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Abstract 
 

Activity recognition is a hot topic in context-aware 
computing. In activity recognition, machine learning 
techniques have been widely applied to learn the 
activity models from labeled activity samples. Since 
labeling samples requires human’s efforts, most 
existing research in activity recognition focus on 
refining learning techniques to utilize the costly 
labeled samples as effectively as possible. However, 
few of them consider using the costless unlabeled 
samples to boost learning performance. In this work, 
we propose a novel semi-supervised learning 
algorithm named En-Co-training to make use of the 
unlabeled samples. Our algorithm extends the co-
training paradigm by using ensemble method. 
Experimental results show that En-Co-training is able 
to utilize the available unlabeled samples to enhance 
the performance of activity learning with a limited 
number of labeled samples. 
 
1. Introduction 
 

Activity recognition has gained a lot of interest in 
recent years due to its potential and usefulness for 
context-aware computing such as aged care monitoring 
[1] and smart homes [2]. Basically, the purpose of 
activity recognition is to infer people’s behaviors from 
low-level data acquired through sensors in a given 
setting, based on which other critical decisions are 
made. For instance, in smart home environments for 
aged care monitoring [2], based on the information 
provided by cameras and other pervasive sensors, the 
system needs to automatically monitor the occupant 
and determine when they need assistance, raising an 
alarm if required.  

There are several ways to acquire human’ activity 
using sensor systems. These methods include, but are 
not limited to: (1) remotely observe the scene using 
audio, visual, electromagnetic field, or other sensors 

and interpret the signal readings [3][4][5], (2) attach 
sensors to the body and interpret the signal readings 
[6][7][8], (3) attach sensors to objects and devices in 
the environment and interpret the sensor readings 
[9][10].  

For different activity recognition systems, they may 
use various approaches to acquire activity information 
such as those methods mentioned above.  However, 
machine learning is always a key aspect of them. For a 
system to automatically infer what activity is being 
performed, it must have a detailed model of the 
activity. Currently a variety of machine learning 
methods have been proposed for activity recognition, 
such as neural networks [11], dynamic Bayesian 
networks [12], naïve Bayesian networks [13], 
hierarchical hidden semi-Markov models [14], nearest 
neighbors [8], decision tree [8] and so on. One 
common characteristic of these methods is the 
requirement of labeled activity samples for training 
purpose. In addition, to achieve good recognition 
performance, a large amount of labeled samples are 
needed. However, in real activity recognition systems, 
labeled samples are usually difficult or expensive to 
obtain as they require the efforts of human annotators. 
In such cases, how to achieve a good learning model as 
best as possible is a crucial issue.  

Semi-supervised learning [15][16][17][18]is a hot 
topic aiming to address this issue. In addition to 
labeled samples, it exploits unlabeled ones to improve 
learning performance. It should be noted that unlabeled 
activity samples are easy to obtain from routine 
experiments since they do not require human’s 
annotation efforts. Co-training [19] is an attractive 
semi-supervised learning paradigm, which trains two 
classifiers through letting them label the unlabeled 
examples for each other. In co-training the data should 
be described by two sufficient and redundant attribute 
subsets, each of which is sufficient for learning and 
independent to the other given class label.  

Although co-training has already been successfully 
applied to some fields [20][21][22], the requirement on 



two sufficient and redundant attribute subsets might be 
too strong to be met in many activity recognition 
systems.  

In this work, a new co-training style algorithm 
named En-Co-training, i.e. ensemble method based co-
training, is proposed. It extends the co-training 
paradigm by incorporating ensemble method. Superior 
to co-training, En-Co-training has no requirement that 
the data should be described by two sufficient and 
redundant attribute subsets. Experimental results show 
that  when activity data do not meet the requirement of 
Co-training, our proposed En-Co-training algorithm is 
able to utilize the available unlabeled samples to 
enhance the performance of activity leaning on a 
limited number of labeled samples.  

The rest of the paper is organized as follows. 
Section 2 describes semi-supervised learning, 
especially co-training approach. Section 3 introduces 
our proposed En-Co-training algorithm. Section 4 is 
the experiment part. Finally, conclusions are presented 
in Section 5.  
 
2. Semi-supervised learning 
 

Supervised learning utilizes training data to learn 
the hypothesis or models. Usually, all training data 
should be labeled before learning. Recently, much 
researches show that unlabeled data are also useful for 
learning. Semi-supervised learning is such a method 
which could make use of unlabeled data to improve the 
performance of learning. It should be noted that in real 
applications, labeled data are usually difficult or 
expensive to obtain as they require the efforts of 
human annotators. However, it is much easier to get 
unlabeled data since they do not need human’s labeling 
effort. The ability to utilize the costless unlabeled data 
makes semi-supervised learning to be one of the hot 
topics in machine learning area.  

