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“Old age, believe me, is a good and pleasant thing.
It is true you are gently shouldered off the stage,
but then you are given such a comfortable
front stall as spectator. ”

Jane Ellen Harrison
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1

Introduction

Population aging is a serious problem affecting both the developed and the less
developed countries of the world. In 2009, the elderly aged 60 and over made
up 11 percent of the world population, and this is expected to reach 22 percent
by 2050 [17]. This increase causes a decline in the ratio of workers to elderly and
will cause economic stress in the political need to transfer financial resources to
the elderly [134].

As people age, their healthcare expenses increase significantly [101], but with
less financial resources to aid the elderly, many of them will not be able to make
ends meet. Efficient and accurate caregiving is therefore a must to guarantee a
healthy and affordable future for our elderly.

Automatic health monitoring provides an inexpensive way for obtaining the in-
formation needed to give efficient and accurate care. Besides being cost effective,
elderly would also maintain their independence, allowing them to live longer
in their own homes. This will result in a high quality of life for the elderly and
delay the transition to costly care facilities [114].

A common method in healthcare for assessing the cognitive and physical well-
being of elderly are activities of daily living (ADL), a collection of activities that
are performed on a daily basis such as cooking, toileting and showering [3, 72].
Recent developments in sensing technology make it possible to easily equip ex-
isting homes with sensors, therefore allowing a continuous observation system.
However, automatically interpreting this sensor data to recognize ADL is an
unsolved problem.
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1.1 Different Forms of Health Monitoring

To highlight the importance of using ADL for health monitoring we give an
overview of the different forms of health monitoring available. We distinguish
between alarm systems and long-term monitoring systems.

The most common type of alarm systems are buttons or pull-cords that send
an alarm when used. These systems are widely commercially available and
are installed in many homes and caregiving facilities [106]. Their effectiveness
depends on the ability of the user to recognize an emergency and requires the
user to press the button when an emergency takes place. A more advanced
type of alarm system are fall detection systems that recognize an emergency
automatically. The detection of a fall can be done using different kinds of sensors.
For example, in work by Ohta et al. infrared sensors measure the duration
of stay in a particular room and incidents of falling are detected by searching
for excessively long durations of stay [121]. Nait-Charif et al. use cameras to
track inhabitants through the house and use long inactive periods as indications
of alarm [115]. Such advanced fall detection systems in which no wearable
sensor needs to be carried around are now becoming commercially available. An
example is the Unattended Autonomous Surveillance (UAS) system, developed
at dutch research institute TNO [62].

Alarm systems detect emergencies and are very important to be able to offer aid as
quickly as possible. On the other hand, long-term monitoring systems maintain
information about the user over time and can therefore be used to track changes
and detect anomalies. One type of information to monitor are physiological
measurements such as heart rhythm and blood pressure. Systems for obtaining
these measurements are now appearing as commercial health monitoring systems
in the form of Intel’s Health Guide [55] or Bosch’s Health Buddy [10]. They
prompt users to take measurements and provide a user friendly interface for
doing so. Alternatively, measurements can be obtained automatically using
clever sensing constructions such as measuring body weight while toileting,
temperature while sleeping and an electrocardiography (ECG) while bathing
[155]. The measurements can be made available to physicians for analysis and
can be important indicators when something is wrong.

ADL are also suitable for long term monitoring and are commonly used indica-
tors for monitoring the health of elderly [72]. Currently, healthcare professionals
measure ADL manually by visiting the home of an elderly and observing them in
performing activities. This results in a subjective measure and makes the assess-
ment of activities such as taking medicine and eating very difficult. Caregivers,
therefore, often rely on information provided by the elderly themselves, who
may report biased information because of a desire to gain services or a fear of
losing them [175].
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Automatically recognizing ADL provides an objective indicator for caregiving.
Irregular sleep patterns, changes in the frequency of toilet use and an increase
in the duration of time it takes to complete an ADL are all important indicators
of physical and cognitive health disorders [45, 154]. Occupational therapists can
use this information to install assistive devices and daily living aids that reduce
the time and energy it takes to perform an ADL. When applied on a large scale,
it is expected that the wealth of information will be extremely useful to evidence
based nursing, a form of nursing relying on scientific data. It is expected that
such an approach makes it possible to treat certain diseases proactively, before
any real damage is done [31].

Systems that recognize ADL from sensor data are now an active topic of research.
Some systems dedicated to recognizing a limited number of activities such as toi-
leting and sleeping behavior have been tried in practice [52]. But the majority
of work focuses on the recognition of a large variety of ADL such as prepar-
ing breakfast, washing dishes and other kitchen activities [33, 102] or ironing,
vacuuming and other housekeeping activities [149]. These systems are evalu-
ated in a laboratory setting in which an office space is equipped with furniture to
resemble a home environment. In this thesis, we evaluate our approaches using
datasets recorded in real world settings and consisting of a large variety of ADL.

1.2 Patterns in Activities of Daily Living

The term ‘activity’ is used in the relevant literature to describe a large variety of
concepts, ranging from simple physical activities to complex activities such as
ADL. To allow a clear discussion, we define some terminology for distinguishing
among action primitives, actions and activities. For the remainder of this thesis,
we use the term activities to refer to ADL.

An action primitive is defined as a simple operation which typically takes up a
few seconds. Examples are, opening a cupboard, sitting on a chair or flushing
the toilet. Action primitives can typically only be performed in a very limited
number of ways. For example, opening a cupboard is typically done using either
the right hand or the left hand. Also the temporal order in which the action
primitive is performed is rather strict, one first moves the hand towards the
cupboard and then opens it by pulling it. It is not possible to open the cupboard
without first moving the hand towards it. Finally, the variety in which action
primitives differ per person is minimal, for example, almost everybody opens a
cupboard using their hands.

A combination of action primitives forms an action, such as taking a plate from a
cupboard or putting coffee powder in a coffee machine. The temporal ordering of
actions corresponds to the order of the action primitives the action is made of, and
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is generally rather strict. For example, taking a plate from a cupboard requires
the action primitives of opening the cupboard, taking the plate and closing the
cupboard. A different order of action primitives generally results in a failure to
complete the action. The number of ways an action can be performed is limited
and the duration of an action can range from several seconds to several minutes.

Activities are made up of a complex combination of actions and can last from
several minutes to several hours. For example, sleeping, toileting and making
coffee are all examples of activities. They can be performed in a large number of
ways due to the complex combination of actions involved. We can distinguish
between required actions and optional actions in performing an activity. For
example, in making coffee a required action is adding coffee powder to the
machine, an optional action is adding sugar when the coffee is done. An optional
action can also be, getting the coffee powder from the cupboard, because it could
still be on the counter after its last use. The temporal order in which activities
can be performed varies strongly. When making coffee one can choose to first
add coffee powder and then add water, or the other way around. Still for many
activities there are certain constraints in the temporal order of execution. For
example, adding water, turning on the machine and after several minutes adding
the coffee powder does not typically result in very good coffee. Finally, activities
also tend to vary strongly between individuals due to cultural differences or
simply different habits. For example, one person might always use a coffee
machine to make coffee, while another uses instant coffee.

The description of action primitives, actions and activities shows there exists a
hierarchy in activities. Understanding the structure of this hierarchy can play an
important role in the recognition of activities. This thesis includes approaches
that take the entire hierarchy described above into account, as well as approaches
in which only part of the hierarchy is considered.

1.3 Observing Action Primitives

To allow automatic health monitoring on a large scale, existing homes will need to
be equipped with sensors. An overview of the most common sensing modalities
used in activity recognition can be found in Chapter 2, Section 2.2. In this thesis,
we use sensor networks to observe action primitives performed by inhabitants
in their homes. Sensor networks provide a non-intrusive, privacy-friendly and
easy-to-install solution to in-home monitoring. Sensors used are contact switches
to measure whether doors and cupboards are open or closed; pressure mats to
measure sitting on a couch or lying in bed; mercury contacts for movement of
objects such as drawers; passive infrared sensors to detect motion in a specific
area and float sensors to measure the toilet being flushed. These sensors observe a
large number of action primitives performed in the home, however, not all action
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primitives can be observed. For example, it is possible to observe a cupboard
being opened, but not which item is taken from the cupboard. The sensing
method we use is therefore able to observe only a limited set of action primitives.

1.4 Recognizing Activities

Recognizing activities from sensor data means we wish to determine which
activity corresponds to an observed sequence of action primitives. To do this, the
following issues need to be dealt with.

Ambiguity: A single action primitive can occur during different activities. For
example, the action primitive of opening the refrigerator door can occur
during the activity cooking and during the activity of getting a drink.
A single action primitive can therefore be ambiguous with respect to the
recognition of activities. Considering a sequence of action primitives would
resolve that ambiguity, since the context of other action primitives specifies
with what intention a particular action primitive was performed. However,
the sensor network we use is only able to observe a limited set of action
primitives. Therefore, a sequence of observed action primitives can still be
ambiguous with respect to the recognition of activities.

Generalization: Activities can be performed in a large number of ways, which
means it is hard to formulate a generalized description for an activity. The
range of possibilities can become even broader due to noise, caused either
by the human performing the activity (e.g. opening the wrong cupboard)
or by the sensor network (e.g. a network packet is lost). This makes
determining which sequence of action primitives corresponds to which
activity even more difficult.

Segmentation: Data obtained from the sensor network is unsegmented, this
means that the start and end time of activities is unknown. For an observed
sequence of action primitives it is therefore not known how many activities
were performed during the sequence and at what point one activity ends
and another one starts. Therefore, a recognition method has to consider all
possible combinations of segmentation to determine which interpretation
fits best.

These issues make activity recognition a very challenging task. In this thesis,
we use temporal probabilistic models to deal with these issues in a principled
manner. By taking the uncertainty into account with respect to all of the above
issues, such models can make an informed decision on which activity is taking
place based on the evidence that the sensor data provides.
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1.5 Research Focus and Questions

Recent developments in sensing technology make it possible to easily equip ex-
isting homes with sensor networks. Healthcare professionals agree that activities
are what they want to monitor [72]. What is missing are the pattern recognition
methods to recognize these activities automatically from sensor data. In this
thesis, we answer the following questions with respect to that issue:

Which temporal probabilistic model is able to accurately recognize activities from sen-
sor network data? Designing such models requires a trade-off between model
complexity, computation time and the amount of example data needed.

We present temporal probabilistic models that accurately recognize activities
from sensor data. A comparison of generative, discriminative, semi-Markov and
hierarchical models provides an insightful analysis to the performance of these
models in the application of activity recognition.

How can we re-use methods for activity recognition in multiple homes? Pattern recog-
nition methods for activity recognition are generally developed with a particular
home in mind. Home-specific properties are either automatically learned from
data or manually created by a domain expert. Differences in the layout of homes
and the behavior of inhabitants prevent us from applying these methods to other
homes.

We developed a novel transfer learning method that allows us to use labeled data
from other homes to learn the parameters of a temporal probabilistic model for a
new home.

How can we evaluate the performance of pattern recognition methods to ensure an
accurate performance in a real world setting? It is very difficult to capture the
complex structure of activities, actions and action primitives realistically in a
simulated setting. Recording real world sensor data would avoid this issue, but
establishing a ground truth is expensive and difficult to collect accurately.

We created a sensor and annotation system for recording data sets at home. The
sensor system can easily be installed in existing homes and the annotation system
provides an inexpensive way of recording an accurate ground truth. Several real
world data sets were recorded using this system and are publicly available to the
research community providing a standardized benchmark for the community to
compare their results on [67]. These datasets are now widely used within the
community [4, 92, 100, 131, 137, 170].
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1.6 Overview

Chapter 2 gives an overview of activity recognition systems in the literature. We
discuss applications that use activities, sensors that are used in activity recogni-
tion, pattern recognition methods for recognizing activities from sensor data and
datasets for activity recognition. We describe state of the art developments and
discuss open problems and issues with respect to these topics.

Chapter 3 answers some fundamental pattern recognition questions with respect
to activity recognition. Issues with respect to discretization and feature represen-
tation are discussed and solutions to these issues are proposed and empirically
supported. We compare the recognition performance of two of the most basic
temporal probabilistic models. The two models used present an important di-
chotomy in the field of temporal probabilistic models, namely the choice between
generative and discriminative models. We explain the differences between these
types of models and discuss their usability with respect to activity recognition
on the basis of their recognition performance, the amount training data used and
the required computation time for processing sensor data.

Chapter 4 discusses the consequences of the Markov assumption and presents
semi-Markov models that relax this assumption. The Markov assumption is a
powerful assumption which allows us to perform inference in temporal proba-
bilistic models in linear time. However, this assumption is too strong for problems
such as activity recognition in which there are temporal dependencies over long
periods of time. Semi-Markov models provide a solution for modeling long term
dependencies, but require computationally expensive inference algorithms. We
compare conventional Markov models with their semi-Markov counterparts and
discuss their impact on the computation time and recognition performance.

Chapter 5 presents hierarchical models to model the internal structure of activ-
ities more accurately. The use of a hierarchy allows abstraction of the data on
multiple levels. We compare two approaches to modeling activities using hierar-
chical models and compare the recognition performance of these models to the
performance of the Markov and semi-Markov models.

Chapter 6 introduces a method for applying activity recognition models in mul-
tiple homes without the need for labeled training data from each home. The
models used in activity recognition require labeled data to learn the model para-
meters. A model trained for one home cannot automatically be used in another
home due to differences in the layout of the home and the behavior of the inhab-
itant. We present a transfer learning method that allows us to use labeled data
from other homes to learn the model parameters for a new home.

Chapter 7 summarizes the conclusions drawn from this thesis and discusses
future directions in activity recognition research.
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Activity Recognition: Related
Work

Traditionally computers are used in a desktop setting for office and study related
tasks such as text processing and spreadsheets. Two developments are moving
computers out of the desktop setting and into our daily lives. First, the miniatur-
ization of computers and the introduction of mobile phones has made computers
available to the user at anytime and anywhere. Second, novel computer systems
are enriched with all sorts of sensors to measure properties of their environment.
This novel computing paradigm is known under a variety of names namely:
pervasive computing, ubiquitous computing, ambient intelligence and context
awareness.

This new trend in computing allows for many different branches of applications
that focus on various aspects of our lives. Applications for these systems rely on
different kinds of contextual information, such as location, identity of the user,
and the activity a user is performing [1]. The location of a user can be the country
that he is currently in, but can also be the room number within a building that
he is in. User identity can involve a single user or multiple users, and can be a
source for other contextual information such as friends and relationships. In this
work, we focus on the activity that a user is performing.

In this chapter, we provide an overview of related work in the area of activity
recognition. We start, in Section 2.1, with a discussion of applications in which
activity is used as contextual information. In Section 2.2, we describe the different
sensing modalities that are used to perform activity recognition. Section 2.3

1The material in this chapter is partly drawn from [69, 70].
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reviews pattern recognition methods for recognizing activities from sensor data.
Section 2.4 gives an overview of various activity recognition datasets.

2.1 Applications using Activities

In this section, we discuss applications that rely on activity recognition. We
discuss surveillance applications, office applications and health applications in
general. These applications show that activity recognition is broadly applicable
and is not only useful for health monitoring. Discussing these applications will
show that there are different forms of activity recognition and this will allow us
to clearly define which form of activity recognition we are interested in for health
monitoring purposes.

2.1.1 Surveillance Applications

The increasing need for safety in our society has resulted in a large number of
video cameras present in many public locations. Because it requires a lot of
manpower to monitor all these cameras, there is a need for surveillance systems
that can automatically recognize suspicious behavior. Such systems can either
automatically sound an alarm, or attract the attention of an operator when sus-
picious activities are taking place. A large variety of potential applications exist
that automatically detect unattended luggage [7, 103, 168], intruders of a building
[23, 60], aggression on a train station [181], car theft or theft of handbags [35, 95],
bank robberies [43] and drowning in a swimming pool [61, 90].

These applications can rely on activity recognition because they need to recognize
activities in order to detect deviations from a regular pattern of behavior. It is
normal for people to open their cars, to visit a bank or leave their luggage
unattended for a short period of time. Detecting deviations from such normal
behavior relies on knowledge of the normal execution of an activity. For example,
smashing the window of a car to open the car door is clearly not normal behavior
for a car owner. Alternatively, these applications can focus directly on detecting
deviations from a normal pattern of behavior, rather than recognizing a set of
activities. If sufficient amount of training data is available, a model can be
trained to distinguish normal behavior from deviant behavior without the need
for interpreting which activities were performed. This means that surveillance
applications do not necessarily require the accurate recognition of individual
activities.

Surveillance applications are generally installed in public places, therefore such
systems should be able to deal with multiple people, who may or may not be
interacting. They can be installed in an outdoor setting or indoors in a public
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building and are likely to allow a lot more unexpected or irregular events than
private spaces. Because the purpose of surveillance systems is to act quickly in
case of an emergency, such systems should process the sensor data in an online
manner. This means that recognition is performed as soon as the sensor data
is observed. The alternative is to process data offline, which means a collection
of data (e.g. a full day) is collected and processed at the end of the day. In
terms of sensors, surveillance application typically use cameras for sensing the
environment. Cameras are already installed in many locations. Furthermore,
the use of cameras allows for a gradual transition from a system that assists a
human operator, to a system that runs completely automatic using an intelligent
algorithm.

2.1.2 Office Applications

The introduction of activity-aware systems in an office setting can result in cost
reduction and a more efficient workflow. An example is an energy-efficient
power-management system. Current energy saving devices, such as motion
activated lights, tend to be disabled by users because they are annoying. Instead,
an activity recognition system could use more targeted information to better
match the expectation of the user. For example, recognizing when someone goes
to a meeting [46, 176].

Meeting rooms also allow for interesting applications. On the one hand, activity
recognition systems can provide support in the form of intelligent lighting and
beamer control. On the other hand, a vision system can be used for automatic
annotation of the meetings to allow powerful querying [18, 99, 144].

These application are clearly designed for indoors and generally need to be able
to deal with multiple people to achieve their full potential. Although offices
often have a public area, the applications described above are mainly targeted
at locations in offices that are restricted to personnel. Such areas typically show
very regular patterns of behavior (e.g. a standard lunch hour) and irregular
events are less common than in public spaces. Due to the interactive nature of
the described applications, sensor data should be processed in an online manner.
In terms of sensors, both cameras and sensor networks are used in an office
setting. Although cameras in an office room might raise some privacy issues,
they are well accepted in hallways.

2.1.3 Health Applications

Besides the health monitoring applications discussed in Section 1.1, activities are
also used in applications for assistive and persuasive technologies.
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Assistive technology refers to applications designed to help people in living
their daily lives. Activity recognition systems are used to assist people suffering
from dementia, who tend to forget certain steps while performing an activity.
For example, when making coffee they might install a coffee filter, but forget
to add coffee powder. An activity recognition system can assist these people
by recognizing the activity they are performing, recognizing which actions are
performed and reminding them which action primitives to perform to complete
the activity. Audio cues can be used to guide the person in performing any
missing steps [50, 104] or a display can be used to show images of the actions
that need to be performed [89, 113].

Persuasive technology motivates people to change their behavior, such as leading
a healthier life style. One way is to provide users with well-timed information
when they have to make decisions concerning their health. For example, to
reduce the chances of obesity, a system can provide diet suggestions when it
detects the user is preparing dinner. The appropriate timing of such a message
is crucial to the success of such a system [56]. Another approach is to use a
reward when the user is living a healthy life style. For example, in a study by
Consolvo et al. [24], users were given an exercise program and a mobile phone
showing the image of a virtual garden. If they spent enough time performing
exercises from the exercise program, they received a visual reward in the form of
flowers appearing in the virtual garden. The amount of time spent on exercises
by users of the persuasive system was compared to participants that did not use
the system. Participants using the system were shown to spend significantly
more time on exercises than participants that did not use the system.

These applications can target both in-home situations as well as a combination of
in-home and outdoors (e.g. completing an exercise program outdoors). Assistive
applications rely on the recognition of which actions are performed and which
actions are skipped in the execution of an activity. This requires a thorough
understanding of how activities are performed. Both assistive and persuasive
applications need to interact with the user and therefore require sensor data to
be processed online. Although it is possible to apply such technology to multiple
people, they are typically designed to assist or persuade a single person. Sensors
used are cameras, sensor networks and wearables.

2.1.4 Conclusions

We have seen that the automatic recognition of activities allows a broad range
of applications and that there are many different forms of activity recognition.
Applications are either single person or multi person oriented. Multi person
activity recognition is more challenging because a source separation task needs
to be performed. This means the system should be able to determine which
person triggered which sensors. In this thesis activity recognition is discussed in
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the context of health monitoring elderly. For this purpose, we assume that a single
person is present in the home at all times. Multiple person activity recognition
would make the health monitoring system more broadly applicable, but single
person households are likely to have a higher need for health monitoring. In a
multi person household, the people might still be able to look after each other.
Furthermore, it is easier to study the effects of recognition when only a single
person is generating sensor events.

Activity recognition can be performed indoors or outdoors. An indoor setting
is generally more constrained than an outdoor setting, making the chance for
irregular events smaller. For the application of health monitoring, we assume all
activities are performed indoors and recognize the activity of leaving the house
as a single activity, regardless of the purpose the person is leaving the house with.
Including outdoor activity recognition is something that can be considered at a
later stage.

Sensors used in the applications are cameras, sensor networks and wearables and
the data obtained from sensors can be processed in an online or offline fashion.
Most applications use online processing because they rely on interaction with
the user. For health monitoring purposes offline processing is sufficient, because
we are monitoring for long term purposes. Sensor data can be collected for
the duration of an entire day, after which the system recognizes which activities
were performed during the day. A system developed for offline processing can
generally be easily adjusted to perform online processing, but this does result in
a decrease in recognition performance. All the results in this thesis are obtained
using offline inference.

2.2 Sensors for Activity Recognition

The type of sensors used is an important aspect of designing an activity recog-
nition system. The following three factors are of interest. First, because we are
sensing inside the private house of a person, it is important to evaluate how
intrusive the inhabitant experiences the sensors. Some sensors need to be worn
on the body, which might be considered inconvenient by the user. Other sen-
sors may simply be considered intrusive because they are constantly in sight,
or because of the amount of privacy sensitive information they record. Second,
the ease of installation is important. Sensors that are easy to install can increase
the acceptance of the system and sensors that can be installed without the need
for a technician can significantly reduce the cost of a system. Third, what the
sensor measures is an important factor. If a sensor is able to sense all possible
action primitives that make up activities, it would provide a good basis for the
recognition of activities.
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In this section we discuss the most commonly used sensing modalities discussed
in the literature of activity recognition. We discuss cameras, wearables, RFID
and wireless sensor networks and discuss the different factors described above
for each of these modalities.

2.2.1 Cameras

Cameras provide high-dimensional image data which are very informative of the
action primitives that make up an activity. However, automatically recognizing
action primitives from video data is hard. There are many surveys available
discussing the recognition of action primitives, actions and activities from image
data [2, 42, 107, 129, 166]. A recent survey on computer vision concluded that the
recognition of action primitives from video data is a very challenging task and
therefore most work in computer vision currently is limited to the recognition of
action primitives rather than actions or activities [107].

Instead of accurately recognizing every action primitive performed, certain fea-
tures related to action primitives can be extracted from images and can be used
as a basis for activity recognition. For example, the location of a person can be
indicative of which activity is performed. In work by Duong et al. multiple cam-
eras installed in the corners of the room observe a person performing activities.
The room is divided into square cells of 1 square meter in size and a multi-camera
tracking module detects movement and returns a list of cells visited by a person.
Some cells contain an object of interest (e.g. fridge or stove) so that when a person
visits a cell it is highly indicative that an action primitive related to the object in
place is performed (e.g. opening the fridge or using the stove). No recognition
of the action primitives is done, but the list of cells visited is used as input for
activity recognition [33]. A similar approach uses a camera with a top down
viewpoint, making it easier to divide the image into squared regions of interest
and detecting the location of a person [119, 160].

Instead of using location, the object a person is using is also a good indicator
of the action primitive a person performs. Typically a single camera is focused
on a particular area of interest where activities are performed, such as the sink
in a bathroom or the kitchen cooking area. In work by Wu et al. image data is
processed to detect which objects a person uses. The detected objects are used
to recognize activities such as making tea or taking medicine [177]. Messing et
al. use various salient visual features extracted from the image and calculate the
velocity of these features to track the movement and position of the hands. This
data allows them to distinguish between actions such as drinking from a cup and
pealing a banana [102]. Instead of using a static camera it is also possible that
a camera is worn on the shoulder to observe the interaction between the hands
of the user and various objects. In such an approach it is possible to observe
activities in multiple locations using a single camera [98, 152].
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The highly informative data obtained by cameras allows for many different kind
of approaches to activity recognition. However, this highly informative data also
contains a lot of privacy sensitive information. Both elderly and their caregivers
have expressed concerns with respect to the use of cameras for home health
monitoring [6, 175].

2.2.2 Wearables

‘Wearables’ refers to the collection of sensors that one wears on the body or in
their clothes. Obtained sensor data is either processed on the sensing board itself
or transferred wirelessly to a computer or mobile phone for further processing.
The most common wearable sensors are 2- or 3-axis accelerometers to measure
the magnitude and direction of acceleration [77, 116, 122, 182]. Often additional
sensors are included such as light sensors, humidity sensors, heart rate sensors,
gyroscopes and compasses [84, 127, 161]. Sensors are typically stored compactly
in a single device that users can carry with them. There are also approaches in
which the sensors are distributed over the body to allow specific measurements
on each limb [93]. While designing a sensor system, there is a trade-off between
user comfort and usability of the obtained sensor data. A study on the acceptance
of the location of wearables considered the wrist, hip, and chest as potential
locations. They found that the hip and the chest were generally considered as
the most acceptable locations [122]. Another study compared the performance of
recognizing various types of movements such as running, walking and standing,
with respect to the location of the wearables [97]. Sensor hardware was placed on
the wrist, the belt, on a necklace, in the right trouser pocket, in the shirt pocket,
and in a bag. Sensors on the wrist and in the bag generally outperformed the
sensors placed in the other locations. To increase the ease of use, sensors can be
integrated into a mobile phone [12] or in clothing [34]. In a jacket specifically
designed for health monitoring, sensors were integrated into the clothing to
perform electrocardiography (ECG) monitoring and capture accelerometer data
for recognizing user activities [143].

The data obtained from wearable sensors mainly provides information about the
pose and movement of a person. This data is typically used to recognize types of
movement, such as running or walking. Due to the limited information about the
location of the user and the objects used, it is very difficult to recognize activities.
Some activities that have very distinctive body movement, such as vacuum-
cleaning the house and drinking from a cup, are recognized using wearables
[127]. To increase the range of activities that can be recognized, the use of
wearables can be combined with additional sensing equipment. For example,
installing ultrasonic listeners in an environment, combined with an ultrasonic
tracker on the body, allows indoor localization [37]. Stiefmeier et al. used this
technique and placed trackers on the hands to recognize maintenance activities
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such as repairing a bicycle [148].

Although the recognition of activities using wearables is challenging, they are
commonly used in fall detection [29]. A potential downside of wearables is that
people might forget to wear the sensing unit or find it uncomfortable to wear
them. The installation of a wearable sensor (i.e. wearing the wearable) needs to
be performed on a daily basis and can be experienced as easy when the sensors
are stored in a compact box, or tedious when sensors have to be distributed over
the body.

2.2.3 RFID

Radio frequency identification (RFID) is a technology for reading information
from a distance from so called RFID-tags. There are two types of tags, passive
RFID-tags and active RFID-tags. Passive tags extract energy from the radio
frequency signal emitted by an RFID reader and use that energy to send a stream
of information back. The amount and contents of information can vary, but
usually contains at least a unique identification string. Active tags are equipped
with a battery used as a source of power for the circuitry of the tag and its antenna.
This makes it possible to read the tags from a much larger distance than passive
tags [28].

Chip manufacturer Intel used RFID technology to develop a sensing method used
specifically for activity recognition. Their product, named the iBracelet [80], is a
RFID reader in the form of a bracelet which the user wears on a single hand or
on both hands. By tagging a large number of objects in the house with passive
RFID tags the iBracelet is able to observe which objects users are holding in their
hands. Objects are very indicative of the action primitive a user is performing,
therefore making activity recognition possible [38]. The task of tagging all objects
in the household may seem tedious, but it is expected that passive RFID tags will
replace barcodes in the future. Because the tags can contain detailed information
about the product they are tagged to, this would allow the iBracelet to easily
observe any product used [108].

A difficulty in using the iBracelet is that it often fails to detect a tag if it is
only briefly in the range of the RFID reader. In a comparison between various
sensing modalities used for activity recognition, the iBracelet performed by far
the worst due to this limitation [88, 150]. RFID readers have been combined with
wearable accelerometers to measure both the objects used and the movement of
a person. This way both sensors can compensate for the shortcomings of each
other, resulting in better activity recognition performance [51, 149].
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2.2.4 Wireless Sensor Networks

A wireless sensor network consists of a collection of small network nodes. Each
node is capable of performing some processing, gathering sensor measurements
and communicating wirelessly with other nodes in the network [147]. Nodes are
designed to be as small as possible and therefore usually have a working memory
of only several kilobytes. Specifically engineered operating systems have been
developed for dealing with such conditions, such as TinyOS [49]. Although the
term ‘wireless sensor network’ is broadly applicable, in this work we use the term
to describe a network of simple sensors with binary output which are installed
in fixed locations.

