

functional synaptic connections [44,54], EnvA-pseudotyped

SADDG-EGFP rabies virus was injected into the granule cell

layer of the olfactory bulb to infect newly incorporated neurons

expressing G-IRES-TVA-IRES-Cre (Fig. 1c, right). This experi-

mental paradigm allowed us to probe the monosynaptic

connectivity onto postnatal-born granule cells by directly visual-

izing vital fluorescence in neurons susceptible to pseudotyped RV

infection (red), those that became infected (red and green, thus

yellow), and presynaptic target neurons (green) (Fig. 1d). To target

the electroporated granule cells for infection and monosynaptic

tracing, we injected 250 ml the SADDG-EGFP rabies virus

750 mm below the surface of the olfactory bulb, midway from

the anterior and posterior boundaries. Although the methods of in

vivo electroporation and viral infection are variable, by counting

the number of infected source cells and determining the average

bulbar volume spanned by these cells, we estimated viral spread

and infection to encompass a spherical domain 3006200 mm in

diameter (Fig. 1e, n= 10 labeled bulbs from 10 mice). To count

labeled source cells, we made 100 mm slices through the entire

bulb and identified all GCs that expressed both EGFP and

tdTomato (n= 20–25 slices each, with the middle 3–5 slices

harboring most of the labeled cells). Occasionally we infected

periglomerular cells, which are also continually generated from

electroporated SVZ [43]. In these instances we observed labeling

of the cell types that contribute to the spherical glomerular

structures (data not shown). To avoid infecting newborn

periglomerular cells, we included a small volume (,20 nl) of

mineral oil in the tip of the injection pipette to prevent exposure of

the virus while passing through the superficial bulb layers en route

to the granule cell layer.

One week after RV infection, we processed the olfactory bulb

and imaged fixed sections for reporter expression. Similar to what

we observed in cortical slice explants (Fig. S1c–i), in vivo

conditional reporter activation and trans-synaptic viral labeling

was robust, and showed distinct patterns of presynaptic labeling

(Figs. 1f–m). Although we began to observe viral-mediated EGFP

in presynaptic target cells by 3 d following infection, high and
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stable levels of labeling were routinely achieved by 7 d. By 14 d

post-infection, numerous presynaptic neurons showed abnormal

morphologies, likely due to the extremely high levels of reporter

expression driven by the RV genome. Thus, for all subsequent

experiments, we chose 7 d post infection to investigate our

presynaptic labeling. Since electroporation relies on generating a

voltage across the ventricular space, injected DNA reproducibly

showed unilateral patterns of reporter expression in the brain

(Fig. 1f). This phenomenon was most obvious when imaging the

conditional expression of tdTomato following transient introduc-

tion of Cre into the SVZ, which triggered tdTomato expression in

neuronal progenitors that remained active in all daughter cells

born from an electroporated lineage (Fig. 1g and 1h). Although

this approach resulted in clonal labeling of many newborn granule

cells with tdTomato, we were able to small numbers of postnatal-

born granule cells for SADDG-EGFP RV infection (Fig. 1i and 1j).

This approach allowed us to resolve distinct clusters of presynaptic

targets to electroporated granule cells (Fig. 1k–m). Based on the

sparse infection by SADDG-EGFP RV, the lack of infection points

in close vicinity to one another, and the absence of clonal sectors

(unlike those observed in cortical slices, Fig. S1), we reasoned that

only a very small number of electroporated cells showed stable

integration of the electroporated G-IRES-TVA-IRES-Cre plas-

mid. To further test this, we performed monosynaptic labeling of

postnatal born granule cell networks while marking neuronal

lineages born after electroporation with bromodeoxyuridine

Figure 1. Engineered Rabies Virus Allows Monosynaptic Circuit Tracing in Olfactory Bulb. (a) Illustration of the ROSA26-stopflox-tdTomato
conditional knock-in allele. (b) Illustration of the tri-cistronic G-IRES-TVA-IRES-Cre expression construct used for electroporation into the
subventricular zone (SVZ) of ROSA26-stopflox-tdTomato mice. (c) Illustration of the in vivo electroporation procedure. Left, plasmid DNA encoding G-
IRES-TVA-IRES-Cre was injected into the lateral ventricle of newborn mice. Middle, a square-pulse voltage was applied across the head to introduce
the expression construct into SVZ progenitors. Right, 30 d following electroporation, pseudotyped SADDG-EGFP RV was injected into the olfactory
bulb for targeted infection of electroporated granule cells. (d) Diagram showing how pre- and postsynaptic neurons can be identified by two-color
monosynaptic viral tracing in the conditional ROSA26-stopflox-tdTomato background. Red cells represent conditional tdTomato reporter expression
following G-IRES-TVA-IRES-Cre electroporation. Yellow cells represent electroporated cells that are also infected by SADDG-EGFP RV. Green cells
represent presynaptic targets of the infected granule cells. GL, glomerular layer; EPL, external plexiform layer; ML, mitral cell layer; IPL, internal
plexiform layer; GCL, granule cell layer. (e) Schematic illustrating the estimated domain of SADDG-EGFP RV infection with respect to the entire bulb.
On average, infected granule cells were detected within 302 mm of the injection site (green circle)6214 mm (yellow outer circle). Scale bar, 300 mm. (f)
Whole mount view of ROSA26-stopflox-tdTomato mouse brain 30 d after unilateral G-IRES-TVA-IRES-Cre electroporation. Dashed line represents the
coronal section imaged in (g)–(i). OB, olfactory bulb. Scale bar, 1 mm. (g) Coronal section through an electroporated and infected olfactory bulb
showing tdTomato and SADDG-EGFP expression. Scale bar, 300 mm. (h) Coronal section through the olfactory bulb of electroporated mice showing
tdTomato-expressing granule cells at higher magnification. (i) Section shown in (h) imaged for SADDG-EGFP following RV infection. (j) Merged view of
(h) and (i). MC, mitral cell; GC, granule cell origin; dashed arrow, granule cell dendrite. Scale bar, 25 mm. (k)–(m) Dual tdTomato plus SADDG-EGFP
reporter expression, identifying a local granule cell microcircuit. (k) tdTomato expression in a single granule cell. (l) SADDG-EGFP expression in the
same ‘source’ granule cell shown in (k) and local presynaptic partners. (m) Merged reporter expression delineating source cell (yellow) and the local
presynaptic partners (green). Short arrows in (k–m) point to the source granule cell. Scale bar, 10 mm.
doi:10.1371/journal.pone.0029423.g001
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(BrdU) (Fig. S2a). At 14 d after electroporation, mice were

supplemented with BrdU in their drinking water for 2 weeks to

label all neurons born after that time, followed by RV infection

and subsequent tissue processing. By comparing the number of

green presynaptic inputs to the number of BrdU labeled green

cells, we rarely ever observed newborn neurons that were doubly

labeled (Fig. S2b–e). These data show that only a very small

fraction of the tdTomato marked cells harbor the monosynaptic

tracing components, and suggest that stable integration of our

expression plasmid is rare and likely occurs in postmitotic neuronal

precursors. By separately labeling primary points of infection

(yellow source cells) and the cohort of neurons that provide their

presynaptic input (green) (Fig. 1d), this modular virus-based

molecular genetic system thus allowed us to directly visualize the

synaptic microcircuits associated with postnatal-born granule cells.

