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Abstract. The ability to recognize human activities is necessary to fa-
cilitate natural interaction between humans and robots. While humans
can distinguish between communicative actions and activities of daily
living, robots cannot draw such inferences effectively. To allow intuitive
human robot interaction, we propose the use of human-like stylized ges-
tures as communicative actions and contrast them from conventional
activities of daily living. We present a simple yet effective approach of
modelling pose trajectories using directions traversed by human joints
over the duration of an activity and represent the action as a histogram
of direction vectors. The descriptor benefits from being computationally
efficient as well as scale and speed invariant. In our evaluation, the de-
scriptor returned state of the art classification accuracies using off the
shelf classification algorithms on multiple datasets.

1 Introduction

As robots are employed to perform wide range of tasks, especially in human envi-
ronments, the need to facilitate natural interaction between humans and robots
is becoming more pertinent. In many roles, such as, indoor personal-assistants,
robots must be able to infer human activities and decipher whether or not a
human needs assistance. For e.g., if a robot could recognize whether a person
is drinking water, it could offer to pour more and react appropriately based on
the person’s response. In such scenarios, in addition to recognizing the drinking
activity, the robot needs to be capable of recognizing communicative actions, so
as to infer whether it should pour more or stop. This is similar in principle to
how humans assist others, i.e., either they assist if assistance is sought or they
foresee the need for assistance based on perception and acquired knowledge.
Though past works [10] have focussed on estimating human intent to take such
decisions, this work is motivated by the need for interaction between the robot
and human as a factor in deciding on an appropriate behaviour. Incorporating
such natural interactions is not easy when robots work in highly cluttered en-
vironments where people carry out activities in different ways leading to high
variability [14, 7]. However, to best support humans, assistive robots need to



behave interactively like humans, making it imperative to correctly understand
the human actions involved.

As a result, we are particularly interested in developing a concise representa-
tion for a wide variety of actions; both communicative and conventional activities
of daily living. We propose the use of human-like stylized gestures as commu-
nicative actions and contrast them from conventional activities of daily living.
Stylized gestures are symbolic representations of activities and are widely used
by humans across cultures to communicate with each other when verbal commu-
nication is not possible.We hypothesize that such actions have distinct motion
intrinsics as compared to conventional activities of daily living and can hence
be used effectively to communicate with robots in the absence of verbal means.

Fig. 1: The general framework of
the proposed approach

Before we can begin to develop a system for
activity recognition, we need an efficient rep-
resentation mechanism for human motion.

In this work we introduce a novel activ-
ity descriptor: Histogram of Direction vectors
(HODV) that transforms 3D spatio-temporal
joint movements into unique directions; an ap-
proach that proves to be highly discrimina-
tive for activity recognition. As shown in Fig-
ure 1, we represent skeletal joint movements
over time in a compact and efficient way that
models pose trajectories in terms of directions
traversed by human joints over the duration
of an activity. The issue we address in this
paper is as follows: Learn to recognise var-
ious human actions given a direction-vector
histogram representation using three dimen-
sional joint locations as raw data. Further,
learn to distinguish communicative actions to instruct a robot from conven-
tional activities of daily living and obtain a descriptive labelling of the same. We
show that our proposed approach is efficient in distinguishing Communicative
and Non Communicative activities in our novel RGBD dataset and also per-
forms equally well on two public datasets: Cornell Activity Dataset (CAD -60)
and UT-Kinect Dataset using off the shelf classification algorithms.

1.1 Contributions and Outline

The contributions of this work are are as follows: Firstly, we introduce the prob-
lem of communicative vs non-communicative actions. Secondly, we propose a
novel and computationally efficient activity descriptor based on pose trajecto-
ries. We provide analysis of our algorithm on two public datasets and demon-
strate how the algorithm could be used for both Communicative/Interactive
and Non-Communicative/Non-Interactive activity recognition. We will also re-
lease an annotated RGBD Human Robot Interaction dataset consisting of 18



unique activities including 10 stylized gestures as well as 8 conventional activi-
ties of daily living (within the same dataset) along with full source code of our
algorithm.