The nodes generally run on batteries and therefore a lot of research is devoted
to energy efficiency. The communication between these nodes typically requires
little bandwidth and is relatively insensitive to latency, so that energy efficient
communication protocols are possible [27]. It is also possible to save power by
shutting down parts of the node when these are not in use [145]. The use of ad
hoc routing protocols allows the nodes to dynamically form a temporary network
without any pre-existing network infrastructure or centralized administration
[13]. Such routing protocols also allow further power saving schemes, by shutting
down nodes strategically and avoiding them in the network route [179].

A large variety of simple sensors can be incorporated in the network nodes. In
a house setting, it is possible to use various sensors to measure different things:
contact switches for open-close states of doors and cupboards; pressure mats to
measure sitting on a couch or lying in bed; mercury contacts for the movement
of objects such as drawers; passive infrared sensors to detect motion in a specific
area; float sensors to measure the toilet being flushed; temperature sensors to
measure when the stove is used; humidity sensors to measure when the shower
is used [71, 176] and accelerometers to detect when a large object is used [96, 156].
Basically any kind of sensor can be combined with a network node as long as its
output can be converted to a binary output. For example, in work by Fogarty et
al. microphones were attached to water pipes in the basement to record whether
water was flowing [39]. Such an approach requires a minimal installation effort
and allows the system to use an informative property such as when water is
being used.

Wireless sensor networks can be used to determine whether an object is used.
However, in contrast to RFID tags, it is difficult to equip small objects, such as
a tooth brush or a dinner plate, with a sensing node. Wireless sensor networks
can therefore only sense a limited set of action primitives. For example, it is
possible to observe that a cupboard is opened, but not which item is taken from
the cupboard.

Nonetheless, the use of wireless sensor networks in a home setting offers many
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advantages compared to the other sensing modalities. First, the majority of
the sensors can be installed out of sight of the inhabitants, therefore limiting
the intrusiveness of the sensors. Second, the data recorded is anonymous and
contains very limited privacy-sensitive information. Third, installation of the
sensors can be done quickly without any need for the installation of power and
network cables.

2.2.5 Conclusion

None of the sensing modalities discussed above is able to provide information
that can perfectly identify every action primitive that is performed in a house.
In the case of cameras, the processing of raw image data is still too challenging
for detecting all possible action primitives. Wearables simply provide too little
relevant information for the recognition of activities. RFID readers often fail to
observe tags due to their limited sensing range. Wireless sensor networks can
only sense a limited set of action primitives. These limitations are complementary
to a point, however, and the most informative solution would therefore be to
combine several sensing modalities. However, due to issues with intrusiveness
and ease of installation, this is not a suitable solution for home health monitoring.
Instead, in this thesis, we use a wireless sensor network consisting of simple
sensors with binary output to observe the action primitives of volunteers in
their own house. The non-intrusiveness, privacy-friendly nature and ease of
installation make them ideally suited for the use in home health monitoring.

2.3 Pattern Recognition Methods for Activity

Recognition

The use of our proposed wireless sensor network gives us binary temporal data
from a number of sensing nodes that observe the action primitives performed
in a home setting. Recognizing a predefined set of activities from sensor data
is a classification task. In such tasks, features are extracted from the space and
time information present in the sensor data and used to classify the data. Feature
representations are used to map the data to another representation space with
the intention of making the classification problem easier to solve.

In this section, we discuss the most commonly used pattern recognition methods
in activity recognition. We start with a description of feature representations,
then discuss temporal data-mining methods, logic based methods, temporal
probabilistic models and common sense mining. We describe these methods
in detail and explain how they address the challenges in activity recognition,
namely the issues of ambiguity, generalization and segmentation.
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2.3.1 Feature Representations

The sensor data obtained from the wireless network is multivariate and binary
valued, with a continuous time dimension. Such temporal data can either be
represented as a time series or as a sequence of events.

Let a time series be a sequence of data points measured in succession and dis-
cretized using a constant time interval. The data points of a time series are often
referred to as timeslices and in our case each timeslice consists of a binary vector
of sensor readings. We assume that an activity is performed at all times, and
that no two activities can be performed simultaneously, so that each timeslice is
associated with a discrete activity label indicating which activity is performed
during that timeslice. The task of a pattern recognition method is to determine
which activity label should be assigned to a particular timeslice. Choosing a
proper time interval for discretization is important to the recognition process.
Too small an interval will incorporate noise of the signal, while too large an in-
terval will smooth out important details of the signal. For example, a passive
infrared sensor measures changes in infrared radiation and is generally used to
pick up the movement of a human being. We would like the discretization of such
movement to correspond closely to the action primitives that are performed. Dis-
cretizing with a small interval might cause a single action primitive to be broken
down into multiple action primitives, because of small pauses in the movement
of the human being. On the other hand, too large an interval would discretize
multiple action primitives into a single action primitive. In the case of activity
recognition from wireless sensor networks, no existing work provides any theo-
retical or empirical support to favor any interval length. Besides discretization
certain pre-processing steps are often applied to transform raw time series data
to a different representation, which makes recognition of patterns easier [41]. For
wireless sensor network data, there is no known transformation that yields a
better performance in activity recognition, than using the raw sensor data.

Temporal data can also be represented as a sequence of events. In the case of
binary sensor data, every change in state of a binary sensor generates an event.
We can assign a single symbol, to both represent the change in sensor state from
off to on, and from on to off, or use two different symbols for each type of change
in state. The use of events can avoid the need for discretization. If we assume that
the end point of an activity and the start point of the next activity always coincide
with a sensor event, an activity recognition algorithm only needs to process the
events and determine whether an activity ended, and if so which other activity
started. However, this might be an unrealistic assumption and we might want
an activity to start and stop at any point in time (i.e. even if no sensor event took
place). The pattern recognition method will therefore need to be able to deal
with continuous time. Furthermore, since the elapsed time between two events
is not constant, a pattern recognition method will probably need to incorporate
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the duration of an activity to avoid unrealistically long activities.

2.3.2 Temporal Data Mining Methods

Temporal data mining methods are unsupervised pattern recognition methods
that automatically find recurring patterns in sequential data. We discuss two
approaches that are relevant to activity recognition.

The first approach automatically finds templates in noisy sensor data. For ex-
ample, it is possible to automatically detect recurring words in audio speech
data [120]. Such techniques can be applied to automatically detect activities in
sensor data. Typically no prior knowledge is provided to the algorithm about
any template of interest, so that an exhaustive search easily becomes computa-
tionally intractable. The search space can be limited by first transforming the
raw sensor data to a discrete symbolic representation and searching for similar
pairs of subsequences in the symbolic data [21]. In work by Thad et al., this
approach was used to automatically detect activities in sensor data obtained
with wearable sensors. A probabilistic model was trained using the Expectation
Maximization (EM) algorithm to automatically detect recurrent activity patterns
[161].

The second approach looks for correlations between events in a large collection
of data. By finding sensors that often both change state within a certain time
window, it is possible to automatically identify activity patterns. This approach
is used in a technique called T-patterns [94]. In this technique, we assume that
each event is independently and randomly distributed over time. From a given
collection of data, we can calculate the observed average frequency of each event.
Two events A and B form a T-pattern if after an occurrence of A at time t there
is an interval [t + d1, t + d2], with (d2 ≥ d1 ≥ 0), that contains at least one more
occurrence of B than would be expected by chance. When detecting T-patterns in
data every possible pair of symbols is tested, using every possible interval, from
the largest to the smallest one. If a T-pattern is found, the pattern itself is added
to the data sequence as a single event. This allows the detection of hierarchical
T-patterns (i.e. T-patterns formed out of T-patterns). In work by Tavenard et
al., T-patterns were applied to automatically detect movement patterns in sensor
network data [159].

The advantage of these temporal data mining methods is that they automatically
find recurrent patterns without the need for any labeled data. However, because
there is no labeled data to indicate which patterns are of interest to the user it is
unsure whether the patterns found are of any use. These data mining techniques
therefore often speak of activity discovery, rather than activity recognition.
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2.3.3 Logic-Based Methods

Activity recognition in the logic community was first defined as plan recognition,
which aims to infer the plan of an agent from observations of the action primitives
of the agent. For the purpose of our discussion, we can consider the definition
of a plan to be equivalent to our definition of activity. The most popular work in
the area of plan recognition was done by Kautz [73] who formalized the problem
using McCarthy’s circumscription theory and aims to explain a sequence of
observations using a minimal number of plans. For example, consider observing
an action primitive A1 which can be part of plan P1 or P2. If we then observe an
action primitive A2 which can only be part of plan P2 or P3 it follows that A1 and
A2 are both part of P2 [19].

Kautz assumes in his model that the person (agent) performing the activities acts
rationally, therefore his model is not able to deal with noise. We have already
explained how humans can generate noisy sensor readings by opening a wrong
cupboard. People suffering from Alzheimer’s disease are even more prone to
generating noisy sensor data, because they often fail to complete an activity, or
continue to complete a different activity than they initially started performing.
This has led to a large body of work in which logic models perform activity
recognition and assume an irrational agent. Bouchard et al. [11] used lattice
theory and action description logic to recognize patients performing incoherent
activities. Their framework is able to dynamically generate new plausible plans
which were not defined beforehand.

Chen et al. [20] use event calculus to recognize activities and assist inhabitants
in performing the correct action at the correct time and place. The event calculus
ontology consists of events and fluents. An event in this case is the observation
of an action primitive by the sensor network (e.g. add(water, kettle) ), while a
fluent is any property of a world that can change over time (e.g. inside(water,
kettle)). Predicates are then used to define relations between ontology entities
(e.g. initiates(add(water, kettle), inside(water, kettle))). Activities are defined
by combining several predicates. An inhabitant profile is used to define normal
behavior of the inhabitant, if the system detects deviations from this normal
behavior it can activate a reminding service indicating which event should occur.
For example, if an inhabitant typically completes the activity of making tea at a
certain hour each day and the necessary action primitives are at one point not
observed at that hour, it can suggest to use the kettle and add water.

Rather than recognizing normally performed activities, Rugnone et al. [138]
use temporal logic to recognize deviations from normal activity behavior. Their
syntax consists of temporal operators such as S (since) and H (historically), which
are used in combination with a temporal interval to indicate the time constraint
within which an activity is typically performed. For example, the sentence ‘the
subject has been sleeping for the past 8 hours’ can be expressed as H[8]γ1, where
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γ1 represents ‘the subject sleeps’. The rules of the system are entered manually
by health care professionals. A visual editor is proposed which allows a more
intuitive method for inputting rules. Deviations are detected by violations of
predefined constraints. These constraints are hard-coded using explicit threshold
value (e.g. no longer than 5 minutes). This approach allows the user to specify
abnormal behavior without the need for specifying normal behavior.

Landwehr et al. [81] are inspired by transformation-based learning, primar-
ily used in natural language processing. Because the structure in natural lan-
guage is more rigid compared to the structure of activities they extend existing
transformation-based learning with more flexible relational transformation based
learning. By manually adding relations expressing time constraints, it is possible
to disambiguate the observed sensor data. For example, close(id, obj, t) means
object obj was observed within t seconds of event id. Using a greedy search
algorithm, rules that minimize the recognition error are iteratively added to the
system.

The advantage of these logic-based methods is that it is very easy to manually
incorporate domain knowledge, therefore reducing the need for annotated train-
ing data. Even if the method is able to automatically learn how to recognize
activities from data, the rules on which this classification is based are still easy to
interpret. An important disadvantage of these methods, however, is that if any
ambiguity remains about which activity is performed the methods are unable to
express which of the activities is most likely.

2.3.4 Temporal Probabilistic Models

Here we consider discrete-time temporal probabilistic models for modeling se-
quential data. A sequence of observations denoted as x1:T denotes a collection of
data observed from sensors. The goal is to infer a matching sequence of hidden
states y1:T, which in our context correspond to the performed activities. Tempo-
ral probabilistic models solve this problem by finding the sequence of states that
maximizes the probability of the activities given the sensor readings, p(y1:T | x1:T).
There are two types of models, generative and discriminative probabilistic mod-
els. Generative models fully define the joint probability p(y1:T, x1:T) and can
be used to generate (sample) data from this distribution, or to perform inference
given a novel sequence of observations. Discriminative models are solely used for
inference and therefore define the conditional probability p(y1:T | x1:T) directly.
We will further highlight the differences between generative and discriminative
models in the upcoming chapters.

The most popular generative temporal probabilistic model is the hidden Markov
model (HMM). It is based on the first-order Markov assumption, which states
that the current state yt only depends on the previous state yt−1. This assumption
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makes it possible to perform inference in the HMM in linear time. A popular dis-
criminative temporal probabilistic model is the conditional random field (CRF).
Applying the Markov assumption to this model gives us the linear-chain CRF.
The HMM and linear-chain CRF have been successfully applied in activity recog-
nition [53, 71, 124, 174]. We will discuss these models and their related work in
Chapter 3.

There exist many extensions to these models in which specific properties of the
data are modeled explicitly. In particular, semi-Markov models explicitly model
the duration of a state. The accurate modeling of the duration of an activity
can be an important property in distinguishing between activities when sensor
data alone does not provide sufficient discrimination. For example, sensors
in the bathroom might observe a person present in the bathroom, but cannot
observe whether this person uses the shower or a tooth brush. Taking a shower
typically takes longer than brushing teeth and therefore the amount of time spent
in the bathroom is indicative of the activity performed. In Chapter 4 we present
the hidden semi-Markov model (HSMM) and semi-Markov conditional random
field (SMCRF) applied to activity recognition and discuss their related work.

Hierarchical models extend on conventional sequential models by explicitly mod-
eling the hierarchical structure in the data. We present a novel hierarchical model
for activity recognition in Chapter 5. This model is based on the hierarchical struc-
ture of activities that was introduced in the introduction chapter of this thesis.

The advantage of temporal probabilistic models is that for many of these models
there exist efficient algorithms that can perform inference in linear time with
respect to the length of the sequence. The disadvantage is that a large amount of
annotated training data is needed to learn the model parameters accurately.

2.3.5 Common Sense Mining

Probabilistic models require large amounts of annotated data to learn their model
parameters. This need for annotated sensor data can be eliminated by using
external information on how activities are performed, for example by using
information obtained from the world wide web. This form of data collection has
only been used with RFID, because RFID provides a precise sequence of used
objects which can be mapped directly to an online description [125, 126, 157, 178].
A probabilistic model is used which calculates the probability of a sequence of
objects indicating an activity. The list of objects involved in a particular activity
are mined from the web using websites containing recipes, user manuals and
‘how-to’ articles. These websites contain explicit step-by-step instructions on
how activities are performed. The objects are filtered out by querying WordNet
for each word and keeping terms that have object or substance as hypernyms.
The probability that an object is used during an activity is calculated using the
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number of search results returned by Google search engine [126]. For example,
in determining whether a cup is used when making tea, the object probability
p(object | activity) is calculated as

p(cup | making tea) =
gc(making tea cup)

gc(making tea)
, (2.1)

where gc(s) is a function return the number of Google search results for the words
in string s.

Wyatt et al. extended this work by not only considering recipes and how-to
sites, but querying a search engine for relevant pages. The webpages found by
the search engine are classified as relevant or not relevant using a support vector
machine. They compare their mining method to learning model parameters from
training data. Their approach sometimes outperforms the learned models, but
overall the learned models do better [178].

Pentney et al. mine their activity definitions from the Open Mind Indoor Com-
mon Sense (OMICS) database. OMICS is a common sense knowledge base to
which all users on the web can contribute. Examples of information stored in
OMICS include ’you eat when you are hungry’ and ’after dinner you wash the
dishes’. Information is stored using predicates (e.g. people(’eat’, ’are hungry’).
Because anyone can add information to OMICS, the authors use the number of
search results returned by a search engine to measure how reliable a particular
proposition is [125].

Tapia et al. showed that a technique called shrinkage can be used to improve
estimates of parameters learned from the web. First, a tree-like ontology of
objects is created using WordNet. The parameters of an object are then updated
by calculating a weighted sum of the leaf nodes of the object in the tree structure.
This shrinkage technique is shown to significantly improve performance in the
recognition of activities [157].

2.3.6 Conclusion

Using time series to represent the sensor data raises questions with respect to the
length of the time interval to discretize the data with, and which transformation
method should be used to best represent the data. The use of events avoids these
questions, but requires the pattern recognition to process timestamps to obtain a
notion of time.

We have seen that temporal data mining methods perform activity discovery,
rather than activity recognition. Logic based methods can be used for recognition
and make it possible to easily include domain knowledge, which reduces the need
for annotated data. However, when the rules of logic cannot decide on a single
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activity there is no measure for expressing which interpretation is most likely.
Temporal probabilistic models provide a way for dealing with such ambiguous
cases, but require large amounts of annotated training data to learn the model
parameters. Common sense mining can be used to learn model parameters from
online data sources, but has only been applied to RFID data because it requires
precise and unambiguous measurements of the used utensils.

In this thesis, we chose to use models that rely on a time series representation.
Several well understood models, such as the hidden Markov model, exist for
this type of representation and this provides a good starting point for applying
temporal probabilistic models to activity recognition.

2.4 Datasets for Activity Recognition

To evaluate the performance of pattern recognition methods for activity recog-
nition, datasets are needed. Ideally real world datasets are used which are fully
annotated with a ground truth. To this end many research groups have created
their own test houses equipped with sensors to record datasets and perform
experiments. In pervasive computing, houses equipped with sensors are called
smart homes.

In this section, we review the smart home projects of various research groups,
discuss the publicly available datasets they produced and describe a sensor and
annotation system used by our research team to record our own datasets.

2.4.1 Smart-Home Projects

The Aware Home1 is a project at the Georgia Institute of Technology. A house
consisting of two identical and independent living spaces was built especially for
the project. Cameras are present in the house for observing the inhabitants and
a smart floor is developed which senses people walking across the floor [74].

At the University of Florida, the Gator-Tech smart-house2 was built as a labora-
tory for research on assisting elderly. The house has many technological features
such as a smart mailbox which senses the arrival of mail and a smart refrigerator
which monitors food usage [47].

MIT’s PlaceLab3 is the most comprehensive smart-home in terms of sensing tech-
nology. The house contains hundreds of sensing components installed in nearly
every part of the home. Cameras, microphones, contact switches, temperature

1Aware Home: http://awarehome.imtc.gatech.edu/
2Gator-Tech: http://www.icta.ufl.edu/gt.htm
3PlaceLab: http://architecture.mit.edu/house_n/placelab.html

http://awarehome.imtc.gatech.edu/
http://www.icta.ufl.edu/gt.htm
http://architecture.mit.edu/house_n/placelab.html
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and humidity sensors were all installed during the construction of the home. The
home is occupied by volunteer subjects who agree to live in the home for varying
lengths of time [57].

2.4.2 Publicly Available Datasets

Publicly available datasets are important for a research community to create stan-
dardized testbeds for evaluating the performance of pattern recognition methods.
Unfortunately, due to privacy issues and high annotation costs not many datasets
for activity recognition are made publicly available.

Out of the datasets that are publicly available the majority are recorded in a
laboratory setting. Typically a kitchen is equipped with a large number of sensors
and several subjects are asked to perform a set of activities. Although these
datasets contain interesting examples of how the same activity is performed by
different subjects. They do not provide a good testbed for evaluating real world
activity recognition, in which subjects have the freedom to execute any activity
whenever they want.

A dataset recorded in the MIT PlaceLab does meet this criterion and consists
of four hours of fully annotated activities performed by a researcher of their
team. The researcher was free to perform any activity in any sequence and at any
pace. Cameras installed throughout the house recorded every move, and these
recordings were later used to annotate which activity was performed at which
point in time [57]. In a second recorded dataset a couple stayed in the PlaceLab
for over two months. Unfortunately, there was only enough funding to annotate
one of the two person’s activities [88].

MIT also developed a portable sensing kit allowing them to easily install wireless
sensor networks in existing homes [58]. Two datasets were recorded using this kit.
A large number of sensors was installed throughout the houses and recorded data
for two weeks. Subjects annotated their activities by using a PDA which asked
them every 15 minutes which activity they were performing. Unfortunately,
this annotation method resulted in poor quality labeling of the data, therefore
the researchers used the sensor data to further determine which activity was
performed at which point in time [158].

2.4.3 Our Datasets

The publicly available datasets either contain too little data or contain incom-
plete or poor quality annotation. In this subsection we describe the sensor and
annotation system that we used to record and annotate our own datasets. We
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first describe the sensor system, then the annotation method and finally we give
a description of the houses and the datasets recorded in them.

Sensors Used

In this work we use wireless sensor networks to observe the behavior of in-
habitants inside their homes. After considering different commercially available
wireless network kits, we selected the RFM DM 1810 [135] (Fig. 2.1(a)), because
it comes with a very rich and well documented API and the standard firmware
includes an energy efficient network protocol. Special low-energy consuming
radio technology together with an energy saving sleeping mode result in a long
battery life. The node can reach a data transmission rate of 4.8 kb/s, which is
enough for the binary sensor data that we need to collect. The kit comes with a
base station which is attached to a PC through USB. A new sensor node can be
easily added to the network by a simple pairing procedure, which only involves
pressing a button on both the base station and the new node.

The RFM wireless network node has an analog and digital input. It sends an
event when the state of the digital input changes or when some threshold of
the analog input is violated. We equipped nodes with various kinds of binary
sensors:

reed switches measure whether doors are open or closed. We installed them on
doors within the homes, cupboards in the kitchen and on appliances such
as the refrigerator, freezer and microwave.

pressure mats measure someone sitting on a couch or lying in bed. We installed
them in the bed, couch and on chairs.

mercury contacts detect movement of objects (e.g. drawers) to which the sensor
is attached. We installed them in drawers in the kitchen.

passive infrared detect motion in a specific area. We installed them in the kitchen
and the shower.

float sensors to measure the fluid level in a basin. We installed them in the toilet
basins and in bathroom and kitchen sinks.

Annotation

Annotation was performed by the monitored person and is either done using a
hand written diary or using a bluetooth headset combined with speech recog-
nition software. In both methods, the starting and end time of an activity is
recorded.
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(a) Wireless network node RFM
DM 1810 to which sensors
can be attached.

(b) Bluetooth headset used for annotating
datasets.

Fig. 2.1: Sensing and annotation set used for recording datasets.

In the hand written diary method, the name of the activity together with its start
and end time are written down on a pieces of paper distributed throughout the
house in locations where activities are generally performed. The time at which
the activity started and ended was read off a watch carried by the subject. A
disadvantage of this approach is that writing down the activity and time is rather
time consuming and interrupts the subject in performing the activity.

Annotation using the bluetooth headset method requires the subject to walk
around the house with a headset at all times. When an activity is performed the
subject speaks into the headset which activity is performed and whether it starts
or ends. We used the Jabra BT250v bluetooth headset (Fig. 2.1(b)) for annotation.
It has a range up to 10 meters and battery power for 300 hours standby or 10
hours active talking. This is more than enough for a full day of annotation, the
headset was recharged at night. The headset contains a button which we used to
trigger the software to add a new annotation entry.

The software for storing the annotation is written in C and combines elements
of the bluetooth API with the Microsoft Speech API4. The bluetooth API was
needed to catch the event of the headset button being pressed and should work
with any bluetooth dongle and headset that uses the Widcomm5 bluetooth stack.

The Microsoft Speech API provides an easy way to use both speech recognition
and text to speech. When the headset button is pressed the speech recognition
engine starts listening for commands it can recognize. We created our own speech
grammar, which contains a limited combination of commands the recognition

4For details about the Microsoft Speech API see: http://www.microsoft.com/speech/
5For details about Widcomm see: http://www.broadcom.com/products/bluetooth_sdk.php
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engine could expect. By using very distinctive commands such as ‘begin use
toilet’ and ‘begin take shower’, the recognition engine had multiple words by
which it could distinguish different commands. This resulted in near perfect
recognition results during annotation. The recognized sentence is then read back
to the user, using the text-to-speech engine. Any errors that do occur can be
immediately corrected using a ‘correct last’ command.

Because annotation is provided by the user on the spot this method is very
efficient and accurate. The use of a headset together with speech recognition
results in very little interference while performing activities. This results in
annotation data which requires very little post processing, making this a very
inexpensive method.

Houses

A total of three datasets was recorded in three different houses. Details about the
datasets, the houses they were recorded in and their inhabitants, can be found
in Table 2.1. Floorplans for each of the houses, indicating the locations of the
sensors, can be found in Figure 2.2. These datasets are publicly available for
download from http://sites.google.com/site/tim0306/.

Datasets made public

The increasing interest in pervasive computing applications has caused many
research groups to create their own smart homes or develop easily installable
sensor kits. Due to privacy issues and expensive annotation costs not many real
world datasets are made available to the public. To this end, we developed our
own sensor system and annotation method and recorded three datasets each
consisting of several weeks of data recorded in a real world setting. These
datasets have been made publicly available and have been used to evaluate the
recognition performance of various recognition methods such as the naive Bayes

House House A House B House C
Age 26 28 57
Gender Male Male Male
Setting Apartment Apartment House
Rooms 3 2 6
Duration 25 days 13 days 18 days
Sensors 14 22 21

Tab. 2.1: Information about the datasets recorded in three different homes using a wireless
sensor network.

http://sites.google.com/site/tim0306/
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(a) House A
(b) House B

(c) House C, First floor (d) House C, Second floor

Fig. 2.2: Floorplan of houses A, B and C, the red boxes represent wireless sensor nodes
(Created using http://www.floorplanner.com/).

http://www.floorplanner.com/
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classifier [59], classification using evidence theory [100, 164] and context lattice
[180] and for evaluating a transfer learning method [184]. However, in many of
these works the experimental setup used differs from the setup used in our work.
Changes in the number of activities recognized, the feature representation used
or the performance measure used for evaluation, make it difficult to compare
our work directly to the results published in those works. For that reason, we
have more recently published a benchmark dataset package in which we not only
encourage other authors to compare their performance directly to ours using the
same experimental setup, but we have also released the necessary Matlab code
for reproducing the experiments [67]. Such a benchmark will make quantitative
comparisons between papers easier because the published results all rely on the
same experimental setup and code.

2.5 Conclusions

This chapter gave an overview of related work on activity recognition and all the
elements that make up such systems. We highlighted the importance and broad
use of activities in various surveillance, office and health applications.

The potential of using cameras, wearables, RFID and wireless sensor networks
in a home setting for activity recognition was discussed. Each of these sensing
modalities was evaluated with respect to their intrusiveness, ease of installation
and informativeness with respect to activity recognition. Our choice for wireless
sensor networks was explained and the challenges in recognizing activities were
highlighted.

Various pattern recognition methods for activity recognition were discussed.
Temporal probabilistic models provide a good framework for representing un-
certainty with respect to interpreting the data.

Several smart home projects were described and the need for and lack of real
world datasets was explained. Because very few real world datasets are publicly
available, we recorded three datasets ourselves. These datasets have been made
publicly available and are now actively used by other researchers.
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3

Markov models

3.1 Introduction

Activity recognition is a challenging task for several reasons: the start and end
time of the activities are unknown, activities can be performed in a large num-
ber of ways and because there is ambiguity and noise in the observed sensor
data. Temporal probabilistic models provide a framework for dealing with the
uncertainty caused by these issues. They are able to make an informed decision
about which activity is taking place based on the evidence that the sensor data
provides.

The hidden Markov model (HMM) is a classic temporal probabilistic model that
has been studied for years and is very well understood. It has been successfully
applied in many sequential data modeling problems such as speech recognition,
handwritten digit recognition and biological sequence analysis. More recently,
the conditional random field (CRF) has been shown to outperform the HMM in
many of these areas when sufficient labeled data is available [44, 78, 79]. Activity
recognition shares many characteristics with these problems and therefore the
HMM and CRF seem suitable candidates for modeling activities using sensor
data.

To apply these models, the sensor data is typically discretized into timeslices of
a constant length. Often, resulting timeslice values are further transformed to
obtain a feature representation that is better suited for classification. Due to the
novelty of the field of activity recognition, there are many open questions with
respect to these pre-processing steps:

1The material in this chapter is largely drawn from [63, 68, 71].
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• With what granularity should the sensor data be discretized? The length
of the timeslices used during discretization has important consequences for
the recognition performance of a model. Too short timeslices will include
too many irrelevant details that can hurt the performance of the model,
while too large timeslices can smooth out important details of the signal.

• What feature representation should we use for the sensor data? A good
feature representation reduces the variability of the data within a particular
class (in our case an activity) and makes the data easily distinguishable
among classes. The choice of feature representation can therefore have a
great impact on the recognition performance of a model.

After preprocessing the data, it can be applied to the probabilistic model. We dis-
tinguish between a learning phase and an inference phase. During learning, the
model parameters are estimated from a collection of training data. By perform-
ing probabilistic inference, we are able to determine the most likely sequence of
activities the model recognizes from a novel sequence of sensor data. In terms of
modeling, we answer the following questions:

• Which model is best suited for activity recognition? The choice of the
model is complicated and depends on issues of recognition performance,
computation time and amount of data needed to learn the model para-
meters. CRFs have outperformed HMMs in other domains, will the same
hold for activity recognition?

• How much training data is needed to accurately learn the model para-
meters? Probabilistic models rely of labeled data to learn the model para-
meters. Collecting labeled data is expensive and therefore it is interesting
to see how the amount of available training data relates to the recognition
performance.

In this chapter, we first discuss related work with respect to HMMs and CRFs in
Section 3.2. Section 3.3 introduces the notation used. Section 3.4 introduces the
HMM and its learning and inference methods, while Section 3.5 does the same
for CRFs. In Section 3.6, we highlight the similarities and differences between
these models. Section 3.7 describes our experiments and presents our results and
in Section 3.8, we discuss these results. Finally, in Section 3.9, we sum up the
conclusions of this chapter.