Cohorts of Mitral Cells and Short Axon Cells Synapse
Onto New Granule Cells
The full complement of neurons that contact newly integrated

granule cells is unknown. In addition to dendrodendritic synapses

formed between mitral/tufted cells and granule cells, it has

recently been shown that granule cells form functional connections

with multiple local interneuron cell types [24,26]. After genetically

targeting postnatal granule cells for SADDG-EGFP RV infection,

we observed extensive labeling throughout the granule cell, mitral

cell, and external plexiform layers (EPL) in neurons presynaptic to

electroporated granule cells. Interestingly, we noted clustered

patterns of connectivity (Fig. 2a). These clustered networks

contained mitral cells [55] (Fig. 2b) and other inframitral layer

cells that morphologically corresponded to both superficial and

deep short axon cells (SACs) (Figs. 2c and 2d). By restricting

rabies-G, TVA, and Cre expression to postnatal-born interneu-

rons through timed in vivo electroporation, we never observed

conditional tdTomato reporter expression in cell types other than

periglomerular and granule cells. Further, we never observed

trans-synaptic labeling between granule cells born after electro-

poration (Fig. S2 and data not shown), arguing against nonspecific

RV uptake through proximity spillover.

Varying the amount of pseudotyped RV that was injected into

the MOB allowed us to control the number of virally infected

source cells. Levels of viral infection ranged from very low (100 nl)

(Figs. 1k–m) to high (500 nl) (Fig. 2a), and thus could be adjusted

for optimal microcircuit analysis. For our experiments, we used

conditions (250 nl) that achieved a moderate level of labeling (see

Fig. 1e and Experimental Procedures) to facilitate source cell and

presynaptic partner identification. To validate the retrograde

trans-synaptic transport of SADDG-EGFP RV, we examined

EGFP expression in cortical brain regions known to send long-

range centrifugal inputs to the MOB and make synapses onto

granule cells [13,56]. Consistent with the known presynaptic

transport of RV, we observed strong SADDG-EGFP expression in

neurons of the anterior olfactory nucleus (AON), horizontal limb

of the diagonal band nucleus (HDB), and piriform cortex (Fig. S3).

Moreover, a complete absence of EGFP label in olfactory sensory

neurons (OSNs), which heavily innervate the MOB and synapse

onto mitral cells, confirmed that viral labeling stops after one

presynaptic connection (data not shown). Together these data

show that postnatal-born granule cells can be precisely targeted for

RV infection, demonstrate both short- and long-range synaptic

connectivity onto postnatal-born granule cells, and reveal clustered

patterns of organization intrinsic to granule cell microcircuits.

To further investigate the repertoire of cells presynaptic to

postnatal born granule cells, we performed immunohistochemical

analysis on thin sections of MOB and counted the number of

EGFP-positive, RV-infected neurons that were negative for

tdTomato (hence, presynaptic to Cre-expressing granule cells)

using molecular markers expressed by olfactory bulb cell types

[57]. To begin to elucidate the molecular identity of the cells

presynaptic to newborn granule cells, we made 50 mm sections

through the labeled domain of the MOB (average 6 sections per

bulb), performed immunohistochemistry, and counted EGFP

labeled cells to determine the percentage of cells that showed

overlapping expression of various interneuron markers. Whereas

only a subset of EGFP-positive cells expressed the interneuron

markers calretinin (4665% EGFP-positive cells, n = 100 cells in 18

sections from 4 mice; Figs. 2e–g) and parvalbumin (5567%;

Figs. 2h–j), we routinely observed co-expression of the GABAA

receptor subunit a1 (8464%; Figs. 2k–m), which is highly and

selectively expressed in SACs residing within inframitral cell layers

[57]. Thus, through immunohistochemical analysis against

interneuron markers in the olfactory bulb, ,50% of the

SADDG-EGFP labeled cells expressed parvalbumin and/or

calretinin, whereas .80% of the local presynaptic inputs

expressed GABAA receptor subunit a1. We never detected

SADDG-EGFP expression in cell types that express tyrosine

hydroxylase in the upper EPL or glomerular cell layer (Figs. 2n–p).

Interestingly, we occasionally observed SADDG-EGFP expression

in proximate glial cells that were directly contacting source granule

cell (GC) dendrites, as shown by colocalization with glial fibrillary

acidic protein (GFAP) (Figs. 2q–s), suggesting a potential role for

glial contact in synapse remodeling of newborn granule cells [58–

60]. Together, these data show that, in addition to forming well-

described contacts with centrifugal inputs and dendrodendritic

synapses with mitral and tufted cells, postnatal-born granule cells

receive extensive input from local SACs in the MOB.

To more closely examine the connectivity made between

granule cells and their presynaptic partners, we took advantage of

the dual-color labeling scheme of our experimental system to

count the number and types of neurons that were labeled with

SADDG-EGFP RV by monosynaptic transfer. Given that all

granule cells targeted for G-IRES-TVA-IRES-Cre electroporation

express tdTomato (red), and only a subset of those cells became

infected by injected SADDG-EGFP RV (red and green, thus

yellow), presynaptic targets can be clearly identified by the

presence of only EGFP (green) (Fig. 1d). From our immunohis-

tochemical data identifying the majority of non-mitral cell

presynaptic neurons as SACs (Figs. 2c and 2d), we sought to

determine the relative connectivity of SACs onto new granule

cells. We counted doubly labeled (yellow) granule source cells and

all of their green presynaptic neuronal partners in 100 mm thick

serial sections of entire olfactory bulbs. On average we identified

3368.1 doubly labeled source cells per bulb. Interestingly, we

found that the ratio of presynaptically labeled short axon cells to

RV-infected granule cells was quite high (4.660.8, SEM, n= 7

olfactory bulbs), revealing a previously unappreciated level of local

SAC input to newborn granule cells.

We next investigated the clustered architecture of SACs

presynaptic to newly integrated GCs. For this, we selected

olfactory bulb tissue that had relatively sparse SADDG-EGFP

RV infection and presynaptic labeling in order to facilitate the

imaging of labeled SAC to GC microcircuits with cellular

resolution (Figs. 3a–c). To determine the relative numbers,

locations, and types of presynaptic neurons that contribute to

the clustered network, we prepared semi-thick brain slices (150–

200 mm) that were optically cleared in glycerol for z-stack confocal

imaging and 3-dimensional volume rendering [61]. To quantify

the inputs to granule source cells, we took serial image planes

through the slices at 2 mm intervals, counting all doubly labeled

Tracing Postnatal-Born Neuron Connectivity
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and green-only neurons to determine the ratio of presynaptic

inputs to granule source cells. In addition to clearly identifiable

mitral cells (Fig. 2a–d), reconstructed image stacks revealed two

main populations of SACs which have been previously

characterized as deep SACs and superficial SACs [24,57,62].

