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Complex interactions between cellular systems and their surrounding

extracellular matrices are emerging as important mechanical regulators

of cell functions, such as proliferation, motility and cell death, and such

cellular systems are often characterized by pulsating actomyosin activities.

Here, using an active gel model, we numerically explore spontaneous flow

generation by activity pulses in the presence of a viscoelastic medium. The

results show that cross-talk between the activity-induced deformations of

the viscoelastic surroundings and the time-dependent response of the active

medium to these deformations can lead to the reversal of spontaneously gen-

erated active flows. We explain the mechanism behind this phenomenon

based on the interaction between the active flow and the viscoelastic

medium. We show the importance of relaxation time scales of both the poly-

mers and the active particles and provide a phase space over which such

spontaneous flow reversals can be observed. Our results suggest new exper-

iments investigating the role of controlled pulses of activity in living

systems ensnared in complex mircoenvironments.

1. Introduction
The study of biological systems as active materials has made tremendous

advances in the past decades [1–5]. The ‘activity’ describes the ability of living

systems to extract chemical energy from their surrounding environment and con-

vert it into mechanical work. This happens at the level of individual constituents

of the matter in, for example, sperm cells thrusting forwards by the rotation of

their flagella, bacterial self-propulsion, eukaryotic cells migrating within extra-

cellular networks and the cytoskeletal machinery inside cells that is powered by

motor proteins. As such, the overarching theme in various kinds of living

systems is the local activity generation that drives the entire system far from

thermodynamic equilibrium, resulting in the collective patterns of motion

observed in cellular tissues, bacterial colonies and sub-cellular flows [3,6,7].

The cross-talk between the mechanical micro-environment of living matter

and this intrinsic ability of living systems to actively generate self-sustained

motiongovernspattern formationandself-organization in importantbiological pro-

cesses including collective transport of sperm cells in confined tubes [8], shaping

bacterial biofilms [9,10], tissue regeneration [11] and sculpting organ development

[12]. Not only does the mechanical micro-environment provide geometrical

constraints for active materials [13], but it is also often endowed with viscoelastic

properties that allow for time-dependent responses to activity-induced stresses

and deformations [2,14]. Significant examples are the extracellular matrices, sur-

rounding cells and tissues that play a key role in cell death and proliferation, stem

cell differentiation, cancer migration and cell response to drugs [15]. It is thus
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essential to understand the dynamic interconnection between

the activity-induced stresses and the mechanical response of

the viscoelastic medium.

Indeed, several recent studies havemade the first attempts in

this direction, showing that accounting for viscoelastic effects of

the medium around living matter results in significant modifi-

cation in the patterns of motion generated by continuous

activity-induced stresses [16–22]. Importantly, however, in var-

ious biological contexts the activity generation is not constant

and continuous, but rather is characterized by changes in the

activity level and even activity pulses. Striking examples are the

well-documented actomyosin contractility pulses that power

the activity of epithelial cells and that have been shown to be

essential in tissue elongationduringdevelopment [23–25]. There-

fore, here we examine the impact of activity pulses on the

behaviour of activematter surrounded byaviscoelasticmedium.

In order to investigate the fundamental impact of activity

pulses, we employ a continuum model of active matter based

on the theory of active gels, which has proven very successful

in describing several aspects of the physics of active systems

including actomyosin dynamics at the cell cortex [5,26],

actomyosin-induced cell motility [27,28], actin retrograde

flows [29,30] and the topological characteristics of actin fila-

ments [31,32]. One important prediction of active gel models

is the emergence of spontaneous flow generation in a confined

active gel [33], which has been further experimentally validated

in different biological systems [34,35] and is a generic feature of

confined active materials. Here, we consider a simplified set-up

of an active gel confined within viscoelastic surroundings and

study the emergence of a spontaneous flow by introducing

activitypulses andvarying the relaxation timeof the viscoelastic

medium.We show that introducing activity pulses can result in

the reversal of the spontaneous flow direction accompanied by

the rearrangement of the orientation of active constituents. The

mechanistic basis for this reversal is explainedbasedon the feed-

back between the active flows and the viscoelastic deformation,

particularly in between activity pulses. We further provide a

simple model that reproduces the essential dynamics of the

flow reversal and shows its dependence on the relevant time

scales through a stability diagram.

The paper is organized as follows. In §2, we describe the

details of the simulation set-up and introduce the governing

equations of motion for the active gel, the surrounding visco-

elastic medium and the coupling between the two. The

results of the simulation together with the physical mechan-

ism of flow reversal and its associated phase space are

presented in §3. Finally, concluding remarks and a discussion

of the broader impacts of the results are provided in §4.