3.2 Related Work

The first application of the HMM to a challenging task such as speech recognition
was implemented in the 1970s. A paper by Lawrence Rabiner [130], provides
a clear overview and tutorial on the theory of HMMs and their application
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to speech recognition. Since then, the HMM has shown to be an enormously
versatile model with applications in handwriting recognition [128], computer
vision [42] and computational biology [76].

In 2001, CRFs were introduced and quickly grew in popularity as they were
shown to outperform HMMs [78]. CRFs directly model the conditional prob-
ability distribution used during inference, which makes them more robust to
violations of the modeling assumptions [153]. We explain the reason for this
robustness in detail in Section 3.6.2. A consequence of modeling the conditional
distribution directly is that there is often no closed-form solution for estimating
the model parameters from data. Instead the parameters are estimated iteratively
using a numerical method by maximizing the likelihood. Calculating the likeli-
hood involves calculating the conditional probability for all timeslices, making it
a relatively expensive operation. A lot of work has focused on finding efficient
learning algorithms for CRFs. Various first-order derivative numerical optimiza-
tion techniques were proposed, but eventually second-order derivative methods
were used to find the optimal parameters [142, 169].

Hidden Markov models are part of a family of models called generative models,
while conditional random fields are part of the discriminative family of models.
Although discriminative models usually outperform generative models when
large amounts of training data are available, generative models have been shown
to outperform discriminative models when training data is limited [117]. Gener-
ative and discriminative models can be combined into a hybrid model in which
a subset of the model parameters is learned using the generative approach and
another subset of parameters is learned using the discriminative approach. De-
pending on the amount of training data available, hybrid models can outperform
both generative and discriminative model [133].

The application of probabilistic models to activity recognition from wireless sen-
sor networks started with the naive Bayes model [158]. The naive Bayes classifier
is a generative probabilistic model that does not model temporal correlations,
instead, it models each timeslice as a separate data point. Patterson et al. applied
the HMM to activity recognition from RFID data and showed that modeling
temporal correlations results in a strong performance gain [124]. Wilson et al.
modeled activity recognition in a home with multiple inhabitants. Their ap-
proach is similar to Patterson’s in that the HMM was used to model temporal
correlations, however, a particle filter was used to assign sensor readings to each
inhabitant in the home, after which the activity recognition was performed for
each individual separately [173].

Conditional random fields were applied to gesture recognition [109, 171] and
role recognition in a game environment [167]. These tasks are similar to activity
recognition in that they are defined by a combination of simple actions and that
the start and end point of gestures and roles are not known beforehand. CRFs
have been applied to recognize activities such as going to work and visiting a
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friend from GPS data in an outside setting [86]. Hu et al. applied CRFs to activity
recognition in a home setting using wireless sensor networks. They compared
the performance of CRFs to the naive Bayes classifier, showing CRFs outperform
naive Bayes significantly [53]. However, because the naive Bayes classifier does
not model temporal correlations and the CRF does, it is unclear whether the gain
in performance is caused merely by these differences in modeling assumptions.

Hybrid models were applied to recognize activities from wearable sensor data.
Experimental results showed a slight increase in performance for the hybrid
model compared to the discriminative model [84].

In these works, the activity recognition is performed using various kinds of sen-
sors. In terms of wireless sensor networks, none of these works provides any ex-
perimental comparison with respect to the timeslice length for discretization and
the feature representation for classification. Although the HMM and CRF have
both been applied to activity recognition, these models have not been compared
on a single dataset. In this chapter, we compare the recognition performance of
these models on three real world datasets.

3.3 Notation and Discretization

The data obtained from the sensors is discretized into T timeslices of length∆t. A
single feature value is denoted as xi

t, indicating the value of feature i at timeslice
t, with xi

t ∈ {0, 1}. Feature values can either represent the raw values obtained
directly from the sensor, or can be transformed according to a fixed function. In
Section 3.7.3 we present various feature representations that can be used.

In a house with N installed sensors, we define a binary observation vector ~xt =

(x1
t , x

2
t , . . . , x

N
t )T. The activity at timeslice t, which is the state that the system is in,

is denoted with yt ∈ {1, . . . ,Q} for Q possible states. Our task is to find a mapping
between a sequence of observations x1:T =

{
~x1, ~x2, . . . , ~xT

}
and a sequence of labels

y1:T =
{
y1, y2, . . . , yT

}
for a total of T timeslices.

3.4 Hidden Markov Model

Our goal is to recognize which activities took place given a sequence of sensor
data. That is, we wish to find the sequence of activities y1:T that best explains
the sequence of observations x1:T. In temporal probabilistic models, this prob-
lem corresponds to finding the sequence y1:T that maximizes the probability
p(y1:T | x1:T).
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(a) HMM (b) CRF

Fig. 3.1: The graphical representation of first-order HMM and a linear-chain CRF. The
shaded nodes represent observable variables, while the white nodes represent
hidden ones.

In this section, we present the HMM and describe how we can use this model to
find the sequence of activities that best explains the sequence of observations. We
start with a model definition in which we explain the probability distributions
that make up the model and introduce the set of model parameters underlying
these distributions. Then we explain how the model is used to find the sequence
y1:T that maximizes p(y1:T | x1:T). Finally, we explain how the model parameters
are learned from a collection of training data.

3.4.1 Model Definition

The HMM is a generative probabilistic model which specifies the joint probability
of the activities and sensor data p(y1:T, x1:T | θ), called the likelihood function. This
is a function of the model parameters θ, which is optimized during learning.

There are two dependence assumptions that define this model, represented with
the directed arrows in Figure 3.1(a).

• The hidden variable at time t, namely yt, depends only on the previous
hidden variable yt−1 (first order Markov assumption [130]).

• The observable variable at time t, namely ~xt, depends only on the hidden
variable yt at that time slice.

The joint probability distribution therefore factorizes as follows

p(y1:T, x1:T) = p(y1)
T∏

t=1

p(~xt | yt)
T∏

t=2

p(yt | yt−1). (3.1)

Each of the factors represent a probability distribution:

• Initial state distribution p(y1), represents the probability of starting in state
y1 and is a multinomial distribution with parameter values denoted as
p(y1 = i) ≡ πi.
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• Observation distribution p(~xt | yt), represents the probability that the state
yt would generate observation vector ~xt.

• Transition distribution p(yt | yt−1), represents the probability of going from
one state to the next.

In order to model the distribution of the observation vector exactly, we would
need to consider all possible combinations of values in the vector’s dimensions.
This would require 2N parameters per activity, where N is the number of features.
Which easily results in a large number of parameters, even for small N, and
requires accordingly large numbers of training elements. Therefore, we apply the
naive Bayes assumption, which means that we model each feature independently
of the other features. Applying this assumption requires only N parameters for
each activity. This is a very strong model assumption which most likely does not
represent the true distribution of the data (i.e. it is very likely that two sensors are
dependent on each other with respect to a particular activity). However, naive
Bayes has been shown to give very good results in many domains, even when
the independence assumption is violated [136]. Each feature is modeled by an
independent Bernoulli distribution, where µni is the parameter of the nth feature
for state i. So that p(~xt | yt) =

∏N
n=1 p(xn | yt), with p(xn | yt = i) = µxn

ni
(1 − µni)(1−xn).

The transition distribution is modeled by Q multinomial distributions, one for
each activity, where individual transition probabilities are denoted as ai j ≡ p(yt =

j | yt−1 = i). The HMM is therefore fully specified by the parameters A =
{

ai j

}

,
B =
{
µni
}

and π = {πi}.

3.4.2 Inference

The inference problem for the HMM consists of finding the single best state
sequence that maximizes p(y1:T, x1:T). Although the number of possible paths
grows exponentially with the length of the sequence, the best state sequence can
be found efficiently using the Viterbi algorithm. Using dynamic programming,
we can discard a number of paths at each time step, resulting in a computational
complexity of O(TQ2) for the entire sequence, where T is the total number of
timeslices and Q the number of states [130]. This allows us to solve the segmen-
tation problem in linear time. Further details on the Viterbi algorithm can be
found in Appendix A.1.

3.4.3 Parameter Learning

The model parameters are learned by finding the maximum likelihood para-
meters. Given a collection of training data x1:T,y1:T, we want to find those para-
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meters that maximize p(x1:T,y1:T | θ). This is equivalent to finding the maximum
likelihood parameters of each of the factors that make up this joint likelihood.

We assume that our training data is always fully labeled and therefore we can
optimize the parameters of our distributions in closed form. The initial state
distribution is a multinomial distribution whose parameters are calculated by

πi = δ(y1, i) (3.2)

where δ(i, j) is the Kronecker delta function, giving 1 if i = j and 0 otherwise.

The observation probability p(xn
t | y = i) is a Bernoulli distribution whose maxi-

mum likelihood parameter estimation is given by

µni =

∑T
t=1 xn

t δ(yt, i)
∑T

t=1 δ(yt, i)
(3.3)

where T is the total number of data points.

The transition probability p(yt = j | yt−1 = i) is a multinomial distribution
whose parameters are calculated by

ai j =

∑T
t=2 δ(yt, j)δ(yt−1, i)
∑T

t=2 δ(yt−1, i)
(3.4)

where T is equal to the number of time slices.

We apply Laplace smoothing to the estimation of all parameters, this ensures that
no parameter value will be 0 [40].

3.5 Conditional Random Fields

We have seen how in the HMM, a generative model, parameters are learned by
maximizing the joint likelihood p(y1:T, x1:T | θ). Conditional random fields are
discriminative models, in which we learn the model parameters by optimizing the
conditional likelihood p(y1:T | x1:T, θ), rather than the joint likelihood. Conditional
random fields represent a general class of discriminative models. A CRF using
the first-order Markov assumption is called a linear-chain CRF and most closely
resembles the HMM in terms of structure. In this section we give the definition
of the linear-chain CRF and describe its inference and learning algorithms.

3.5.1 Model Definition

We define our linear-chain CRF as a discriminative analog of our previously de-
fined HMM (see Fig. 3.1(b)). This means that the same dependence assumptions
hold, that is:
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• The hidden variable at time t, namely yt, depends only on the previous
hidden variable yt−1 (first order Markov assumption [130]).

• The observable variable at time t, namely ~xt, depends only on the hidden
variable yt at that time slice.

These assumptions are represented in the model using feature functions, so that
the conditional distribution is defined as

p(y1:T | x1:T) =
1

Z(x1:T)

T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, ~xt)

where K is the number of feature functions used to parameterize the distribution,
λk is a weight parameter and fk(yt, yt−1, ~xt) a feature function. The product of the
parameters and the feature function λk fk(yt, yt−1, ~xt) is called an energy function,
and the exponential representation of that term is called a potential function [9].
Unlike the factors in the joint distribution of HMMs, the potential functions do
not have a specific probabilistic interpretation and can take any positive real
value.

The partition function Z(x1:T) is a normalization term that ensures that the dis-
tribution sums up to one and obtains a probabilistic interpretation [153]. It is
calculated by summing over all possible state sequences

Z(x1:T) =
∑

y





T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, ~xt)




. (3.5)

The feature functions fk(yt, yt−1, ~xt) for the CRF can be grouped as observation
feature functions and transition feature functions. In defining the feature func-
tions, we use a multi-dimensional index to simplify the notation, rather than the
one-dimensional index used above. This gives the following feature function
definitions:

Observation: finv(xn
t , yt) = δ(yt, i) · δ(xn

t , v)

Transition: fi j(yt, yt−1) = δ(yt, i) · δ(yt−1, j)

where v is the value of the feature.

In Section 3.6, we will see that the differences in formulation between CRF and
HMM are largely notational differences. The real difference lies in how the
parameters are optimized.

3.5.2 Inference

Inference in a CRF is done using the Viterbi algorithm, similarly as with HMMs.
The algorithm has a computational complexity of O(TQ2) [153]. A generalized
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version of the Viterbi algorithm that works for both HMMs and CRFs can be
found in Appendix A.1.

3.5.3 Parameter Learning

The parameters θ = {λ1, . . . , λK} of CRFs are learned by maximizing the condi-
tional log likelihood l(θ) = log p(y1:T | x1:T, θ) given by

l(θ) =
T∑

t=1

K∑

k=1

λk fk(yt, yt−1, ~xt) − log Z(x1:T) −
K∑

k=1

λ2
k

2σ2

where the final term is a regularization term, penalizing large values of λ to
prevent overfitting. The constant σ is set beforehand and determines the strength
of the penalization [153].

The function l(θ) is concave, which follows from the convexity of log Z(x1:T)
[153]. A useful property of convex functions in parameter learning is that any
local optimum is also a global optimum. Quasi-Newton methods such as BFGS
have been shown to be suitable for CRFs [142, 169]. These methods approximate
the Hessian, the matrix of second derivatives, by analyzing successive gradient
vectors. Because the size of the Hessian is quadratic in the number of parameters,
storing the full Hessian is memory-intensive. We therefore use a limited-memory
version of BFGS [14, 87]. The partial derivative of l(θ) with respect to λi, is given
by

∂l

∂λi
= −
λi

σ2 +

T∑

t=1

fi(yt, yt−1, ~xt) −
T∑

t=1

∑

yt,yt−1

p(yt, yt−1 | ~xt) fi(yt, yt−1, ~xt)

3.6 Generative vs. Discriminative Models

Generative models such as the HMM are defined by a factorization of the joint
distribution p(y1:T, x1:T). Discriminative models such as CRFs are defined by the
conditional distribution p(y1:T | x1:T). We can rewrite the conditional distribution
in terms of the joint distribution as

p(y1:T | x1:T) =
p(y1:T, x1:T)
∑

y p(y1:T, x1:T)
. (3.6)

In this section, we first show that we can formulate the conditional distribution
of CRFs in terms of the joint distribution of the HMM using the formula above.
This will show how closely related these models actually are. We then show the
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differences between these models due to their different optimization criteria used
during parameter estimation. That is, parameters of the HMM are learned by
maximizing the joint distribution, while the parameters of CRFs are learned by
maximizing the conditional distribution.

3.6.1 From HMMs to CRFs

In Section 3.4.1, we introduced the factorized joint distribution of the HMM.
Here, we rewrite the joint distribution using a more generalized notation

p(y1:T, x1:T) = C exp





∑

t

∑

i, j∈S

λi jδ(yt, i)δ(yt−1, j) +
∑

t

∑

i∈S

∑

n∈N

∑

v∈V

µinvδ(yt, i)δ(xn
t , v)





(3.7)

in which C is a normalization constant and δ(a, b) is a Kronecker delta function,
giving 1 if a = b and 0 otherwise. Every HMM can be written in this form by
setting λi j = log p(yt = i | yt−1 = j) and µinv = log p(xn

t = v | yt = i), in which we
have defined p(y1 | y0) = p(y1) for the sake of notational simplicity.

The factors p(yt = i | yt−1 = j) and p(xn
t | yt) of the HMM are probabilities

and therefore constrained to values between 0 and 1. However, in the energy
function framework of CRFs the exponents of these terms are potential functions
and can take any positive real value. The parameters λi j and µinv can therefore
take any real value (positive or negative). This greater flexibility requires us to
add a normalization constant C to ensure the joint distribution is still guaranteed
to sum to 1. Despite this greater flexibility, it can be shown that Formula 3.7
describes exactly the class of HMMs as formulated by 3.1 [153].

To simplify the notation, we replace the Kronecker delta functions by feature
functions fi j(yt, yt−1, ~xt) = δ(yt, i)δ(yt−1, j) and finv(yt, yt−1, ~xt) = δ(yt, i)δ(xn

t , v). By
using a one-dimensional index for all feature functions and their corresponding
parameters, we obtain the joint probability in the following form

p(y1:T, x1:T) = C

T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, xt) (3.8)

where C is the normalization term and K is the total number of parameters.
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By applying Formula 3.6, we can calculate the conditional distribution.

p(y1:T | x1:T) =
p(y1:T, x1:T)
∑

y p(y1:T, x1:T)
(3.9)

=
C
∏T

t=1 exp
∑K

k=1 λk fk(yt, yt−1, xt)
∑

y C
∏T

t=1 exp
∑K

k=1 λk fk(yt, yt−1, xt)
(3.10)

=
1

Z(x)

T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, xt), (3.11)

where Z(x1:T) is the observation specific normalization function

Z(x1:T) =
∑

y

T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, xt). (3.12)

This gives us the same function for CRFs as we defined in Section 3.5.1. Besides
the difference in notation, it differs from the formula of the HMM for two reasons,
1) we calculate the conditional distribution instead of the joint distribution and
2) we use potential functions instead of probabilities.

3.6.2 Differences in learning parameters

We have seen how closely related the HMM and CRF are. When doing inference
for a novel sequence of observations both models maximize the conditional
distribution p(y1:T | x1:T) to find the optimal sequence of states that fit to the
observations. The true difference between HMM and CRF therefore lies in their
optimization criteria used during parameter estimation. That is, parameters of
the HMM are learned by maximizing the joint distribution, while the parameters
of CRFs are learned by maximizing the conditional distribution.

The difference between these two learning method becomes clear when the mod-
els are based on incorrect modeling assumptions [117]. Models often have incor-
rect modeling assumptions because either we do not know the true underlying
distribution or because the choice of distribution results in fewer parameter
values, therefore requiring less data to learn the model parameters accurately.
For example, while defining our HMM, we explained how the use of the naive
Bayes assumptions is most likely wrong, but is sensible to prevent an exponential
growth in parameters.

Example

To illustrate the impact of incorrect modeling assumptions further, consider an
example involving classes A and B. The data points x for each class are indepen-
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dently and identically distributed (i.i.d.) and both classes y are equally likely to
occur (p(y = A) = p(y = B) = 0.5). We assign a novel data point to one of the
classes by calculating the posterior according to Bayes rule

p(y | x) =
p(x | y)p(y)

p(x)
. (3.13)

The data of class A (p(x | y = A)) is distributed as a Gaussian distribution with
mean 3 and standard deviation 1. Data of class B (p(x | y = B)) is distributed as a
Gaussian with mean 5 and standard deviation 2 (Fig. 3.2(a)).

We model the data using a generative and a discriminative model, both using a
Gaussian distribution with a fixed standard deviation of 1 to model the obser-
vation distribution p(x | y). Because the standard deviation is fixed, the means
of the Gaussians are the only parameters to learn. In the case of the generative
model we learn the means by maximizing the joint probability p(x, y). This is
equivalent to maximizing the observation distribution p(x | y) independently.
The maximum likelihood parameters are learned by calculating the mean of the
data points available for training. Figure 3.2(b) shows the resulting Gaussian
distribution learned from data. We see that a generative model manages to learn
the correct mean of 3 and 5 for the two distributions, but because of the incor-
rect modeling assumption (standard deviation is fixed at 1) a classification error
arises.

In the case of the discriminative model, the parameters are learned by maximizing
the posterior probability p(y | x) directly. No closed form solution is available
for maximizing this function and therefore a numerical method such as gradient
ascent can be used. Figure 3.2(c) shows the resulting Gaussian distribution
learned from data. We see that the model learned an incorrect mean for class B
(mean of 6.35), however, this incorrect mean does result in optimal classification.

This example shows that discriminative models are more robust in dealing with
violations of the modeling assumptions.

3.7 Experiments

In this section, we present the experiments and their results for the comparison of
the HMM and the CRF. We describe the datasets used, the experimental setup, a
number of feature representations and the goal and results of the experiments. A
total of three experiments are done. The first experiment is aimed at finding the
ideal timeslice length for discretizing the sensor data. In the second experiment,
we compare the recognition performance of the feature representations and mod-
els presented in this chapter. Finally, in the third experiment, we determine how
much sensor data is needed to accurately learn the model parameters.
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(b) Distributions obtained using generative model.
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(c) Distributions obtained using discriminative model.

Fig. 3.2: Example of incorrect model assumptions in which discriminative models learn
parameters that correctly classify the data, while generative models learn para-
meters that result in a classification error.



46 Markov models

House A House B House C

Other Other Other
Leaving Leaving Leaving
Toileting Toileting Eating
Showering Showering Toileting
Brush teeth Brush teeth Showering
Sleeping Sleeping Brush teeth
Breakfast Dressing Shaving
Dinner Prep. Breakfast Sleeping
Snack Prep. Dinner Dressing
Drink Drink Medication

Dishes Breakfast
Eat Dinner Lunch
Eat Breakfast Dinner
Play piano Snack

Drink
Relax

Tab. 3.1: List of activities for each home.

3.7.1 Datasets used

Our experiments are done using the datasets we recorded (introduced in Section
2.4.3). There are three datasets corresponding to three different homes. A list of
activities that were annotated for each dataset can be found in Table 3.1. In these
experiments, we consider each dataset separately, and use all annotated activities
of each dataset for evaluation.

3.7.2 Experimental Setup

We split our data into a test and training set using a ‘leave one day out’ approach.
In this approach, one full day of sensor readings is used for testing and the
remaining days are used for training. We cycle over all the days and report the
average performance measure.

We evaluate the performance of our models using precision, recall and F-measure.
These measures can be calculated using the confusion matrix shown in Table 3.2.
The rows show the ground truth labels as provided by a human annotator, while
the columns show the labels inferred by the model. The diagonal of the matrix
contains the true positives (TP), while the sum of a row gives us the total of
ground truth labels (TT) and the sum of a column gives us the total of inferred
labels (TI). We calculate the precision and recall for each class separately and then
take the average over all classes.
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Ground
truth

Inferred
1 2 3

1 TP1 ǫ12 ǫ13 TT1

2 ǫ21 TP2 ǫ23 TT2

3 ǫ31 ǫ32 TP3 TT3

TI1 TI2 TI3 Total

Tab. 3.2: Confusion matrix showing the true positives (TP), total of ground truth labels
(TT) and total of inferred labels (TI) for each class.

It is important to use these particular measures because we are dealing with
unbalanced datasets. In unbalanced datasets, some classes appear much more
frequent than other classes. Our measure takes the average precision and recall
over all classes and therefore considers the correct classification of each class
equally important. To further illustrate the importance of these measures, we
also include the accuracy in our results. The accuracy represents the percentage
of correctly classified timeslices, therefore more frequently occurring classes have
a larger weight in this measure.

Precision =
1
N

N∑

i=1

TPi

TIi
(3.14)

Recall =
1
N

N∑

i=1

TPi

TTi
(3.15)

F-Measure =
2 · precision · recall

precision + recall
(3.16)

Accuracy =
∑N

i=1 TPi

Total
(3.17)

The significance testing between two cases A and B is done at a confidence interval
of 95% using a one-tail student t-test and using matching paired days. This means
that performance in case A for a particular day of the cross validation is compared
to the performance in case B for that exact same day of the cross validation. We
do this because there are large differences in the activities performed throughout
the various days. It can be said that some days are more challenging in terms of
recognition than others. However, a single day will be equally challenging for
both models. Therefore, to allow a fair comparison, it is important to match the
performance of individual days while calculating the significance.
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(a) Raw (b) Changepoint (c) Last-fired

Fig. 3.3: Different feature representations.

3.7.3 Feature Representation

The raw data obtained from the sensors can either be used directly, or be prepro-
cessed into a different representation form. We experiment with three different
feature representations:

Raw: The raw sensor representation uses the sensor data directly as it was re-
ceived from the sensors. It gives a 1 when the sensor is firing and a 0
otherwise (Fig. 3.3(a)).

Changepoint: The change point representation indicates when a sensor event
takes place. That is, it indicates when a sensor changes value. More
formally, it gives a 1 when a sensor changes state (i.e. goes from zero to one
or vice versa) and a 0 otherwise (Fig. 3.3(b)).

Last-fired: The last-fired sensor representation indicates which sensor fired last.
The sensor that changed state last continues to give 1 and changes to 0
when another sensor changes state (Fig. 3.3(c)).

3.7.4 Experiment 1: Timeslice Length

Here, we present our findings for determining the ideal timeslice length for
discretizing the sensor data. Experiments were run using only the HMM, because
for very small timeslice lengths (e.g. 1 second) the CRF would take several
days to find the optimal parameters. We experimented using all the feature
representations, to rule out any bias towards any of the representations.

During discretization both the sensor data and the ground truth activity labels
are discretized using the same timeslice length. Especially when using large
timeslice lengths, it is possible that one activity ends somewhere halfway during
a timeslice, and another activity starts. This means multiple activities appear in
the same timeslice. In this case, we use the activity that takes up most of the
timeslice.

The discretized ground truth labels are used to learn the model parameters.
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(a) House A

(b) House B

(c) House C

Fig. 3.4: F-Measure performance of the HMM for the three houses using different timeslice
length to discretize the data.
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Length House A House B House C

∆t = 1 s 0.0 0.0 0.0
∆t = 10 s 0.2 0.2 0.2
∆t = 30 s 0.6 0.6 0.9
∆t = 60 s 1.3 1.1 1.7
∆t = 300 s 5.9 4.0 8.1
∆t = 600 s 10.6 17.4 13.7

Tab. 3.3: Discretization Error percentages.

Using this discretized ground truth for calculating the performance measures of
the model would result in a bias towards large timeslices. In larger timeslices, the
shorter activities would not survive the discretization process, thus making the
classification task easier. Instead, we evaluate the performance using the original
ground truth (not discretized) which was obtained with a one second accuracy.

The F-measure values for the various timeslice lengths are plotted in Figure 3.4.
We see that for each house no timeslice length achieves consistently the best per-
formance for all feature representations. Furthermore, we see that across all three
homes, no timeslice length significantly outperforms the other timeslice lengths
for a particular feature representation. Although the difference in performance is
not significant, we see that the timeslice lengths of ∆t = 30 seconds and ∆t = 60
seconds give an overall good performance.

Table 3.3 shows the discretization error for each timeslice length. This error
shows the percentage of discretized ground truth timeslices that are incorrectly
labeled compared to the original non-discretized ground truth. This shows how
accurately the discretized ground truth represents the actual ground truth. We
see that the discretization error for timeslice lengths of ∆t = 300 seconds and
∆t = 600 is rather large, while for smaller timeslice lengths the error remains
around 1% or lower.

3.7.5 Experiment 2: Feature Representation and Model

This experiment shows the performance of the HMM and the CRF for the different
feature representations. Data was discretized using the timeslice length of∆t = 60
seconds. The discretized ground truth was used to calculate the performance
measures. The results for House A are shown in Table 3.4, House B in Table 3.5
and House C in Table 3.6. Feature representations were used standalone and
combined. Combining the feature representations was done by concatenating
the feature matrices.

We first compare the results in terms of feature representations using only the
F-measure. We see that out of the standalone representation, the raw representa-
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Precision Recall F-Measure Accuracy

H
M

M

Raw 38 ± 20 46 ± 20 41 ± 20 59 ± 29
Change 70 ± 16 74 ± 13 72 ± 14 92 ± 6
Last 55 ± 17 70 ± 13 61 ± 15 90 ± 8
Raw&Change&Last 64 ± 17 78 ± 11 70 ± 14 94 ± 4
Raw&Change 47 ± 20 56 ± 20 51 ± 20 61 ± 29
Raw&Last 63 ± 16 77 ± 12 69 ± 13 94 ± 4
Change&Last 67 ± 18 79 ± 12 72 ± 15 94 ± 4

C
R

F

Raw 59 ± 19 56 ± 17 57 ± 17 90 ± 8
Change 74 ± 17 68 ± 16 70 ± 16 91 ± 6
Last 66 ± 16 66 ± 14 66 ± 15 96 ± 2
Raw&Change&Last 72 ± 16 74 ± 13 73 ± 14 97 ± 3
Raw&Change 75 ± 16 72 ± 13 73 ± 14 94 ± 5
Raw&Last 67 ± 15 68 ± 14 67 ± 14 96 ± 3
Change&Last 72 ± 15 74 ± 13 73 ± 14 97 ± 2

Tab. 3.4: Experiment 2, House A: Different feature representations for HMMs and CRFs.

Precision Recall F-Measure Accuracy

H
M

M

Raw 36 ± 12 45 ± 13 39 ± 13 63 ± 25
Change 45 ± 17 60 ± 15 51 ± 16 80 ± 14
Last 36 ± 16 45 ± 20 40 ± 17 48 ± 26
Raw&Change&Last 37 ± 8 49 ± 16 42 ± 10 80 ± 13
Raw&Change 26 ± 11 32 ± 11 28 ± 10 43 ± 25
Raw&Last 33 ± 11 42 ± 14 37 ± 12 74 ± 22
Change&Last 40 ± 9 53 ± 15 44 ± 9 80 ± 15

C
R

F

Raw 36 ± 17 41 ± 13 38 ± 15 78 ± 26
Change 47 ± 10 50 ± 10 49 ± 9 92 ± 7
Last 47 ± 12 48 ± 11 47 ± 11 88 ± 15
Raw&Change&Last 32 ± 18 38 ± 17 34 ± 17 77 ± 20
Raw&Change 32 ± 20 32 ± 19 32 ± 19 62 ± 24
Raw&Last 29 ± 19 33 ± 18 30 ± 19 73 ± 19
Change&Last 38 ± 17 40 ± 16 39 ± 17 85 ± 12

Tab. 3.5: Experiment 2, House B: Different feature representations for HMMs and CRFs.
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Precision Recall F-Measure Accuracy
H

M
M

Raw 13 ± 8 17 ± 8 15 ± 8 26 ± 22
Change 41 ± 8 50 ± 12 45 ± 8 76 ± 17
Last 42 ± 11 53 ± 16 46 ± 12 80 ± 15
Raw&Change&Last 42 ± 12 54 ± 13 47 ± 12 70 ± 24
Raw&Change 42 ± 10 51 ± 12 46 ± 10 73 ± 22
Raw&Last 42 ± 12 53 ± 11 46 ± 11 71 ± 27
Change&Last 36 ± 14 47 ± 19 40 ± 16 48 ± 26

C
R

F

Raw 12 ± 11 16 ± 10 13 ± 10 38 ± 21
Change 35 ± 20 37 ± 19 36 ± 19 78 ± 18
Last 34 ± 17 37 ± 17 35 ± 17 84 ± 12
Raw&Change&Last 44 ± 14 48 ± 11 46 ± 12 82 ± 19
Raw&Change 41 ± 15 43 ± 13 42 ± 14 80 ± 24
Raw&Last 42 ± 16 44 ± 13 43 ± 14 77 ± 22
Change&Last 50 ± 11 52 ± 12 51 ± 11 89 ± 14

Tab. 3.6: Experiment 2, House C: Different feature representations for HMMs and CRFs.

tion gave very poor F-measure performance in all homes and with both models.
The change and the last representations both perform significantly better than
the raw representation in all houses and for both models. The changepoint repre-
sentation performs on average better than the last representation, but this is not
a significant difference. When looking at the combinations of feature representa-
tions, we see that the ‘raw&change&last’ and the ‘change&last’ representations
generally give good performance and in some cases on average perform better
than the standalone change and last representations. The same holds for the
raw representation combined with either the change or the last representation,
however, these differences in performance are not significant.