Quantitative analysis revealed 5.661.5 SACs per resolvable

clustered network (Fig. 3d), and an average width of the network

(including SAC cell bodies and proximal dendrites) of

148.5640.6 mm (n= 10 SAC/GC networks from 4 bulbs, of 4

mice 6 SEM). Neurons presynaptic to individual GCs were

categorized as SACs by morphology, molecular marker analysis,

and electrophysiological properties (Fig. 2 and Fig. 3d–f),

whereas the widths of GC-SAC networks were determined by

the measuring the lengths of clearly resolvable SAC dendrites.

Figure 2. SADDG-EGFP RV is Retrogradely Transported from Granule Cells to Presynaptic Targets in Olfactory Bulb. (a) A coronal
section of olfactory bulb following monosynaptic viral tracing showing a clustered pattern of presynaptic labeling. The dashed line shows the midline
through a coronal section of MOB. Scale bar, 100 mm. (b) SADDG-EGFP expression in presynaptic mitral cells. Scale bar, 25 mm. (c)–(d) SADDG-EGFP
expression in short axon cells in the external plexiform and granule cell layers (hatched yellow boxes). Scale bars, 20 mm. (e)–(g) Partial colabeling of
calretinin in SADDG-EGFP expressing cells. Scale bar, 20 mm. (h)–(j) Partial colabeling of parvalbumin in SADDG-EGFP expressing cells. Scale bar,
20 mm. (k)–(m) Overlapping expression of GABAA R a1 in SADDG-EGFP labeled short axon cells. Scale bar, 15 mm. (n)–(p) SADDG-EGFP expressing cells
do not express tyrosine hydroxylase, and thus are not periglomerular. Dashed arrows point to a tyrosine hydroxylase positive cell not labeled by
SADDG-EGFP RV. Scale bar, 20 mm. (q)–(s) Expression of GFAP in occasional SADDG-EGFP labeled glial cells. Scale bar, 10 mm. Arrows point to
overlapping marker expression in SADDG-EGFP labeled cells. For all panels, GL, glomerular layer; EPL, external plexiform layer; ML, mitral cell layer;
GCL, granule cell layer.
doi:10.1371/journal.pone.0029423.g002
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Consistent with previous reports [24,63], presynaptic deep SACs

showed low frequency trains of action potentials with depolar-

izing current injections, whereas superficial SACs responded with

high frequency patterns of firing (Fig. 3e–f). It is unlikely that our

viral labeling identifies the full complement of functional

synapses onto postnatal-born granule cells due to the unknown

efficacy of particle transfer. In addition, it is likely that we

underestimated the width of a functional MOB cluster by not

including distal SAC axonal arbors in our characterization due to

the lack of fine resolution imaging in thick brain slices.

Altogether, these data reveal an unexpected and extensive local

connectivity between SACs and newly integrated granule cells in

olfactory bulb.

Odor Enrichment Increases SAC-GC Connectivity in the
Olfactory Bulb
To examine how sensory experience influences granule cell

microcircuits, we analyzed the patterns of connectivity between

granule cells and their presynaptic targets following olfactory

stimulation. We concentrated on synaptic input from SACs as

these cells were robustly labeled using RV monosynaptic tracing

(Figs. 2, 3). To provide a broad palette of odors for long-term

sensory enrichment, we designed a robotic system for continuous

cycled delivery of multiple odorants to freely exploring mice (see

Fig. S4 and methods). For odor enrichment, ROSA26-stopflox-

tdTomato mice were subjected to in vivo SVZ electroporation with

G-IRES-TVA-IRES-Cre and reared with their mothers for 30 d

in cages ported for odor delivery (Fig. S4). After the 30 d odor

stimulation period, SADDG-EGFP RV was injected into the

granule cell layer of the olfactory bulb, and 7 d later the olfactory

bulb was dissected and sectioned to count dual-labeled (yellow)

granule cells and their single-labeled (green) presynaptic partners

(Fig. 4a). Odor exposure induced a dramatic increase in the

number of SACs presynaptically coupled to new granule cells

compared to the non-odor enriched control group (Figs. 4b and

4c). Specifically, odor stimulation tripled the connectivity ratio of

SACs onto source GCs (control, 4.660.8; odor-enriched,

13.861.0; n = 3 bulbs from 3 mice, 6 SEM) (Fig. 4d). On

average, we counted 48614 doubly labeled source cells per bulb

in mice subjected to odor enrichment. The increase in labeled

Figure 3. Newborn Granule Cells Receive Extensive Input from Short Axon Cells. (a)–(c) An SADDG-EGFP labeled olfactory bulb
microcircuit in which pre- and postsynaptic cell types can be identified by differential reporter expression. Electroporated cells appear red due to Cre
activation of tdTomato expression. SADDG-EGFP infected source cells appear yellow due to co-expression of tdTomato and EGFP. Presynaptic
partners become trans-synaptically infected with SADDG-EGFP but lack Cre and thus appear green. The dashed arrow points to a mitral cell, MC.
Arrows point to short axon cells, SACs. Arrowheads indicate a source granule cell, GC. For (a)–(d): EPL, external plexiform layer; ML, mitral cell layer;
GCL, granule cell layer. (a) tdTomato expression (red) in recombined Cre-expressing granule cells. (b) SADDG-EGFP expression in a granule source cell
(arrowhead) and its presynaptic targets (arrows). (c) Merge of (a) and (b). Scale bar, 20 mm. (d) Examples of volume-rendered reconstructions showing
local short axon cell microcircuits with synaptic contacts onto newborn granule cells. The postsynaptic granule cells are shown in red, and the
presynaptic short axon cells are shown in green. Scale bar, 15 mm. (e)–(f) Examples of action potential responses to depolarizing current injection and
images of the short axon cell types observed to make synaptic contacts onto newborn granule cells. Shown are firing responses (left) and cellular
morphologies (right) of a representative deep short axon cell (e) and superficial short axon cell (f) with contacts onto a newborn granule cell. Scale
bars, 15 and 10 mm, respectively.
doi:10.1371/journal.pone.0029423.g003
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presynaptic partners was not simply a reflection of an increased

absolute number of new granule cells since the quantification

normalizes to the number of labeled granule cells. Thus, odor

enrichment enhances SAC connectivity onto new granule cells.