The rest of the paper is organized as follows. Section 2 presents a brief liter-
ature review. Section 3 explains our dataset, while section 4 and 5 describe our
algorithm and experimental results in detail respectively. We conclude the paper
in section 6 and also present directions for future work.

2 Related Work

Human activity recognition has been widely studied by computer vision re-
searchers for over two decades. The field, owing to its ability to augment human
robot interaction, has recently started receiving a lot of attention in the robotics
community. In this section, we restrict ourselves largely to research relevant to
robotics, and for an in-depth review of the field, one can refer to recent survey
papers [2].

Earlier works focussed on using IMU data and hidden Markov models(HMMs)
for activity recognition. Authors in [18] proposed a model based on multi sen-
sor fusion from wearable IMUs. They first classified activities into three groups,
namely: Zero, Transitional and Strong displacement activities, followed by a finer
classification using HMMs. Their approach was however restricted to very few
activity classes and was computationally expensive. Mansur et al.[8] also used
HMMs as their classification framework and developed a novel physics based
model using joint torques as features; claimed to be more discriminative com-
pared to kinematic features [12]. Zhang et al.[17] followed a vision based approach
and proposed a 4D spatio-temporal feature that combined both intensity and
depth information by concatenating depth and intensity gradients within a 4D
hyper-cuboid. Their method was however dependant on the size of the hyper-
cuboid and could not deal with scale variations. Sung et al.[12] combined human
pose and motion, as well as image and point-cloud information in their model.
They designed a hierarchical maximum entropy Markov model, which considered
activities as a superset of sub-activities.

While most of these works focussed on generating different features, work
on improving robot perception, including recognizing objects and tracking ob-
jects [4] led to the incorporation of domain knowledge [13] within recognition
frameworks. Authors in [5] proposed a joint framework for activity recognition
combining intention, activity and motion within a single framework. Further, [7,
10] incorporated affordances to anticipate activities and plan ahead for reactive
responses. Pieropan et al.[9] on the other hand introduced the idea of learning
from human demonstration and stressed the importance of modelling interaction
of objects with hands such that robots observing humans could learn the role of
an object in an activity and classify it accordingly.

While past works excluded the possibility of interaction with the agent, this
work aims to understand activities when interaction between robots and humans
is possible and realistic, especially, in terms of the human providing possible



instructions to a robot while also performing conventional activities of daily
living. The focus of our work is to utilize distinctions in motion to differentiate
between communicative/instructive actions and conventional activities of daily
living. Having said this, we do not see motion information alone as a replacement,
but as a complement to existing sensory modalities, to be fused for particularly
robust activity recognition over wide ranges of conditions.

3 OUR DATASET

Recent advances in pose estimation [11] and cheap availability of RGBD cam-
eras, has lead to many RGBD activity datasets [12, 14]. However, since none
of the datasets involved communicative/interactive activities alongside conven-
tional activities of daily living, we collected a new RGBD dataset involving
interactive as well as non interactive actions. Specifically, our interactive actions
were between a robot and a human; where the human interacts with the robot us-
ing stylized gestures; an approach commonly used by humans for human-human
interaction.

The activities were captured using a kinect camera mounted on a customized
pioneer P3Dx mobile robot platform. The robot was placed in an environment
wherein appearance changed from time to time, i.e., the background and ob-
jects in the scene varied. In addition, the activities were captured at various
times of the day leading to varied lighting conditions. A total of 5 partici-
pants were asked to perform 18 different activities, including 10 Communica-
tive/Interactive activities and 8 Non-Interactive activities, each performed a to-
tal of three times with slight changes in viewpoint from the other instances.
‘Catching the Robots attention’, ‘Pointing in a direction’, ‘Asking to stop’, ‘Ex-
pressing dissent’, ‘Chopping’, ‘Cleaning’, ‘Repeating’, ‘Beckoning’, ‘Asking to
get phone’ and ‘facepalm’ were the 10 Robot-Interactive activities. In Robot-
Interactive activities like ‘Facepalm’, the human brings his/her hand up to his
head, similarly, the activity ‘chopping’ involved a human repeatedly hitting one
of his hands with the other hand, creating a stylized chopping action and so on.
The non interactive activities were more conventional activities of daily living
like ‘Drinking something’, ‘Wearing a backpack’, ‘Relaxing’, ‘Cutting’, ‘Feeling
hot’, ‘Washing face’ ‘Looking at time’ and ‘Talking on cellphone’.