Next, we compare the results of the models. Comparing the HMM and CRF
in terms of F-measure gives a very mixed result. For some representations,
the HMM is better, for others the CRF. In Houses A and B, the changepoint
representation gives the best or close to the best performance for both models.
For House C, the same holds for the HMM, but for the CRF the ‘change&last’
representation works best in that house. In some cases, there are significant
differences in performance between the HMM and the CRF for a particular feature
representation. For example, the CRF using the ‘raw&change’ representation
applied to House A performs significantly better than the HMM using the same
representation. Such differences occur both in favor of the HMM as well as in
favor of the CRF.

When comparing the model performances in terms of precision and recall, we
see that the CRF on average performs better than the HMM in terms of preci-
sion, while the HMM on average performs better than the CRF in terms of recall.
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True
Model

Other
Leaving

Toiletin
g

Showerin
g

Brush
teeth

Sleeping

Breakfast

Dinner
Snack

Drin
k

Other 915 309 517 401 36 196 61 861 91 820
Leaving 30 19282 12 7 6 0 0 0 0 0
Toileting 46 4 259 13 15 19 0 2 1 6
Showering 7 1 13 229 0 0 0 1 0 0
Brush teeth 5 3 12 3 7 0 0 2 0 0
Sleeping 3 0 44 0 4 10778 0 0 0 0
Breakfast 11 0 3 0 0 1 31 22 9 10
Dinner 13 0 0 0 0 0 12 225 27 10
Snack 6 0 0 1 0 1 2 12 20 0
Drink 5 0 1 1 0 0 1 10 2 29

Tab. 3.7: Experiment 2, House A: Confusion matrix for the HMM using the last-fired
features.

True
Model

Other
Leaving

Toiletin
g

Showerin
g

Brush
teeth

Sleeping

Breakfast

Dinner
Snack

Drin
k

Other 3586 271 16 55 0 178 0 94 0 7
Leaving 8 19319 8 2 0 0 0 0 0 0
Toileting 59 10 220 9 0 63 0 4 0 0
Showering 182 6 6 57 0 0 0 0 0 0
Brush teeth 10 3 17 2 0 0 0 0 0 0
Sleeping 0 0 27 0 0 10802 0 0 0 0
Breakfast 23 0 0 0 0 3 53 0 3 5
Dinner 110 3 2 0 0 0 6 161 3 2
Snack 15 3 0 0 0 0 15 3 6 0
Drink 19 2 3 0 0 0 3 2 0 20

Tab. 3.8: Experiment 2, House A: Confusion Matrix for CRF using last-fired features.

Finally, when comparing the models in terms of accuracy, we see that the CRF
performs on average better than the HMM in almost all cases, and does so signifi-
cantly in a number of them, for example, in the case of the raw and ‘raw&change’
representation in House A.

To further understand the difference in performance between the two models,
we compare the confusion matrices. The confusion matrix for House A, using
the last-fired representation in combination with the HMM is shown in Table
3.7 and in combination with the CRF in Table 3.8. We see that the activities
that take up most timeslices are generally recognized better by the CRF, while
the less frequent activities are recognized better by the HMM. Interestingly
enough, the tooth brushing activities was not inferred once by the CRF. The
HMM recognized 7 instances of the tooth brushing correctly, but misclassified it
many times. Overall, in both models, we see that most of the confusion occurs
among the activities breakfast, dinner, snack and drink. These activities are all
performed in the same room, namely the kitchen. Similarly, we see that there is
confusion among the activities toileting, showering and brush teeth which are all
performed in the bathroom.
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House A House B House C

Learning
HMM 1.3s 0.6s 1.0s
CRF 1890.1s 1188.3s 3708.8s

Inference
HMM 3.9s 2.4s 3.2s
CRF 4.7s 3.5s 5.2s

Tab. 3.9: Experiment 2: Computation times in seconds for learning and inference in HMMs
and CRFs.

Table 3.9 shows the computation times for performing learning and inference
for each of the models when using the changepoint representation. We see that
the time to learn the model parameters in CRF is a lot higher than learning in
HMMs. In the case of House C, the amount of learning time for the CRF exceeds
one hour, while the parameters of the HMM are learned in one second. This is
because the parameters of the HMM can be learned in closed form, while for the
CRF, we have to use numerical optimization methods. Since learning is generally
performed offline, this does not have to limit the practical use of the CRF.

3.7.6 Experiment 3: Amount of Training Data

In this experiment we measure the effect of the amount of training data used to
learn the model parameters. Different training days provide different amounts of
information for each activity, therefore the days used for training were randomly
sampled from the days available for training. We performed cross validation over
all the days available, by using a single day for testing and sampling the number
of training days needed from the remaining days. For each size, 10 samples
of training days were collected and the model performance was averaged over
these samples, and over all test days used for cross validation. Figure 3.5 shows
the F-Measure for both models and for all three homes. We see that the HMM
on average performs better than the CRF, but that the difference in performance
becomes smaller as more training data is available.

3.8 Discussion

Timeslice Length

Our results from Experiment 1 showed that the recognition performance is not
very strongly affected by the length of the time interval used for discretization.
Timeslice lengths of ∆t = 30 seconds and ∆t = 60 seconds generally give a good
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Fig. 3.5: Experiment 3: F-Measure performance for the HMM and CRF using various sizes
of training data.
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performance and result in a small discretization error. Besides the performance
and error, the memory usage and computation time also play an important role
in discretization. Smaller timeslice lengths result in higher memory usage and
computation time. In Experiment 2, we saw that learning the parameters of the
CRF, using a discretization of ∆t = 60 seconds, can take up more than one hour.
Using a smaller timeslice length would linearly increase this computation time.
Taken all these factors into account a timeslice length of ∆t = 60 seconds is best
suitable for our experiments and we will use that discretization interval for the
remainder of this thesis.

Feature Representations

Our results showed large differences in performance between the different fea-
ture representations. The reason for these differences is best understood by
comparing the representations using an example. Figure 3.6 shows each feature
representation for a selection of sensors of a single day of sensor data. Each plot
also shows at which time which activity was being performed. In the raw fea-
ture representation plot (Fig. 3.6(a)), we see that the bedroom door and bathroom
door sensors sometimes continue to fire even though no relevant activity is taking
place. This is because people do not always carefully close doors behind them.
From a pattern recognition point of view this severely reduces the discriminative
value of that sensor. If the bedroom door sensor fires half of the day without any
sleeping activity taking place, the significance of that sensor is greatly reduced
for recognizing the sleeping activity. A raw sensor representation can, however,
provide important information with respect to the classification. For example,
people tend to be very strict in closing their doors when performing toileting and
bathing activities. If a toilet flushes and the toilet door is closed, this is a strong
indication that the toileting activity is taking place. On the other hand, if the
toilet flushes and the toilet door is open, it is more likely that somebody is, say,
emptying a bucket of water used for cleaning the house.

In the example of the changepoint representation (Fig. 3.6(b)), we see that the
issue of continuous sensor firing is resolved. We see that certain sensors con-
sistently coincide with the start and end point of an activity. For the bedroom
door sensor, this is the case with respect to the sleep activity, and for the front
door sensor, this is the case with the leave house activity. We also see that after
these sensor events, there are long periods in which no sensor fires at all. Also in
areas where no activity is being performed, we see long periods in which there
is no sensor activity. This makes the observation of no sensors firing at all a very
ambiguous one in this representation.

This ambiguity is resolved in the last-fired sensor representation (Fig. 3.6(c)).
The motivation for this representation is that the last sensor that fired is very
indicative of the location of the person in the home. A person that remains in a
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(c) Last-fired sensor representation

Fig. 3.6: Visualization of sensor data using the (a) raw, (b) changepoint and (c) last-fired
sensor representation. The shaded area indicates an activity was performed, the
label of the activity is shown at the top.



58 Markov models

particular room of a house is only able to trigger sensors within that room. As
soon as the person leaves that room, it is likely that he or she quickly triggers one
of the other sensors outside that room. This representation works best when a
large number of sensors are installed so that there is a high chance that a sensor
fires when a person resides in a room, and there is a high chance that a sensor
fires outside the room once the person leaves the room.

The outcome of the experiments show that the changepoint and the last represen-
tations perform significantly better than the raw representation. Combinations
of representations can sometimes result in a slight increase in performance, but
never significantly outperforms the changepoint and the last representations.

Generative and Discriminative Models

The difference in performance between the generative HMM and the discrimina-
tive CRF is mainly visible in terms of precision and recall. This is caused by the
way each model learns its model parameters. The parameters of the HMM are
learned for each activity separately, while the parameters of the CRF are learned
by optimizing the sequence of training data as a whole. The optimization method
of the CRF therefore favors the correct classification of more frequent classes over
the correct classification of infrequent classes when this would result in misclassi-
fication of the frequent class. This also explain that the activity of tooth brushing
was not recognized at all when using the CRF. A further consequence of this
optimization method is that CRFs generally score better on the accuracy measure.
The accuracy represents the percentage of correctly classified timeslices. Because
CRFs weigh the recognition of frequent classes higher than infrequent classes,
they are more likely to recognize a high number of timeslices. We introduced the
F-measure as an evaluation measure because we value the recognition of each
activity equally important. The reason the F-measures have rather high standard
deviations is because there are large differences between the days used in cross
validation. For example, on a weekday a person spends a lot of time out of
the house, while during the weekend many different activities are performed
in the house. This makes weekends more challenging in terms of recognition.
Although, this difference will also be noticeable in the accuracy measure, it will
be less severe because there will still be many timeslices in which the person is
idle or performing another activity.

Our results show that the ability of the CRF to deal with violations of the model-
ing assumptions does not result in a significant increase in the F-measure perfor-
mance. Rather, the model shifts its recognition focus to the more frequent classes,
at the cost of misclassifying the infrequent classes. Furthermore, we have seen
that the parameter estimation for the CRF takes much longer than learning the
parameters of the HMM.
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For the application of health monitoring, the long learning time does not seem
to be a very significant issue, since parameter estimation only has to be done
once during the installation of an activity recognition system. However, ignor-
ing infrequent classes for classification seems to be of larger concern. In practice,
this could mean the classifier ignores the recognition of taking in medication to
obtain a more accurate classification of the amount of time spent sleeping. On
the other hand, the HMM misclassifies many instances of the frequent classes, to
achieve a few correct classifications of the infrequent classes. It is not clear which
information care givers value more and the F-measure performance has its lim-
itations in that sense. Our results do not clearly show whether misclassification
occurs because an activity is recognized to take up more time than it actually
did (e.g. the subject slept for eight hours, but it is recognized as nine hours) or
whether complete new instances of activities are recognized (e.g. making dinner
was recognized while the subject was pacing idly through the kitchen). Future
work should therefore focus on determining which information about activities
is most informative to care givers and come up with a performance measure
which matches the accuracy of this information.

Amount of Training Data

We have seen that the difference in recognition performance between the CRF and
the HMM decreased as more training data was available. These results are similar
to work by Ng and Jordan [117]. They compared the classification performance
of generative naive Bayes model and the discriminative logistic regression model
in various classification tasks. They found that generative models perform better
when little training data is available, while discriminative models do better when
training data is plenty.

3.9 Conclusions

In this chapter, we explored techniques for preprocessing sensor data, presented
two probabilistic models for activity recognition and introduced four perfor-
mance measures for evaluating the performance of these approaches. Prepro-
cessing the sensor data consists of a discretization step and a transformation
step. Sensor data was discretized using a timeslice of constant length and exper-
iments were run to determine the effect of the timeslice length on the recognition
performance. Three feature representations for transforming the sensor data
were introduced, the raw representation, the changepoint representation and the
last-fired sensor representation.

Two models for activity recognition were presented, the HMM and the CRF. The
HMM is a generative model and the CRF a discriminative model. A comparison
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between generative and discriminative models was provided to highlight the
differences and similarities between these two types of models. The most im-
portant difference between the models lies in the way the model parameters are
estimated. For HMMs, the model parameters are learned by maximizing the like-
lihood of all the distributions that make up the model, this can be done in closed
form. In the case of CRFs, the model parameters are learned by maximizing the
conditional likelihood, which is done using numerical optimization methods. As
a result CRFs are more robust to violations of the modeling assumptions.

We presented four measures for evaluating the performance of our approaches.
A multi-class precision and recall measure was presented and these two mea-
sures were combined in the F-measure. Additionally an accuracy measure was
presented which represents the percentage of correctly classified timeslices.

Our experiments on three real world datasets showed that the recognition per-
formance is not very strongly affected by the length of the time interval used for
discretization. When taking constraints with respect to memory, computation
time and discretization error into account, a time interval of 60 seconds pro-
vides the proper balance between an accurate representation of the data and a
reasonable amount of data needed for this representation.

Experiments on the feature representations compared each feature representation
separately. The results show that the changepoint and the last representations
perform significantly better than the raw representation. Comparisons were also
made between each possible combination of feature representations. Combina-
tions of representations can sometimes result in a slight increase in performance,
but never significantly outperforms the separate use of the change and last re-
presentations.

The comparison between the performance of the models showed that the ability
of the CRF to deal with violations of the modeling assumptions does not result in
a significant increase in F-measure performance compared to the HMM. This is
because the CRF shifts its recognition focus to activities that occur more frequently
in the dataset, at the cost of misclassifying infrequent activities. For this reason
the CRF generally performs better than the HMM in terms of accuracy measure,
since in this measure more frequent activities have a larger weight. On the other
hand, the HMM misclassifies many timeslices of frequent activities to obtain a
few correct classifications of infrequent activities. The results therefore show
that the CRF generally performs better in terms of precision, while the HMM
performs better in terms of recall. Experiments focusing on the effect of the
amount of training data used show that the HMM on average performs better
than the CRF when little training data is available, but that the difference in
performance becomes smaller as more training data is available.
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Semi-Markov models

4.1 Introduction

In the previous chapter, we used the hidden Markov model (HMM) and the
conditional random field (CRF) to recognize activities. The experiments showed
that most confusion of activities occurs between activities performed in the same
room. Activities performed in one room typically involve largely the same sen-
sors. This makes it hard to distinguish activities based purely on which sensors
fired. Instead, the analysis of temporal characteristics, such as the duration of an
activity, might provide important evidence for recognition. For example, shaving
and brushing teeth both involve the use of the bathroom door and the faucet. If
no other sensors are used, it is difficult to distinguish these activities based on
the fact that the bathroom door and faucet are used. However, because shaving
typically takes up more time than brushing teeth, the duration of the activity is
likely to be very informative for recognition.

In the first-order Markov models, discussed in the previous chapter, state du-
rations are modeled implicitly by means of self-transitions of states. The prior
distribution of the duration in that case takes the form of a geometric distri-
bution. Geometric distributions have a mode fixed at one timeslice and this
might not always accurately represent the actual distribution of durations for an
activity. For example, showering typically takes several minutes, to shower in
one minute time is generally less likely than taking several minutes. Because
duration modeling in Markov models follows directly from the self-transition
of states, we cannot use a different distribution than the geometric distribution.

1The material in this chapter is largely drawn from [65, 67].
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Using higher-order Markov models allows more flexible parameterization, but
still restricts us to using the geometric distribution. Instead, we propose to use
semi-Markov models in which we are free to choose the duration distribution.

In semi-Markov models, the duration of a state is modeled explicitly by a random
variable. This explicit modeling allows us to use any distribution we wish for
representing the duration of an activity. In this chapter, we compare the gener-
ative hidden semi-Markov model (HSMM) and the discriminative semi-Markov
conditional random field (SMCRF) to their conventional Markov counterparts
(see Table 4.1). We answer the following questions:

• Which distribution should we use for modeling duration? The freedom
of using any distribution for modeling the duration of an activity raises the
question which distribution is most suitable.

• What is the effect of duration modeling in both generative and discrim-
inative models? We compare the performance of Markov models to semi-
Markov models. Is there a difference in performance gain between the
generative and discriminative models?

• How does the feature representation affect the duration modeling? Since
duration modeling can help recognition when sensor data is ambiguous,
it is interesting to see the effect of duration modeling for different feature
representations.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss
related work. Section 4.3 describes the HSMM and its learning and inference
algorithms. Section 4.4 describes SMCRFs and its learning and inference algo-
rithms. In Section 4.5, we highlight the differences between these models and
their conventional counterparts. In Section 4.6, we present the experiments and
results using our real world data sets. Finally, in Section 4.8, we sum up our
conclusions.

Markov Semi-Markov

Generative HMM HSMM
Discriminative CRF SMCRF

Tab. 4.1: Categorization of hidden Markov model (HMM), hidden semi-Markov model
(HSMM), conditional random field (CRF) and semi-Markov conditional random
field (SMCRF).
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4.2 Related Work

The limited possibilities of modeling state durations in the HMM is considered
as a major weakness of the model [130]. HSMMs were introduced to resolve
that weakness and found their first application within speech recognition [85].
Various kinds of HSMMs exist, that mainly differ in the way the observation
model is defined. In this chapter, we restrict ourselves to the most commonly used
HSMM sometimes referred to as the explicit duration HMM. Murphy presented
a unified review of the inference and learning algorithms for the different kinds
of HSMMs by presenting them in the form of a dynamic Bayesian network [111].
The inference algorithm for HSMMs is formulated as an extension to the Viterbi
algorithm for HMMs. Its computational complexity is a factor D more expensive
than the original Viterbi algorithm, where D is the maximum duration considered.
The limited modeling of state durations in HMMs also applies to CRFs and so
SMCRFs were introduced and applied to information extraction tasks [139].

In work by Duong et al., HSMMs were applied to activity recognition [32]. They
compared the performance of the model using various duration distributions
and suggested the use of the Coxian distribution because of its computational
efficiency. Truyen et al. applied a hierarchical version of SMCRFs to activity
recognition [165]. The performance was compared to hierarchical CRF and a
conventional CRF, the hierarchical SMCRF outperformed both. Both of these
works used a small data set recorded in a laboratory setting to evaluate the
model performance. No evaluation of semi-Markov models for activity recog-
nition has been done on real world datasets. Furthermore, the performances of
generative and discriminative semi-Markov models have never been compared
on a single dataset. Such a comparison allows us to evaluate the advantage of
discriminative modeling. By comparing the semi-Markov model performance
with the performance of Markov models, we can determine the effect of accurate
duration modeling in a real world setting.

4.3 Hidden Semi-Markov Model

The HSMM is a generative model that differs from the HMM because next to
modeling the observations and transitions between hidden states, HSMMs model
the duration of hidden states explicitly using a random variable.

In the case of the HMM duration is modeled implicitly by the self-transitions of
states. Given an HMM in a known state, the prior probability that it stays in that
state for l timeslices is

pi(l) = (aii)l−1(1 − aii) (4.1)
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where pi(l) is the discrete probability density function (PDF) of duration l in
state i and aii is the self-transition probability of state i [130]. We see that the
function consists of l − 1 self-transitions (i.e. the model remains in state i) and
one transition to a different state than state i, as expressed by the term 1− aii. This
duration density function takes the form of a geometric distribution with a mode
fixed at one timeslice. The self-transitions are part of the transition distribution
of the HMM and therefore follow directly from the model definition. Duration
modeling is therefore not explicitly defined for the HMM but follows as an
inherent property of the model, therefore, we cannot use a different distribution
to model the duration.

In the rest of this section, we give the model definition of HSMMs and briefly
describe its inference and learning algorithms.

4.3.1 Model definition

To model the duration in an HSMM, we introduce a discrete random variable
dt, which represents the remaining duration of state yt. When the Markov-chain
enters the state, a value of dt is sampled from the duration distribution. Then in
the consecutive timeslices, the value of dt is decreased by one at each timeslice,
and as long as the value is larger than zero the model continues to stay in state
yt. When the value of dt reaches zero a transition to a new state is made and the
duration of the new state is sampled from the duration distribution.

Note, that dt is defined as the remaining duration of a state, therefore the actual
duration when generating a new duration is dt + 1 timeslices. In order to make
this distinction clear, we will use the length of a state l to refer to the actual
duration and the remaining duration dt, to refer to the count-down variable at
time t.

The joint probability of the HSMM is factorized as

p(y1:T, x1:T,d1:T) =
T∏

t=1

p(~xt | yt)p(yt | yt−1, dt−1)p(dt | dt−1, yt)

where we have used p(y1 | y0, d0) = p(y1) and p(d1 | d0, y1) = p(d1 | y1) for the
sake of notational simplicity. The observation model p(~xt | yt) is the same as with
the HMM. Transitions between states are modeled by the factor p(yt | yt−1, dt−1),
defined as:

p(yt = i | yt−1 = j, dt−1) =





δ(i, j) if dt−1 > 0 (remain in same state)
ai j if dt−1 = 0 (transition)

(4.2)

where δ(i, j) is the Kronecker delta function, giving 1 if i = j and 0 otherwise.
The parameter ai j is part of a multinomial distribution. Some model definitions
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of semi-Markov models force the value of aii to zero, effectively disabling self-
transitions [111]. However, in this work, we do not force these values to zero and
do allow self-transitions in the HSMM. The use of self-transitions in semi-Markov
models allows convolutions of duration distributions and makes it possible that
separate instances of activities immediately follow each other.

State durations are modeled by the term p(dt | dt−1, yt), defined as

p(dt | dt−1, yt = k) =





pk(dt + 1) if dt−1 = 0 (generate new duration)
δ(dt, dt−1 − 1) if dt−1 > 0 (count down dt−1)

(4.3)

where pk(dt + 1) is the distribution used for modeling the state duration. In
Section 4.6, we experiment with various distribution functions for modeling the
duration.

4.3.2 Inference

In comparison with HMMs, the state space of HSMMs is larger and therefore
inference requires more time. The Viterbi algorithm, used for inference in HMMs,
iterates over each state at each timeslice and chooses the most likely state from
which that state can be entered. Inference in HSMMs requires the same iterative
procedure, but because the duration of a state is not known beforehand, the
algorithm also needs to iterate over all possible durations at each timeslice. The
complete procedure has a computational complexity of O(TQ2D), where D is the
maximum duration an activity can have, T is the length of the sequence and
Q is the number of states [111]. The value of D can be set differently for each
activity. This can result in a great efficiency gain when different activities have
largely different duration distributions. Sequences with durations larger than D
automatically have a probability of 0. Further details on the Viterbi algorithm
can be found in Appendix A.

4.3.3 Parameter Learning

We learn the model parameters by finding the maximum likelihood parameter
values. Given some training data x1:T,y1:T, we want to find those parameters that
maximize p(x1:T,y1:T | θ). This is equivalent to finding the maximum likelihood
parameter values of each of the factors that make up the joint probability.

Our training data is fully labeled with exact start and end time of each activity, so
that we can optimize the parameters in closed form. The observation probability
p(xn | y = i) is calculated similarly as with the HMM. Calculating the transition
probability p(yt = i | yt−1 = j, dt−1 = l) requires counting the number of transi-
tions in which the remaining duration dt−1 is 0. In all other cases, the duration
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variable simply counts down. The parameters of the multinomial distribution
are therefore calculated by

ai j =

∑T
t=2 δ(yt, j)δ(yt−1, i)δ(dt−1, 0)
∑T

t=2 δ(yt−1, j)δ(dt−1, 0)
(4.4)

where T is equal to the number of timeslices.

The parameter values of the duration distribution depend on which distribution
is used. We compare a number of duration distributions in Section 4.6. The
parameters of these distributions are learned by maximum likelihood estimation.

4.4 Semi-Markov Conditional Random Fields

Just like the HSMM is an HMM in which we model a duration variable, the
SMCRF is a CRF in which duration is modeled explicitly. The conditional prob-
ability is p(y1:T,d1:T | x1:T), defined as

p(y1:T,d1:T | x1:T) =
1

Z(x1:T)

T∏

t=1

exp
K∑

k=1

λk fk(yt, yt−1, ~xt, dt, dt−1).

The feature functions fk(yt, yt−1, ~xt, dt, dt−1) for the SMCRF can be grouped as
observation feature functions, transition feature functions and duration feature
functions. In defining the feature functions we use a multi-dimensional index
to simplify notation, rather than the one-dimensional index used above. The
observation feature function is defined similarly as with CRFs as fvin(xn

t , yt) =
δ(yt, i) · δ(xn

t , v). The transition feature function is defined as fi j(yt, yt−1, dt) =
δ(yt, i) · δ(yt−1, j) · δ(dt, 0). Defining the duration feature function depends on the
type of distribution used for modeling the duration. We use feature functions
of the form gi(yt, dt) = δ(yt, i) · d2

t , g′
i
(yt, dt) = δ(yt, i) · dt and g′′

i
(yt, dt) = δ(yt, i) · 1

which gives a contribution proportional to (dt − λ)2, for appropriate values of
λi,λ′i and λ′′

i
. Notice that each of the duration feature functions is assigned with

its own parameter λi which is independent of the other parameters. The use of
our duration feature functions therefore allows, but does not enforce a Gaussian
distribution; the parameter learning will find the best distribution, which will
only be Gaussian if that is what is present in the data.

4.4.1 Inference

Inference in SMCRFs is done using a Viterbi algorithm similar to that of HSMMs
and has a computational complexity of O(TQ2D) [139]. See Appendix A for
details about the algorithm.
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4.4.2 Parameter Learning

Parameter estimation in SMCRFs is done similarly as with CRFs. The inclusion
of duration simply adds another term in the equations. The parameters θ =
{λ1, . . . , λK} of SMCRF are learned by maximizing the conditional log likelihood
l(θ) = log p(y1:T | x1:T, θ) given by

l(θ) =
T∑

t=1

K∑

k=1

λk fk(yt, yt−1, ~xt, dt, dt−1) − log Z(x1:T) −
K∑

k=1

λ2
k

2σ2

where the final term is a regularization term penalizing large values of λ to
prevent overfitting. The constant σ is set beforehand and determines the strength
of the penalization [153].

The partial derivative of l(θ) with respect to λi, is given by

∂l

∂λi
= −
λi

σ2 +

T∑

t=1

fi(yt, yt−1, ~xt, dt, dt−1)−

T∑

t=1

∑

yt,yt−1,dt,dt−1

p(yt, yt−1, dt, dt−1 | ~xt) fi(yt, yt−1, ~xt, dt, dt−1).

4.5 Model Comparison

In the previous sections, we introduced a generative and a discriminative semi-
Markov model. This section highlights the differences between these models and
between their Markov counterparts. We discuss the effects of inaccurate duration
modeling in both generative and discriminative models and explain the effects
on computational complexity when using discriminative models.

4.5.1 Learning in generative models

In section 3.6.2, we illustrated the difference between generative and discrimina-
tive models by showing the effect of estimating the parameters of two Gaussian
or normal distributions based on incorrect modeling assumptions. We explained
how incorrect modeling assumptions are often used because either the family of
the true underlying distribution is not known, or because the choice of distri-
bution results in fewer parameter values, hence requiring less data to train the
model. Here, we illustrate a similar effect in the case of duration modeling.

We provide an example involving activities A and B, which we wish to classify
using only the duration of the activity. That is, the initial state distribution, the
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observations and the transitions do not provide any information as to which
activity is more likely. The durations of activities A and B are distributed as
truncated normal distributions with unit variance and means µA

n = 3 and µA
n = 7,

respectively (Fig. 4.1a).

When using semi-Markov models, we can simply use the normal distribution
to accurately model the duration distributions. However, in the case of Markov
models (e.g. HMM, CRF) the duration distribution is fixed to the geometric
distribution, therefore resulting in an incorrect modeling assumption.

In the case of the HMM, the parameter values of the geometric distribution are set
to the maximum likelihood estimates. We can calculate these parameter values
by matching the first moment (the mean) of the normal distribution to the first
moment of the geometric distribution. The geometric distribution takes the form
pi(d) = (aii)d−1(1 − aii), where d is the duration of a state and aii the self-transition
probability of that state. The mean of the geometric distribution is calculated as
follows:

µg =

∞∑

d=1

d(aii)d−1(1 − aii) =
1

1 − aii
. (4.5)

Using this formula, we can calculate the parameter values aii for the means
of µA

g = 3 and µB
g = 7. This results in two geometric distributions which are

shown in Figure 4.1b. Because the duration is the only source of information
by which the activities can be classified, we can easily determine the outcome
of the classification. The shaded area in the figure shows where the use of
the geometric distribution results in misclassification. This illustrates how the
modeling of duration with an incorrect PDF can lead to misclassification in the
HMM.

