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Abstract— We present an approach for multi-person activity
recognition in an office environment with simultaneous tracking
of users on the room-level. Audio as well as video features,
gathered from a simple setup, are used to employ a multi-
level Hidden Markov Model (HMM) framework. Evaluation
on unconstrained real world data recorded on several days in
five offices with one camera and one microphone per room
is presented for activity recognition. We track the users by
a distributed camera network which has to cope with blind
gaps between different camera views. For location estimation,
we apply a Bayesian filter on top of the activity recognition
results. Results on a dedicated tracking sequence of one hour
length show the algorithm’s performance.

I. INTRODUCTION

Activity Recognition has been a very active area of re-

search in the past few years. The scope of work reaches

from pure surveillance oriented tasks to applications in smart

rooms. Those allow to analyze human interactions and to

facilitate them with further services. For instance, it can be

inferred how available users are and how convenient it is

for them to be interrupted. Danninger et al. [1] for example

show a scenario where phone calls and messages are routed

according to the user’s availability. Moreover, user intentions

can be understood and interactions within groups can be

interpreted.

A. Previous work

Previous work in the area of activity recognition is often

embedded in a surveillance task. Oliver et al. [2] for example

present an approach where coupled Hidden Markov Models

are used to recognize human interactions in synthetic pedes-

trian scenes. Similar research was conducted by Stauffer and

Grimson [3] who propose a real-time tracking algorithm and

learn a hierarchy of classifiers to recognize usual trajectories;

based on those unusual events are detected. Moreover, Brand

and Kettnacker [4] propose to apply entropy minimization in

order to obtain the parameters of Hidden Markov Models.

They prove their algorithm to work well on a surveillance

task where they monitor a junction for unusual events. Fur-

thermore, a simple one person office activity detection based

on video features under constant conditions is presented.

In [5], Ivanov and Bobick augment context free-grammars

with probabilities yielding a stochastic parsing framework to

recognize visual activities where events on the lower level are

recognized by probabilistic methods. This real-time system

masters a gesture recognition task as well as a parking lot

surveillance domain. Though, the most similar to our work is

presented by Oliver et al. [6] who exploit multi-layer HMMs

for a one person office activity recognition system. They

not only use audio and video information but also computer

interaction to detect what is happening in front of the user’s

computer. Their work differs from ours by the fact that their

system works under stable lighting conditions where color

based features are feasible. Moreover, only a small part of the

room is captured and hence face recognizers can be applied

to determine the number of people easily. Other important

contributions are made by Zhang and McCowan et al. [7], [8]

who address the problem of meeting understanding with a

multi-layered HMM approach. In contrast to our setup, each

user is equipped with a lapel microphone and additionally

a microphone array is in use. The focus on the work is to

explore several ways of coupling video and audio streams

with different model setups where data is gathered from

scripted meetings.

For the tracking subproblem most similar work has been

done based on RFID sensors or similar tags. Wilson and

Atkeson [9] for example equipped a home for elderly people

with binary sensors and tracked them based on the readings

from sensors such as pressure mats. Moreover, occupants

were attached a motion sensor and activity recognition

yielded whether they were moving or not. Finally, Schulz

et al. [10] attach infrared badges to persons and use laser

range-finders to simultaneously identify and track persons in

an indoor environment.

B. System overview

The system presented here aims to understand situations

that take place in a multi-person office environment. It

employs features (section II) that are captured from audio

and video sources and applies a multi-level HMM framework

(section III) to recognize activities. Using video, events such

as A PERSON AT DESK A or PERSON LEAVING OFFICE B are

recognized. Using audio, speech and silence are classified.

The higher level fuses both modalities to a more semantic

description of what is happening: MEETINGS, DISCUS-

SIONS, PAPERWORK, PHONE CALLS or NOBODY PRESENT

are the office situations that are to be distinguished by our

system. Finally, a room-level tracking based on Bayesian

filtering (section IV) yields the identities of the persons who

are involved. For the evaluation (section V) it is essential

to note that we recorded quite challenging, unconstrained
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Fig. 2. Camera views of the 5 monitored rooms; For the office rooms note that big windows cause varying lighting conditions.

Fig. 1. Audio and video sensors in five monitored office rooms. Except
for the lab, each room is equipped with one wide-angle cam and one omni-
directional microphone.

real world data for several days, where illumination varied

from artificial light to diffuse daylight. Figure 1 depicts the

domain’s layout and the distribution of sensors. Note that the

hallway is not in the view of any camera.