2. Methods
The active gel is simulated in two dimensions as a horizontal

stripe within a passive viscoelastic region, and is differentiated

via an indicator function ϕ whose value is ϕ = 1 in the active

region and ϕ = 0 in the passive viscoelastic region. The indicator

function ϕ is only defined to distinguish between the active and

passive regions and as such it is fixed, without any dynamical

evolution. Activity and viscoelasticity are incorporated by intro-

ducing a generic two-phase model of active matter in viscoelastic

domains [22,36], which is summarized below.

2.1. Active region
Following its success in describing the dynamics of the cell cyto-

skeleton, bacterial colonies and confluent cell layers, we use

liquid crystal nematohydrodynamics to model the active region

[4,37,38]. Within this framework, each active particle generates

a dipolar flow field with the axis along its direction of alignment.

The alignment direction is nematic, i.e. it has a head–tail sym-

metry. This can be captured at a coarse-grained level by the

order parameter tensor Q through its principal eigenvector,

which describes the nematic director orientation, and the associated

eigenvalue, which describes the degree of alignment.

The free energy fQ for two-phase nematic models follows the

Landau–De Gennes description

fQ ¼AQ
1

2
1�

h(f)

3

� �

Tr[Q2]�
h(f)

3
Tr[Q3]þ

h(f)

4
Tr[Q2]2

� �

þ
KQ

2
(rQ)2 þ L0(rf �Q �rf), (2:1)

where AQ describes the stability of the nematic or isotropic con-

figurations, with the former being favoured when η > 2.7. The

elastic coefficient KQ penalizes gradients in Q, and a positive

(negative) L0 enforces nematic orientation parallel (perpendicu-

lar) to the active–viscoelastic interface.

In the presence of a velocity field u, the nematic tensor is

evolved according to the equation @tQþ u � rQ ¼ SQ þ GQHQ,

where the left-hand side is the usual material advective

derivative. The co-rotational term SQ ¼ (jDþV)(Qþ I=3)þ

(Qþ I=3)(jD�V)� 2j(Qþ I=3) Tr [Qru] describes nematic

reorientation in response to both vorticity Ω and flow strain D,

with the tumbling parameter ξ determining whether the directors

align or tumble in the flow. ΓQ controls the speed of relaxation

towards the free energy minimum determined by the molecular

field HQ =−δfQ/δQ. The typical nematic relaxation time scale tn
when confined in a channel of width W is given by W2/ΓQ KQ

and the dynamical equation for Q can thus be rewritten as

@tQþ u �rQ ¼ SQ þ
W2

tnKQ

� �

HQ: (2:2)

Since individual components of the active region generate

dipolar forces with the axis along their direction of alignment,

the corresponding active stress is proportional to the orientation

tensor [1,30,37]

sactive ¼ �zfQ, (2:3)

such that gradients in the orientation field generate forces on the

fluid and drive active flows. The activity parameter, ζ, measures

the strength of the active driving.

2.2. Viscoelastic region
The passive region is endowed with viscoelasticity that is

described by the conformation tensor C, which characterizes

the polymer orientation by its principal eigenvector, and the

(square of the) polymer length, by its trace. Here we use the Old-

royd-B model to reproduce simple viscoelastic effects, i.e.

polymer relaxation is linear with respect to the elongation and

is governed by a single relaxation time τ [39].

The free energy associated with an Oldroyd fluid,

fC ¼
AC(1� f)(Tr[C� I]� ln detC)

2
, (2:4)

governs the polymer relaxation to its unstretched equilibriumC = I

(where I is the identity tensor). Here, the modulus of elasticity

AC = ν/τ is the ratio of the polymer contribution to viscosity ν to

the polymer relaxation time τ. The corresponding molecular field

HC =−δfC/δC appears in the dynamical equation governing the

evolution of C: @tCþ u �rC ¼ SC þ GC[HCCþ C`H`C ], where `

denotes the matrix transpose. Similarly to equation (2.2) for the

orientation tensorQ, the evolution of C accounts for the advection

of the polymer conformation C, its response to velocity gradients

through SC ¼ CV�VCþ CDþD`C` and its relaxation to
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equilibrium at a rate ΓC = ν−1. The viscoelastic time scale is clearly

seen when this equation of motion is simplified as

@tCþ u � rC ¼ SC �
1

t
(1� f)(C� I): (2:5)

The polymer contribution to the stress, within the assumptions of

the Oldroyd-B model, is

spolymer ¼ AC(1� f)(C� I), (2:6)

where the factor 1− ϕ ensures that the polymer stress only acts

within the passive region (where ϕ = 0).