In the case of CRFs, we are directly optimizing the conditional probability dis-
tribution. Since the duration distribution is our only informative source of in-
formation for classification, estimating its parameters values comes down to
minimizing the classification error with respect to the real duration distribution.
This can yield a solution as shown in Figure 4.1c and illustrates that also in
the case of duration modeling, discriminative models are more robust towards
violations of the modeling assumptions.

4.5.2 Computational complexity

An important consequence of using discriminative models is the increase in
computational complexity during learning. In generative models, the parameters
of the distributions used can usually be estimated using a closed form solution.
Discriminative models, on the other hand, typically require numerical methods
because no closed form solution is available. This is especially costly because
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Fig. 4.1: Plots of (a) Gaussian distribution for means 3 (straight line) and 7 (dashed line).
(b) Geometric distribution with a set of parameters learned using maximum like-
lihood estimation, typically used in generative models. The shaded area shows
where the incorrect use of the geometric distribution leads to misclassification.
(c) Geometric distribution with a set of parameters learned using discriminative
models.
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during each iteration of the learning phase, we need to perform inference to
calculate the normalization term.

The use of semi-Markov models introduces an additional computational com-
plexity. Because the durations of activities are not known for a novel sequence of
observations, all possible durations need to be considered at each timestep. This
makes the computational complexity of doing inference in semi-Markov models
a factor D higher than in conventional models, where D is the maximum duration
of an activity. This affects both HSMMs and SMCRFs, but when fully labeled
data is available, the HSMM does not need to perform inference during training,
because a closed form solution for parameter estimation is possible. Since the in-
ference step is performed at each iteration during learning in the SMCRF, finding
the model parameters for this model is very expensive.

In the experiments section, we report the amount of time needed for inference
and learning in each of the models to illustrate these differences.

4.6 Experiments

In this section, we present the experiments and their results for classification
based on duration modeling. We describe the datasets used, the experimental
setup and the goal and results of the experiments. A total of three experiments are
done. The first experiment is aimed at finding the ideal distribution for modeling
the durations of activities. In the second experiment, we compare the recogni-
tion performance of the Markov and semi-Markov models. Finally, in the third
experiment, we investigate the effect of using different feature representations on
the recognition performance.

4.6.1 Datasets used

Due to the high computational complexity of the SMCRF model, we use subsets
of the datasets collected in the three houses. In Chapter 3, we saw that most
recognition confusion occurs between activities taking place in the same room
using the same set of sensors. Therefore, we created subsets of the original
datasets by selecting all the activities and sensors that are performed and present
in one room. We did this for the kitchen and for the bathroom, resulting in six
datasets (two for each house) which are challenging for recognition and a good
testset for evaluating the effect of accurate duration modeling. Tables 4.2 and 4.3
show the list of sensors used for the bathroom and kitchen datasets, respectively.
Tables 4.4 and 4.5 show the activities of these datasets.
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Sensors
BathroomA BathroomB BathroomC
Bathroom door Toilet flush Bathroom door
Toilet door Bathroom door Toilet flush
Bedroom door Bathroom PIR Bathtub PIR

Kitchen PIR Dresser PIR
Sink
Chair

Tab. 4.2: List of sensors used in each of the bathroom datasets. PIR is short for ‘passive
infrared’, the sink and toilet flush use a float sensor, the chair uses a pressure mat
and the remaining sensors use reed switches to measure the open-close state.

Sensors
KitchenA KitchenB KitchenC
Microwave Microwave Microwave
Refrigerator Refrigerator Refrigerator
Freezer Frontdoor Freezer
Cupboard with plates Cupboard with plates Cupboard with plates
Cupboard with cups Cupboard with groceries Cupboard with cups
Cupboard with pans Stove lid Cupboard with pans
Cupboard with groceries Toaster Cupboard with boxes
Dishwasher Cutlary drawer Cutlary drawer

Sink
Kitchen PIR

Tab. 4.3: List of sensors used in each of the kitchen datasets. PIR is short for ‘passive
infrared’, the sink uses a float sensor, the stove lid and drawers use a mercury
sensor and the remaining sensors use reed switches to measure the open-close
state.

BathroomA BathroomB BathroomC
Activity Num. Perc. Activity Num. Perc. Activity Num. Perc.
Brush teeth 16 0.1 Brush teeth 13 0.3 Brush teeth 26 0.4
Showering 23 1.1 Showering 11 1.1 Showering 10 0.2
Toileting 114 1.3 Toileting 27 0.6 Bathing 4 0.8
Other - 97.5 Other - 98.0 Shaving 7 0.3

Other - 98.3

Tab. 4.4: The activities that were annotated in the bathroom datasets. The ‘Num.’ column
shows the number of times the activity occurs in the dataset. ’Perc.’ indicates
the percentage of timeslices that the activity occurs. All unannotated timeslices
were collected in a single ‘Other’ activity. The ‘Num.’ column is not filled out
for the ‘Other’ activity because there is no annotation available for that activity
and it is therefore not clear whether a single sequence of ‘Other’ activity should
be counted as one or as multiple occurrences of that activity.
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KitchenA KitchenB KitchenC
Activity Num. Perc. Activity Num. Perc. Activity Num. Perc.
Breakfast 20 0.4 prep. Breakfast 9 0.8 Breakfast 18 0.7
Dinner 9 1.5 prep. Dinner 6 0.8 Dinner 11 1.9
Snack 12 0.2 Wash Dishes 6 0.3 Snack 9 0.1
Drink 20 0.2 Drink 8 0.1 Drink 10 0.2
Other - 97.7 Eat Breakfast 10 1.3 Other - 97.1

Eat Dinner 5 0.5
Other - 96.2

Tab. 4.5: The activities that were annotated in the kitchen datasets. The ‘Num.’ column
shows the number of times the activity occurs in the dataset. ’Perc.’ indicates
the percentage of timeslices that the activity occurs. All unannotated timeslices
were collected in a single ‘Other’ activity. The ‘Num.’ column is not filled out
for the ‘Other’ activity because there is no annotation available for that activity
and it is therefore not clear whether a single sequence of ‘Other’ activity should
be counted as one or as multiple occurrences of that activity.

4.6.2 Experimental Setup

Data obtained from the sensors is discretized in timeslices of length ∆t = 60
seconds. We split our data into a test and training set using a ‘leave one day out’
approach. In this approach, one full day of sensor readings is used for testing
and the remaining days are used for training. A day of sensor data starts at 8
am and ends at 12 pm. This is done to reduce the computation time, which is
very high in the case of the SMCRF. The hours were chosen as such, because few
activities, besides the ‘other’ activity, take place outside those hours. We cycle
over all the days and report the average performance measure.

In Section 3.7.2, we introduced the precision, recall and F-measure and showed
that they are reliable measures for evaluating the performance of our model. We
do not include the accuracy measure in reporting the results. In the previous
chapter, we showed that the accuracy is not a useful measure for us, because it
weights performances relative to the frequency of an activity.

The maximum duration D used by the semi-Markov models is determined by
taking the maximum duration in the training set and adding 25% to account for
outliers. For the ‘other’ activity the maximum duration was set to 1, therefore
duration modeling for that activity is equivalent to using the geometric distri-
bution as is done with the HMM. The ‘other’ activity can consist of very long
sequences, which would result in a very high value for D. In either case, it is
not likely that the distribution of durations for the ‘other’ activity can be easily
parameterized because it is a collection of various activities.

Significance testing between two cases A and B is done at a confidence interval of
95% using a one-tail student t-test and using matching paired days. This means
that the performance in case A for a particular day of the cross validation is com-
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pared to the performance in case B for that exact same day of the cross validation.
We do this because there are large differences in the activities performed through-
out the various days. It can be said that some days are more challenging in terms
of recognition than others. However, a single day will be equally challenging for
both models. Therefore, to allow a fair comparison, it is important to match the
performance of individual days while calculating the significance.

4.6.3 Experiment 1: Duration Distribution

In this experiment, we wish to determine which family of distributions is best
suited for modeling the duration of activities. We experiment with three uni-
modal distributions, the gamma, Poisson and Gaussian distributions and we
experiment with the multivariate and histogram distributions. In the case of
the histogram distribution, we are free to choose the number of bins for repre-
senting the distribution. We experiment with 3, 5 and 10 bins, the multivariate
distribution is equivalent to a histogram distribution with D bins, where D is the
maximum duration of an activity. The F-measure values for the different datasets
and distributions can be found in Table 4.6.

We see that the Poisson distribution performs worst in three of the six datasets,
while the Gaussian distribution performs best in four of the six datasets. Overall
the differences in performance among the various distributions are small. Using
a histogram approach works well on all datasets except for the house C kitchen
dataset. Depending on the number of bins used in the histogram the results vary,
but no single number of bins consistently gives the best performance.

4.6.4 Experiment 2: Model

In this experiment, we used the ‘changepoint & last’ sensor representation. The
Gaussian distribution is used for modeling duration in the HSMM and the fea-
ture functions described in Section 4.4 are used for the SMCRF. These feature
functions allow the duration to be modeled as a Gaussian distribution. The re-
sults for these experiments using both Markov and semi-Markov models on the
kitchen and bathroom datasets can be found in Table 4.7.

These results show that the HSMM significantly outperforms the HMM in terms
of F-measure on all the datasets, except the bathroom C dataset. In the case of the
bathroom C dataset, the HSMM on average performs better than the HMM, but
this increase is not significant. This is an important result, because it shows that
modeling duration accurately when using generative models in this experimental
setup can result in a significant gain in performance.

The results further show that the SMCRF significantly outperforms the CRF in
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House A Bathroom House A Kitchen

Gamma 78 ± 16 67 ± 24
Gauss 78 ± 16 69 ± 24
Poisson 60 ± 17 62 ± 30
Multivariate 77 ± 17 65 ± 24
Histogram 3 bins 77 ± 17 68 ± 24
Histogram 5 bins 77 ± 16 67 ± 25
Histogram 10 bins 77 ± 16 65 ± 24

House B Bathroom House B Kitchen

Gamma 76 ± 15 51 ± 19
Gauss 76 ± 15 54 ± 19
Poisson 73 ± 13 53 ± 21
Multivariate 79 ± 16 52 ± 20
Histogram 3 bins 75 ± 13 53 ± 20
Histogram 5 bins 76 ± 15 53 ± 19
Histogram 10 bins 77 ± 15 54 ± 19

House C Bathroom House C Kitchen

Gamma 65 ± 24 54 ± 21
Gauss 62 ± 26 56 ± 22
Poisson 59 ± 28 49 ± 16
Multivariate 62 ± 25 46 ± 20
Histogram 3 bins 58 ± 26 48 ± 21
Histogram 5 bins 65 ± 23 46 ± 19
Histogram 10 bins 64 ± 25 46 ± 20

Tab. 4.6: F-measure values for various duration distributions for all the datasets.

terms of F-measure on the bathroom A and kitchen B datasets. In the case
of the kitchen A dataset, the CRF performs on average slightly better than the
SMCRF. While in the case of the bathroom B and bathroom C datasets the SMCRF
performs on average better, but this increase is not significant. These results show
that an accurate duration modeling in this experimental setup can still result in a
significant gain in performance, but does so less consistently as in the generative
case.

When comparing the F-measure performance of the HSMM to that of the SMCRF,
we see that on the kitchen A dataset, the SMCRF on average performs better than
the HSMM, but this increase is not significant. On all five other datasets, the
F-measure performance of the two models is either equal or nearly equal. This
is an interesting result because our previous comparison revealed that accurate
duration modeling in discriminative models does not result in a significant in-
crease in performance as often as it does in generative models. Nonetheless
discriminative semi-Markov models manage to perform at least equally well as
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Bathroom A Kitchen A
Precision Recall F-Measure Precision Recall F-Measure

HMM 50 ± 13 67 ± 15 57 ± 12 56 ± 30 64 ± 33 59 ± 31
HSMM 70 ± 17 85 ± 14 76 ± 15 65 ± 27 75 ± 21 69 ± 24
CRF 73 ± 17 74 ± 14 73 ± 15 80 ± 21 79 ± 20 79 ± 20
SMCRF 75 ± 17 75 ± 14 75 ± 15 77 ± 23 77 ± 19 76 ± 21

Bathroom B Kitchen B

Precision Recall F-Measure Precision Recall F-Measure

HMM 64 ± 18 85 ± 14 72 ± 15 47 ± 23 56 ± 23 50 ± 22
HSMM 67 ± 20 91 ± 13 76 ± 15 47 ± 22 67 ± 20 54 ± 19
CRF 72 ± 16 75 ± 16 73 ± 15 42 ± 24 46 ± 22 44 ± 23
SMCRF 75 ± 17 77 ± 18 76 ± 17 52 ± 33 56 ± 29 54 ± 31

Bathroom C Kitchen C

Precision Recall F-Measure Precision Recall F-Measure

HMM 48 ± 32 57 ± 32 52 ± 32 46 ± 21 49 ± 22 46 ± 19
HSMM 60 ± 27 69 ± 27 64 ± 26 54 ± 23 61 ± 24 56 ± 22
CRF 53 ± 27 62 ± 22 57 ± 25 55 ± 28 57 ± 24 55 ± 25
SMCRF 60 ± 27 65 ± 24 62 ± 26 53 ± 26 57 ± 24 55 ± 25

Tab. 4.7: Experiment 2: Precision, recall and F-measure for hidden Markov model (HMM),
hidden semi-Markov model (HSMM), conditional random field (CRF) and semi-
Markov conditional random field (SMCRF). Experiments were performed on the
kitchen and bathroom datasets. The changepoint and last sensor representation
was used.

generative semi-Markov models.

Finally, we compare the F-measure performance of the CRF to that of the HMM
and find that the CRF significantly outperforms the HMM in terms of F-measure
on the bathroom A and kitchen C datasets. On the kitchen A, bathroom B and
bathroom C datasets the CRF performs on average better than the HMM, but this
increase in not significant. The HMM performs on average better than the CRF
on the kitchen B dataset, but not significantly. One possible explanation for these
results is that the CRF is able to model durations better, due to its ability to deal
with violations of the modeling assumptions.

Table 4.8 shows the computation times for learning and inference in all models
on the bathroom A dataset. We see that learning in discriminative models takes
significantly longer than in generative models. Learning the parameters of the
SMCRF also takes much longer than learning the parameters of the CRF. Finally,
the table shows that inference for semi-Markov models takes longer than for
Markov models.
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Model HMM HSMM CRF SMCRF
Learning Time 0.2 s 0.3 s 190.8 s 9882.2 s
Inference Time 1.1 s 1.9 s 1.3 s 1.8 s

Tab. 4.8: Computation time in seconds for learning and inference on the bathroomA
dataset.

4.6.5 Experiment 3: Feature Representation

This experiment is similar as experiment 2, however, this time the ‘changepoint’
sensor representation is used. The results can be found in Table 4.9.

In terms of F-measure, the HSMM performs on average better than the HMM on
all datasets except for the bathroom A and kitchen A datasets, where they perform
equal. Only in the case of the kitchen C dataset, the increase in performance
is significant. We see that with this sensor representation accurate duration
modeling still helps in generative models, but does not result in such a significant
gain in performance as with the previous experiment. When comparing the F-
measure performance of the HMM and the HSMM of this experiment to the
F-measure performances of the previous experiment, we see that the change in
feature representation has resulted in an increase in performance on all datasets.

The SMCRF does not significantly outperform the CRF on any of the datasets, but
on average performs better than the CRF for all datasets except for the bathroom
A dataset (where it performs equal) and the kitchen C dataset (where it performs
slightly worse). When comparing the results for the CRF and the SMCRF of
this experiment to the F-measure performances of the previous experiment, we
see that most results are either equal or close to equal. The change in feature
representation seems to have less effect on the discriminative models.

4.7 Discussion

Duration distribution

Our first experiment was aimed at answering which distribution is best suited
for modeling the duration of activities. We experimented with three unimodal
distributions, a multivariate distribution and a histogram approach for various
numbers of bins. In case the duration distribution of activities is consistently not
unimodal, the histogram and multivariate distributions would probably have
performed better than the unimodal distributions. However, the results showed
little difference in the performance of the various distributions. The Gaussian
distribution performed best in four of the six datasets and is therefore the distri-
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Bathroom A Kitchen A
Precision Recall F-Measure Precision Recall F-Measure

HMM 80 ± 17 84 ± 14 81 ± 15 66 ± 27 75 ± 20 70 ± 24
HSMM 79 ± 18 83 ± 16 81 ± 16 66 ± 26 76 ± 20 70 ± 23
CRF 72 ± 21 72 ± 18 72 ± 19 78 ± 23 76 ± 21 76 ± 22
SMCRF 73 ± 21 73 ± 18 72 ± 19 79 ± 24 80 ± 19 79 ± 22

Bathroom B Kitchen B
Precision Recall F-Measure Precision Recall F-Measure

HMM 68 ± 11 88 ± 14 76 ± 10 46 ± 22 64 ± 25 52 ± 22
HSMM 70 ± 15 91 ± 14 78 ± 13 50 ± 20 69 ± 22 57 ± 20
CRF 72 ± 16 74 ± 16 73 ± 15 41 ± 24 44 ± 22 43 ± 23
SMCRF 77 ± 15 78 ± 17 77 ± 15 46 ± 33 49 ± 27 47 ± 30

Bathroom C Kitchen C
Precision Recall F-Measure Precision Recall F-Measure

HMM 57 ± 27 73 ± 23 63 ± 25 50 ± 23 59 ± 20 53 ± 20
HSMM 58 ± 27 75 ± 22 64 ± 24 61 ± 27 67 ± 22 62 ± 23
CRF 55 ± 28 60 ± 26 57 ± 27 61 ± 28 58 ± 23 59 ± 24
SMCRF 61 ± 28 64 ± 26 62 ± 27 61 ± 30 58 ± 23 58 ± 25

Tab. 4.9: Experiment 3: Precision, recall and F-measure for hidden Markov model (HMM),
hidden semi-Markov model (HSMM), conditional random field (CRF) and semi-
Markov conditional random field (SMCRF). Experiments were performed on
the kitchen and bathroom datasets. The changepoint sensor representation was
used.

bution that was used in the other experiments. An advantage of the Gaussian
distribution is that it has convenient mathematical properties. In the case of
generative models, the parameters of a Gaussian can be calculated in closed form
and when using discriminative models, we can define a set of feature functions
that allows the duration to be modeled as a Gaussian distribution.

In our current experimental setup, the same distribution was used for all activi-
ties. It is possible that the duration of different activities is distributed differently.
For example, one activity might have a unimodal distribution, while another
might have a bimodal distribution. In future work, we could experiment with
using different distributions for different activities. Another interesting extension
on this work is the inclusion of the Coxian distribution for modeling the duration
of activities. This distribution was used in related work to model the duration
of activities because of its computational efficiency and has been shown to give
a good performance in activity recognition [32].
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Feature Representation

The results of experiment 3 showed that the HMM performs much better when
using the changepoint representation than when using the changepoint & last
representation that was used in experiment 2. This is somewhat surprising be-
cause the same comparison was made in the previous chapter in which the HMM
performs equally well for both feature representations and even performs better
in one case when using the changepoint & last representation. The explanation
lies in the use of subset datasets. In this chapter, we have created several subsets
of the datasets used in the previous chapter. These subsets contain considerably
less sensors than the original dataset. As explained in the previous chapter, the
last representation works best when a large number of sensors is used, so that
there is a high chance that another sensor is triggered once a person starts moving
inside the house. Because all the sensors in our subsets are positioned together
in a single room, the last representation completely loses its effectiveness as soon
as the subject leaves that room. In fact, the last representation pollutes the ob-
servation space because at all times one of the sensors will continue to fire as
‘other’ activities are performed outside the room. Although this is clearly not
what we would like to use for activity recognition, it does make some properties
of duration modeling and of discriminative models clear.

Duration Modeling

From the results of experiment 2, we see that the performance of the HMM
is clearly affected by the inclusion of the last representation. The HSMM on
the other hand is hardly affected by the use of the last representation. We see
that the use of accurate duration modeling in generative models manages to
overcome this bad working feature representation. The inclusion of an accurate
duration model prevents the model from inferring unrealistically long sequences
of activities, even though the sensor data still indicates the relevant sensors are
firing.

Looking at the results of experiment 3, we have seen that duration modeling
still helps the performance in the cases of the B and C datasets. When a feature
representation provides a good indication of which activity takes place, accurate
duration modeling will not result in a significant gain in performance. Only the
cases that we saw in the previous chapter, where activities performed in the same
room are confused with each other, will benefit from the duration modeling. This
explains why we still see an increase in performance for the B and C datasets in
experiment 3.
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Discriminative models

The problem with the last feature representation, described in the previous sub-
section, seems to affect the performance of the HMM, but not the performance
of the CRF. This is because a discriminative model takes into account how well
a particular feature is able to discriminate between classes, while a generative
model does not take this into account. Discriminative models can assign a weight
of 0 to a particular feature, effectively canceling out the contribution of that fea-
ture to the recognition process. Furthermore, discriminative models are able to
deal with violations of the modeling assumptions, which means it can find a set
of parameters that accurately discriminates the data, but are not the maximum
likelihood parameters of the underlying distribution.

In the case of discriminative models, we see that accurate duration modeling can
still help the performance. The inclusion of duration models basically gives the
SMCRF a set of new tools for discriminating the data. As a result, the time to
estimate the model parameters of the SMCRF takes up to fifty times longer than
estimating the parameters of the CRF. Compared to the HSMM, learning the
parameters takes as much as thirty-thousand times longer for the SMCRF. This
is because the parameters of the HSMM can be estimated in closed form, while
we use numerical optimization methods for the SMCRF.

The differences in performance between the SMCRF and the HSMM in experi-
ment 3 does not give a conclusive picture. On the B and C datasets both models
obtain nearly the same performance, while on the A datasets the HSMM performs
better on the kitchen dataset and the SMCRF performs better on the bathroom
dataset.

Future work

Besides the increase in performance resulting from accurate duration modeling,
the use of semi-Markov models also has a number of important consequences
which allow even more accurate modeling options. The explicit modeling of the
duration of states allows more complex observation models. In conventional
Markov models, the observation model is typically defined to depend only on
the state at the timeslice the observation is made. In semi-Markov models, it
is easier to think in terms of segments. An activity that lasts for one or more
timeslices can be considered as a single segment. The observation model can be
defined to depend on such a segment. This means the observation is dependent
on all the states for as long as the activity lasts. Since activities vary in duration
this means the observation model is of variable length and allows the inclusion of
features that cover the entire segment of the activity. For example, it is possible to
define a feature which states that the microwave was used at least once within the
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execution of an activity. Semi-Markov models are therefore sometimes referred
to as variable-length Markov models or segment models [111].

Another possible extension lies in the order of the Markov model. It can be
beneficial to use a higher order Markov model to model transitions over longer
periods of time. For example, in between two activities, it is likely that peo-
ple generally spend some time doing something that we would label as ‘other’
activity. A typical sequence of an evening routine can therefore be, ‘prepare din-
ner’, ‘other’, ‘eat dinner’, ‘other’, ‘brush teeth’, ‘other’, ‘sleeping’. A first order
Markov model would only be able to capture the transition from and to ‘other’ to
the various activities. While there is a very clear structure in this evening routine.
The problem with conventional Markov models is that a higher order Markov
model means we condition on a higher number of timeslices in the sequence.
Since activities are not performed at a constant duration, it is not clear how many
timeslices we should jump back to capture the sequence in the evening routine.
By using semi-Markov models, we can use a single state variable to model an
activity that lasts several timeslices. The state representation therefore becomes
invariant of the duration of an activity. This makes it possible for higher order
semi-Markov models to capture the relevant dependencies in an evening routine
such as described above. The resulting transition model could therefore consider
the probability of p(sleeping | other, brushteeth).

4.8 Conclusions

Semi-Markov models differ from conventional Markov models in that they in-
clude a variable for modeling the duration of a state. This makes it possible to
use any distribution for modeling state duration while in conventional Markov
models we are forced to use the geometric distribution. In this chapter, we pre-
sented a generative semi-Markov model, the HSMM, which is an extension of
the HMM discussed in the previous chapter. And we presented a discrimina-
tive semi-Markov model, the SMCRF, which is an extension of the CRF. We
provided a comparison between generative and discriminative models with re-
spect to duration modeling and illustrated how inaccurate duration modeling
can result in erroneous classification in generative models, but results in error
free classification in discriminative models.

For our experiments, we created six datasets which are subsets of the three real
world datasets used in the previous chapter. This was done to overcome the
computational issues with respect to the parameter estimation in the SMCRF.
Our first experiment was aimed at determining the most suitable probability
distribution for modeling the duration of an activity. We experimented with three
unimodal distributions, a multivariate distribution and a histogram approach
with various numbers of bins. The Gaussian distribution performed best in four
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of the six datasets and is therefore the distribution that was used in the other
experiments.

The other two experiments compared the performance of our generative and
discriminative semi-Markov models to their conventional Markov model coun-
terparts. In one experiment, the ‘changepoint&last’ feature representation was
used and in the other experiment the ‘changepoint’ feature presentation was
used. The last feature representation turned out to be less effective on the six
subset datasets we created, because the subsets contain only a small number of
sensors. This revealed that the HMM is very sensitive to such an ineffective
feature representation, but that accurate duration modeling of the HSMM results
in a significant gain in performance on five of the six datasets. When using the
changepoint representation, a significant gain in performance is only observed
in one of the six datasets. This shows that accurate duration modeling is impor-
tant in generative models when the feature representation is unable to provide
sufficient support for classification.

Discriminative models are less sensitive to the inclusion of ineffective feature
representations, because they are more robust in dealing with violations of the
modeling assumptions. The CRF therefore managed to significantly outperform
the HMM in two of the six datasets when the ineffective feature representation
was included. Accurate duration modeling in discriminative models results
in an average increase in performance, but this increase is not significant. The
HSMM and the SMCRF give similar performance on most datasets, neither model
manages to consistently significantly outperform the other. Learning the model
parameters of a SMCRF takes up to thirty-thousand times longer than estimating
the parameters of the HSMM. This is because the parameters of the HSMM can
be estimated in closed form, while we use numerical optimization methods for
the SMCRF.
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5

Hierarchical models

5.1 Introduction

In the introduction of this thesis we provided a distinction between action prim-
itives, actions and activities. The models presented in the previous chapters
recognize activities by modeling the relation between a sensor pattern and an ac-
tivity. A pattern of sensor readings generally corresponds to an action primitive
and so those models take into account the activities and the action primitives, but
do not explicitly model the actions which make up an activity. Using hierarchical
models allows us to incorporate the actions explicitly in our model and in this
chapter, we test the hypothesis that this results in a more accurate representation
of the internal structure of an activity.

In this chapter we present a two-layer hierarchical model for activity recognition
and apply it to real world data. The top layer state variables of the model
represent the activities that are performed, while the bottom layer state variables
represent the actions. Although it is possible to train such a model using data
which is annotated with labels of both activities and actions, in this chapter, we
train the model using only labels for the activities. There are two advantages to
this approach: 1) Annotating the data becomes significantly less involved when
only the activities have to be annotated, 2) We do not force any structure upon the
model with respect to the actions, but rather let the model find this structure in
the data automatically. The automatic allocation of structure can be considered
as a clustering task. The clusters found in the data do not necessarily have to be
meaningful clusters that correspond to actual actions that are intuitive to humans.
We therefore distinguish between the term ‘action clusters’ to refer to the actions
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found through clustering and ‘actions’ to refer to the actions intuitive to humans.

In this chapter we answer the following questions:

• How many action clusters are needed to model a given set of activities?
We do not use any labeled data to guide the model into determining which
observation corresponds to which action. We can therefore experiment with
various number of action clusters. More action clusters means the model is
more flexible, but also means there are more model parameters that need
to be estimated. Therefore, the ideal model will be a trade-off between this
flexibility and the number of parameters needed.

• Should each activity have its own set of action clusters, or should action
clusters be shared among activities? In designing a hierarchical model
for activity recognition, we can choose to have a separate set of action
clusters for each activity. Alternatively, we can use the same set of action
clusters for representing all the activities, that is, share a single set of action
clusters among all activities. For example, when distinguishing between
the activities ’preparing spaghetti’ and ’preparing a salad’ both activities
might involve an action that we can describe as ’cutting vegetables’. It
is very well possible that cutting vegetables when preparing spaghetti is
slightly different than cutting vegetables when preparing a salad. Using a
separate set of action clusters for each activity would allow us to capture
such differences. On the other hand, representing the action using a shared
set means we have more training data available (i.e. part of the training
data of both ’preparing spaghetti’ and ’preparing a salad’) to estimate the
parameters of that single action cluster.

• How does the performance of hierarchical modeling compare to the per-
formance of Markov and semi-Markov models? The use of a hierarchical
model allows us to more accurately model the internal structure of an ac-
tivity. But does increase in accuracy also result in an increase in model
performance?

The remainder of this chapter is organized as follows. In Section 5.2, related
work of hierarchical models is discussed. Section 5.3 provides the details of our
hierarchical model and its learning and inference algorithms. Section 5.4 presents
the experiments and results and in Section 5.5, we discuss these results. Finally,
in Section 5.6, we will sum up the conclusions.