II. FEATURES

The selection of appropriate features is crucial to any

kind of classification or recognition algorithm. For the audio

signal we have to deal with various noise sources such as

moving chairs or fan noise caused by computers. Addition-

ally, the quality of the signal is dependent on the location of

the speaker. There are also two offices which are connected

through a door which is open for most of the time, such that

a microphone possibly captures speech from the neighboring

office in case the signal is loud enough.

Video processing is complicated by the varying lighting con-

ditions. This means, that any kind of illumination dependent

cue such as histogram backprojection to identify skin color is

inappropriate for this kind of problem. Moreover, persons are

perceived from multiple views. Depending on their position

we get either frontal, side or even back views of their head,

so that face detectors can hardly be employed to decide about

the number of persons in the room.

A. Audio features

As we only want to separate spoken conversation from

ambient noise, we use the well known audio features signal

power and zero crossing rate. In addition, we employ an au-

tocorrelation based method by Cheveignè and Kawahara [11]

to extract pitch. As it was chosen to process the video

stream with a frequency of 1Hz, the audio features had

to be downsampled. This was accomplished by taking the

mean and variance of each feature described above over one

Fig. 3. Left: Foreground segmentation of example input image 2(b) (the
higher the distance to the background model the more intense is the green
channel); Right: Optical flow extraction for a person entering an office
(displacement is magnified for better demonstration)

second. The resulting six dimensional vector oa
t serves as

input vector to the audio classification HMMs.

B. Video features

Since color dependent segmentation algorithms are prone

to varying lighting conditions which result from the large

windows, it was decided to use motion as main indicator

for foreground regions. In order to do so, the color image

is converted to grey scale and the segmentation algorithm

described next is applied.

1) Segmentation: Due to the illumination changes a fixed

background model can not be used. Furthermore, purely

taking difference images of successive frames is not de-

sireable, as this is not capable of detecting little motion

well. Consequently, the background model bg(i) needs to

be adapted for each pixel location i ∈ N
2 according to the

learning rule:

bgt(i) = α · bgt−1(i) + (1 − α) · pt(i)

Here bgt denotes the background model at time t, pt the

current image and α the learning rate. To decide whether

a pixel belongs to the foreground fg a threshold m on the

difference image between background and input image is

used:

fgt(i) =

{

0 if |pt(i) − bgt−1(i)| ≤ m

|pt(i) − bgt−1(i)| if |pt(i) − bgt−1(i)| > m

All pixels i with fgt(i) > 0 belong to foreground regions.

Figure 3 shows an example segmentation.

2) Optical Flow: Good features to track are located using

the criterion by Shi and Tomasi [12]. The feature’s displace-

ment then can be obtained with the feature tracker by Lucas

and Kanade [13] of which a pyramidical implementation by

Bouguet is used. As sometimes outliers are returned, the



(a) (b)

(c) (d)

Fig. 4. Images (a) - (c) illustrate Gaussian mixture components (within
3 standard deviations) obtained for areas where users often sit, image (d)
shows all Gaussians resulting from data driven clustering

median values of x and y displacement will be used for

further processing. Figure 3 shows an example where the

obtained optical flow is depicted with arrows.

C. Local feature model

In order to describe an action, local features are to be

considered, whereas other parts of the image are irrelevant.

Moreover, HMMs can not be applied reasonably with an

entire image as input vector and so dimensionality has

to be reduced. Hence, a local description needs to be

found and meaningful image areas have to be detected.

We consider those to be the k components of a mixture

of Gaussians learned from the 2D location of foreground

pixels. To learn the distribution’s hidden parameters Θ =
{Σ0, µ0, w0, . . . ,Σk−1, µk−1, wk−1}, it is important that the

training set for the EM algorithm contains about the same

number of frames for each action that is supposed to be

detected later on. Here Σi, µi and wi denote the covariance

matrix, the mean and the ith mixture component’s weight.

Figure 4 illustrates the results that were obtained for one

of the offices. For all further steps the video features are

computed locally for each Gaussian i within all pixels Mi =
{m ∈ N

2|(m − µi)
T Σ−1

i (m − µi) ≤ 3} which have a

Mahalanobis distance of less than three. The video feature

vector finally consists of:

• The cumulated foreground mass:

cdi =

|Mi|
∑

j=1

fgt(mj)

• The joint probability from the local feature model on

all foreground pixels Fi = Mi∩{m ∈ N
2|fgt(m) > 0}

restricted to mixture component i:

jpi =

|Fi|
∏

j=1

1

2π|Σi|1/2
e−

1

2
(xj−µi)

T Σ−1

i
(xj−µi)

Fig. 5. Structure of the multi-layer HMM for a single office. The lower
level recognizes events whereas the higher level represents room situations

• The optical flow’s median in x and y direction (ofx
i and

of
y
i )

Accordingly, the full video feature vector, that is fed into the

lowest level HMM, consists of k · 4 components.

ov
t = {cd0, jp0, of

x
0 , of

y
0 , . . . , cdk−1, jpk−1, of

x
k−1, of

y
k−1}

T

To denote an interval of observations from t1 to t2 the

notations ov
t1:t2 and oa

t1:t2 will be used.