One possible explanation for the increased labeling of

presynaptic cells upon odor stimulation is that elevated neuronal

activity enhances RV transfer at existing synapses. To address

this issue, we prepared olfactory bulb explants from mice that had

been electroporated with a plasmid encoding the monosynaptic

tracing components, infected with the SADDG-EGFP RV, and

cultured in the presence of pharmacological agents to block

synaptic transmission. We found that blocking SNARE-depen-

dent neurotransmitter release, action potentials, or fast glutama-

tergic neurotransmission had no significant effect on the number

of monosynaptically labeled cells compared to untreated controls

(Fig. S5). Thus, trans-synaptic transfer of RV is insensitive to

activity manipulations over several days in vitro, and we conclude

that the odor-induced expansion in granule cell circuit labeling in

vivo (Figs. 4c and 4d) is attributable to changes in the number of

synaptic inputs per granule cell, rather than to alterations in the

effectiveness of RV transfer between neurons following olfactory

stimulation. Consistent with this notion, we observed morpho-

logical differences in the granule cells themselves. Doubly labeled

granule source cells in the bulbs of mice that were reared in odor

enriched environments showed a significant increase in the

number of dendritic protrusions (control, 8.460.7 per 25 mm

dendrite, n = 17 doubly labeled neurons from 3 mice; odor,

12.760.9; n = 18 doubly labeled neurons from 4 mice; p,0.01;

Figs. 5a and 5b). We also noted a significant increase in the

number of inhibitory synapses on the dendrites of source granule

cells by staining for the inhibitory synapse marker gephyrin

(control, 7.860.9 gephyrin clusters per 35 mm dendrite; odor,

11.961.3; n = 12 neurons from 3 bulbs each; p,0.02; Figs. 5c

and 5d). To restrict our analysis to synaptic changes in postnatal

born neurons, gephyrin-positive puncta were only counted if they

could be clearly colocalized within doubly labeled granule source

cells. Corresponding to enhanced SAC input onto granule cells

following odor enrichment, we also noted increased mitral cell

input (data not shown). Given these findings, we cannot rule out

that a portion of the gephyrin-positive puncta may indeed

correspond to increased centrifugal input from other inhibitory

cell types. Nonetheless, these data support increased presynaptic

input onto newborn neurons following odor enrichment, and

reveal activity-induced expansion of SAC circuitry.

SACs provide GABAergic inhibitory input onto MOB granule

cells [24,26,64]. We next tested whether the odor-induced increase

in both RV-labeled SACs presynaptic to GCs and gephyrin-

labeled inhibitory synapses onto GCs corresponds with changes in

functional synaptic connectivity. To this end, we performed whole-

cell patch clamp recordings in acute brain slices from labeled

MOB granule cells following in vivo postnatal electoporation and

measured miniature inhibitory postsynaptic currents (mIPSCs).

Consistent with the observed increase in gephyrin puncta

(Figs. 5c,d), odor stimulation significantly increased mIPSC

frequency in postnatal born granule cells (Fig. 6). Whereas mIPSC

amplitudes were similar between experimental groups (control,

15.261.4 pA; odor, 14.461.3 pA; Fig. 6b), mIPSC frequency was

increased in odor-exposed animals (control, 0.5560.06 Hz, n = 9

cells from 3 mice; odor, 0.89 Hz60.07, n= 10 cells from 4 mice,

p,0.01, unpaired t-test; Fig. 6a). Taken together, these data show

that sensory experience expands connectivity between short axon

cells and new granule cells, defining a novel cell type-specific

reorganization of olfactory circuits in response to odor-induced

activity.

Figure 4. Odor Enrichment Increases SAC Connectivity onto Granule Cells. (a) Schematic of experimental paradigm to track changes in
granule cell connectivity following odor enrichment. (b) Dual labeled region of a control olfactory bulb showing SADDG-EGFP expression in
presynaptic targets. Scale bar, 10 mm. (c) Dual labeled olfactory bulb from a mouse subjected to odor enrichment showing increased presynaptic
labeling (green). Arrows points to source granule cells (GC) which appear yellow due to co-expression of tdTomato and EGFP. Presynaptic partners
appear green. Scale bar, 10 mm. EPL, external plexiform layer; ML, mitral cell layer; GCL, granule cell layer. (d) Connectivity ratio between postsynaptic
granule cells and presynaptic short axon cells (SAC:GC) under control conditions or following odor enrichment. *p,0.01, Student’s t-test.
doi:10.1371/journal.pone.0029423.g004
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Discussion

In the present study we combined genetic circuit tracing and in

vivo labeling technologies to map monosynaptic connections made

between postnatal-born granule cells and their presynaptic input

neurons in mouse olfactory bulb. We found that, in addition to

previous known connections with mitral/tufted cells, postnatal-

born granule cells show extensive connectivity to short axon cells,

and these short axon cell inputs contribute to clustered

architecture in the olfactory bulb. In addition, we have found

that increased sensory experience in the form of odor stimulation

expands circuit connectivity made onto newborn granule cells.

This increase in synaptic connectivity manifests as a threefold

expansion in presynaptically coupled short axon cells, and is

accompanied by a corresponding increase of granule cell

inhibitory synapses and mIPSCs, as well as changes in dendritic

morphology.

Short Axon Cell Input onto Granule Cells
Implementing a highly selective in vivo genetic targeting

strategy, we investigated the synaptic patterns of connectivity

that are made between postnatal-born granule cells and their

presynaptic targets using engineered rabies virus for monosyn-

aptic circuit tracing. Our experimental design enabled us to

selectively target granule cells for rabies infection and propaga-

tion via in vivo electroporation [53], allowing direct determination

of the cell types presynaptic to targeted granule cells. Using this

approach, we observed discrete synaptic networks associated with

granule cell microcircuits. Surprisingly, the majority of neurons

making local presynaptic inputs onto postnatal-born granule cells

were identified as SACs in the granule cell and external plexiform

layers of the olfactory bulb.

Recent morphological and electrophysiological studies have

shown that SACs elaborate axonal arborizations throughout all

layers of the olfactory bulb, are presynaptic to resident granule

cells, and provide GABAergic input that modulates granule cell

firing [24,26,57]. Interestingly, the superficial SACs we have

identified in this study display morphological and electrophysio-

logical characteristics similar to Van Gehuchten neurons, which

express many of the same molecular markers as deep SACs, but

are thought to make contacts on both GCs and mitral cells, and

are axon-less [62–66]. These properties suggest that SACs provide

spatial refinement of local inhibitory circuits that sculpt the firing

properties of mitral cells. In other brain areas, GABAergic input

during neuronal development contributes to cell differentiation,

survival, and circuit maturation [67–71]. Given ongoing adult

neurogenesis, resident short axon cells in the mature olfactory bulb

may similarly contribute to dynamic remodeling, differentiation,

or survival of newly incorporated granule cells [43,72]. Thus, in

addition to providing inhibitory control over dendrodendritic

synapses in the mature circuit, SACs may regulate synaptic

integration of newborn granule cells through developmental

signaling mechanisms. In such a scenario, odor enrichment would

not only modify network activity in the bulb, but also promote

GABAergic input onto new GCs from select cohorts of SACs.

These odor networks may serve as hubs of activity that are more

favorable or attractive for newborn neuron synapse formation and

survival. More refined modes of circuit activity manipulations

Figure 5. Odor Stimulation Increases Synaptic Inputs onto Newborn Granule Cells. (a) Dendrites from granule cells in control or odor
exposed mice showing the increased number of spines following odor enrichment. Yellow arrows point to individual spines. Scale bar, 3 mm. (b) Data
represent means 6 SEM of spine number per 25 mm dendrite on granule cells in mice exposed to cycled odorants (odor) compared to non-odor
exposed controls. *p,0.001, Student’s t-test. (c) Gephyrin labeling to reveal inhibitory GABAergic synapses on control granule cell dendrites. Insets in
(c) and (d) show tdTomato expression in doubly labeled dendrites. Scale bars, 2 mm. (d) Increased number of gephyrin labeled inhibitory synapses
contacting dendrites of granule cells from mice subjected to odor enrichment.
doi:10.1371/journal.pone.0029423.g005

Tracing Postnatal-Born Neuron Connectivity

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e29423



using cell type-specific chemical genetic or optogenetic manipu-

lations will be required to fully address this notion [46].