5.2 Related Work

One of the most popular probabilistic models for real world applications is the
hidden Markov model (HMM). The HMM is closely related to stochastic regular
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grammars, as they are both part of the family of stochastic finite state automata
[16]. Stochastic regular grammars are the least expressive grammar out of all the
formal grammars, according to the Chomsky hierarchy [22]. It is therefore inter-
esting to consider the application of the more expressive stochastic context free
grammar (SCFG) to such real world applications. However, a downside of using
SCFGs is that the computation complexity of the Inside-Outside algorithm, used
for inference in the SCFG, is cubic with respect to the length of the sequence that
is being inferred. Furthermore, SCFGs allow hierarchies of infinite number of
layers, while in many problem domains a hierarchy of a predefined fixed length
is sufficient [82]. Therefore, instead of using SCFGs the use of hierarchical hid-
den Markov model (HHMM) is often more practical since it allows us to model
hierarchies of a fixed number of layers and there exist efficient inference algo-
rithms for it. Fine et al. presented an inference algorithm for the HHMM based
on the Inside-Outside algorithm of the SCFG [36], which takes O(T3QL) time,
where T is the length of the sequence, L is the number of layers in the hierarchy
and Q is the number of states at each level of the hierarchy. Murphy showed
that the HHMM can be represented as a dynamic Bayesian network (DBN) [112],
thereby deriving a much simpler and more efficient inference algorithm, which
takes at most O(TQ2L). This has allowed the application of hierarchical models in
many different domains, such as natural language processing [48], handwriting
recognition [36] and information extraction [140, 146].

With respect to activity recognition, hierarchical models have mainly been ap-
plied to video data. There is work involving simple activities or actions such
as distinguishing between entering and leaving a store [110]. But also work in
which activities of daily living are recognized from video data [33, 91, 118, 123].
Nguyen et al. compare the performance of a learned HHMM, a hand-coded
HHMM and a conventional HMM, the learned HHMM gives the best perfor-
mance [118]. Duong et al. compare the performance of the HHMM and the
hidden semi-Markov model (HSMM). In their work, the HHMM gives very
poor performance in the recognition task which, according to the authors, is
caused by a poorly estimated transition matrix. They do not explain why the
hierarchical model is unable to learn the transition matrix, while the semi-Markov
model is able to learn this matrix accurately [33]. In work by Luhr et al., hierar-
chical models consisting of several layers are hand crafted by closely inspecting
the sequence of actions performed by the subject. Their preliminary results show
that these models perform well in recognizing several cooking related activities
[91]. Oliver et al. combine input from microphones, cameras and keyboard activ-
ity, to recognize several office activities such as having a phone conversation or
giving a presentation. They use a layered hierarchical model in which the output
of one layer serves as input for the next layer. The parameters for the HMM in
each layer are learned independently of the other layers, therefore allowing very
efficient parameter estimation. They compare the performance of their layered
HMM to a conventional HMM and show a significant increase in performance
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[123].

Activity recognition has also been performed using GPS data. Subramanya et al.
jointly model the activity someone is performing and the location the subject is
in. Examples of activities include walking, running and driving a vehicle, while
examples of the locations are indoors and outdoors [151]. In work by Liao et al.,
more specific locations are modeled, such as being at a home, a friend’s house
or being at work. This allows them to accurately recognize activities such as
working, sleeping and visiting [86].

Overall these works show that the potential of hierarchical models for activity
recognition has been noted by other researchers. However, none of these works
involve the recognition of activities from wireless sensor network data. This
chapter contributes in this area by providing experimental results on several real
world datasets, consisting of several weeks of data involving a large number of
activities of daily living.

5.3 Hierarchical Hidden Markov Model

In a conventional HMM, the hidden state consists of a single state variable which
generates an observation at each timeslice. When using a HHMM the hidden
state consists of two (or possibly more) layers, with a state variable at each
layer. Generally, the state variable at one layer generates the state variable at the
layer below. The observations are generated by the bottom layer state variables,
possibly combined with any of the state variables from the other layers.

In this section, we discuss the details of a two-layer hierarchical model for activity
recognition and explain the inference and learning algorithms.

5.3.1 Model definition

We consider a two-layer hierarchical model for activity recognition. The top
layer state variables yt represent the activities and the bottom layer variables zt

represent the action clusters (Fig. 5.1). Each activity consists of a sequence of
action clusters and the temporal ordering of the action clusters in such a sequence
can vary between different executions of an activity. Of particular interest to us
is the last action cluster that is performed at the end of an activity, because this
action cluster signifies the end of the action cluster sequence and announces the
start of a new sequence of action clusters. We therefore introduce a third variable,
the finished state variable ft, which is used as a binary indicator to indicate the
bottom layer has finished its sequence.
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zt-1 zt zt+1... ...

t-1 t t+1

yt-1 yt yt+1...

ft-1 ft ft+1

Activities

Action 
clusters

Finished
state
variable

Observations

Fig. 5.1: The graphical representation of a two-layer HHMM. Shaded nodes represent
observable variables, while white nodes represent hidden ones. The dashed line
is an optional dependency relation; we can choose to model the observation
probability as p(~xt | yt, zt) or as p(~xt | zt).

We further explain the details of this model by going over all the factors of the
joint probability distribution of hidden states and observations given by:

p(y1:T, z1:T, f1:T, x1:T) =
T∏

t=1

p(~xt | yt, zt)p(yt | yt−1, ft−1)p(zt | zt−1, yt, ft−1)p( ft | zt, yt)

where we have defined p(y1 | y0, f0) = p(y1) and p(z1 | z0, y1, f0) = p(z1 | y1) for the
sake of notational simplicity. The entire model consists of a set of parameters θ =
{π0, π1:Q,A0,A1:Q,B, φ}. The initial state parameters π and transition parameters
A exist for both the top layer and bottom layer states. To distinguish between
these two types of parameters, we include a 0 in the subscript to indicate that a
parameter is of the top layer and an index of 1 to Q for each of the bottom layer
parameters. The distributions of the bottom layer states depend on which top
layer state the model is in and so there is a separate set of bottom layer state
parameters for each possible top layer state, with Q being the number of top
layer states. For example, if the model at one point is in the top state yt = k, then
the transition parameter Ak is used for the bottom layer state transitions. We
now provide a detailed explanation of each of the factors that make up the joint
probability and how they are parameterized.
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At the first timeslice, the initial state distribution of the top layer states is repre-
sented by a multinomial distribution which is parameterized as p(y1 = j) = π0( j).
This top layer state generates a bottom layer state, also represented by a multi-
nomial distribution and parameterized as p(z1 = j | y1 = k) = πk( j).

The factor p(zt = j | zt−1 = i, yt = k, ft−1 = f ) represents the transition probabilities
of the bottom layer state variable. These transitions allow us to incorporate the
probability of a particular temporal order of action clusters with respect to a
given activity. A transition into a new state zt, depends on the previous bottom
layer variable zt−1, the current top layer state variable yt and the finished state
variable ft−1. Two distributions make up this factor, depending on the value of
the finished state variable ft−1. If in the previous timeslice the bottom layer state
sequence ended ( ft−1 = 1), a new sequence of bottom layer states starts at this
timeslice and therefore the top layer state generates a bottom layer state using
the same distribution as we saw at the first timeslice, parameterized by the set
of parameters p(zt = j | zt−1 = i, yt = k, ft−1 = f ) = πk( j). In case the bottom layer
state sequence did not end ( ft−1 = 0), a transition to a new bottom layer state is
made using the transition matrix parameterized as p(zt = j | zt−1 = i, yt = k, ft−1 =

f ) = Ak(i, j). These two cases can be compactly formulated as:

p(zt = j | zt−1 = i, yt = k, ft−1 = f ) =





Ak(i, j) if f = 0
πk( j) if f = 1

(5.1)

Transitions of the top layer state variables are represented by the factor p(yt = j |
yt−1 = i, ft−1 = f ). This factor is similar to the transition distribution of an HMM,
except that it also depends on the finished state variable ft−1. This dependency
is important because we want to restrict the model in transitioning to a different
top layer state as long as the bottom layer state sequence has not finished. When
a bottom layer state sequence did not finish, the top layer state variable continues
into the next timeslice with the same state value (yt = yt−1). Once the bottom layer
state sequence has ended, a transition of the top layer state is made according to
a transition matrix parameterized as p(yt = j | yt−1 = i, ft−1 = f ) = A0(i, j). These
two cases can be compactly formulated as:

p(yt = j | yt−1 = i, ft−1 = f ) =





δ(i, j) if f = 0
A0(i, j) if f = 1

(5.2)

where δ(i, j) is the Kronecker delta function, giving 1 if i = j and 0 otherwise.

The probability of a bottom layer state sequence finishing is represented by the
factor p( ft = f | yt = j, zt = l). This factor depends on both the bottom layer state
zt and the top layer state yt. Even though the variable ft indicates whether zt is a
finishing state, it is important that the distribution is also conditioned on the top
layer state yt. This is because the probability of a particular action cluster being
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the last action cluster for that activity can differ among activities. The factor is
represented using a binomial distribution, parameterized as p( ft = f | yt = j, zt =

l) = φ f ( j, l).

Two possible observation models

In the graphical representation of our hierarchical model, shown in Figure 5.1,
there is a dashed line between the top layer state variables yt and the observation
variables ~xt. This line represents an optional dependency relationship, because
we wish to experiment with two types of observation models. If we do take the
dependence relation into account, our observation model is represented by the
factor p(~xt | yt, zt). In this model, each combination of top and bottom state values
gets its own set of parameters. Alternatively, if we do not include the dependence
relation, our observation model is represented by the factor p(~xt | zt). In this
case, the observation model is independent of the top layer state variable. Note
that in the transition probabilities of the bottom layer state variable described
above, there still exists a dependency on the top layer state, regardless of which
observation model is used. The same holds for the finished state probability
distribution.

Observations are modeled as independent Bernoulli distributions, as was done
in the previous chapters. The two observation models are therefore defined as:

Model 1:

p(~xt | yt, zt) =
N∏

n=1

p(xn | yt, zt) (5.3)

p(xn | yt = j, zt = k) = µxn

jkn
(1 − µ jkn)(1−xn) (5.4)

Model 2:

p(~xt | zt) =
N∏

n=1

p(xn | zt) (5.5)

p(xn | zt = k) = µxn

kn
(1 − µkn)(1−xn) (5.6)

where N is the number of sensors used for observation. Model 1 requires Q times
more parameters than Model 2, because of the additional dependency on the top
layer states, with Q being the number of top layer state values. The observation
parameters are collectively represented by a variable B = {µ jkn} for Model 1 and
B = {µkn} for Model 2.
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5.3.2 Inference using a flattened implementation

Inference in a HHMM can be done by applying the junction tree algorithm
[75]. However, by representing our HHMM as a HMM, we can simply apply
the Viterbi algorithm and forward-backward algorithm for HMMs [112]. We
can flatten our HHMM to a HMM by creating a HMM state for every possible
combination of states in the HHMM. This means that we create a HMM with a
state space containing all the combinations of yt, zt and ft variables. Since we can
always determine which HMM state value corresponds to which combination of
HHMM state values, we will continue to use the HHMM state values to index
the variables within the flattened implementation.

The parameters of the resulting HMM can be constructed from the parameters of
the HHMM using the following equations. If for a particular variable no value
is specified, then the calculation is independent of the value of that variable. The
initial state distribution π is formed by combining the initial state of both the top
and bottom layer π(y1 = i, z1 = j, f1) = π0(i)πi( j). Observation parameters remain
unchanged. And the transition parameters A depend on whether the bottom
layer state sequence ended in the previous timeslice, giving:

A(yt−1 = i, zt−1 = k, ft−1 = 0, yt = j, zt = l, ft = f ) = δ(i, j)A j(k, l)φ f ( j, l) (5.7)

A(yt−1 = i, zt−1 = k, ft−1 = 1, yt = j, zt = l, ft = f ) = A0(i, j)π j(l)φ f ( j, l) (5.8)

A downside of this flattened implementation is that the combined state space
requires a lot of memory. For a large number of state values and a large number
of layers, this easily consumes too much space to be tractable. Fortunately, since
our HHMM consists of only two layers this approach is still usable.

5.3.3 Parameter learning

Parameters are learned iteratively using the Expectation Maximization (EM) al-
gorithm [8] which can be applied to our flattened model. The E-step consists of
using the forward-backward algorithm to calculate the probability distribution
p(y1:T, z1:T, f1:T | x1:T, θ). From this distribution, we can calculate the expectation
and reestimate the parameters in the M-step. The equations for reestimating the
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parameters are given by:

π0( j) = p(y1) (5.9)

πk( j) =

∑T
t=1 p(yt = k, zt = j, ft−1 = 1)
∑T

t=1
∑

yt
p(yt, zt = j, ft−1 = 1)

(5.10)

A0(i, j) =

∑T
t=2 p(yt = j, yt−1 = i, ft−1 = 1)
∑T

t=2
∑

yt
p(yt, yt−1 = i, ft−1 = 1)

(5.11)

Ak(i, j) =

∑T
t=2 p(zt = j, zt−1 = i, yt = k, ft−1 = 0)
∑T

t=2
∑

zt
p(zt, zt−1 = i, yt = k, ft−1 = 0)

(5.12)

φ f ( j, l) =

∑T
t=1 p( ft = f , yt = j, zt = l)
∑T

t=2
∑

ft p( ft, yt = j, zt = l)
(5.13)

(5.14)

Observation Model 1: µ jkn =
∑T

t=1 δ(x
n
t ,1)p(yt= j,zt=k)

∑T
t=1 p(yt= j,zt=k)

Observation Model 2: µkn =
∑T

t=1 δ(x
n
t ,1)p(zt=k)

∑T
t=1 p(zt=k)

The procedure of calculating the forward-backward probabilities and reestimat-
ing the parameters is repeated until the parameter values converge.

5.4 Experiments

Our experiments are aimed at determining which number of action clusters are
needed for modeling activities, which observation model gives the best perfor-
mance and how the performance of hierarchical models compares to the perfor-
mance of the HMM and the HSMM. Our first experiment compares the perfor-
mance of the hierarchical model using Observation Model 1 to the performance
of the HMM and the HSMM. The second experiment makes the same compar-
ison, but uses Observation Model 2. In both experiments, results are given for
various number of action clusters. The remainder of this section first presents the
details of our experimental setup, then describes the experiments and the results
and finally discusses the outcomes.

5.4.1 Experimental Setup

We use the same datasets and activities that were used in Chapter 3. A summary
of relevant details for each dataset can be found in Table 5.1. The datasets include
annotation of activities, but do not include annotation of actions. Since we do
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House A House B House C
Activities 10 14 16
Sensors 14 23 21
Days of data 25 days 13 days 18 days

Tab. 5.1: Information about the datasets recorded in three different homes using a wireless
sensor network.

not have any ground truth for the actions and because we are only interested
in using action clusters for modeling purposes, our evaluation is based solely
on the inferred activities. In Section 3.7.2, we introduced the precision, recall
and F-measure and showed they are reliable measures for evaluating the perfor-
mance of our model. The experimental results of Chapters 3 and 4 showed that
the changepoint feature representation consistently gives a good performance,
therefore we use that feature representation for the experiments in this chapter.

Data obtained from the sensors is transformed to the changepoint representation
and discretized in timeslices of length ∆t = 60 seconds. We split our data into
a test and training set using a ‘leave one day out’ approach. In this approach,
one full day of sensor readings is used for testing and the remaining days are
used for training. We cycle over all the days in the dataset, so that each day is
used once for testing. For the HMM and the HSMM, we present the results by
taking the average over all the test days. In the case of the HHMM, we do five
separate runs of the entire experiment and average the results over these five
runs and then average over all the days. This is done because the EM algorithm
requires a random initialization of the parameters. The EM algorithm is run
until convergence, which guarantees a local maximum solution. Because we
only use labeled data for the activities, the EM algorithm performs a clustering
operation on the data with respect to the action clusters and it is likely that there
are many local maxima in the parameter space. The initialization of the initial
parameters for the first iteration of the EM algorithm plays an important role here.
If a parameter value is initialized to a value close to 0, it will take long before
the value converges. We therefore initialize our parameters uniformly and add
normally distributed jitter with a mean of 0 and a variance of 0.01. Because we
calculate our performance measures by taking the average over multiple runs,
we reduce the impact of initialization and therefore obtain a more reliable result.
To get an impression of how the model performs when a good initialization of
the parameters is used, we also report the maximum performance possible. This
result is obtained by selecting the highest performing day from the five runs for
each of the cross validation days.
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5.4.2 Experiment 1: Observation Model 1

In this experiment, we use Observation Model 1 (p(~xt | yt, zt)). We compare
the performance of our HHMM to the performance of the HMM and HSMM.
Furthermore, we experiment with various number of action clusters. The average
F-measure performance over five runs for various number of action clusters is
given in Figure 5.2 for all three houses.

We see that the performance of the HHMM is equal to the HMM when a single
action cluster per activity is used. Using a single action cluster for each activity
is equivalent to using an HMM and therefore results in the same performance.
Generally the best performance for the HHMM is obtained when using two
or three action clusters, the performance decreases as more action clusters are
considered.

Table 5.2 shows the same results, but now the precision, recall and standard
deviations are included. The maximum performance over five runs is also in-
cluded in the table. These results show us that the increase in performance is the
result of an increase in both precision and recall. To determine the significance
of our results we used a one-tail student t-test with matching paired days. The
increase in F-measure performance of the HHMM, taken over an average of five
runs, compared to the F-measure performance of the HMM and the HSMM is
significant for houses A and C, at a confidence interval of 95%. When making
the same comparison using the maximum performance of the HHMM over five
runs, the increase in F-measure performance is significant for all three houses,
at a confidence interval of 95%. Finally, when comparing the performance of
the average performance over five runs to the maximum performance, we see
that the maximum performance generally results in an increase of at least three
percent points.

5.4.3 Experiment 2: Observation model 2

In experiment 2 Observation Model 2 (p(~xt | zt)) is used. The experimental setup
is similar to experiment 1 and the average F-measure performance over five runs
for various number of action clusters is given in Figure 5.3 for all three houses.

We see that in Houses A and B, the HHMM does not manage to perform better
than the HMM or the HSMM. In House C, we see a slight improvement in
performance over the HMM and the HSMM, when 15 action clusters are used,
but this increase in not significant. Overall, the best performance is obtained
when using 10 or 15 action clusters. Using more or less action clusters than that
quickly results in a significant decrease in performance.

Table 5.3 shows the same results, with the precision, recall, standard deviations
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Fig. 5.2: Experiment 1: Plot of the F-measure performance of the hidden Markov model
(HMM), hidden semi-Markov model (HSMM) and hierarchical hidden Markov
model (HHMM) using Observation Model 1. The number of action clusters
signifies the number of state values that are used for the bottom layer state
variable of the HHMM.
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Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

A HMM - - 70 ± 16 74 ± 13 72 ± 14
HSMM - - 70 ± 17 75 ± 13 72 ± 15

HHMM
Avg. 3 76 ± 13 81 ± 10 79 ± 11
Max. 3 81 ± 13 84 ± 10 82 ± 11

Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

B HMM - - 45 ± 17 60 ± 14 50 ± 16
HSMM - - 46 ± 16 61 ± 14 52 ± 15

HHMM
Avg. 3 51 ± 9 62 ± 7 56 ± 8
Max. 3 56 ± 12 67 ± 8 60 ± 10

Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

C HMM - - 41 ± 8 50 ± 12 45 ± 8
HSMM - - 41 ± 8 50 ± 11 45 ± 8

HHMM
Avg. 2 49 ± 16 55 ± 15 52 ± 15
Max. 2 54 ± 16 59 ± 15 55 ± 15

Tab. 5.2: Experiment 1: Precision, recall and F-measure for hidden Markov model (HMM),
hidden semi-Markov model (HSMM) and hierarchical hidden Markov model
(HHMM). Type indicates the type of performance measure that was used, Avg.
stands for the average over five runs and Max. stands for the maximum over
five runs. Num. Actions represents the number of state values that were used
for the bottom state layer variable.

and maximum performance over five runs included. When comparing the per-
formance of the HHMM using the maximum performance over five runs to the
performance of the HMM and the HSMM, we see that the HHMM on average
performs better in the case of houses A and C. However, this increase in perfor-
mance is not significant at a confidence interval of 95%. Finally, when comparing
the performance of the average performance over five runs to the maximum
performance, we see that the maximum performance can result in an increase
ranging from three to six percent points.

5.5 Discussion

Model of Observation

The results from our experiments show that observation model 1 gives signifi-
cantly better performance than Observation Model 2. When using Observation
Model 1 a separate set of action clusters is used for each activity, while with
observation model 2 a single set of action clusters is used for all activities. Our
result is therefore rather counterintuitive because when using a single set of ac-
tion clusters for all activities, the model is able to reuse certain action clusters for
modeling multiple activities.
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Fig. 5.3: Experiment 2: Plot of the F-measure performance of the hidden Markov model
(HMM), hidden semi-Markov model (HSMM) and hierarchical hidden Markov
model (HHMM) using Observation Model 2. The number of action clusters
signifies the number of state values that are used for the bottom layer state
variable of the HHMM.
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Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

A HMM - - 70 ± 16 74 ± 13 72 ± 14
HSMM - - 70 ± 17 75 ± 13 72 ± 15

HHMM
Avg. 10 67 ± 15 69 ± 12 67 ± 13
Max. 10 73 ± 14 73 ± 12 73 ± 13

Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

B HMM - - 45 ± 17 60 ± 14 50 ± 16
HSMM - - 46 ± 16 61 ± 14 52 ± 15

HHMM
Avg. 15 42 ± 11 49 ± 8 45 ± 9
Max. 15 46 ± 12 52 ± 8 48 ± 10

Model Type Num. Actions Precision Recall F-Measure

H
o

u
se

C HMM - - 41 ± 8 50 ± 12 45 ± 8
HSMM - - 41 ± 8 50 ± 11 45 ± 8

HHMM
Avg. 15 43 ± 9 47 ± 9 45 ± 9
Max. 15 48 ± 9 51 ± 10 49 ± 9

Tab. 5.3: Experiment 2: Precision, recall and F-measure for hidden Markov model (HMM)
and hierarchical hidden Markov model (HHMM). Type indicates the type of
performance measure that was used, Avg. stands for the average over five runs
and Max. stands for the maximum over five runs. Num. Actions represents the
number of state values that were used for the bottom state layer variable.

The explanation for this lack of increase in performance lies in the difficulty to
find action clusters and the lack of labels for the actions. Observation Model 1 is
defined to be dependent on both the action clusters and the activities. Because
we have labeled data for the activities, clustering the data into action clusters
is done for each activity separately. On the other hand, Observation Model 2
only depends on the action clusters, for which there is no labeled data available.
Action clusters therefore need to be found in the data of all activities put together.
Even if consistent action clusters can be allocated in the data, there is no guarantee
that this fit is ideal for the classification of activities.

In future work, it would be interesting to see if the inclusion of labels for the
actions would result in a better performance when using Observation Model 2.
Manually labeling the actions and explicitly appointing actions that are shared
among activities could strongly improve the performance. It would not be neces-
sary to label all the timeslices with actions, a partial labeling provided by a human
expert would help to cluster the data in a more sensible manner.

Number of action clusters used

The number of action clusters used for modeling the data has a strong impact
on the performance of the model. When Observation Model 1 is used, the use of
two or three action clusters results in the best performance. While when using
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Observation Model 2, ten or fifteen action clusters gives the best performance.
Using more or less action clusters quickly results in a significant decrease in
performance in both models. In the case of using more action clusters, this
decrease in performance can be explained by the increase in the number of
parameters. Because we have a limited amount of training data available, too
many parameters will result in an inaccurate estimation of these parameters
[30]. Too few action clusters will limit the model in its expressive power, so that
even with accurately estimated parameters it will not be able to model the data
accurately.

The optimal number of action clusters for Observation Model 2 is a lot higher than
the optimal number of action clusters for Observation Model 1. The explanation
for this difference lies in the number of free parameters available for modeling
the action clusters. In Observation Model 2, the total number of observation
parameters that the model uses for each sensor is equal to the number of action
clusters used. On the other hand, when using Observation Model 1, the total
number of observation parameters used for each sensor is equal to the number
of action clusters times the number of activities. This is because the observation
probability in Observation Model 1 is conditioned on both the action clusters
and the activities. A comparison between the two observation models with
respect to the number of action clusters used should therefore consider cases in
which the same number of parameters for each sensor is used. In the case of
house A, there were ten activities available and so when considering the use of
Observation Model 1 with two action clusters, twenty parameters are needed
for each sensor. In the case of Observation Model 2, using ten to fifteen action
clusters gives the best performance and ten to fifteen parameters are needed
per sensor. Observation Model 2 therefore requires less observation parameters
than Observation Model 1 for its best performance. Still, Observation Model 1
manages to perform better than Observation Model 2, even though it requires
more parameters.

Maximum performance

The difference in performance between the average performance over five runs
and the maximum performance tell us that the parameter estimation method of
the HHMM is quite sensitive to initialization. The use of the maximum perfor-
mance measure gives us insight into the maximum capabilities of the HHMM,
but should not be used to present the performance of the HHMM in a real world
setting. The problem is that in a real world setting, we are dealing with a sequence
of observations for which there is no ground truth available. It is therefore not
possible to determine which set of parameters give the best results for the given
observation sequence. We could do multiple runs of the EM algorithm, using dif-
ferent random initializations and select the set of parameters that give the highest
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likelihood on the training data. However, validating the quality of different runs
on training data can result in overfitting and therefore the proper way of doing
this is to use a validation set. A validation set is constructed by excluding part of
the training data from the training procedure and using that data for evaluating
which set of parameters is best suited. Of course the amount of training data used
during optimization influences the quality of the estimated parameters. And us-
ing too little data for the validation set still risks the possibility of overfitting.
Therefore, the balance between the size of the data used for training and the size
of the validation set should be carefully considered. Alternatively, a different
method of initialization might result in an average performance that is closer to
the maximum performance reported in this chapter.

Modeling the internal structure of activities

When using Observation Model 1, the HHMM managed to significantly out-
perform the HMM and the HSMM in two of the three houses. This increase
in performance is mainly due to differences in the observation model and the
modeling of transition probabilities of the bottom layer state variable.

The inclusion of action clusters allows the model to divide activities into separate
stages, based on the actions that are performed. By modeling the transition
probabilities between consecutive action clusters, we are able to calculate the
probability of a particular temporal ordering of action clusters within an activity.
To be able to model the order in which an activity is performed when using a
HMM, we would have to include features that indicate that sensor A fire before
sensor B. With a large number of sensors, the number of transitions grows quickly
and so do the number of parameters that need to be estimated. By using action
clusters as an abstraction of sensor patterns, we can limit the number of possible
transitions and model temporal ordering using less parameters.

Another advantage of modeling the transition probabilities of the bottom layer
state variable is it allows more accurate duration modeling. We have seen in
Chapter 4 how the inclusion of a duration variable allows us to use any distribu-
tion we want for modeling the duration of a state. The HHMM does not include
a duration variable and therefore we are restricted to the geometric distribution,
which follows from the self transition of states. However, our HHMM contains
state transitions on two layers. This means that the probability distribution of
the duration of an activity is not only based on the self transitions of the top layer
state variable, but also on all possible transitions (not only self-transitions) of the
bottom layer state variable. This probability distribution corresponds to a con-
volution of geometric distributions and therefore allows more accurate modeling
than a single geometric distribution.
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5.6 Conclusion

Hierarchical models allow us to model the relationships between action primi-
tives, actions and activities. We presented a two layer hierarchical hidden Markov
model for activity recognition in which one of the layers corresponds to action
clusters and one layer corresponds to the activities. We speak of action clusters
because clusters of actions are automatically found in the data and do not neces-
sarily have to be actions that are intuitive to humans. The use of multiple layers
allowed the choice between two observation models. One model in which a sep-
arate set of action clusters is used for each activity, and another model in which
action clusters are shared among activities. To estimate the model parameters,
we assumed to have annotated data for the activities, but no annotation for the
actions. We are therefore free to choose the number of action clusters to use.

Experiments on three real world datasets revealed that using a separate set of
action clusters for each activity works best. This is because allocating action
clusters for each activity separately results in clusters that are meaningful with
respect to the classification of activities. Using a shared set of action clusters does
not necessarily result in meaningful clusters and therefore using that observation
model gives a significantly lower performance. The performance of that model
might be increased by using labels for the actions provided by a human annotator.

The use of two or three action clusters gives the best performance, when using a
separate set of action clusters for each activity. Too few action clusters does not
provide the model with enough expressive power, while too many action clusters
results in too many parameters for which there is too little data to estimate them
accurately.

Our proposed hierarchical model significantly outperforms the HMM and the
HSMM in two of the three real world datasets, with an increase of 7 percentage
points in F-measure performance for both datasets. This gain in performance
is caused by the ability of the hierarchical model to model the temporal order
of action clusters, and because the use of multiple layers results in a duration
distribution which corresponds to a convolution of geometric distributions.
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Transfer Learning

6.1 Introduction

In the previous chapters, we have discussed various models for activity recogni-
tion. These models, and most other state of the art activity recognition models,
are supervised models that require annotated datasets to learn the model para-
meters [32, 71, 86, 165]. This annotation has to be provided by a human observer
who either actively annotates the activities as the dataset is recorded, or passively
annotates them by inspecting a video recording of the subject performing the ac-
tivities. Both active and passive annotation are time consuming operations and
are therefore considered very expensive.

The application we have in mind for applying activity recognition systems is
the health monitoring of elderly in their own homes. Therefore, it is expected
that in the near future such systems will be installed in many different homes.
However, due to differences in both the layout of houses and the behavior of
their inhabitants, an activity recognition model trained for one home cannot be
directly used in another home. Instead, we will have to record and annotate a
separate dataset for each home we wish to install an activity recognition system
in. Since annotating a dataset is such an expensive operation, this is far from
ideal.