2.3. Coupling and simulation details
The active and viscoelastic regions interact with each other

through the incompressible velocity field u, which obeys the

Cauchy momentum equation

r(@tuþ u � ru) ¼ �rpþr � s, (r �u ¼ 0), (2:7)

where ρ is the fluid density, p is the pressure and σ is the sum of

viscous, capillary, elastic, active (equation (2.3)) and polymer

(equation (2.6)) stresses. The other stresses take the forms [22]:

sviscous ¼ 2nD, scapillary ¼ (f � fm)I� Kf(rf)� (rf)� 2L0(rf

�Q �rf) and selastic ¼ �jHQ(Qþ 1
3 I)� j(Qþ 1

3 I)HQ þ 2j

Tr½QHQ�ðQþ 1=3IÞ þQHQ �HQQ� KQðrQÞ : ðrQÞ: Here, f is

the total free energy, μ =−δf/δϕ is the molecular potential and Kf

is a parameter controlling the active–polymeric interface width.

Both the active and viscoelastic regions exert stresses on the fluid,

and the resulting velocity field couples the two regions through

advective and co-rotational terms in equations (2.2) and (2.5).

Equations (2.2), (2.5) and (2.7) are evolved using a hybrid

lattice Boltzmann method [40,41]. The simulation domain has

dimensions L ×H, is periodic in the x-direction and has no-

slip boundary conditions in the y-direction (see schematic in

figure 1a), as in typical experimental and numerical studies of

active matter (e.g. [14]). The dynamics is not affected by the

length of the channel L because of periodicity; our results here

use L = 10,H = 100. Thewidth of the active region is fixed atW = 20.

In order to obtain a unidirectional flow, the parameters for

the active region are chosen to be AQ = 1.0 and KQ = 0.2, and

we use ξ = 0.7 corresponding to the flow-aligning regime as pre-

vious studies of confined active nematics have shown that a

unidirectional shear-like flow of active nematics in a confined

channel can only be achieved for flow alignment [42]. η(ϕ) is

chosen such that η = 2.95 within the active region ϕ = 1 [42],

while the passive viscoelastic region, ϕ = 0, is in the isotropic
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Figure 1. Schematic of the problem set-up and flow reversal mechanism. (a) The simulation domain indicating the active region (gold) with black nematic directors
and the viscoelastic region (silver) with polymers in grey. A steady shear-like flow in both regions is shown in red (ζ = 0.011, τ = 5000, tn = 4000). (b)–(d ) The
mechanism behind the flow reversal. (b) The flow stretches the polymers and orients both polymers and nematic directors (θn) to the Leslie angle. (c) When activity
is turned off, the polymers relax and create a weaker but reversed flow, which reorients the directors. (d ) When activity resumes, the directors either return to their
original steady state or reverse direction depending on the balance between their orientation and the residual polymer stress.
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phase with η < 2.7. The polymer contribution to viscosity is fixed

at ν = 1 and AC = 1/τ. The values of the flow parameters are ρ = 1,

p = 0.25, and the Newtonian contribution to the viscosity is νflow-

= 2/3. We also enforce weak nematic anchoring at the boundary,

L0 = 0.05, for stability. This was verified to have no qualitative

effect on the flow reversal dynamics.

Each simulation begins with equilibrated polymers C = I and

nematic directors with small random perturbations about the

x-axis. Active stresses are applied until the system establishes a

steady-state, unidirectional flow, after which the activity is tempor-

arily turned off at toff = 105 for a duration of d = ton− toff time steps.

The equations are solved until the flow is re-established.

3. Results
When activity is turned off at a time toff, and turned backon at a

time ton, the flow is re-established in the same or, surprisingly,

in the opposite direction. This is not a random choice but

depends sensitively on the parameters setting the relevant

nematic and viscoelastic time scales. For example, the movie

provided as electronic supplementary material shows several

successive reversals in the direction of the velocity. We first

explain how this dependence comes about, and then present

a simple model which illustrates the underlying physics. The

mechanism of the flow reversal is summarized in figure 1b–d.

Figure 2 shows the variation of the mean velocity in the

channel, 〈ux〉, and the angle θn that the mean director field

at the interface makes with the channel axis as a function

of time for selected simulation parameters. Consider first

figure 2a where there are no polymers in the passive region.