Our experimental approach was effective in demarcating

presynaptic cell types known to make functional connections onto

postnatal-born granule cells, including centrifugal input from

olfactory cortex, mitral/tufted cells, and SACs. The extensive

connectivity made by SACs onto granule cells raises the question

of the identity of neurons that are presynaptic to SACs. What cell

types drive the inhibitory influence that SACs in turn relay onto

granule cells? Although it has been proposed that mitral cells could

serve this role [24], direct evidence in support of this model is

lacking. Future genetically targeted monosynaptic tracing would

be well suited to address this question. Another intriguing

observation was the viral labeling of certain sparse glial cells

found to be in direct physical contact with granule ‘‘source’’ cells.

Such labeling could be due to uptake of viral particles at neuron-

glia contacts. Indeed newborn neocortical neurons are known to

form transient gap junction contacts onto radial glia [73], and

functional neuron-glia synapses have been described [74,75].

Alternatively, glial labeling could arise by selective engulfment or

uptake of cell remnants during apoptosis or synapse pruning

[76,77]. It will be important for future studies to examine the

electrophysiological and ultrastructural nature of this neuron-glia

interaction.

Odor Experience Expands Olfactory Bulb Circuitry
SACs are born during embryonic development and are resident

prior to either sensory input or granule cell integration [35,78].

Thus, the clustered organization onto granule cells may reflect

developmental patterning events that occur during forebrain

maturation, or alternatively may represent local connectivity that

is elaborated or pruned in response to patterns of sensory

experience or glomerular activity. In our experimental system,

we observed clustered SAC inputs onto granule cells in both

unstimulated controls and odor-enriched groups. However, in

addition to the known enrichment of postnatal-born neurons that

become integrated into olfactory bulb circuits following odor

stimulation [7,31], we have found that the number of neurons

forming functional presynaptic inputs onto individual granule cells

is also dramatically increased following odor enrichment. This

increased level of presynaptic input onto postsynaptic granule

source cells was revealed by greater numbers of labeled

presynaptic targets, morphological changes in postsynaptic spine

structures and inhibitory scaffolds, as well as increased inhibitory

drive. The presence of more presynaptic inputs onto newborn

GCs does not necessarily imply a linear increase in cell-to-cell

connectivity. That is, in response to odor stimulation additional

presynaptic cell types could form synaptic connections without an

overall change in the absolute number of synapses onto a GC,

provided that the overall connectivity ratio for any given

presynaptic target cell decreases. Although the focus of our

analysis was on the increased number of inputs onto GCs by

SACs, we also observed an increase in the number of labeled

presynaptic mitral cells (data not shown). It is likely that the

changes we observe in cellular morphology and electrophysiolog-

ical output in response to odor enrichment reflects a composite of

Figure 6. Odor Enrichment Increases Inhibitory Drive Onto Newborn Granule Cells. (a)–(b) Quantitative analysis of (a) average frequency
and (b) amplitude of mIPSCs recorded from labeled granule cells in control and odor-enriched mice. Odor enrichment increased the frequency, but
not amplitude, of granule cell mIPSCs (control, n = 9; odor, n = 10, *p,0.01, unpaired t-test). (c) Representative voltage-clamp recordings of mIPSCs
from granule cells in acute MOB slices from control and odor-enriched mice.
doi:10.1371/journal.pone.0029423.g006
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expanded connectivity from not only the SACs, but also mitral

cells and centrifugal inputs. In the present study, we have shown

that presynaptic connectivity made onto newborn granule cells by

SACs is significantly increased in response to sensory stimulation,

suggesting they play a pivotal role in the capacity for postnatal-

born neurons to integrate within the intact brain. It will be

important for future studies to determine, in detail, how the

complete repertoire of presynaptic inputs is tuned by sensory

experience. Thus, in addition to increasing the number of newly

incorporated granule cells [4,7,31,79], sensory experience recruits

additional presynaptic elements that contact each granule cell.

Such augmented integration may contribute to the high degree of

cellular plasticity in this region of the brain and the improved

sensory discrimination observed upon odor enrichment [4].

Our slice explant experiments suggest that synaptic transfer of

RV is independent of action potentials, VAMP-mediated synaptic

release, and fast glutamatergic neurotransmission and thus reflect

changes in physical network connectivity. Indeed, odor stimulation

increased both spine density and inhibitory synapses on new

granule cells, consistent with an expansion of presynaptic input. It

remains to be determined if the circuit changes we observed in our

experimental paradigm result in long-term structural changes that

persist throughout the life of an animal, or represent transient

connections that become pruned or lost in the absence of

continued odor experience. Our current method of labeling

presynaptic inputs is irreversible, and it will be important for future

long-term tracing studies to examine the temporal course of

granule cell circuit plasticity in response to odor enrichment or

deprivation. Such an analysis may require new technologies for

repeated genetic labeling of presynaptic partners onto defined cell

populations over time.

Our present study has demonstrated the power of new genetic

technologies to define neural circuits in vivo. The olfactory system is

an unusually plastic region of the mammalian brain, capable of

continued addition and removal of cell cohorts, with accompanied

synapse and circuit remodeling into adulthood. Our results

indicate that sensory experience promotes the synaptic integration

of new neurons into extensive, spatially organized, cell type-

specific olfactory circuits, providing a tractable in vivo model to

better understand how activity influences complex neural circuit

formation. Moreover, adult-born neurons normally destined for

the olfactory bulb can reroute to lesion sites in the neocortex and

striatum [80,81], suggesting that the mechanisms of plasticity

innate to this renewable cell type may be harnessed for tissue

repair. More broadly, monosynaptic tracing in vivo provides a

powerful approach to map global connectivity of newly integrated

neurons during development, plasticity, and regeneration.

Methods

All experimental procedures and reagents used for this study

were approved by the Institutional Animal Care and Use

Committees at Baylor College of Medicine and Duke University

Medical Center.

Expression Plasmid Construction
To generate the pCAG-Rabies G-IRES-TVA construct, the

cDNA encoding rabies G was excised from pHCMV-RabiesG

[82] and cloned into a modified pCIG backbone [83]. For bi-

cistronic expression of the TVA receptor, the TVA cDNA from

pCMMP-TVA800 [84] was PCR amplified and cloned down-

stream of an IRES2 element (Clontech, Mountain View, CA) for

insertion 39 to rabies G. For tri-cistronic expression of Cre

recombinase, IRES-Cre [85] was inserted downstream of rabies

G-IRES-TVA to generate pCAG-rabies G-IRES-TVA-IRES-

Cre.