III. ACTIVITY RECOGNITION

HMMs [14] have been proven to be a suitable framework

for various activity recognition tasks. Nevertheless, for a high

dimensional feature space, a lot of training data is needed

to estimate the hidden parameters if all features are fed into

the same so called early integration HMM.

A. Multi-layered HMMs

Decomposing the parameter space into several layers

reduces the amount of training data required and gives a

better intuition on the learning process. The basic idea of a

layered HMM is that HMM layer l+1 is connected to layer l

by using its output probabilities as observations. Each layer

can be trained on labeled data on its own by employing the

well known Baum-Welch parameter estimation algorithm.

Moreover, the inference interval il can be chosen individually

for each layer.

Our approach (cf. figure 5) uses two sets of HMMs on the

lowest level. The first set called V 1 = {V 1
0 , . . . V 1

N−1} is

trained to recognize activities from the video stream based

on the current observations ov
t−i1:t

, whereas the second one

denoted as A1 = {A1
0, A

1
1} is used to distinguish between

spoken conversation and ambient noise based on oa
t−i1:t

.

The inferential outputs P (ov
t−i1:t

|V 1
i ) and P (oa

t−i1:t
|A1

j ) are

then passed on to the set of second level HMMs S2 =
{S2

0 , . . . , S2
M−1} which recognize the situation that is taking

place in an office.

B. Model Training and Inference

Various HMMs are trained dependent on the action to be

recognized:



• For each room a set of two ergodic HMMs was trained

to separate ambient noise from speech. As inferential

output
P (oa

t−i1:t|A
1

0
=Speech)

P (oa
t−i1:t

|A1

1
=Ambient)

was passed on.

• Moreover, several ergodic HMMs V 1 are trained with

a fixed inference length to detect persons in a room’s

meaningful areas. For some of them another HMM was

trained to recognize a visitor sitting next to them, which

typically resulted in more motion.

• To improve separability yet another HMM V i was

trained with data that showed counterexamples of the

activity to be recognized. Here again the ratio Rv
i,t =

P (ov
t−i1:t|V

1

i )

P (ov
t−i1:t

|V
1

i )
was passed on to the second level.

• Finally, HMMs with a left-right topology were trained

in order to recognize persons leaving or entering an

office. For those, the mean training example length was

used as inference interval.

Feature selection on the video features was necessary to

avoid a priori dependences among different activities. Rele-

vant features for each activity were determined by taking ex-

ample sequences where activities were observed individually.

Only features from those foreground mixture components

were selected, which were necessary to cover at least 80%

of all foreground pixels.

On the second level situations like NOBODY IN THE OFFICE,

PHONE CALL, MEETING, DISCUSSION and PAPERWORK

were trained on the same feature vector consisting of the

output probabilities of the first level. The situation with the

maximum output probability on the second level constitutes

the final activity recognition result.

IV. ROOM-LEVEL TRACKING

It is not only important to know what a person is doing,

but also where he currently is. This motivates to track

the users across several rooms by using the information

gathered by the first level HMMs. In general, this problem

can be described as a dynamic Bayes net where events are

observed which depend on real state and data association.

Our approach exploits a Bayes filter framework [15], where

the state vector xt contains the belief that a certain person

is in a certain room or out of sight. A separate tracker for

each person is run and data association is performed in two

stages: A standard nearest neighbor filter is applied to restrict

the observations zt to states close to the highest belief state.

Moreover, the observation model is designed in a way that

persons can only be observed at certain places depending on

the room. The graph in figure 6 depicts the state space and

the possible transitions.

A. Bayes filter approach

In general, a Bayes filter can be expressed as:

p(Xt = xt|zt) = kt · p(zt|Xt = xt)·
∑

x′∈X

p(Xt = xt|Xt−1 = x′)p(Xt−1 = x′|zt−1)

where p(Xt = xt|Xt−1 = x′) denotes the dynamic model

and p(zt|Xt = xt) the observation model. As the state space

Fig. 6. State space for the room-level tracking problem; one dedicated
network for each person was being employed; self transitions are not
depicted for the sake of readability

consisting of the set of possible locations is quite small, the

sum can in this case be evaluated analytically. The transition

probabilities for the dynamic model can be learned from

labeled data. The observation model, which partially solves

the data association problem, shall be described in more

detail.