Many current semi-supervised learning algorithms 
use a generative model for the classifier and employ 
Expectation-Maximization (EM) to model the label 
estimation or parameter estimation process [15]. For 
example, mixtures of Gaussians [16], mixture of 
experts [17], and naïve Bayes [18] have been 
respectively used as the generative model, while EM is 
used to combine labeled and unlabeled data for 
classification. 

A preeminent work in semi-supervised learning 
methods is the co-training paradigm proposed by Blum 
and Mitchell [19]. In co-training, two classifiers are 
trained on two sufficient and redundant sets of 
attributes respectively. Each classifier labels several 
unlabeled examples whose labels are most confidently 
predicted from its point of view. These newly labeled 

examples are used to augment the labeled training set 
of the other classifier. Then each classifier is refined 
with its augmented labeled training set. They showed 
that any weak hypothesis could be boosted from the 
unlabeled data if the data meet the class-conditional 
independent requirement and the target concept is 
learnable with random classification noise. Dasgupta 
[23] derived a generalization error bound for the co-
trained classifier, which indicates that when the 
requirement on the existence of sufficient and 
redundant attribute is met, the co-trained classifiers can 
make fewer generalization errors by maximizing their 
agreements over the unlabeled data. Co-training 
algorithm is given in Table 1.  

 
Table 1. Co-training algorithm. 

 
Given: 

 L , A set of labeled training examples x , 
consists of M classes 

 U , A set of unlabeled examples 
 x  is described by two different views 

( 1x and 2x ) 

Create a pool 'U of examples by choosing 
u examples at random from U  
Loop for k iterations: 
(1) Use L to train a classifier 1h that considers only 

the 1x portion of x  

(2) Use L to train a classifier 2h that considers only 

the 2x portion of x  

(3) For each class C , pick the cn unlabeled data 

about which classifier 1h is most confident that its 
class label is C  and add it to the collection of 
labeled examples 
(4) For each class C , pick the cn unlabeled data 

about which classifier 2h is most confident that its 
class label is C  and add it to the collection of 
labeled examples 

(5) Randomly choose 
1

2
M

c
c

n
=

× ∑ examples from 

U to replenish 'U  
 Output: Two classifiers, 1h and 2h , that predict 

class labels for new examples 



3. En-Co-training 
 

Co-training is a good approach to utilize unlabeled 
data to improve the learning performance. However, it 
has some intrinsic limitations: 

1) Requirement on the data samples. As we present 
in Section 2, the requirement to use Co-training is that 
data should be described by two sufficient and 
redundant attribute subsets, each of which is sufficient 
for learning and independent to the other given class 
label. Due to this requirement, Co-training is only 
successfully used in few applications, such as text 
classification and most other applications could not 
meet this requirement.  

2) Let us go to the 2nd and 3rd steps of Co-training 
algorithm shown in Table 1. In order to determine 
which example in U should be labeled, the confidence 
of the labeling of each classifier must be explicitly 
measured. Sometimes, such a measuring process is 
quite time-consuming [24]. In fact, the confidence of 
the labeling of each classifier is also needed to 
combine the results of two classifiers.   

As explained later, our activity data can not meet 
the requirement of Co-training since they cannot be 
described by two sufficient and redundant attribute 
subsets. Hence, in order to utilize the theory of Co-
training, a new type of Co-training algorithm is 
needed. In this work, we propose a novel Co-training 
algorithm, named En-Co-training, which extends the 
basic Co-training algorithm by using ensemble 
method. Our En-Co-training algorithm is shown in 
Table 2.  

We propose En-Co-training to deal with the 
limitations of Co-training mentioned above. 

First of all, at the first step of Co-training, two 
different portions are used to train different classifiers. 
To guarantee the performance of these two classifiers, 
each portion must be good enough for training. This is 
the reason why the data used for Co-training need to be 
described by two sufficient and redundant attribute 
subsets, each of which is sufficient for learning and 
independent to the other. Different with that in Co-
training, the first step of En-Co-training uses whole 
data L to train different classifiers. Hence, the 
requirement on the data is avoided. It should be noted 
that Co-training requires two diverse classifiers. 
Standard Co-training utilizes different portions of data 
sample to train the same learning method to get 
different classifiers. However, in En-Co-training, the 
whole data is used for all the classifiers to avoid the 
requirement on data. In order to guarantee the diversity 
of these classifiers, we use different learning methods. 
For example, if one learning method is decision tree, 

then another classifier must use different methods, 
such as neural network or naïve Bayes. 