We hypothesize that despite the differences among houses, there are also similar-
ities among houses with respect to the execution of activities. If this hypothesis
is valid, annotated datasets can provide us with generic information about how

1The material in this chapter is largely drawn from [64, 66].
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people perform activities. In this chapter, we present learning methods that use
existing annotated datasets of different houses to estimate the model parameters
for a new house. We consider each house that we perform activity recognition
in as a separate classification task. Using datasets from various classification
tasks to learn the model parameters for a different but related classification task
is known as transfer learning [5, 15, 162]. We will answer the following questions
with respect to transfer learning for models of activity recognition:

• Is transfer learning for models of activity recognition possible? We hy-
pothesize that there are similarities among houses with respect to the ex-
ecution of activities. Are these similarities really present, and are they
numerous enough to provide a useful contribution to the estimation of
model parameters?

• How can we deal with differences in the layout of houses? There is a
sensor network in each house that we perform activity recognition in. Due
to differences in the layout of houses, there might be differences between
sensor networks. For example, a different number of sensors might be used,
or sensors might sense different properties. The sensor data is represented
in a feature space, where in our approach one sensor typically corresponds
to one dimension in the feature space. Differences in sensor networks
therefore result in feature spaces with different dimensionality and features
with different semantic interpretations. To be able to perform transfer
learning, we need to somehow overcome these differences.

• How do we deal with differences in behavior of inhabitants? Differences
in the behavior of inhabitants can be subtle (e.g. one person prefers sugar
in their coffee, while another prefers their coffee black) or can mean that
an activity is performed in a very different way (e.g. one person uses
instant coffee, while another uses a coffee machine). We could ignore such
differences and create a generic activity recognition model that we use for
all houses. Or we could take the differences into account and create a
specific model for each house we perform activity recognition in. How can
we perform transfer learning such that we end up with a specific model
for each house? How does the recognition performance of such a specific
model compare to a generic model?

• Does the inclusion of unlabeled data help the recognition performance?
Obtaining sensor data that is annotated with labels of activities is expen-
sive. However, collecting large amounts of sensor data that we simply do
not annotate is inexpensive. Such unlabeled data contains specific infor-
mation about sensor patterns that typically occur in the house we wish to
perform activity recognition in. Even though the data does not include la-
bels of activities, including such data during training might result in better
estimated model parameters.
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The rest of this chapter is organized as follows. Section 6.2 describes related work
of both activity recognition and transfer learning. Section 6.3 provides a brief
summary of the hidden Markov model (HMM), the model used for recognizing
the activities. In Section 6.4, we describe transfer learning in detail. Section 6.5
presents the experiments and results and in section 6.6, we discuss these results.
Finally, in Section 6.7 we sum up our conclusions.

6.2 Related Work

When using transfer learning, we typically have a classification task for which
we wish to estimate the model parameters, and we have several classification
tasks for which we have datasets that can be used to obtain information from.
The tasks that provide us with information are called source tasks, and the task
for which we are estimating the model parameters is called the target task. In a
typical transfer learning setup, we generally have annotated datasets available
for the source tasks, while for the target task, we either have no datasets, a dataset
consisting of unlabeled data or a dataset containing very little annotation.

Early work on transfer learning primarily focused on multi-task learning in which
several classification tasks were learned jointly, yielding a better performance
than learning each classification tasks separately [5, 15, 162]. For example, the
goal in newsgroup classification tasks, is to classify which newsgroup a particular
document belongs [26, 132]. Consider that our target task is classifying whether
a document comes from a newsgroup about space or about hardware. When
including training data of several source tasks of other newsgroups such as
religion, baseball and motorcycles the performance of the target task improves
significantly [132]. This is because the other newsgroups provide information
about the co-occurrence of words. A word such as ‘moon’ might often occur
together with the word ‘rocket’. If the word ‘rocket’ did not occur in the space
newsgroup dataset of the target task, but the word ‘moon’ did, the classifier can
still learn that ‘rocket’ is descriptive for the space newsgroup, because it occurs
often together with ‘moon’ in the datasets of the source tasks.

The optimal way to perform transfer learning is still an active topic of research.
One approach that seems to work well with probabilistic models is to learn a
prior distribution over the model parameters from the source task datasets and
use that prior to learn the model parameters of the target task [83, 132]. The
prior provides an initial estimate of the model parameters of the target task
and the influence of the prior decreases in case more training data of the target
task is obtained. Therefore, the use of a prior provides a natural mechanism to
balance the effect of the prior distribution and the available amount of training
data for the target task while learning the model parameters. This approach has
been successfully applied to independent and identically distributed (i.i.d.) data,
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where a discriminative model was used for collaborative filtering [83] and binary
text classification [132]. Datapoints in an i.i.d. datasets are all independent of
each other and so there are no temporal dependencies among the datapoints.
Activity recognition, however, presents us with two important challenges: First,
our measurements are part of a time series, and are therefore not i.i.d. Second,
we can easily obtain large amounts of unlabeled data from a house and would
like to use that data for our parameter estimation. This rules out the use of
discriminative models, because it is not possible to estimate the parameters of
a discriminative model using unlabeled data. The methods we propose in this
chapter apply transfer learning to time series, using a generative model to allow
the use of both labeled and unlabeled data during learning.

6.3 Model for Activity Recognition

In this section, we refine our notation to account for the use of unlabeled data
and we go over the details on our model for activity recognition.

The data obtained from the sensors is discretized into T timeslices of length
∆t. A single feature value is denoted as xi

t, indicating the value of feature i at
timeslice t, with xi

t ∈ {0, 1}. Feature values can either represent the raw values
obtained directly from the sensor, or can be transformed according to a fixed
function. In a house with N installed sensors, we define a binary observation
vector ~xt = (x1

t , x
2
t , . . . , x

N
t )T. A variable representing the activity at timeslice t

is denoted with yt ∈ {1, . . . ,Q} for Q possible activities. This variable is used
for inferring a sequence of activities by a model of activity recognition. The
annotation provided by a dataset is defined as a variable lt ∈ {0, . . . ,Q} denoting
the value of the label for an activity. A label value of 0 indicates that no annotation
is available for that particular timeslice. The combination of a sequence of features
and a sequence of labels forms a dataset for activity recognition and is denoted
asD = {x1:T, l1:T}.

To infer a sequence of activities y1:T from a sequence of features x1:T, we use the
HMM that was introduced in Chapter 3. We provide a brief summary of the
details of the HMM here. The joint probability distribution factorizes as:

p(y1:T, x1:T) = p(y1)
T∏

t=1

p(~xt | yt)
T∏

t=2

p(yt | yt−1). (6.1)

The different factors represent: the initial state distribution p(y1) is represented
as a multinomial distribution parameterized by π; the observation distribution
p(~xt | yt) is a combination of independent Bernoulli distributions, parameterized
by B =

{
µin
}
; the transition distribution p(yt | yt−1) is represented as a collection
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of multinomial distributions, parameterized by A = {ai}. The entire model is
therefore parameterized by a set of three parameters θ = {π,A,B}.

6.4 Transfer Learning for Activity Recognition

In transfer learning for activity recognition, we assume we have R source houses
and a single target house. We denote variables related to the target house with a
superscript (0) and variables related to a source house with a superscript of the
index of the source house. We assume there is a fully annotated datasetD(i) with
i ∈ 1 : R for each of the source houses. The dataset D(0) of the target house can
contain a mix of unlabeled and labeled timeslices. We assume each house can
have a different number of sensors N(i) with i ∈ 0 : R, but for all houses the same
number of activities Q are considered. This means the features of each dataset
can be of different dimensionality, but the same labeling is used in each dataset.

Transfer learning comes down to estimating the model parameters θ(0) of the
HMM for the target house. We want to include the source house datasets in
our parameter estimation method and therefore have to deal with two issues.
First, how do we deal with the different dimensionality of the features of all the
datasets. Second, how can we estimate the model parameters of the target house
using both the source and target datasets.

6.4.1 Mapping using Meta Features

The differences in dimensionality of the features prevents us from combining
the datasets from the houses. To solve this, we need to introduce some kind of
mapping such that each sensor feature space with dimensionality N(i) is mapped
to a common feature space of dimensionality M. We use meta features [83] for this
mapping, which are features that describe the properties of the actual features.
Each sensor feature is described by one or more meta features, for example, a
sensor on the microwave might have one meta feature describing the sensor is
located in the kitchen, and another that the sensor is attached to a heating device.

In our approach, we define a set of M meta features and manually create a
mapping vector g(i)

n to be a row vector of binary indicators, indicating which meta
features correspond to sensor n of house i (Table 6.1). Together these vectors form
a N ×M mapping matrix G(i) =

{

g(i)
n

}

which consists of the vertical concatenation
of the meta feature row vectors. Defining a set of meta features requires insight
on the effect the feature space will have on classification and therefore needs to be
done by a pattern recognition expert. Once the meta features have been defined,
assigning a set of meta features to sensors requires only common sense and is a
trivial task that can be performed by an end user.
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House Sensors Bathroom Entra
nce

Kitchen Heatin
g

Kitchen Storage

Toilet Entra
nce

House A
Stove 0 1 0 0
Bathroom door 1 0 0 0
Toilet door 0 0 0 1

House B
Microwave 0 1 0 0
Bathroom door 1 0 0 1

Tab. 6.1: Example of sensors (rows) being represented by meta features (columns) for two
houses. The row of binary values corresponds to the mapping vector for that
particular sensor. In this example the house A bathroom and toilet are located in
separate rooms and therefore both have a separate entrance, in house B they are
located in the same room and therefore have a single entrance.

6.4.2 Estimating the model parameters

With the mapping to the meta feature space, we can solve the issues with the
differences in dimensionality among the feature spaces of the datasets. This
allows us to combine the datasets to estimate the model parameters θ(0) for the
target house. In this section, we present two approaches for doing this, the
first approach results in a generic model applicable to all houses and the second
approach results in a model specific to the target house.

Generic model approach: A single model for all houses

In this approach, no distinction is made between source and target datasets. The
approach consists of two steps, first the meta feature mapping is applied to the
sensor feature matrices of all houses, so that the sensor data of all houses is
represented in feature matrices of equal dimensionality. We then estimate the
maximum likelihood parameters of the target house by applying the Expectation
Maximization (EM) algorithm [8] to the datasets of all the houses (Fig. 6.1).

Step 1: Mapping to meta-feature space To perform the mapping we define a
function h(G, ~xt) which takes as input the mapping matrix G and an observation
vector ~xt and outputs a vector of binary indicators indicating whether for a
particular meta feature at least one sensor that corresponds to that meta feature
fired at timeslice t.
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0

Fig. 6.1: Graphical representation of the transfer learning framework resulting in a generic
model. Data from the source and target houses is mapped to the meta feature
space and one set of parameters θ is learned using maximum likelihood.

Step 2: Estimating the Maximum Likelihood parameters The maximum like-
lihood parameters are learned by using the EM algorithm. Applying the EM
algorithm consists of two steps, in the E-step the expectations are calculated
using an initial set of parameters and in the M-step a new set of parameters is
calculated from the expectations. These two steps are repeated and after each
iteration the new set of parameters calculated in the M-step are used in the E-step
to recalculate the expectations. The procedure is terminated when the parameter
values converge.

The expectations over the state values given a set of training data can be ef-
ficiently calculated using the forward-backward algorithm [130]. We define
ξt(i, j) = p(yt = i, yt+1 = j | ~c1:T, l1:T, θ), which is the probability outputted by
the forward-backward algorithm given a set of parameters θ and a set of training
data. The training data consists of the mapped sensor data ~c1:T and the labels
l1:T, in which it is possible to include training data for which no annotation is
available (i.e. having lt = 0). The mapped sensor data is obtained by applying
the mapping function ~c1:T = h(G, ~x1:t). Summing over ξt(i, j) for all time indices
t gives us a quantity which can be interpreted as the expected number of times
that a transition from yt to yt+1 is made. If we then take the resulting quantity
and sum over the possible state values for yt+1, we get the expected number of
times that state yt is visited. In the generic model approach to estimate the model
parameters, we add the expectations of all houses to obtain a set of parameters
that incorporates the data of all houses. The equations for maximizing the para-
meters are similar to the standard maximization equations for the HMM [130],
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with the exception of an added sum term that sums over all the datasets 0 : R.

πi =

∑R
r=0
∑Q

j=1 ξ
(r)
1 (i, j)

∑R
r=0
∑Q

i=1

∑Q
j=1 ξ

(r)
1 (i, j)

(6.2)

ai j =

∑R
r=0
∑T−1

t=1 ξ
(r)
t (i, j)

∑R
r=0
∑T−1

t=1
∑Q

j=1 ξ
(r)
t (i, j)

(6.3)

µin =

∑R
r=0
∑T−1

t=1
∑Q

j=1 δ((c
n
t )(r), 1)ξ(r)

t (i, j)
∑R

r=0
∑T−1

t=1
∑Q

j=1 ξ
(r)
t (i, j)

(6.4)

Since no distinction is made between the source and target datasets there is no
difference between the model parameters of the target house and those of the
source houses, that is θ(0) = θ(i) for all i ∈ 1 : R.

Specific model approach: One model specifically for the target house

The distinction between the target and source datasets is that the target dataset
contains specific information about the house we wish to perform activity recog-
nition in, while the source datasets contain generic information about activity
recognition. In this approach, we take that distinction into account and learn a
set of parameters specifically for the target house.

Combining the generic information together with the specific information is done
by using maximum a posteriori (MAP) parameter estimation. In MAP parameters
estimation the likelihood function of the training data is combined with a prior
distribution over the parameters. This can be formulated as:

Posterior
︷       ︸︸       ︷

p(θ | D,Ψ) ∝

Likelihood
︷   ︸︸   ︷

p(D | θ)

Prior
︷   ︸︸   ︷

p(θ | Ψ) (6.5)

whereθ are the model parameters,D is the training data andΨ are the parameters
of the prior distribution, known as the hyperparameters. The prior distribution
provides an initial estimate of the parameter values before incorporating any
training data. For example, in the case of activity recognition, we could use our
common sense and say that the prior probability of the toilet flush sensor firing
when the activity toileting is performed is concentrated around 99%. Rather
than using our common sense, we use the source datasets to estimate the prior
distribution. The target dataset is used in the likelihood function and provides
house specific information, while the learned prior distribution provides generic
information. By jointly maximimizing these terms, we can estimate the MAP
parameters of the target house. This entire procedure is broken down into three
steps. Step 1 consists of learning the maximum likelihood parameters from
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0 0

Fig. 6.2: Graphical representation of the transfer learning framework resulting in a specific
model. For each source house i training data is used to learn model parameters
θ(i). All the source model parameters are used to learn the hyperparametersΨ of
the prior distributions. Which in turn is used to learn the target model parameters
θ(0) together with any available data from the target house.

the source datasets. In step 2, we estimate the hyperparameters Ψ of the prior
distribution, by using the parameters of the source houses as examples. Finally,
in step 3, we estimate the MAP model parameters for the target house (Fig. 6.2).

Step 1: Maximum Likelihood parameters of the source house Estimating the
maximum likelihood parameters of the source houses is done separately for each
house. Because the source house datasets are all fully annotated, we can simply
use the equations introduced in Section 3.4.3 to learn the parameters. Note that
no meta feature mapping has been applied to the source house datasets at this
point of the procedure. Since the model parameters are learned for each house
separately, there is no need yet to map to a common feature space.

Step 2: Estimating the prior distributions Before estimating the hyperpara-
meters of the prior distributions, we first have to decide which probability
distributions we will use for representing the prior probabilities of the model
parameters. In Bayesian statistics, a prior is said to be conjugate if the resulting
posterior is of the same functional form as the prior [9]. This property is generally
preferred because it allows the use of sequential parameter estimation in which
the posterior of a previous iteration is used as a prior for the new iteration.

Recall that our HMM consisted of a number of Bernoulli distributions and a num-
ber of multinomial distributions. The conjugate prior of a Bernoulli distribution
is the beta distribution, while the conjugate prior of a multinomial distribution
is the Dirichlet distribution. We therefore use the following prior distributions.
The Dirichlet distribution is used for the initial state distribution parameters π
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Factor Model Distribution Prior Distribution

Name Name Parameters Name Hyperparameters
Initial State Multinomial π Dirichlet η
Transition Multinomial A Dirichlet ρ
Observation Binomial B Beta ω,υ

Tab. 6.2: Overview of the distributions used in the HMM, parameterized by the model
parameters θ = {π,A,B}. And the corresponding prior distribution, parameter-
ized by the hyperparametersΨ =

{
η, ρ, ω, υ

}

and for the state transition distribution parameters ai. The beta distribution is
used for the observation parameters µ. This gives the following equations:

p(π | η) =
Γ(
∑K

k=1 ηk)
Γ(η1) . . . Γ(ηK)

K∏

k=1

π
ηk−1
k

(6.6)

p(ai | ρ) =
Γ(
∑K

k=1 ρk))
Γ(ρ1) . . . Γ(ρK)

K∏

k=1

a
ρk−1
ik

(6.7)

p(µin | α, β) =
Γ(α + β)
Γ(α)Γ(β)

µα−1
in (1 − µin)β−1 (6.8)

where K is the number of elements in the vector. The hyperparameters α and
β are in the sensor feature space and are therefore further parameterized as
αin = gn~υi and βin = gn~ωi, where gn is the meta feature row vector for sensor n.
The hyperparameters ~υi and ~ωi are column vectors positioned in the meta feature
space. An overview of all the distributions and their parameters can be found in
Table 6.2.

There are no closed form solutions for estimating the maximum likelihood para-
meters of the Dirichlet and Beta distributions. Therefore, we use numerical
methods for estimating the hyperparameters [105, 172]. It is straightforward to
learn the hyperparameters η and ρ of the two Dirichlet distributions, used as
a prior for the initial state distribution and the transition distribution. This is
because the same number of activities is used in all of the houses, therefore the
dimensionality of these model parameters is the same for all houses.

Estimating the hyperparameters of the observation distributions is more involved
because of the different sensor feature spaces in each house. The numerical
optimization methods for the Beta distributions give us the parameter values
of α and β, which are in the sensor feature space. We can find the least square
solution to the meta feature space parameters ~υ and ~ω by solving the system of
equations defined byαi = G~υi and βi = G~ωi, in which G is the mapping matrix and
index i indicates the activity the parameters belong to. The values of α and β can
be interpreted as the effective number of observations of the sensor outputting
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a 1 or a 0, respectively [9]. To guarantee non-negative values, we add a ‘bias’
meta-feature with a large enough positive value. This bias will influence the
parameter values, but because it is consistently applied to all parameter values,
it generally does not affect the balance among the parameters that much.

Step 3: Maximum A Posteriori parameters of the target house To learn the
MAP model parameters of the target house, we use the EM algorithm. In the
E-step, any available unlabeled and/or labeled data from the target house is used
to calculate the expectations using the forward-backward algorithm [130]. We
define ξt(i, j) = p(yt = i, yt+1 = j | ~x1:T, l1:T, θ) which is the probability outputted
by the forward-backward algorithm given a set of parameters θ and a set of
training data consisting of the sensor feature ~x1:T and the labels l1:T. Note that the
original sensor feature space is used for the observations. Just like in the generic
model, summing over ξt(i, j) gives us a quantity which can be interpreted as the
expected number of times that a transition from yt to yt+1 is made.

The equations in the M-step for calculating a new set of parameters have to
incorporate the prior probability. These equations can be derived by adding the
log probability of the prior distributions to the calculations of the expectations
and taking the derivative of those terms with respect to each parameter of the
HMM [54] . A Lagrange multiplier is used to guarantee the outcome satisfies the
rules of probability. This results in the following equations:

πi =

∑Q
j=1 ξ1(i, j) + (ηi − 1)

∑Q
i=1

{∑Q
j=1 ξ1(i, j) + (ηi − 1)

} (6.9)

ai j =

∑T−1
t=1 ξt(i, j) + (ρi j − 1)

∑T−1
t=1
∑Q

j=1 ξt(i, j) + (ρi j − 1)
(6.10)

µin =
(αin − 1) +

∑T−1
t=1
∑Q

j=1 δ(x
n
t , 1)ξt(i, j)

(αin + βin − 2) +
∑T−1

t=1
∑Q

j=1 ξt(i, j)
(6.11)

where αin = gn~υi and βin = gn~ωi.

Compared to the generic model equations, we see here that instead of adding
all the expectations of the houses together, we take the expectations of the target
house and adjust them with the parameter values of the prior. In step 2 we
noted that the parameter values of the beta distribution can be interpreted as the
effective number of observations made. The parameter values of the Dirichlet
distribution have a similar interpretation. For example, the ρi j can be interpreted
as the effective number of transitions made from state i to state j. Because
the parameters of the prior distributions are estimated from the source house
datasets, we are basically performing a similar operation as summing over the
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(b) Beta distribution with α = 3 and β = 2.

Fig. 6.3: Examples of a peaked (left) and wide (right) beta distribution.

expectations of all houses as we did in the generic model case. The difference is
that the parameters of the prior are estimated from a combination of the source
house expectations, rather than a simple sum of expectations. How the source
house expectations are combined depends on how much they are in agreement
with each other. For example, if in every house the microwave is used during
cooking, then the prior distribution will be strongly peaked over a probability
value close to 1 for the microwave sensor firing while cooking. This will result
in a large hyperparameter value (Fig. 6.3(a)) which has a strong influence on
the expectations of the target house. On the other hand, if the data from the
source houses are not in agreement, this will result in a wide prior distribution
with low hyperparameter values (Fig. 6.3(b)) and therefore little influence on the
expectations of the target house.

6.5 Experiments

Our transfer learning approach provides answers to the questions posed in the
introduction section. The use of meta-features allows us to deal with differences
in the layout of houses and our methods for learning the parameters of either
a generic or specific model provides two ways for dealing with the difference
in the behavior of inhabitants. In this section, we present experiments on real
world datasets to test the quality of our proposed solutions. Furthermore, our
experiments will determine whether transfer learning for activity recognition
is possible and whether the inclusion of unlabeled data helps the recognition
performance.

In the first experiment, we do not perform transfer learning, but compare the
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House A House B House C
Activity Num. Time Num. Time Num. Time
Leave house 33 50.5% 24 59.6% 47 45.7%
Toileting 114 1.0% 27 0.4% 89 1.0%
Take shower 23 0.8% 11 0.6% 14 0.8%
Brush teeth 16 0.1% 13 0.2% 26 0.4%
Go to bed 24 33.2% 14 29.4% 19 29.2%
Prepare Breakfast 20 0.3% 9 0.5% 18 0.6%
Prepare Dinner 9 0.9% 6 0.5% 11 1.1%
Get drink 20 0.2% 8 0.1% 10 0.1%
Other - 13.0% - 8.7% - 21.1%

Tab. 6.3: The activities that were annotated in the different houses. The ‘Num.’ column
shows the number of times the activity occurs in the dataset. The ‘Time’ column
shows the percentage of time the activity takes up in the dataset. All unannotated
timeslices were collected in a single ‘Other’ activity.

performance of using the meta-feature space to using the original sensor feature
representation. The second experiment compares the performance of the generic
model and the specific model to a model learned without using transfer learning.
Finally, in the third experiment, we compare the performance of performing
transfer learning using both labeled and unlabeled data from the target dataset,
to the performance of using only labeled data from the target house.

This section is organized as follows, we first give a description of the houses and
the datasets recorded and provide details of our experimental setup. Then, we
present the results and discuss the outcome.

6.5.1 Datasets used

Experiments were performed using the datasets of the three houses used in earlier
chapters. A subset of activities were selected that were annotated in all three
houses, an overview of these activities and how often they occur in each dataset
can be found in Table 6.3. The activities for houses A and B were annotated using
a wireless bluetooth headset, while activities in house C were annotated using a
handwritten diary.

The layout of the houses differs strongly, for example, there are two toilets in
house C, the toilet in house B is in the same room as the shower, while the toilet
and shower in house A are in separate rooms. Furthermore, the inhabitants differ
as well, house A was occupied by a 26 year old male, house B by a 28 year old
male and house C by a 57 year old male.
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6.5.2 Experimental Setup

In all experiments, the HMM was used as activity recognition model. The same
meta feature mapping is used in all experiments. Choosing a proper mapping is
not straightforward, since the optimal choice is not clear and a wrong decision
can result in a feature space in which certain activities cannot be discriminated.
In previous work on transfer learning for activity recognition, a comparison of
mappings was made [64]. The mapping that combined sensor readings in a
single feature based on their function (e.g. sensor used for heating) gave the best
results. We use the same mapping which is described in detail in Appendix B.

Sensor data is discretized in timeslices of length ∆t = 60 seconds. This time
slice length is long enough to provide a discriminative sensor pattern and short
enough to provide high resolution labeling results. After discretization, we have
a total of 35486 timeslices for house A, 19968 timeslices for house B and 26236
timeslices for house C.

We split our data into a test and training set using a ‘leave one day out’ approach.
In this approach, one full day of sensor readings is used for testing and the
remaining days are, depending on the experiment, either partly or fully used for
training. We cycle over all the days and report the average performance measure.
In Section 3.7.2, we introduced the precision, recall and F-measure and showed
that they are reliable measures for evaluating the performance of our model. The
experimental results of Chapters 3 and 4 showed that the changepoint feature
representation consistently gives a good performance, therefore, we use that
feature representation for the experiments in this chapter. Significance testing
between two cases A and B is done at a confidence interval of 95% using a one-tail
student t-test and using matching paired days.

6.5.3 Experiment 1: Meta-feature vs. Sensor feature space

In this experiment, we do not use any form of transfer learning. Rather, we
perform activity recognition using the same experimental setup as was done in
the previous chapters. This means that for each experiment the dataset of only
one house is used. Any available training data is used fully labeled according
to the leave one day out approach. We wish to determine the impact on the
recognition performance when the meta feature mapping is applied to the sensor
data. Therefore, we compare the performance of the HMM using the original
sensor feature space to the performance of the HMM using the meta feature space.
Mapping the sensor data to the meta feature space corresponds to applying step
1 of our generic model approach. Model parameters are learned using maximum
likelihood as described in Section 3.4.3.
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House Model Feature Space Precision Recall F-Measure

A
HMM Meta 64 ± 16 70 ± 13 67 ± 14
HMM Sensor 71 ± 17 74 ± 14 72 ± 15

House Model Feature Space Precision Recall F-Measure

B
HMM Meta 53 ± 15 60 ± 13 56 ± 13
HMM Sensor 55 ± 18 68 ± 15 60 ± 17

House Model Feature Space Precision Recall F-Measure

C
HMM Meta 48 ± 10 58 ± 11 52 ± 10
HMM Sensor 50 ± 12 62 ± 13 55 ± 12

Tab. 6.4: Experiment 1: Precision, recall and F-measure for hidden Markov model (HMM)
using the sensor feature space and using the meta feature space.

The results for the three houses are shown in Table 6.4. We see that in all three
houses, recognition using the sensor feature space on average performs better
than when using the meta feature space. To determine the significance of these
results, we used a one-tail student t-test with matching paired days. The increase
in F-measure performance is significant only for House A at a confidence interval
of 95%.

6.5.4 Experiment 2: Generic model vs. Specific model

This experiment compares the performance of the generic model approach to the
performance of the specific model approach. One house is used as the target
house, while the remaining two houses are used as source houses. We compare
the performance of the generic and the specific transfer learning approaches to
the performance of the model from the previous experiment in which no transfer
learning was done and the original sensor feature space was used. This way we
are able to see which transfer learning method works best and what the difference
in performance is compared to not doing transfer learning.

Figure 6.4 shows the results for all three target houses. The X-axis show the
number of days of labeled data that was used, any remaining unlabeled data
was also included during learning. We first compare the two transfer learning
approaches to the ‘no transfer learning’ approach. We see that both transfer
learning approaches significantly outperform the ‘no transfer learning’ approach
in all three houses when 0 days of labeled training data are used (i.e. only
unlabeled data is used). This is because the ‘no transfer learning’ approach has
no labeled data to learn its parameters, while the two transfer learning approaches
can use the labeled data of the source houses.

When more days of labeled training data are used there are no significant differ-
ences in performance between any of the methods in the case of Houses B and
C. In House A, we see that the specific model approach on average performance
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(a) House A (b) House B

(c) House C

Fig. 6.4: Results of experiment 2, the x-axis are in log-scale and show the number of labeled
days of data that were used for training. Any remaining unlabeled data was also
included during learning.

better than the ‘no transfer learning’ approach, but that this difference decreases
as more labeled data is included. This shows how the use of a prior distribution
can help in learning the model parameters and that its effect decreases as more
labeled data from the target house is used.

The generic approach performs worse than the ‘no transfer learning’ in house
A when 2 or more days of labeled training data are used. This phenomenon is
called negative transfer [15] which means that transfer learning has a negative
effect on the learning process. This is because it is not clearly defined which parts
of the data in the source houses are useful for the target house and which or not.
Including training data from the source houses during learning can therefore
sometimes pull the choice of parameters away from the optimal solution. It is
interesting to see that the same collection of data can result in a positive transfer



6.6 Discussion 117

for the specific model and a negative transfer for the generic model. We will
speculate about this occurrence in the discussion section.

Finally, in House A, we see that the specific model on average performs better
than the generic model. The specific model is able to learn model parameters
that take into account the specific behavior for that house, because its learning
method properly balances the influence of the source datasets. The generic model
on the other hand only gains a slight performance increase from the extra data,
because the data from each house has an equal contribution in the estimation of
the parameters. This makes the weight of the labeled data from the target house
less than when a prior distribution is used.