B. Observation model

The first level outputs Rv
i,t are regarded as binary sensors

after taking a threshold mi. Moreover, for each person a

priori the sensor h is known where he normally works.

Therefore, the remaining seats vsk
i can be taken by a visitor.

Hence, the observation model can be distinguished into the

home state hs and visiting states {vs0, . . . vsn} and their

respective entering/leaving states. For the home state the

observation probability p(zt|Xt = hs) becomes 1 if a seat

event at sensor h is triggered and ǫ otherwise. The connected

entering/leaving states hsel have a observation probability

p(zt|Xt = hsel) of 1 assigned if a door event is triggered and

a state change occurs at the according seat at the same time

and ǫ otherwise. The observation model for visiting states

is defined accordingly. Due to the latency resulting from the

segmentation’s background adaption and the inference length

of the HMMs it was necessary to smooth the raw first level

HMM inference results prior to evaluation of the observation

model. Finally, if a person was too long out of view, the

tracker is reinitialized as soon as an observation at the own

desk occurred.

V. RESULTS

A. Experimental setup

We equipped four of our offices with audio and video

sensors. Video has been recorded with a 640x480 pixel

resolution at a framerate of 7.5Hz by fixed cameras. The

cameras have about 90◦ field of view and are mounted close

to the ceiling in the rooms’ corners. Hence, almost the entire

room can be observed by a camera. Figure 2 shows sample

images taken from each office.



Description
Recognition

rate

False

positive

rate

Percentage

of data

Somebody at User 3’s desk 92.2 % 4.0 % 75.3 %

Somebody at User 4’s desk 98.4 % 1.8 % 65.6 %

Visitor behind User 3’s desk 63.2 % 17.2 % 3.8 %

Visitor behind User 4’s desk 78.1 % 13.9 % 2.4 %

Somebody around
visitor’s chair

98.3 % 11.5 % 1.2 %

Somebody enters 100.0 % 3.8 % 0.2 %

Somebody leaves 98.2 % 4.4 % 0.2 %

Somebody entering
through side door

94.7 % 3.2 % 0.2 %

Somebody leaving
through side door

91.0 % 2.5 % 0.3 %

TABLE I

1ST LEVEL RECOGNITION RESULTS FOR OFFICE B

Audio was sampled at a framerate of 16kHz and features

were gathered on windows of 20ms with an overlap of 10ms.

Omni-directional microphones are used and the signal is pre-

amplified in order to sense audio signals from the entire

room. To ensure the users’ privacy we did not record the

raw audio stream, but extracted the features online and stored

them tagged with timestamps for later processing.

Overall, for the activity recognition part we collected data of

six days, of which we used four days for training and two

days for evaluation. As this set of data only contained few

events of people changing the offices, we recorded a second

set with a scripted sequence of events with the length of

about an hour which we used to evaluate room level tracking.

B. Activity Recognition

1) First Level: An event was being detected whenever

the output ratio exceeded an experimentally determined

threshold on the probability ratios as described for the

room-level tracking. Moreover, an overlap of one inference

interval shall be allowed to account for the HMM’s latency.

Table I exemplarily shows the results for the office B on

smoothed output. Smoothing was done by assigning the

activity that occurred most often in a sliding window to

the center position. It can be observed that recognition for

a distinct place, like SOMEBODY AT A DESK works quite

well. Whereas recognition of two persons who are close to

each other like for VISITOR BEHIND A DESK works less

well yielding a relatively high false positive rate. These

missclassifications mainly occur when a single user moves

a lot or when two persons cause relatively little motion.

Moreover, it shall be noted that leaving and entering events

are often confused due to the similarity of a opening door

in this feature space.

2) Second Level: For the second level missclassifications

at boundaries were not counted as well. Moreover, the

final results have been smoothed. Confusion matrices of

the most interesting office rooms B and D as well as

recognition and false positive rates are given in table II and

table III. It can be observed that the situation of NOBODY

Description [1] [2] [3] [4]

Nobody in the office [1] 3462 10 144 11

Paperwork [2] 695 20341 723 663

Discussion [3] 76 123 4890 1524

Meeting [4] 0 793 203 2278

Description
Recognition

rate

False

positive

rate

Percentage

of data

Nobody in the office 95.5% 0.5% 10.1%
Paperwork 90.7% 5.8% 62.4%
Discussion 73.9% 4.8% 18.4%
Meeting 69.6% 2.8% 9.1%