Secondly, different with Co-training, there are three 
classifiers in En-Co-training. Actually, three classifiers 
are used to deal with the second limitation of Co-
training. Through using three classifiers, the explicit 
measure on the confidence of the labeling of each 
classifier is not required. In detail, as shown in the 2nd 
step of En-Co-training, we regard the label for the 
unlabeled data is confident if the three classifiers give 
the same classification result. Also, through using three 
classifiers, the predictions of them can be easily 
combined through ensemble method, such as majority 
voting.  
 

Table 2. En-Co-training algorithm. 
 

Given: 
 L , A set of labeled training examples x , 

consists of M classes 
 U , A set of unlabeled examples 

Create a pool 'U of examples by choosing 
u examples at random from U  
Loop for k iterations: 
(1) Use L to train a classifier 1h , 2h  and 

3h respectively 

(2) For each class C , pick the cn unlabeled data 

which classifier 1h , 2h  and 3h agree with that its 
class label is C  and add it to the collection of 
labeled examples 

(3) Randomly choose 
1

M

c
c

n
=
∑ examples from U to 

replenish 'U  
 Output: Three classifiers, 1h  , 2h and 3h  that 

predict class labels for new examples. These 
predictions can be combined by majority 
voting.  

 
4. En-Co-training on activity recognition 
 

For our experiments we use a dataset published on 
[25]. It consists of 10 basic activities, namely Lying, 
Kneeling, Sitting, Standing, Walking, Running, 
Climbing Stairs, Descending Stairs, Bicycling and 
Jumping. The activities were recorded by 40 
accelerometers strapped loosely to common trousers, 
20 sensors per leg, starting from the ankle to the hip.  

The original data set includes 25177 data samples 
and 9 activities (1 activity is missing in the dataset). 
For each kind of activity, we choose the first 500 



samples. Hence totally 4500 data samples are used in 
our experiment.  
 
4.1. Test whether co-training can be used 
 

In this part, we will show whether Co-training can 
be used on our activity data set. As we mentioned 
above, the requirement to use Co-training is that data 
should be described by two sufficient and redundant 
attribute subsets, each of which is sufficient for 
learning and independent to the other.  

Three various supervised learning without co-
training were performed with aim of determining how 
redundantly sufficient of our activity data set. 
Considering that the activity information is gathered 
from 40 sensors (20 sensors per leg). Hence an 
intuitive split of the data features is one portion with 
first twenty features (one leg) and the other portion 
with the other twenty features (the other leg). In 
addition, we also try random separation of features to 
check the redundancy.  

Three various supervised learning methods are 
used. They are decision tree, Naïve Bayes and K-
nearest neighbors (K=3). For each classifier, this test 
runs ten times. At each time, 20 percent of whole data 
were randomly selected as test data. For the other 80 
percent, 5 percent were randomly selected as training 
data. Obviously, there is no overlap between test data 
and training data. The test results are shown in Table 3.  

Based on the experimental results shown in Table 3, 
we can see the activity data used in our work can not 
be separated into two sufficient and redundant attribute 
subsets. Hence Co-training cannot be adopted to utilize 
the unlabeled data.  

 
Table 3. Using decision tree (DT), k-nearest neighbors 

(KNN) and naïve bayes (NB) to test features’ 
redundancy of activity samples. 

 
Natural Feature 

Split 
Random 

 Separation 
DT ALL 

1-20  21-40  Halves1 Halves2 
1 0.779 0.769 0.143 0.222 0.092 
2 0.816 0.778 0.177 0.134 0.133 
3 0.806 0.811 0.181 0.104 0.196 
4 0.766 0.782 0.206 0.112 0.116 
5 0.793 0.751 0.328 0.017 0.179 
6 0.748 0.781 0.132 0.128 0.183 
7 0.778 0.789 0.109 0.137 0.110 
8 0.768 0.803 0.121 0.117 0.181 
9 0.797 0.784 0.098 0.276 0.081 
10 0.751 0.766 0.137 0.080 0.170 
Ave. 0.780 0.781 0.163 0.133 0.144 

 