Activity is switched on at time t = 0. This drives the active

nematic instability and active stresses resulting from gradi-

ents in the director field set up a linear flow along the

stripe. The spontaneous flow is stabilized by the channel

interfaces, and the resulting steady-state flow profile corre-

sponds to directors aligning at the Leslie angle to the local

shear [43,44]. When the activity is switched off the flow
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Figure 2. Emergence of spontaneous flow reversals. (Top) The mean velocity 〈ux〉act in the active stripe, (middle) the nematic angle at the interface θn as a function
of time for the full simulations (tn = 4000) and (bottom) the nematic angle for the simplified model (tn = 150). (a) Black: no polymers, activity switching time d =
104; (b) red: activity switching time d = 104, polymer relaxation time τ = 104; (c) dashed: activity switching time d = 5000, polymer relaxation time τ = 104; (d )
blue: activity switching time d = 5000, polymer relaxation time τ = 3000. The cyan curves show the behaviour in the absence of reactivation. (e) Red: activity
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decays faster than the relaxation time of the nematic director.

In the absence of polymers, if activity is switched back on

before the end of the decay the residual director rotation

ensures that the flow re-starts in the same direction as before.

The presence of polymers changes the response of flow to

activity pulses. In figure 2b–d, the passive medium is visco-

elastic and the shear flow induced by the activity stretches

the polymers, thus storing energy. The initial build-up of the

flow is similar to the no polymer case, but slower, as work is

done to stretch the polymers, and the steady-state value of

the flow in the channel is lower because the polymers impose

stresses that oppose the flow. This also means that after toff
the decays of the velocity and director fields to equilibrium

are faster and, in particular, stress imposed by the relaxation

of the surrounding polymers may be strong enough to reverse

the flow in the channel.

For example in figure 2b both the residual flow and

the director have reversed at ton, making a velocity

reversal inevitable. By comparison, for the same polymer

relaxation time but faster switching of activity in figure 2c,

at ton the director distortion is still just positive but the

velocity has been reversed by the polymer stresses. The

activity tries to rebuild the flow in the original direction

whereas the remaining elastic energy stored in the surround-

ing polymers pushes the fluid in the opposite direction.

The flow slowly reverses as the instability is ( just) overcome

by the residual polymer stresses. The director distortion

reverses and the velocity slowly increases until it eventually

attains its steady-state value, but in the opposite direction.

By contrast, figure 2d shows an example of faster polymer

relaxation, compared with figure 2c, where the polymer

stress is not sufficiently strong to cause flow re-orientation

and both nematic directors and mean velocity regain their

original direction.

Such a flow reversal mechanism that depends on stored

polymer stresses and residual director orientation implies

that the relevant time scales here are the polymer relaxation

time τ, the nematic relaxation time tn and the period of inac-

tivity d = ton− toff. To further explain the phenomenon of flow

reversal and highlight the competition between these varying

time scales, we construct simplified, space-independent,

dynamic equations for the evolution of the active nematic

and polymeric particles.

To this end, we consider the dynamics of the alignment

for the angles θn, θp formed by the active nematic directors

and the polymer directors, respectively, with respect to the

direction of a simple shear flow, u ¼ ( _gy, 0) [45],

dun
dt

¼ _gjn cos 2un �
1

tn
un (3:1)

and

dup
dt

¼ _gjp cos 2up �
1

t
up: (3:2)

These equations are approximations of the orientation of rod-

like particles with tumbling parameters ξn, ξp in response to a

shear flow with rate _g. In the absence of shear, _g ¼ 0, the

angles will relax exponentially to zero.

A time-dependent shear rate _g couples the two equations

and can be determined from balancing the viscous stress,

σviscous = 2νflowD, with the active (equation (2.3)) and polymer

(equation (2.6)) stresses. Solving for the off-diagonal term of

the rate of strain tensor D and constructing the tensors

Qij = ninj− δij/2 and Cij = pipj from the unit directors -

n ¼ ( cos un, sin un) (and analogously for p), we obtain the

simple time-dependent shear

_g ¼ Dxy ¼
1

2nflow
zQxy �

n

t
Cxy

� �

¼
1

4nflow
z sin 2un �

n

t
sin 2up

� �

, (3:3)

in terms of the nematic and polymer directors. For simplicity,

we fix νflow = 2/3, ν = 1 and set ξn = 1.1 and ξp = 0.275 and take

initial conditions θn = θp = 0.01.