We stress that our dataset is different from publicly available datasets as we
represent a new mix of activities, more aligned with how humans would perform
these in real life. In addition, the dataset involves wide variability in how the
activities were performed by different people as subjects used both left and right
hands along with variable time durations. For e.g., in the ‘Drinking something’
activity, some subjects took longer to drink water and brought the glass to their
mouth couple of times, while others took the glass to their mouth just once. The
wide variety and variability makes recognition challenging. We have made the
data available at: http://rise.cse.iitm.ac.in/activity-recognition/



4 Action Representation

Activities usually consist of sequences of sub-activities and can be fundamentally
described using two aspects: a) Motor Trajectory and b) Activity context. For
eg., in a drinking activity, a subject picks a glass or a cup, brings it closer to
his/her mouth and returns it. While there are numerous possibilities behind the
context of the activity, as a glass could contain juice while a cup could contain
coffee, thereby giving more meaning to the activity ‘drinking’ and answering
a question: What is probably being drunk? The motor trajectory followed by
most people for a generic drinking activity would predominantly be similar.
We aim to exploit this similarity and introduce a local motion based action
representation called Histogram of Direction Vectors, defined as the distribution
of directions taken by each skeleton joint during all skeleton pose transitions
during an activity.

The intuition behind the descriptor is that directions have a clear physical
significance and capturing motion intrinsics as a function of direction should be
discriminative across classes. We describe the 3D trajectory of each joint sepa-
rately and construct the final descriptor by concatenating the direction vector
histogram of each joint.

4.1 Direction vectors from skeletons

The algorithm takes RGBD images as input and uses the primesense skeleton
tracker [1] to extract skeleton joints at each frame. For each joint i, P if represents
the 3D cartesian position of joint i at time frame f . The joint locations are then
normalized by transforming the origin to the human torso, thereby making them
invariant to human translation. Direction vectors are then calculated for each
joint i by computing the difference between joint coordinates of frame f and
frame f + τ , where τ is a fixed time duration (e.g., 0.1 seconds) in terms of
frame counts. Mathematically, direction vectors are estimated for each joint at
every frame as:

dif =
[
P if − P if+τ

]
,∀f ∈ [1, 2, . . . , fmax − τ ] (1)

The next section explains the construction of our action descriptor, Histogram
of direction vectors, and the final descriptor used to classify activities.

4.2 Histogram of direction vectors

At each frame f , the local region around a joint i is partitioned into a 3D
spatial grid. We chose 27 primary directions in the 3D space and represented the
direction taken by a joint by the nearest primary direction in that grid. The grid
entries represent real world directions such as, up, down, up-left, down-right and
so on; resulting in a total of 27 directions. The direction vector corresponding
to a joint i is mapped onto the index of one of 27 directions, by estimating
the 3D euclidean distance between grid coordinates σq and the direction vector



dif ; with a vector being allotted a particular direction index q corresponding
to the minimum distance. The goal is to find the specific direction index q∗

that represents the direction which is at minimum euclidean distance from the
direction vector.

q∗ = argmin‖di
f − σq‖ ∀q ∈ [1, 2, . . . , 27] (2)

where σq is the coordinate of grid index q.
Let Qf denote the vector of directions, with Qfq denoting the entries of vector

Qf at index q. The grid index q∗ is then used to update vector Qf . To attain
the total number of times a particular direction was taken during an activity, we
perform cumulative addition of vector Qf at each frame as shown in equation 4
where h∗ is a vector revealing the number of times each direction was taken by
a joint during the course of an activity.