Natural Feature 
Split 

Random Separation KNN ALL 

1-20  21-40  Halves1 Halves2 
1 0.777 0.787 0.264 0.106 0.112 
2 0.804 0.826 0.286 0.342 0.188 
3 0.781 0.798 0.272 0.112 0.218 
4 0.783 0.789 0.253 0.073 0.208 
5 0.801 0.817 0.287 0.119 0.343 
6 0.802 0.831 0.272 0.211 0.107 
7 0.793 0.818 0.277 0.160 0.136 
8 0.821 0.807 0.268 0.196 0.201 
9 0.809 0.823 0.229 0.134 0.230 
10 0.788 0.839 0.230 0.189 0.159 
Ave. 0.796 0.813 0.264 0.164 0.190 

 
Natural Feature 

Split 
Random Separation NB ALL 

1-20  21-40  Halves1 Halves2 
1 0.797 0.790 0.102 0.102 0.117 
2 0.851 0.824 0.108 0.119 0.107 
3 0.829 0.818 0.137 0.121 0.124 
4 0.810 0.782 0.129 0.127 0.116 
5 0.822 0.822 0.104 0.098 0.098 
6 0.854 0.824 0.114 0.119 0.101 
7 0.839 0.818 0.151 0.112 0.114 
8 0.822 0.811 0.113 0.140 0.126 
9 0.844 0.842 0.108 0.114 0.128 
10 0.841 0.837 0.127 0.117 0.131 
Ave. 0.831 0.817 0.119 0.117 0.116 

 
4.1. Performance of En-Co-training 
 

We propose En-Co-training to deal with the 
limitation of Co-training. To test whether En-Co-
training could make use of unlabeled data to improve 
the performance of learning, the experiments are 
executed as follows:  

 For the activity data set, 70 percent are kept as test 
examples while the rest are used as the pool of training 
examples, i.e., L U∪ . In each pool, L and U are 
partitioned under different unlabel rates including 90 
percent, 80 percent, 70 percent, 60 percent and 50 
percent. For instance, assuming a pool contains 1000 
examples, when the unlabel rate is 80 percent, 200 
examples are put into L with their labels while the 
remaining 800 examples are put into U without their 
labels.  

J4.8 decision trees, Naïve Bayes classifier and K-
nearest neighbors (K=3) are used in the experiments. 
Under each unlabel rate, ten independent runs with 
different random partitions of L and U are performed. 
The performance of En-Co-training is compared with 
these three classifiers and their ensemble. Here 
ensemble method is majority voting. The parameters 



used in the experiments are: iteration number k is 20, 

cn is 4, u is 270. The results are shown in Table 4,5,6,7 
and 8. In these tables, “Last” in En-Co-training part 
represents the error rate at the 20th iteration. At each 
run, the best result among three various classifiers and 
their ensemble is regarded as baseline, which is shown 
in bold face. We will compare the performance of 
“Last” with the baseline value. Improvement is also 
shown in the tables.  

 
Table 4. Error rates when unlabel ratio is 90 percent.  
 

En-Co-training Runs DT KNN NB Ensem. 
Last Imp.  

1 0.242 0.241 0.175 0.193 0.157 10.3% 
2 0.211 0.231 0.162 0.160 0.132 17.5% 
3 0.220 0.208 0.188 0.175 0.137 21.7% 
4 0.241 0.223 0.163 0.162 0.136 16.0% 
5 0.185 0.207 0.159 0.141 0.118 16.3% 
6 0.165 0.208 0.160 0.137 0.135 1.46% 
7 0.229 0.199 0.204 0.186 0.142 23.7% 
8 0.259 0.239 0.170 0.176 0.157 7.65% 
9 0.255 0.216 0.166 0.204 0.121 27.1% 
10 0.206 0.201 0.194 0.172 0.167 2.91% 
Ave. 0.221 0.217 0.174 0.170 0.140 14.5% 
 
Table 5. Error rates when unlabel ratio is 80 percent.  

 
En-Co-Training  Runs  DT KNN  NB Ensem. 
Last Imp. 

1 0.159 0.163 0.162 0.126 0.117 7.14% 
2 0.193 0.180 0.161 0.146 0.138 5.48% 
3 0.203 0.176 0.163 0.144 0.129 10.4% 
4 0.220 0.177 0.170 0.163 0.153 6.13% 
5 0.189 0.178 0.174 0.148 0.125 15.5% 
6 0.198 0.156 0.157 0.122 0.105 13.9% 
7 0.158 0.169 0.168 0.126 0.113 10.3% 
8 0.159 0.163 0.162 0.126 0.117 7.14% 
9 0.193 0.180 0.161 0.146 0.138 5.48% 
10 0.203 0.176 0.163 0.144 0.129 10.4% 
Ave. 0.188 0.172 0.164 0.139 0.126 9.19% 

 
Table 6. Error rates when unlabel ratio is 70 percent. 
 