6.5.5 Experiment 3: Labeled vs. Unlabeled data

The use of generative models allows us to include unlabeled data during the
learning process. In this experiment, we compare performance of using both
unlabeled and labeled data to using only labeled data. In both cases, we use
the specific model approach to learn the model parameters. The results for the
various houses can be found in Figure 6.5. We see that adding unlabeled data
results in a slight increases in performance for House A, gives more or less equal
performance for House B and decreases performance for House C, compared
to the labeled only approach. This tells us that including unlabeled data can
have a rather unpredictable effect on the performance of our model. Further
experiments on other datasets might provide better insight into the effects of
including unlabeled data with respect to the recognition performance. However,
based on these experiments it seems best to rely only on labeled data.

6.6 Discussion

Meta features

Our experiments show the recognition performance in the original sensor feature
space is better than in the meta feature space. This is not unexpected as the
sensor feature space is specific to the house we perform activity recognition in,
while the meta feature space is a common feature space that can be used by
all houses. Nonetheless, since we need a common feature space to be able to
perform transfer learning, the use of meta features serves as a valid solution for
dealing with differences in the layout of houses.

The set of meta features used in our experiments were manually defined and
therefore it is not certain that the optimal mapping was used. An alternative is to
learn the mapping automatically from data [25, 183]. However, because we are
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Fig. 6.5: Results of experiment 3, the x-axis are in log-scale and show the number of labeled
days of data that were used for training. In the case where unlabeled data is also
included, the remaining days of unlabeled data are added during training.

working with time series data, the computational complexity can quickly become
an issue in developing a feasible approach.

Generic or specific model

The results for all three houses show that both the generic and specific approach
to transfer learning work when no labeled data from the target house are used.
This is a very important result since it shows that transfer learning for activity
recognition is possible and therefore proves that there must be similarities with
respect to the way activities are performed between the houses of the experiments.
Furthermore, the result is promising as it indicates that by using transfer learning
we are able to install activity recognition in any house without the need for any
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annotated data from that house.

Using transfer learning when labeled data for the target house is available did
not result in a consistent increase in performance. An increase in performance
only occurred when the specific model was used in combination with house A as
the target house. This raises the question what the difference is between house A
and the other houses. Unfortunately these differences are quite a few to be able
to make any solid conclusion based on these experiments. There are differences
in terms of the number of sensors used and where they were installed, the layout
of the houses, the behavior of the inhabitants and the amount of data that was
recorded in each house.

In house A we also saw that the use of a generic model resulted in negative trans-
fer, while the use of the specific model gave a positive outcome. The explanation
for this lies in the way both models incorporate the source house data. More
specifically, the differences lies in the re-estimation equations of the parameters,
used in the M-step of the EM algorithm. In the generic model, the model para-
meters are calculated by summing over the expectations from all houses, while
in the specific model the parameters are calculated by adjusting the expectations
of the target house with the parameter values of the prior (for further details
on these effects see the end of step 3 of the specific model description, below
Equation 6.11). For the generic model this means that the contribution of the
expectations of the target house depends on how many source houses were used
and how large those source house datasets were. This is not a very sensible
approach because a large collection of annotated data from the target house can
be completely outweighed by a large number of source house datasets. On the
other hand, in the specific model the contribution of the prior depends on to what
extend the source house datasets are in agreement with each other. If certain pat-
terns of behavior consistently occur in all source datasets, the prior will be very
strongly peaked for parameter values related to such patterns. Which will result
in a strong influence on the target house expectations. Such an approach is much
more sensible, since the influence of the prior depends on evidence found in the
data. This explains why the specific model performs so much better than the
generic model in House A. Why the same does not happen for the other houses
is not clear.

Future work

In terms of future work, it would be interesting to apply transfer learning to
several other models. For example, the use of hierarchical models might be better
fit for transfer learning because the different levels of the hierarchy allow a better
abstraction between houses. Comparing the performance gain due to transfer
learning between several models can provide interesting insights on how to
accurately model data. It would also be interesting to apply our transfer learning
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approach to other sensing modalities such as cameras or wearables. Creating
a proper mapping for those modalities will be challenging. Finally, it would
be interesting to perform transfer learning across different sensing modalities.
For example, using source houses in which camera’s and wearables are used
to perform activity recognition and a target house in which a wireless sensor
network is used.

6.7 Conclusion

We have addressed the problem of learning model parameters when little or no
labeled data is available for the house activity recognition is to be performed
in. By using activity recognition datasets of other houses, we can transfer the
knowledge about activity recognition from one house to another. Differences in
the layout of houses results in different sensor feature spaces among datasets,
we therefore presented a meta feature representation which allows us to map
all sensor data to a common feature space. We presented two methods for
learning the model parameters, one approach results in a generic model for
activity recognition and the other approach results in a model specifically for the
house activity recognition is performed in.

Our experiments on three real world datasets show that it is possible to use
transfer learning for activity recognition. The use of a meta feature mapping
results in a performance decrease, but allows us to perform transfer learning.
When using no labeled training data the use of both the generic and specific
model results in a significant increase in performance when compared to not
using transfer learning. This is a very important result since it shows that transfer
learning for activity recognition is possible and therefore proves that there must
be similarities with respect to the way activities are performed between the
houses of the experiments. Furthermore, the result is promising as it indicates
that by using transfer learning, we are able to install activity recognition in any
house without the need for any annotated data from that house. When using one
or more days of labeled training data the specific model is able to perform on
average better than the no transfer learning case in one of the three houses. The
generic model performs on average equally well, or worse than the no transfer
learning case in all three houses. Using the specific model therefore seems to be
the preferred choice, although further experiments are needed to determine why
the specific model is not able to obtain a performance gain in all three houses.
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Conclusions

The automatic recognition of activities from sensor data allows important appli-
cations in healthcare for dealing with the societal problems of an aging popula-
tion. In this final chapter, we present our concluding remarks and highlight the
contributions of this thesis to this area of research. We end this chapter with a
discussion on directions for future research.

7.1 Conclusions and contributions

In the introduction of this thesis, we presented a number of research questions that
are answered in this thesis. The first question asked which temporal probabilistic
model is able to accurately recognize activities from sensor network data. In
Chapters 3, 4 and 5, we provided experimental results that allow us to answer
this question.

The temporal probabilistic models used in this thesis use a time series represen-
tation. This requires us to discretize the sensor data using a constant timeslice
length. In Chapter 3, experiments on three real world datasets revealed that the
recognition performance is not very strongly affected by the length of the time
interval used for discretization. A time interval of 60 seconds provides the proper
balance between an accurate representation of the data and a reasonable amount
of data needed for this representation.

Transforming sensor data to a different feature representation can sometimes help
the recognition performance of a model significantly. We presented three feature
representations the raw representation, changepoint representation and the last-
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fired sensor representation. Experiments showed that the change and last-fired
feature representations perform significantly better than the raw representation.
Combinations of representations sometimes resulted in a slight increase in per-
formance, but never significantly outperforms the separate use of the change and
last representations.

We presented two probabilistic models for activity recognition in Chapter 3, the
hidden Markov model (HMM) and the conditional random field (CRF). Compar-
ing the model performances showed that the CRF generally performs better than
the HMM in terms of the accuracy measure. However, in this measure, activities
that occur frequently have a larger weight. The CRF favors the recognition of
frequent activities, but can completely ignore infrequent activities as a result. We
consider the recognition of each activity equally important and therefore rely
on the multi-class precision and recall and the F-measure for comparing per-
formances. Comparing these models in terms of F-measure does not show any
significant differences in performance between the two models. The performance
of these models was used as a recognition baseline in the other chapters.

In Chapter 4, we presented semi-Markov models which explicitly model the
duration of an activity. Experiments were run to determine which probability
distribution is best suited for modeling the duration of an activity. Three uni-
modal distributions, a multivariate distribution and a histogram approach with
various numbers of bins were tested. The results showed that the Gaussian dis-
tribution performed best in the majority of the datasets and was therefore the
distribution that was used in the other experiments. We experimented with two
semi Markov models, the hidden semi-Markov model (HSMM) and the semi-
Markov conditional random field (SMCRF). The HMM and HSMM are both
generative models, while the CRF and SMCRF are discriminative models. Ex-
periments showed that accurate duration modeling is important in generative
models, but less important in discriminative models. This is because discrimina-
tive models are better able to deal with violations of the modeling assumptions.
Overall the HSMM and the SMCRF give similar performance on most datasets.
Neither model manages to consistently obtain a significantly better performance
than the other.

A hierarchical structure for activities consisting of action primitives, actions and
activities was presented in the introduction of this thesis. This structure was used
in Chapter 5 to create a hierarchical hidden Markov model (HHMM) for activity
recognition. Model parameters were estimated by using annotated data for the
activities, but no annotation for the actions. As a result, clusters of actions were
automatically allocated in the data, in which we are free to choose the number
of action clusters to use. We experimented with two observation models for our
HHMM. One model in which a separate set of action clusters is used for each
activity, and another model in which action clusters are shared among activities.
Our experiments showed that the observation model that uses a separate set
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of action clusters for each activity works best. Using that observation model,
the HHMM significantly outperforms the HMM and the HSMM in two of the
three real world datasets, with an increase of 7 percent points in F-measure
performance for both datasets.

The experiments from these chapters indicate that the answer to the first question
of this thesis is to use a hierarchical hidden Markov model that uses an obser-
vation model which uses a separate set of action clusters for each activity. Data
should be discretized using the timeslice interval of 60 seconds and should be
transformed to the changepoint or last-fired feature representation.

The second question of this thesis addresses the problem of reusing a model for
activity recognition in multiple homes. In Chapter 6, we present transfer learning
which allows us to learn model parameters despite differences between various
homes. This requires the use of a meta feature representation to map sensor data
from datasets of different houses to a common feature space. We experimented
with a model that learn a generic set of parameters and a model that learns
a set of parameters specific to the house activity recognition is performed in.
Experiments show that both models allow us to successfully transfer knowledge
to a house for which no annotated data is available. When annotated data is
available the specific model approach is able to perform on average better than
the no transfer learning case in one of the three houses.

Our final question addresses the issue of evaluating the performance of a pattern
recognition method to ensure an accurate performance in a real world setting.
The experiments in this thesis were performed on three real world datasets. We
presented a sensor and annotation system that allows us to create datasets in
multiple homes and annotate them accurately. To evaluate the performance of
activity recognition models, we suggest the use of the multi-class precision and
recall and the F-measure. The software for the models presented in this thesis,
together with the datasets on which the experiments were ran are available from:
http://sites.google.com/site/tim0306/. The entire package can serve as a
benchmark for future work on activity recognition.

7.2 Future research

In this section, we present directions for future research, we discuss topics with
respect to sensors, the setup activity recognition is performed in, learning meth-
ods for activity recognition and the output an activity recognition system should
give.

In this work, we used sensor networks to observe the behavior of inhabitants.
The sensors used were installed in locations that seemed intuitive to the research
team. Certain problems encountered in the classification of activities might easily

http://sites.google.com/site/tim0306/
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be resolved by installing additional sensors. However, because these activity
recognition systems will eventually be used on a large scale, it is important to
keep the costs of the system to a minimum. It is therefore important to understand
the impact on the recognition performance of both the number of sensors used
and the location the sensors are installed. Such understanding will allow us
to create an activity recognition system using the minimum number of sensors
needed.

All the models and experiments performed in this thesis assumed that a house-
hold consists of a single person. For a realistic application in a real world setting,
an activity recognition system should be able to deal with people visiting a
household and with households in which multiple people live. The challenge in
performing multi-person activity recognition is that people can perform activi-
ties separately, in which sensors from two different locations in the houses are
triggered, and activities can be performed jointly, in which a single set of sensors
is triggered.

Our models for activity recognition require annotated data to estimate the model
parameters. The transfer learning approach we suggested will help in installing
activity recognition systems in new houses, but additional annotated data would
surely help the recognition performance of the model. Instead of annotating
activities for an entire day, we could select a few timeslices for which it would be
most informative for the classifier to know which activity was performed. This
can be done using active learning [141] in which an algorithm calculates for each
timeslice the potential gain in information for knowing the label of that timeslice.

The parameters obtained through learning accurately represent the behavior of
an inhabitant at a certain point in time. However, because the behavior of people
changes over time, the parameters learned at one point in time may not accu-
rately represent the behavior at a later point in time. In a technique called lifelong
learning, parameters are continuously updated, rather than estimated only once
during a learning phase [163]. Lifelong learning can be considered as a form
of transfer learning, because the recognition of the behavior of a person at two
separate moments in time corresponds to two different, but related, classification
tasks. The challenge in this approach is that parameters are continuously up-
dated. One hypothesis that can be tested for this approach is whether changes
in behavior occur gradually or suddenly. Ideally lifelong learning methods up-
date the model parameters using only sensor data, for which no annotation is
available. Parameters could be gradually updated as small changes in the be-
havior become visible in the sensor data. Such unsupervised methods are not
uncommon in the machine learning [9], but the effects of continuously updating
parameters over a long period of time have to be studied.

Finally, currently our models for activity recognition simply output a list of
activities that were performed during the day. It is unlikely that care givers
would like to see long lists of activities for every patient they are caring for.
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Instead they might be interested in a summary or in graphs showing the average
duration of activities and the frequency with which activities are performed.
It is important to gain a better understanding of which information caregivers
need in performing their duties. In practice such multi-disciplinary research is
challenging to perform and field trials will need to be performed to obtain a
better understanding of these principles.
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Appendix A

Inference Algorithms

In this appendix, we describe the Viterbi algorithms for the different models
discussed. The Viterbi algorithm finds the sequence of states with the highest
probability, given a sequence of observations. In each section, we provide a
generalized version of the Viterbi algorithm that works for both generative and
discriminative models.

A.1 Viterbi Algorithm for Markov Models

The generalized version of the Viterbi algorithm described in this section uses
a factor representation. Two factors are used, an observation factor O and a
transition factor T . When using the hidden Markov model (HMM), the ob-
servation factor is defined as O(i, ~xt) =

∏N
n=1 µ

xn

in
(1 − µin)(1−xn) and the transition

factor as T ( j, i) = ai j. We define a special case for T representing the initial state
distributionT (i, 0) = πi. In the case of the conditional random field (CRF), the ob-
servation factor is defined as O(i, ~xt) = exp

{∑

k λk fk(yt = i, ~xt)
}

and the transition
factor as T ( j, i) = exp

{∑

k λk fk(yt = j, yt−1 = i)
}
.

To find the most probable sequence of states, we define the quantity Pt(i), which
represents the best score (be it probability or potential) of ending in state yt = i,
taking the first t observations into account. A bookkeeping variable ζt( j) is used to
store the optimal state to transition from at each timeslice. The Viterbi algorithm
can now be stated as follows:
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1. Initialization: Set the first timeslice.

P1(i) = O(i, ~x1)T (i, 0)
ζ1(i) = 0

2. Recursion: Iterate over timeslices 2 ≤ t ≤ T.

Pt( j) = max
1≤i≤Q

[
Pt−1(i)T ( j, i)

]
O( j, ~xt)

ζt( j) = argmax
1≤i≤Q

[
Pt−1(i)T ( j, i)

]

3. Termination: Determine which state has the highest probability in the final
timeslice.

P∗ = max
1≤i≤Q

[PT(i)]

y∗T = argmax
1≤i≤Q

[PT(i)]

4. Sequence backtracking: Look up the previous state from T to 1.

y∗t = ζt+1(y∗
t+1)

A.2 Viterbi Algorithm for Semi-Markov Models

Semi-Markov models consist of two hidden variables at each timeslice, the hidden
state and the duration of that hidden state. For a novel sequence of observations,
the values of both hidden variables are unknown and need to be inferred using
the Viterbi algorithm. We use a factor representation to present a generalized
version of the Viterbi algorithm, applicable to both the hidden semi-Markov
model (HSMM) and semi-Markov conditional random field (SMCRF). We use an
observation factor O, a transition factor T and a duration factorD. When using
the HSMM the observation factor is defined as O(i, ~xt) =

∏N
n=1 µ

xn

in
(1 − µin)(1−xn),

the duration factor as D(l, i) = pi(l) and the transition factor as T ( j, i) = ai j. We
define a special case for T representing the initial state distribution T (i, 0) =
πi. In the case of the SMCRF, the observation factor is defined as O(i, ~xt) =
exp
{∑

k λk fk(yt = i, ~xt)
}
, the duration factor as D(l, i) = fk(yt = i, dt = l) and the

transition factor as T ( j, i) = exp
{∑

k λk fk(yt = j, yt−1 = i)
}
.

To find the most probable sequence of states, we define two quantities, Pt(i)
represents the best score (either probability or potential) of ending in state yt = i,
taking the first t observations into account. The quantity PDt (d, i) represents the
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best score of ending in state yt = i, with a state duration of d+1 timeslices, taking
the first t observations into account. Three bookkeeping variables are needed,
ζt( j) is used to store the optimal state to transition from at each timeslice. The
variable ζDt (d, j) stores the optimal state to transition from, considering a state
duration of d+ 1 timeslices. Finally, υt(i) stores the optimal duration for state i at
time t. The maximum duration that a state can take is defined beforehand in a
variable D. We use the variable l to represent the duration of a state. The Viterbi
algorithm can now be stated as follows:

1. Initialization: Set the probabilities of the initial states, for lengths l = 1 : D,
and states i = 1 : Q.

P1(i) = T (i, 0)D(1, i)O(i, ~x1)

PD
l

(l, i) = T (i, 0)D(l, i)
l∏

t=1

O(i, ~xt)

ζD
l

(l, i) = 0

2. Recursion: At each timeslice, first iterate over all possible durations. For
timeslices t = 2 : T, lengths l = 1 : D and states j = 1 : Q.

PDt (l, j) = max
1≤i≤Q

[
Pt−l(i)T ( j, i)

]
D(l, j)

t∏

m=t−l+1

O( j, ~xm)

ζDt (l, j) = argmax
1≤i≤Q

[
Pt−l(i)T ( j, i)

]

Then determine which duration gives the highest probability.

Pt(i) = max
1≤l≤D

PDt (l, i)

υt(i) = argmax
1≤l≤D

PDt (l, i)

ζt(i) = ζDt (υt(i), i)

3. Termination: Determine which state has the highest probability in the final
timeslice.

P∗ = max
1≤i≤Q

[PT(i)]

y = argmax
1≤i≤Q

[PT(i)]

l = υT(y)

t = T
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4. Sequence backtracking: Backtrack from there, looking up the duration and
previous state, until t = 0.

y∗
t−l+1:t = y

y = ζt(y)
t = t − l
l = υt(y)



Appendix B

Meta Features per House

Sensors Bathroom

Bathroom Entra
nce

Kitchen Heatin
g

Kitchen Storage

Kitchen
Outsid

e

Bedroom

Bedroom Entra
nce

Toilet

Front Door 0 0 0 0 0 1 0 0 0
Microwave 0 0 1 0 0 0 0 0 0
Refrigerator 0 0 0 1 0 0 0 0 0
Freezer 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (cups) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (plates) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (pans) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (various) 0 0 0 1 0 0 0 0 0
Dishwasher 0 0 0 0 1 0 0 0 0
Washing Machine 0 0 0 0 1 0 0 0 0
Bathroom door 0 1 0 0 0 0 0 0 0
Toilet door 0 0 0 0 0 0 0 0 1
Toilet Flush Sensor 0 0 0 0 0 0 0 0 1
Bedroom Door 0 0 0 0 0 0 0 1 0

Tab. B.1: House A meta feature matrix, indicating which meta features (columns) corre-
spond to which sensors (rows).
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Sensors Bathroom

Bathroom Entra
nce

Kitchen Heatin
g

Kitchen Storage

Kitchen
Outsid

e

Bedroom

Bedroom Entra
nce

Toilet

Front Door 0 0 0 0 0 1 0 0 0
Balcony Door 0 0 0 0 0 0 0 0 0
Window 0 0 0 0 0 0 0 0 0
Microwave 0 0 1 0 0 0 0 0 0
Toaster 0 0 1 0 0 0 0 0 0
Refrigerator 0 0 0 1 0 0 0 0 0
Kitchen Sink 1 0 0 0 0 0 0 0 0
Kitchen Cupboard (various) 0 0 0 1 0 0 0 0 0
Kitchen Cupboard (plates) 0 0 0 0 1 0 0 0 0
Kitchen Drawer (cutlary) 0 0 0 0 1 0 0 0 0
Kitchen Lid (stove) 0 0 1 0 0 0 0 0 0
Kitchen PIR 0 0 0 0 1 0 0 0 0
Bathroom Door 0 1 0 0 0 0 0 0 0
Bathroom PIR 1 0 0 0 0 0 0 0 0
Toilet Flush Sensor 0 0 0 0 0 0 0 0 1
Bedroom Door 0 0 0 0 0 0 0 1 0
Bed Pressure Mat 0 0 0 0 0 0 1 0 0
Bed Pressure Mat 0 0 0 0 0 0 1 0 0
Bedroom PIR 0 0 0 0 0 0 1 0 0
Bedroom Dresser 0 0 0 0 0 0 1 0 0
Chair Pressure Mat 0 0 0 0 0 0 0 0 0
Chair Pressure Mat 0 0 0 0 0 0 0 0 0

Tab. B.2: House B meta feature matrix, indicating which meta features (columns) corre-
spond to which sensors (rows).
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Sensors Bathroom

Bathroom Entra
nce

Kitchen Heatin
g

Kitchen Storage

Kitchen
Outsid

e

Bedroom

Bedroom Entra
nce

Toilet

Front Door 0 0 0 0 0 1 0 0 0
Magnetron 0 0 1 0 0 0 0 0 0
Refrigerator 0 0 0 1 0 0 0 0 0
Freezer 0 0 0 1 0 0 0 0 0
Kitchen Drawer (various) 0 0 0 0 1 0 0 0 0
Kitchen Drawer (cutlary) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (pans) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (storage) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (plates) 0 0 0 0 1 0 0 0 0
Kitchen Cupboard (cups) 0 0 0 0 1 0 0 0 0
Bathroom Door 0 1 0 0 0 0 0 0 0
Bathroom Sink 1 0 0 0 0 0 0 0 0
Bathroom PIR 1 0 0 0 0 0 0 0 0
Toilet Flush (upstairs) 0 0 0 0 0 0 0 0 1
Toilet Flush (downstairs) 0 0 0 0 0 0 0 0 1
Toilet Door (downstairs) 0 0 0 0 0 0 0 0 1
Bedroom Door 0 0 0 0 0 0 0 1 0
Bedroom Dresser 0 0 0 0 0 0 1 0 0
Bed Pressure Mat 0 0 0 0 0 0 1 0 0
Bed Pressure Mat 0 0 0 0 0 0 1 0 0
Couch Pressure Mat 0 0 0 0 0 0 0 0 0

Tab. B.3: House C meta feature matrix, indicating which meta features (columns) corre-
spond to which sensors (rows).
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Summary

As people age their need for care increases, but with an increasing population of
elderly worldwide, it becomes important that such care is provided in an efficient
way. Automatic health monitoring provides an inexpensive way for obtaining
information needed to give efficient and accurate care to these elderly. A common
method in healthcare for assessing the cognitive and physical wellbeing of elderly
are activities of daily living (ADL), a collection of activities that are performed on
a daily basis such as cooking, toileting and showering. Recent developments in
sensing technology make it possible to easily equip existing homes with sensors,
therefore allowing a continuous observation system. However, automatically
interpreting this sensor data to recognize ADLs is an unsolved problem.

We use wireless sensor networks to observe actions performed by inhabitants in
their homes. Sensors used are contact switches to measure whether doors and
cupboards are open or closed; pressure mats to measure sitting on a couch or
lying in bed; mercury contacts for movement of objects such as drawers; passive
infrared sensors to detect motion in a specific area and float sensors to measure the
toilet being flushed. Recognizing activities from such sensor data is challenging
because the data is ambiguous, unsegmented, noisy and because activities can
be performed in a large number of ways.

In this thesis, we answer some fundamental pattern recognition questions with
respect to activity recognition. Issues with respect to discretization and feature
representation are discussed and solutions to these issues are proposed and em-
pirically supported. We compare the recognition performance of two of the most
basic temporal probabilistic models, the hidden Markov model and the condi-
tional random field, both providing a baseline for the recognition performance.
The two models used present an important dichotomy in the field of temporal
probabilistic models, namely the choice between generative and discriminative
models. The use of the Markov assumption in these models has important limi-
tations with respect to modeling long term dependencies. Semi-Markov models
relax the Markov assumption and provide a solution for modeling long term
dependencies, but require computationally expensive inference algorithms. We
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compare conventional Markov models with their semi-Markov counterparts and
discuss their impact on the computation time and recognition performance. To
model the internal structure of activities more accurately we present a hierarchi-
cal model for activity recognition. The use of a hierarchy allows abstraction of the
data on multiple levels. We compare two approaches to modeling activities using
hierarchical models and compare the recognition performance of these models to
the performance of the Markov and semi-Markov models. Finally, we introduce
a method for applying activity recognition models in multiple homes without the
need for labeled training data from each home. Models used in activity recogni-
tion require labeled data to learn the model parameters. But a model trained for
one home can not automatically be used in another home, due to differences in
the layout of the homes and the behavior of the inhabitants. We present a transfer
learning method that allows us to use labeled data from other homes to learn the
model parameters for a new home. This makes it possible to apply the models
discussed on a large scale, therefore providing a broadly applicable solution to
efficient care giving of elderly.



Samenvatting

Naarmate mensen ouder worden krijgen zij een grotere behoefte aan zorg. Van-
wege de vergrijzing neemt het aantal ouderen in de samenleving in rap tempo
toe en daarom wordt het steeds belangrijker dat zorg efficiënt wordt toegepast.
Door automatisch de gezondheid van mensen te monitoren, is het mogelijk op
een goedkope manier informatie te verzamelen die nodig is om efficiënt zorg
aan ouderen te leveren. Binnen de gezondheidszorg wordt het uitvoeren van
dagelijkse activiteiten gebruikt als maatstaf voor de cognitieve en fysieke toes-
tand van ouderen. Activiteiten zoals koken, toiletteren en douchen zijn typische
voorbeelden van dergelijke activiteiten. Vanwege recente ontwikkelingen op het
gebied van sensor technologie is het nu mogelijk om eenvoudig een bestaand huis
met diverse sensoren uit te rusten. Dit zorgt ervoor dat er continu in het huis
geobserveerd kan worden welke sensoren geactiveerd zijn. Echter, om vanuit
deze sensor-informatie te achterhalen welke activiteiten er in het huis worden
uitgevoerd is een openstaand probleem.

In dit werk gebruiken wij draadloze sensor netwerken om de handelingen van be-
woners in hun huizen te observeren. Wij gebruiken hiervoor contact-schakelaars
die meten of een deur of kastje open of dicht is; drukmatten om te meten of ie-
mand op een bank zit of in bed ligt; kwik-schakelaars die beweging van ladekast-
jes kunnen waarnemen; infrarood-sensoren die beweging in een bepaalde ruimte
kunnen meten en niveau-schakelaars die meten of het toilet wordt doorgespoeld.
Het automatisch herkennen van activiteiten aan de hand van dergelijke sensor
data is uitdagend omdat de betreffende data ambigu en ongesegmenteerd zijn,
ruis kunnen bevatten en omdat activiteiten op veel verschillende manieren uit-
gevoerd kunnen worden.

In dit proefschrift beantwoorden we een aantal fundamentele vragen op het
gebied van patroonherkenning toegepast op het herkennen van activiteiten.
Vraagstukken op het gebied van discretisatie en data representatie komen aan
bod en oplossingen worden voorgesteld en empirisch getoetst. Twee veel ge-
bruikte temporele probabilistische modellen worden besproken, het ‘Hidden
Markov Model’ en het ‘Conditional Random Field’ en hun nauwkeurigheid in
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het herkennen van activiteiten wordt vergeleken. Deze prestaties vormen een
basis voor vergelijkingen met andere modellen. Beide modellen gaan uit van
de Markov assumptie, een aanname die belangrijke beperkingen met betrekking
tot het modelleren van lange termijn afhankelijkheden als gevolg heeft. Semi-
Markov modellen verlichten deze aanname enigszins en bieden mogelijkheden
om lange termijn afhankelijkheden te modelleren. Een gevolg hiervan is echter
dat er computationeel intensievere algoritmen gebruikt moeten worden. Wij
vergelijken de standaard Markov modellen met hun semi-Markov varianten en
bespreken verschillen op het gebied van de benodigde rekenkracht en op het
gebied van de nauwkeurigheid om activiteiten te herkennen.

Om de interne structuur van activiteiten nauwkeuriger te modelleren gebruiken
we hiërarchische modellen. Het gebruik van een hiërarchie maakt het mogelijk
om data op diverse abstractie niveaus te representeren. Er wordt een vergelijking
tussen twee hiërarchische aanpakken gegeven en de prestaties van deze modellen
wordt vergeleken met die van de Markov- en semi-Markov modellen. Tenslotte
introduceren we een methode, die het mogelijk maakt om probabilistische mod-
ellen voor activiteiten herkenning toe te passen in meerdere huizen. Normaal
gesproken heeft een probabilistisch model geannoteerde data nodig zodat de
parameters van het model geleerd kunnen worden. Een model dat ontwikkeld
is met een bepaald huis in gedachte kan niet zo maar gebruikt worden voor een
ander huis. Dit omdat er verschillen zijn in de indeling van een huis en in het
gedrag van de bewoners. Wij presenteren een ‘transfer learning’ methode die
het mogelijk maakt geannoteerde data van huizen te gebruiken om de model-
parameters van een ander huis te leren. Dit maakt het mogelijk om modellen
voor activiteiten herkenning op grote schaal toe te passen en maakt daarmee de
realisatie van een breed toepasbare oplossing voor efficiënte zorg voor ouderen
haalbaar.
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