Generation of ROSA26-stopflox-tdTomato Mice
A 1.6 kb cDNA fragment encoding the tdTomato protein

(provided by Roger Tsien, UCSD) was PCR amplified and cloned

upstream of the polyA signal sequence of pCRII. The tdTomato-

polyA construct was verified by sequencing. We next constructed a

shuttle vector by first cloning the tdTomato-polyA cDNA into the

pBigT vector [86] and inserting the CAG promoter element using

PacI upstream of the loxP-stop-loxP sequence. We then moved the

CAG-loxP-stop-loxP-tdTomato-polyA cassette into the pROSA-

acceptor targeting plasmid as previously described [87] to generate

the ROSA-CAG-loxP-stop-loxP-tdTomato targeting vector. This

targeting construct was linearized and electroporated into E14 ES

cells [88]. Following selection, clones were picked and screened for

the recombined allele by southern blotting. For southern blots, ES

cell genomic DNA was digested with EcoRV, transferred, and

hybridized with an external probe to the ROSA26 locus. The

wildtype allele gave an 11.5 kb fragment, whereas a 5.7 kb band

detected the mutant allele. Using standard procedures [89],

positive ES cell clones were used to generate gene-targeted mice.

The resulting offspring were genotyped by PCR. To detect both

the wildtype and targeted alleles, the following PCR primers were

designed for multiplexing: Rosa/01, 59-CACTTGCTCTCC-

CAAAGTCG -39; Rosa/02, 59-TAGTCTAACTCGCGA-

CACTG -39; CAG/02, 59- GTTATGTAACGCGGAACTCC -

39. The wild type allele produced a ,560 bp fragment with Rosa/

01 and Rosa/02 primers, whereas the mutant allele was detected

by a ,300 bp fragment with Rosa/01 and CAG/02 primers.

In Vivo Electroporation and RV Labeling of Postnatal-
Born Granule Cells
Newborn mice were anesthetized by brief hypothermia. Then,

500 nl of 1 mg/ml endotoxin-free plasmid DNA was injected

unilaterally into the right lateral ventricle using a Hamilton syringe

with a custom beveled 33-gauge needle (Hamilton Company,

Reno, NV). Electroporation was carried out by applying multiple

voltage pulses across the width of the newborn heads, just posterior

to the eyes, using circular 7 mm tweezertrodes and a BTX ECM

830 square wave electroporator (Harvard Apparatus, Holliston,

MA). The electroporation parameters included 5 pulses of 150 V

for 50 ms each with 950 ms intervals. Immediately after the

procedure, electroporated mice were returned to a heated home

cage and monitored until recovery. At 30 d following the

electroporation procedure, 250 nl (66103 particles/ml) of pseudo-

typed SADDG-EGFP RV was injected into the granule cell layer

of the olfactory bulb using glass injection pipettes and a Nanoject

II (Drummund Scientific Company, Broomall, PA). We targeted

injection at the midpoint of the olfactory bulb 750 mm below the

surface of the brain. This yielded a volume of infection spanning

,300 mm in diameter6200 mm (see Fig. 1e). At 7 d post-infection,

olfactory bulbs were dissected and prepared for image analysis.

Electroporation and Organotypic Slice Cultures
Organotypic brain slices were prepared and cultured as

previously described [52] with minor modifications. For ex vivo

slices, dorsal telencephalic progenitors were labeled by injecting

pCAG-Rabies G-IRES-TVA-IRES-Cre plasmid DNA (0.1 mg/

ml) diluted in a 0.1% Fast Green solution into the lateral ventricles

of decapitated E14.5 ROSA26-stopflox-tdTomato mouse heads. The

solution was delivered with a small glass capillary pipette attached

to a Picospritzer II (General Valve Corp., Fairfield, NJ) using five
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15-psi pulses lasting 4 ms each. Electric potentials were generated

across intact heads using gold-coated electrodes attached to an

ECM 830 electroporator with the following parameters: four

100 ms 45 V pulses separated by 100 ms intervals. Immediately

after electroporation, brains were dissected, vibratome sectioned at

250 mm, and maintained as interface organotypic cultures prior to

fixation and immunohistochemical labeling. For acute olfactory

bulb slices, wildtype newborn mice were electroporated as

described above with a DNA plasmid encoding EF1a-tdTomato-

P2A-Rabies G-IRES-TVA-WPRE-pA. 10 d later, brains were

dissected, vibratome sectioned at 250 mm, infected with virus, and

maintained as interface organotypic cultures. The next day

pharmacological agents including one or more of TTX (1 mM,

Sigma), botulinum toxin A (50 nM, Sigma), tetanus toxin (50 nM,

Sigma), APV (50 mM, Tocris), or CNQX (50 mM, Tocris) were

added to the culture media and re-administered every 24 h for

5 d. Slices were then fixed, imaged, and counted for fluorescently

labeled cells.

Confocal Imaging and Immunohistochemistry
Experimental mice were sacrificed, perfused with 4% parafor-

maldehyde in phosphate buffered saline, dissected to remove intact

brains, and post-fixed for 1 h at 4uC. Brain tissue was embedded

in O.C.T and either sectioned to 12 mm on an upright Leica

cryostat, or 50–100 mm slices were cut on a cooled stage

microtome. Tissue sections were mounted on slides and imaged

using an upright Zeiss 510 scanning confocal microscope (Carl

Zeiss Inc.). For immunohistochemistry, sections were incubated

with blocking solution (10% normal goat serum, 2% BSA, 0.1%

Triton X-100 in PBS pH 7.4) and incubated at 4uC for 2 h.

Mouse monoclonal anti-calretinin (1:1500; Millipore, Temecula,

CA), rabbit polyclonal anti-GABAA a1 (1:1000; Covance), rabbit

polyclonal anti-GFAP (1:1500; Abcam, Cambridge, MA), guinea

pig polyclonal anti-parvalbumin (1:500, Millipore, Temecula, CA),

monoclonal anti-gephyrin (1:2000; Synaptic Systems, Germany),

or rabbit polyclonal anti-tyrosine hydroxylase (1:2000; Novus,

Littleton, CO) antibodies were diluted in blocking solution and

applied overnight at 4uC. The next day, sections were washed

3615 min each in PBS with 0.1% Triton X-100, followed by

2615 min in blocking solution. Secondary Alexa-633 goat anti-

rabbit IgG, Alexa-647 donkey anti-mouse, or Alexa-633 goat anti-

guinea pig antibodies (Invitrogen, Carlsbad, CA) were then added

to a final dilution of 1:500 and incubated for 4 h at 4uC. Sections

were then washed 4615 min each and mounted with DAPI-

containing Vectashield mounting medium (Vector Laboratories,

Burlingame, CA). Immunoreacted slides were imaged the same as

unprocessed tissues.