It is clear from (3.3) that, when the activity ζ = 0 is turned

off, the flow reverses in the opposite direction owing to the

presence of the polymers. Moreover, a simulation of this sim-

pler set of equations features the same essential reason for the

reversal as in the full simulations: there exists sufficient poly-

mer stress to reorient the nematics during the period between

activity pulses. Figure 2e–g shows that the nematic angle θn

exhibits trajectories similar to the result from the full

equations of motion, figure 2b–d. The reversed flow can

drive the nematic angle negative during the period of inactiv-

ity, which is a sufficient condition for flow reversal. Moreover,

even if θn remains positive when the activity is switched on,

the polymer stress can still overcome the activity (i.e. ζ sin

2θn < ν sin 2θp/τ) and continue to drive the nematic director

to reverse direction.

Using the simple model, we examined the phase space of

flow reversal for varying time scales of nematic and polymer

relaxations, tn and τ, respectively, as well as the activity

switching time d = ton − toff (figure 3a). In particular, we

observe that the reversal can be ensured if three dimension-

less ratios are sufficiently large:

(i) d/tn: nematic directors have enough time to relax.

(ii) τ/tn: polymers retain enough energy to reverse

nematic orientation when θn ≈ 0.

(iii) dt=t2n: residual polymer stress at the moment of reacti-

vation can help reverse nematic orientation if

condition (i) alone is insufficient.

These three constraints are illustrated as dashed black

lines on the flow reversal phase diagram in the d/tn−τ/tn
phase space and clearly distinguish the parameter space

with (blue markers) and without (red markers) flow reversal.

We also plot, in figure 3b, the similar phase diagram

obtained from full simulations of the active gel surrounded

by a viscoelastic medium showing close qualitative agreement

with the simple model, and indicating that the parameter

region for flow reversal is suitably captured by these three con-

straints. The quantitative difference between the simplified

model and the full simulations is expected because in the sim-

plified model there is no space dependence and we only

account for polymer orientation in the polymer stress, whereas

the full simulations are space dependent and have a polymer

stress (equation (2.6)) that depends on polymer elongation,

which is higher when τ is larger. Notwithstanding these limit-

ations, the close qualitative agreement of the angle profiles and

the phase diagram obtained from the simple model with those

from the full hydrodynamic simulations of spatio-temporal

evolution of the active nematics and polymeric fluids confirms

the importance of the time-scale constraints for the flow rever-

sal and the underlying physics of stress balance during the

period of inactivity.

royalsocietypublishing.org/journal/rsif
J.
R.
Soc.

Interface
18:

20210100

5



4. Conclusion
In this article, we present how, in the absence of any external

forcing, activity pulses in living matter interacting with a

viscoelastic environment can spontaneously generate flow

reversals. Based on a well-documented active gel theory, a

spontaneous steady flow of active matter is achieved even

while in contact with polymer-laden surroundings. This

flow stretches the polymers near the interface, which, in

between periods of activity, relax and produce a weak back-

flow that may determine the flow direction upon

resumption of the active driving. While this work is done

in two dimensions, we expect a similar phenomenology to

occur in a three-dimensional set-up.

The well-established spontaneous flow generation of

confined active matter relies on the level of activity. Here the

spontaneous flow reversals hinge on several time scales: the

polymer relaxation time, the interval between activity pulses

and the relaxation dynamics of nematic active matter, as

shown in the phase diagram. Indeed the need for sufficient

polymer stretching and feedback as well as quick nematic reor-

dering highlight the time-dependent viscoelastic response in

between activity pulses. Our work emphasizes not only the

importance of accounting for a viscoelastic environment but

also the involvement of several time scales arising from both

active matter and its surroundings.

Flow reversals have recently been observed in Escherichia

coli bacteria swimming in DNA polymer solutions [14] in the

absence of pulsatile activity. Our theoretical work invites sev-

eral experiments to be performed in order to confirm our

mechanistic predictions, provide a possiblemapping to the par-

ameters and time scales, and deepen our understanding of the

role of a viscoelastic environment in the dynamics of living

matter. For instance, cells confined in a monolayer have been

shown to display nematic behaviour and exhibit unidirectional

flows in channels [46]. They could be repeatedly subjected to

cell inhibitors or uncouplers [47–49] to simulate gaps between

activity pulses. Another option would be to regulate the move-

ment of a colony of elongated bacteria by utilizing phototactic

methods [50]. Our result thus holds potential in understanding

mechanotaxis and motivating the use of viscoelastic media to

control living matter at microscopic scales.
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