Qfq =

{
1 if q = q∗

0 otherwise
(3)

h∗ =
∑
f

Qf (4)

hi =
h∗

‖h∗‖1
(5)

The vector h∗ is then normalized
to compute the feature vector hi for
joint i. Normalizing the vector h∗

gives us a histogram hi, representing
the probability of occurrence of each
direction for a particular joint i, dur-
ing the course of an activity. Further,
each histogram hi is concatenated to
generate the final feature vector H = [h1, h2, . . . , hi]; namely the Histogram of
direction Vectors.

5 Experimental Results

In this section we present detailed analysis of our experiments. In addition to
our dataset, we test our algorithm on two public datasets: The Cornell activ-
ity dataset (CAD-60) [12] and the UTKinect-Action Dataset [14]. Our results
reveal that the proposed approach performs comparable to the state of the art
approaches, which in general, are computationally expensive and involve compli-
cated modelling. We show how our algorithm, despite being very simple, returns
better results; while being computationally inexpensive as well as lower in di-
mensionality. We use an SVM (LIBSVM) as our classification algorithm along
with histogram intersection as the kernel choice. We optimize the cost parameter
using cross validation.

5.1 Our Dataset

On our dataset, we ran experiments using three different settings. In the first,
we classified actions into their respective categories using the entire dataset.
In the second setting, we manually separated the activities into Communica-
tive/Interactive activities and Non-Interactive activities and ran our classifica-
tion algorithm on the two groups independently. In the third setting, we trained



a two class classifier and labelled the activities as belonging to either of the two
groups. All experiments were performed using 5 fold cross subject cross vali-
dation, such that, at a time, all instances of one subject were used for testing
and the instances from the other subjects were used for training. None of the
instances used for training were ever present in the test set at the same time.

Fig. 2: Comparison on accuracies with
and without feature masking

It was our observation that not all
joints contributed towards an activ-
ity. This lead to many joints being
binned into the grid representing no
movement, leading to reduced accu-
racy. To counter this phenomenon, we
masked the feature vector i.e., made
the contribution of the corresponding
no movement bin zero and renormal-
ized. Feature masking resulted in in-
creased accuracy in not only our dataset (Figure 2) but also the CAD 60 and
UTKinect Action Datasets.

Fig. 3: Confusion matrix of entire dataset using
Feature Masking

Figure 3 shows the confu-
sion matrix of our first exper-
imental setting. Most activi-
ties are classified with good
accuracy apart from Repeat
and Facepalm, mostly because
of the similar motion trajec-
tories. Also, as visible in Fig-
ure 2 activities such as Ask-
ing to stop, Repeat, Drinking,
Wearing backpack and Clean-
ing face were better classified
after feature masking. The av-
erage accuracy attained with-
out feature masking was 80%,
while with feature masking

the average accuracy improved to 82.59%.

Figure 4 shows the confusion matrix of our second experimental setting.
The average classification accuracy for Interactive actions was 84%, while for
Non Interactive actions, the average accuracy was 86.67%. Like in the previous
setup, the algorithm was able to accurately classify actions which had distinct
motion trajectories but gets confused with actions with very similar motion like
Repeat and Facepalm.

In the third experimental setup, we classified an activity into either of the two
groups. The algorithm achieved an average classification accuracy of 89.26%. In-
teractive actions were classified with an accuracy of 92.67% while Non Interactive
activities were classified correctly with an accuracy of 85%. This classification



paradigm could be essential for the development of hierarchical models where
the first level could be an Interactive Vs Non-Interactive classification, followed
by a finer categorization into an exact activity.

Fig. 4: Left: Confusion matrix of Interactive/Communicative actions after Feature
Masking. Right: Confusion matrix of Non-Interactive actions after Feature Masking

Our algorithm is able to distinguish between Interactive and Non Interactive
activities with good accuracy. It works well even when subjects take different
time duration to complete an activity. Further, since we follow a histogram
based representation, classification is invariant to the number of times an action
is performed within an activity. For. e.g., a circle could be made once or five
times. As long as the feature vector is normalized and if an action is symmetric
(activities involving mirror directions eg: waving), the number of times the action
is performed or the starting point of the activity would not hamper classification.
The descriptor also benefits from being computationally efficient as the only
calculations involved for each joints are:

– Calculation of direction vectors, which can be performed in constant time.
– Updating appropriate Histogram bins which is linear in the number of frames

and can be performed real-time as and when new frames are captured.