Double immunofluorescent labeling of BrdU and

GFP. Thin sections 14–16 mm were cut on an upright Leica

cryostat and collected on Superfrost Plus slides. The slides were

air dried for 1 h, rehydrated in PBS, and immersed in blocking

solution (described above) for 1 h at room temp. Rabbit anti-GFP

antibody (1:500, Molecular Probes, CA) was then applied to slides

in blocking solution overnight at 4uC. The next day, slides were

washed 365 min each in PBS, followed by application of anti-

rabbit Alexa 488 (1:500, Molecular Probes, CA) for 1 h at room

temp. Slides were then washed 365 min each, post-fixed in 4%

PFA for 15 min, rinsed in PBS 3 times 5 min each, immersed in

0.5N HCl at 55uC for 6 min, post-fixed again in 4% PFA for

10 min, then washed 365 min each in PBS. Slides were then

digested in a proteinase K solution (0.5 mg/ml) at 37uC for

4 min, post-fixed in 4% PFA for 15 min, then washed 365 min

each in PBS. After the last wash, slides were immersed in

blocking solution for 1 h at room temp, replaced with fresh

blocking solution containing mouse anti-BrdU (1:200, Chemicon)

and reacted overnight at 4uC. The next day, the slides were

washed 365 min each, rinsed with blocking solution, then

replaced with blocking solution containing anti-mouse Alexa

594 (1:500, Molecular Probes, CA) for 1 h at RT. Finally, slides

were washed 365 min each, coverslipped, and imaged for cell

counting.

3D fluorescent image reconstruction. To generate three-

dimensional images of RV labeled microcircuits in the olfactory

bulb, LSM image files comprising 50–75 z-stack image planes

from 150 mm cleared brain slices [61] spaced 1.5 mm apart were

processed using Amira segmentation and volume rendering

software (Visage Imaging, San Diego, CA). Image planes were

captured at 206 full field magnification. Isolated presynaptic

networks comprising identifiable single source granule cells and

their presynaptic SACs were reconstructed. After tracing all

EGFP expressing cell types and performing segmentation, EGFP

labeled mitral cells and occasional gial cells were masked from the

image reconstruction to offer better image resolution and

measurement of SAC networks. Due to the uncertainty of

origin for all of the fine neurites extending from the imaging field,

measurements of SAC networks was constrained to clearly

identifiable dendrites.

Analysis of dendritic protrusions. To quantify the number

of protrusions we observed on the dendrites of postnatal born

granule cells following odor enrichment, we sacrificed mice from

odor stimulated and control groups, performed intracardial

perfusion, then postfixed for 1 h in 4% paraformaldehyde in

PBS. Brain tissue was cryoprotected in 30% sucrose/PBS and

frozen in O.C.T. Thin sections (20 mm) were cut on a cryostat and

mounted on Superfrost Plus slides. Using an upright Zeiss 510

confocal microscope, doubly labeled (granule source cell) dendrites

were first identified extending from RV-infected granule cells

under 406 magnification. Imaging and analysis for protrusion

counts was performed in randomly sampled doubly labeled

dendrite segments 25 mm in length within the internal EPL.

Upper and lower boundaries of doubly labeled dendritic segments

were identified, and multiple confocal image planes were collected

250 nm apart to generate individual 40-plane, 10 mm thick z-stack

image files, so as to span the entire thickness of the dendrite. All

counts of dendritic protrusions were performed blind to the

experimental manipulation. The morphological criteria

established for analysis was that protrusion length (axis

perpendicular to dendritic shaft) was $ to protrusion width.

This was determined in 3 dimensions by manually visualizing each

plane of the serial z-stacks for each dendrite segment included in

analysis. Data were reported as 6 SEM of spine number per

25 mm dendrite on granule cells in mice exposed to cycled

odorants (odor) compared to non-odor exposed controls. p,0.001,

Student’s t-test. For display, representative images of dendritic

segments used for protrusion counts were generated as maximal Z-

stack projections.

Analysis of synaptic puncta. All counts of gephyrin positive

puncta were performed blind to the experimental condition. To

quantify changes in the number of synaptic puncta following odor

stimulation, we prepared virally-labeled olfactory bulb tissue as

described above for spine analysis. Briefly, 20 mm sections were cut

and mounted on slides. Using an upright Zeiss 510 confocal

microscope, doubly labeled dendrites were identified extending

from RV-infected granule cells under 406magnification. Upper

and lower boundaries of doubly labeled dendritic segments were

identified, and multiple confocal image planes were collected

250 nm apart to generate individual 40-plane, 10 mm thick z-stack

image files, so as to span the entire thickness of the dendrite.
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Gephyrin-positive puncta were identified and included in our

analysis only if they were clearly resolved within the doubly-

labeled granule source cells. This was determined by manually

visualizing each plane of the serial z-stacks for each dendrite

segment. Puncta were considered colocalized and counted if

gephyrin staining was observed in $2 independent image planes

through the doubly labeled dendrite. Gephyrin positive scaffolds

were excluded from analysis if they were$3 mm in any dimension.

Data were reported as 6 SEM of gephyrin positive puncta per

35 mm dendrite on granule cells in mice exposed to cycled

odorants (odor) compared to non-odor exposed controls. p,0.02,

Student’s t-test. For display, representative images of dendritic

segments used for gephyrin counts were generated as maximal Z-

stack projections.

Odor Enrichment
Odor enrichment was carried out using similar parameters as

previously described [90]. For controlled odor delivery, a liquid-

dispensing robot (model 7200; I & J Fisnar, Fair Lawn, NJ), was

programmed to cycle through 42 vials containing different odorant

mixtures continuously for 4 weeks following electroporation.

Odorants were presented for 5 s each, followed by a 1 min clean

air exposure at a flow rate of 0.2 L/min. Odorants were diluted in

mineral oil according to their individual vapor pressures to give a

nominal headspace concentration of 100 ppm. Further flow

diluted the odorants to a nominal final vapor phase concentration

of ,10 ppm. For mixture stimuli, compounds were diluted to the

same final delivery concentration.

Slice Electrophysiology
Olfactory bulb slice preparation. Mice were euthanized

with pentobarbital sodium (40 mg/kg, i.p.) and decapitated after

disappearance of corneal reflexes. Brains were rapidly removed

into ice-cold dissection buffer containing (in mM): 87 NaCl, 2.5

KCl, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, 10 dextrose, 1.3

ascorbic acid, 7 MgCl2, and 0.5 CaCl2, bubbled with 95% O2 and

5% CO2. In the same dissection buffer, the olfactory bulb was

isolated and sliced coronally at 250 mM using a vibrating

microtome (Leica VT1200S). Slices were allowed to recover for

20 min at 35uC in ACSF containing (in mM): 124 NaCl, 3 KCl,

1.25 Na2PO4, 26 NaHCO3, 1 MgCl2, 2 CaCl2, and 20 D-glucose

saturated with 95% O2 and 5% CO2, ,310 mOsm, pH ,7.25,

and kept at room temperature until use. Recordings were made in

a submersion chamber at 30–32uC in ACSF.