En-Co-Training  Runs  DT KNN  NB Ensem. 
Last Imp. 

1 0.176 0.157 0.168 0.136 0.131 3.68% 
2 0.153 0.139 0.136 0.122 0.105 13.9% 
3 0.183 0.156 0.165 0.139 0.127 8.63% 
4 0.158 0.148 0.152 0.119 0.123 -3.36% 
5 0.156 0.157 0.163 0.129 0.122 5.43% 
6 0.148 0.152 0.148 0.115 0.113 1.74% 
7 0.160 0.146 0.137 0.135 0.118 12.6% 
8 0.160 0.156 0.150 0.121 0.117 3.31% 
9 0.185 0.145 0.142 0.116 0.099 14.7% 
10 0.157 0.138 0.152 0.114 0.113 0.87% 
Ave. 0.164 0.149 0.151 0.125 0.117 6.40% 
 

Table 7. Error rates when unlabel ratio is 60 percent. 
 

En-Co-Training  Run  DT KNN  NB Ensem. 
Last Imp. 

1 0.138 0.126 0.163 0.111 0.107 3.60% 
2 0.140 0.127 0.140 0.103 0.100 2.91% 
3 0.137 0.118 0.171 0.103 0.102 0.97% 
4 0.145 0.135 0.166 0.114 0.121 -6.14% 
5 0.143 0.118 0.167 0.095 0.094 0.09% 
6 0.128 0.157 0.167 0.118 0.103 12.7% 
7 0.141 0.126 0.143 0.106 0.106 0 
8 0.149 0.129 0.156 0.111 0.102 8.11% 
9 0.141 0.135 0.157 0.112 0.107 4.46% 
10 0.122 0.128 0.148 0.097 0.093 4.12% 
Ave. 0.138 0.130 0.158 0.107 0.104 3.08% 
 
Table 8. Error rates when unlabel ratio is 50 percent. 

 
En-Co-Training  Runs  DT KNN  NB Ensem. 
Last Imp. 

1 0.133 0.107 0.130 0.090 0.085 5.55% 
2 0.119 0.122 0.166 0.104 0.102 1.92% 
3 0.156 0.117 0.159 0.114 0.102 10.5% 
4 0.141 0.118 0.150 0.116 0.110 5.17% 
5 0.149 0.123 0.153 0.117 0.112 4.27% 
6 0.149 0.117 0.154 0.100 0.099 1.00% 
7 0.156 0.117 0.159 0.114 0.102 10.5% 
8 0.134 0.114 0.156 0.104 0.102 1.92% 
9 0.120 0.103 0.134 0.092 0.090 2.17% 
10 0.141 0.118 0.150 0.116 0.110 5.17% 
Ave. 0.140 0.116 0.151 0.107 0.101 4.82% 

 
Above experiment results show that our propose 

En-Co-training could utilize unlabeled data to improve 
the learning performance with different unlabel rate. In 
detail, when unlabel rate is 90 percent (135 samples 
were used as labeled data), average improvement is 
14.5 percent. When unlabel rate is 80 percent (270 
samples were used as labeled data), average 
improvement is 9.19 percent. When unlabel rate is 70 
percent (405 samples were used as labeled data), 
average improvement is 6.4 percent. When unlabel rate 
is 60 percent (540 samples were used as labeled data), 
average improvement is 3.08 percent. When unlabel 
rate is 50 percent (675 samples were used as labeled 
data), average improvement is 4.82 percent. Fig. 1 
shows the average classification error rate for three 
separate classifiers, ensemble and En-Co-training at 
different unlabel rate.  

Performance improvement through using En-Co-
training is shown in Fig. 2. We can see that 
improvement is greatest when unlabel rate is 0.9. It 
means when the number labeled data is smaller, our 
En-Co-training could make more improvement.   
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Fig. 1. Average classification error rate at different 
unlabel rates (Different colors represent decision tree, 

knn, naïve bayes, ensemble and En-Co-Training 
respectively).  
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Fig. 2. Average performance improvement at different 

unlabel rates.  
 
5. Conclusions 
 

In this work, we propose a novel semi-supervised 
learning algorithm for activity recognition. Different 
with most existing work, our proposed method could 
improve the learning performance through make use of 
unlabeled data. It should be noted that in activity 
recognition systems, usually the number of labeled 
samples is limited because they require the efforts of 
human annotators. Different with labeled data, the 
number of unlabelled data is huge because they are 
easy to get without human’s labeling effort. Hence, our 
work is very useful for real activity recognition 
applications. Experiment results show that our 
proposed method could effectively improve learning 
performance. 
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