This makes HODV an efficient, yet effective feature vector for classifying human
activities.

5.2 Cornell Activity Dataset (CAD 60)

The dataset comprises of 60 RGBD video sequences of humans performing 12
unique activities of daily living. The activities have been recorded in five different
environments: Office, Kitchen, Bedroom, Bathroom, and Living room; generat-
ing a total of 12 unique activities performed by four different people: two males
and two females. We used the same experimental setup (4 fold cross-subject
cross validation) and compare precision-recall values for the ’New Person’ set-
ting as described in [12]. Table 1 shows a comparison of our algorithm with
other state of the art approaches. All of the algorithms mentioned in table 1
use visual features in addition to skeleton data. This work is largely restricted
to the use of skeleton data for classification. Hence it would be fair to compare
with an approach that uses just skeleton data. The precision recall scores in
[12] without visual features is 67.20 and 50.20 respectively. Considering that
we use only skeleton data, our approach still outperforms other algorithms.



Table 1: Comparison of our algorithm with
other approaches on the CAD 60 dataset

Method Precision Recall
Sung et. al[12] 67.90 55.50
Yang, Tian[15] 71.90 66.60
Ni. et al[3] 75.90 69.50
Gupta et. al[6] 78.10 75.40
Koppula et. al[7] 80.80 71.40
Zhang, Tian[16] 86.00 84.00
Our Descriptor 71.76 70.23
Our Descriptor + Masking 83.77 82.06

5.3 UTKinect Action
Dataset

The UTKinect Action Dataset
[14] presents RGBD video se-
quences and skeleton infor-
mation of humans performing
various activities from differ-
ent views. 10 subjects perform
10 different activities namely:
walk, sit down, stand up, pick up, carry, throw, push, pull, wave hands and clap
hands. Each subject performs an activity twice.

There are a total of 200 instances of different activities in this dataset.
Since each skeleton is described by 20 joints, our feature vector is of dimen-
sions 20 × 27, i.e., a total of 540 features were used for classification in this
dataset. For this dataset, we compare our approach with the state of the art
methodology called histogram of 3D skeleton joint positions (HOJ3D)[14] using
Leave one Sequence out Cross validation (LOOCV) and cross subject validation
as defined previously in this paper. This dataset has activities which look very
similar e.g., Sit down and Stand Up. Our high accuracies reveal the superiority
of our algorithm in distinguishing such actions, which despite looking similar,
have distinct trajectory directions, aptly captured by our approach. The overall
accuracies attained on the dataset are shown in Table 2. Clearly, our approach
generates better accuracy as compared to the Histogram of 3D joints algorithm
under the LOOCV setting. The performs drops a bit under the cross subject
crossvalidation scheme. Authors in [14] do not report cross subject results.

Table 2: Comparison of our algorithm with
HOJ3D on the UT-Kinect dataset

Method Accuracy
HOJ3D [14] (LOOCV) 90.92
Ours (Cross Subject) 84.42%
Ours (LOOCV) 87.44%
Ours + Masking (Cross Subject) 89.45%
Ours + Masking (LOOCV) 91.96%

6 Conclusion

This paper presented the prob-
lem of Communicative vs Non-
Communicative actions and hu-
man activity recognition in gen-
eral. We proposed a novel and
computationally efficient activ-
ity descriptor, Histogram of Di-
rection Vectors, which aptly
captured motion intrinsics and returned good accuracies on our new RGBD
dataset. The descriptor proved beneficial in distinguishing between Interac-
tive/Communicative and Non-Interactive activities. Further, results on two pub-
lic datasets depict its potential in conventional activity recognition frameworks.
As part of future work, we would like to combine the descriptor with visual
features to cater to cases where the motion trajectories are very similar.
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