Whole cell recordings. Short axon cells or source newborn

granule cells were visually identified with IR-DIC optics and then

targeted for recordings through either EGFP, or dual EGFP and

tdTomato fluorescence, respectively. Patch pipettes were pulled

from thick-walled borosilicate glass with open tip resistances of 2–

7 MV and were filled with (in mM) 120 K-gluconate, 5 KCl, 2

MgCl2, 0.05 EGTA, 10 HEPES, 2 Mg-ATP, 0.4 Mg-GTP, 10

creatinine phosphate, pH 7.3, 280–290 mOsm, internal solution

for current clamp experiments to characterize evoked action

potential firing in short axon cells. For voltage clamp experiments

to record mIPSCs in labeled newborn granule cells, the internal

solution was (in mM) 89 CsMeS, 46 CsCl, 1 MgCl2, 0.16 CaCl2,

0.2 EGTA, 15 HEPES, 4 Na-ATP, 0.4 Na-GTP, 15 TEA-Cl, 14

creatinine phosphate, pH 7.3, 315 mOsm. For mIPSC recordings,

cells were clamped at 280 mV and bath perfused with 50 mM

APV, 50 mM CNQX, and 1 mM TTX. Cells were recorded using

a patch clamp amplifier (Multiclamp 700A, Molecular Devices),

and data were acquired and analyzed using pCLAMP 10 software

(Molecular Devices) and Minianalysis (Synaptosoft).

Supporting Information

Figure S1 A Conditional Reporter Allele Combined with

Monosynaptic Circuit Tracing. (a) Diagram of the ROSA26-

stopflox-tdTomato targeting vector. EcoRV digestion was used to

identify positive clones by southern blot analysis using a

radiolabeled probe to the indicated region. (b) Left, southern blot

analysis showing a positively targeted clone indicated by the

additional 5.7 kb band produced by introduction of an additional

EcoRV site into the targeting vector; right, PCR genotyping data

using forward (For) and reverse (Rev) primers as indicated in (a)

revealing the presence of the targeted knock-in allele in

heterozygous and homozygous ROSA26-stopflox-tdTomato mice. +,

wildtype; tgt, knock-in allele. (c) A cortical slice explant from a

ROSA26-stopflox-tdTomato mouse following electroporation of the

rabies-G-IRES-TVA-IRES-Cre construct into the lateral ventri-

cle. Note the high levels of uniform tdTomato expression following

Cre introduction. (d) SADDG-EGFP expression in the same slice

shown in (c) three days after RV application. (e) A merged

fluorescent image of the conditional tdTomato and SADDG-

EGFP expression shown in (c) and (d). Scale bar, 1 mm. (f–h) A

higher magnification view of a trans-synaptically labeled cortical

microcircuit. Scale bar, 10 mm. (f) Conditional tdTomato

expression in cortical neurons that received the G-IRES-TVA-

IRES-Cre expression construct. (g) SADDG-EGFP expression in a

local network of cortical cells trans-synaptically labeled by RV. (h)

A merged image showing the originally infected source cell

(yellow) and local presynaptic partners (green). (i) A merged image

of widespread reporter expression throughout the cortical layers of

a recombined and infected slice explant. Note the extensive

presynaptic labeling (green) from a limited number source cells

(yellow). Arrows identify labeled source cells; L5, layer 5. Scale

bar, 10 mm. Analysis of labeled cells was performed in n= 24 slices

from 12 embryos.

(TIF)

Figure S2 Electroporation Targets Postnatal Born Neu-

rons for Stable Plasmid Integration, but not Their Stem

Cell Progenitors. (a) Labeling strategy to determine if granule

cells born after electroporation (EP) harbor a stably integrated

expression construct. Newborn mice were electroporated with the

G-IRES-TVA-IRES-Cre construct and 14 d later treated with

BrdU in the cage water for an additional 14 d to label all neurons

born thereafter. 28 d after electroporation, mice were injected

with SADDG EGFP RV in the olfactory bulb, and subsequently

processed for dual BrdU and EGFP imaging 1 week later. (b)

Coronal slice through the olfactory bulb showing BrdU labeling.

(c) SADDG EGFP expression in the slice shown in (a). (d) Merged

image of (a) and (b). GL, glomerular layer; EPL, external plexiform

layer; MCL, mitral cell layer; GCL, granule cell layer. Scale bar,

50 mm. (e) Graph showing the lack of BrdU labeled neurons

expressing SADDG EGFP, indicating that stable expression of G-

IRES-TVA-IRES-Cre does not propagate in stem cell progenitors.
*p,0.01, n= 3 bulbs.

(TIF)

Figure S3 SADDG-EGFP Expression in Presynaptic

Inputs to Granule Cells. (a)–(e) Brain sections from mice

following intraventricular injection and electroporation with

rabies-G-IRES-TVA and subsequent infection in the granule cell

layer of the olfactory bulb 30 d later with SADDG-EGFP RV.

This approach ensures selective SADDG-EGFP RV infection of

newborn granule cells. (a) SADDG-EGFP viral vector expression

in anterior olfactory nucleus (AON) neurons indicating monosyn-

aptic transfer from infected OB granule cells. tdTomato expression
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can be observed in the olfactory bulb (OB). Boxed inset

corresponds to higher magnification view shown in (c). Scale

bar, 300 mm. (b) SADDG-EGFP viral vector expression in the

nucleus of the horizontal limb of the diagonal band nucleus (HDB)

and piriform cortex (PCTX) neurons. Left inset corresponds to

higher magnification view shown in (d), whereas right inset

corresponds to (e). Scale bar, 350 mm. (c) SADDG-EGFP

expression in AON neurons. (d) SADDG-EGFP expression in

neurons of the HDB. (e) SADDG-EGFP expression in piriform

cortex neurons. Scale bars (c)–(e), 50 mm.

(TIF)

Figure S4 System for Robotic Odor Delivery. (a) An image

of the robotic system designed for cycled forced air odorant

delivery. The robot was programmed to continually cycle through

multiple vials containing volatile odor compounds for 30 d

following electroporation. (b) The list of volatile odor compounds

that were repeatedly delivered to mice targeted for monosynaptic

tracing of olfactory bulb microcircuits.

(TIF)

Figure S5 Blockade of Synaptic Activity Does Not Affect

Rabies Virus Transfer. (a)–(e) Monosynaptic labeling in

cultured olfactory bulb slices made from mice electroporated in

vivo with a plasmid encoding tdTomato, Rabies G, and TVA,

followed by in vitro infection with SADDG-EGFP and treatment

with pharmacological blockers of synaptic activity. In all slice

conditions, granule cells susceptible to RV infection are labeled

red, source granule cells are labeled red and green (yellow, arrows),

and presynaptic input cells are labeled green. (a) Control slice

without pharmacological treatment. Slices treated with botulinum

toxin (BoTX, 50 nM) (b), tetanus toxin (TeTN, 50 nM) (c),

tetrodotoxin (TTX, 1 mM) (d), or 50 mMCNQX plus 50 mM APV

(e). Scale bar, 150 mm. (f) Graph summarizing the average number

of presynaptic input cells observed per labeled granule source cell.

Data represent means 6 SEM of all labeled presynaptic input cells

counted in 6 slices for each condition. No significant differences

were observed compared to control.

(TIF)
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