TABLE II

CONFUSION MATRIX (IN SECONDS) AND RECOGNITION RATES FOR THE

SECOND LEVEL FOR OFFICE B

Description [1] [2] [3] [4]

Nobody in the office [1] 6995 17 117 32

Paperwork [2] 659 12877 352 1042

Phone call [3] 76 977 4294 776

Meeting [4] 26 1031 685 2611

Description
Recognition

rate

False

positive

rate

Percentage

of data

Nobody in the office 97.7% 0.5% 22.0%
Paperwork 86.2% 6.3% 45.8%
Phone call 70.1% 5.6% 18.8%
Meeting 60.0% 5.3% 13.4%

TABLE III

CONFUSION MATRIX (IN SECONDS) AND RECOGNITION RATES FOR THE

SECOND LEVEL FOR OFFICE D

IN THE OFFICE and PAPERWORK can be recognized quite

reliably in both offices. Problems arise for the distinction

of meeting and paperwork if there is too little conversation,

and for discussion and meeting if there is too much or

too little motion. Here it shall be noted, that a discussion

was defined as a conversation of two persons who work

in the same room. Meetings were defined as conversations

with an external visitor where both participants face each

other or look onto the same display. Another reason for

the missclassification of meetings as discussions is that the

recognition of the visitor failed on the first level due to the

fact that they were close to each other and too little motion

occurred so that they were only perceived as one person.

C. Room-level Tracking

The data set to evaluate room-level tracking contained

44 transitions. To show our algorithm’s performance we

evaluated both the overall percentage of correctly tracked

frames and the percentage of correctly identified transitions.

In the experimental setup we tracked seven persons despite of

clutter which was caused by two additional persons who were

working in the lab. As the hallway was not monitored due

to privacy reasons blind gaps occurred between the cameras.

On average 91.5% of the frames were tracked correctly and



User
Frame

accuracy
Overall

transitions

Recognized

transitions

User 1 94.5 % 4 4
User 2 93.8 % 6 5
User 3 97.6 % 6 6
User 4 91.5 % 10 8
User 5 82.3 % 6 3
User 6 89.5 % 5 3
User 7 91.0 % 7 7

Overall 91.5 % 44 82.0 % = 36

TABLE IV

RESULTS FOR ROOM-LEVEL TRACKING

Ground truth Tracking result

Begin End Place Place Begin End

0.0 31.7 Office B Office B 0.0 41.0
45.8 67.8 Lab Lab 49.0 75.0
76.6 799.7 Office B Office B 81.0 809.0

809.1 1109.6 Office D Office D 810.0 1102.0
1117.1 2194.3 Office B Office B 1103.0 2197.0
2194.3 2484.3 Office A Office A 2198.0 2496.0
2495.5 2660.4 Office D Office D 2497.0 2671.0
2667.8 3248.2 Office B Office B 2672.0 3263.0
3248.2 3388.8 Out of view Out of view 3264.0 3382.0
3388.8 3685.4 Office B Office B 3383.0 3687.0
3685.4 3698.5 Lab Lab 3688.0 3705.0
3708.7 3719.4 Office A

Office D 3709.0 3925.0
3719.4 3925.9 Office B

TABLE V

EXEMPLARY TRAJECTORY FOR USER 4 (TIMES ARE GIVEN IN SECONDS)

36 transitions were correctly recognized. Table IV shows the

detailed results. Table V shows ground truth and tracking

results for one of the tracked persons.

Our experiments showed that tracking works quite well

as long as persons are not out of sight for too long. Due to

the sparsity of people crossing the hallway data association

works quite well. Though, this situation becomes worse

in case the track of a person out of sight is crossed by a

second person who passes the hallway.

VI. CONCLUSION AND FUTURE WORK

We have presented a system that can recognize a set of

characteristic activities in an office domain. Furthermore, it

is able to track the users well across several rooms even

under real world conditions. For future work we would like

to investigate further features for the activity recognition part

and to solve the data association for the multi person tracking

problem in a more unconstrained way.

To improve first level activity recognition results, for example

Haar cascades [16] trained on various head poses might be

the right approach to detect the number of people in a scene

in an illumination invariant manner.

To resolve the constraint that tracks are lost on the hallway

while other users are crossing, data association might better

be addressed with a Rao-Blackwellised particle filter [17]

as proposed by Wilson et al. [9]. This approach regards the

data association as well as the sensor space as common state

space and solves tracking with a Bayesian filter as proposed

here, but data association with a particle filter.

Moreover, color similarity based on clothing might be used

to match observations correctly. This requires to calibrate the

camera colors to ensure color constancy. Renno et al. give a

survey on existing algorithms in [18].
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