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Abstract

Introduction of depth sensors made a big impact on research in visual recognition.

By providing 3D information, these cameras help us to have a view-invariant and

robust representation of the observed scenes and human bodies. Detection and 3D

localization of human body parts are done more accurately and more efficiently in

depth maps in comparison with RGB counterparts.

Having the 3D structure of the body parts, the articulated and complex nature of

human actions makes the task of action recognition difficult. One approach to handle

this complexity is dividing it to the kinetics of body parts and analyzing the actions

based on the partial descriptors. As the first work in this thesis, we propose a joint

sparse regression based learning method which utilizes the structured sparsity to model

each action as a combination of multimodal features from a sparse set of body parts. To

represent dynamics and appearance of parts, we employ a heterogeneous set of depth

and skeleton based features. The proper structure of multimodal multipart features are

formulated into the learning framework via the proposed hierarchical mixed norm, to

regularize the structured features of each part and to apply sparsity between them, in

favor of a group feature selection. Our experimental results expose the effectiveness of

the proposed learning method in which it outperforms other methods in all three tested

datasets while saturating one of them by achieving perfect accuracy.

In addition to depth based representation of human actions, commonly used 3D

sensors also provide RGB videos. It is generally accepted that each of these two

modalities has different strengths and limitations for the task of action recognition.

Therefore, analysis of the RGB+D videos can help us to better study the complementary

properties of these two types of modalities and achieve higher levels of performance. In

the second work, we propose a new deep autoencoder-based correlation-independence

factorization network to separate input multimodal signals into a hierarchy of extracted

components. Further, based on the structure of the features, a structured sparsity

learning machine is proposed which utilizes mixed norms to apply regularization within

components and group selection between them for better classification performance.

Our experimental results show the effectiveness of our cross-modality feature analysis
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framework by achieving state-of-the-art accuracies for action classification on four

challenging benchmark datasets, for which we reduce the error rate by more than 40%

in three datasets and saturating the benchmark for the other one.

Recent approaches in depth-based human activity analysis achieved outstanding

performance and proved the effectiveness of 3D representation for classification of

action classes. Currently available depth-based and RGB+D-based action recognition

benchmarks have a number of limitations, including the lack of training samples,

distinct class labels, camera views and variety of subjects. In the third work, we

introduce a large-scale dataset for RGB+D human action recognition with more than

56 thousand video samples and 4 million frames, collected from 40 distinct subjects.

Our dataset contains 60 different action classes including daily actions, mutual actions,

and medical conditions. In addition, we propose a new recurrent neural network

structure to model the long-term temporal correlation of the features of each body

part, and utilize them for better action classification. Experimental results show

the advantages of applying deep learning methods over state-of-the-art hand-crafted

features on the suggested cross-subject and cross-view evaluation criteria for our

dataset. The introduction of this large scale dataset will enable the community to apply,

develop and adapt various data-hungry learning techniques for the task of depth-based

and RGB+D human activity analysis.
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Chapter 1

Introduction

1.1 Background

Human activity analysis is among the most challenging problems in machine vision

which attracted lots of attention in recent decades. The applications of this field of

research can vary from health, patient, and elderly care to large scale surveillance

monitoring in public places.

Generally, the inputs in these tasks are video signals which contain millions of

frame pixel values per second. Processing this tremendous amount of input is the first

challenging problem for this task. Second is the loss of 3D information of the observed

actions. Human actions are done in 3D space and human visual system observes and

recognizes them in the same space. But traditional cameras project the visuals to a 2D

frame space, hence miss some important parts of the information.

One recent and interesting solution to the above-mentioned problems are provided

by 3D sensing. Recent development of depth sensors enabled us to obtain effective 3D

structures of the scenes and objects. This empowers the vision solutions to move one

important step towards 3D vision, e.g. 3D object recognition, 3D scene understanding,

and 3D action recognition [2].

Having three-dimensional vision, the analysis of human actions can be further

improved by tracking major joints of the bodies. A data-driven approach was proposed

by Shotton et al. [85] to recognize human body poses in parts from depth frames in

real-time. This work had a great impact and cleared the road for research in 3D human

action analysis.

Microsoft Kinect 360 [29] was a cheap and easy to use depth sensor, initially

provided with Microsoft Xbox 360 console for gaming purpose (Fig. 1.1) in 2011.

It utilizes the real-time pose recognition algorithm of [85] and provides depth-maps
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Fig. 1.1 Microsoft Kinect 360 which was released with Microsoft Xbox 360 gaming

console in 2011.

and human body pose configurations, as well as RGB frames of the observed scenes.

Fig. 1.2 shows an example of corresponding frames for these three modalities. Fig. 1.3

illustrates the body joints that Kinect locates and tracks in 3D space.

On 2013 an improved version of this sensor was released under the name of

Microsoft Kinect v.2 (Fig. 1.4) which accompanied Microsoft’s new gaming console

Xbox One.

Using Kinect sensors could help us to mitigate the two above-mentioned challenges

in human action analysis. Provided 3D skeletal data are very succinct and easier to

use as inputs to analysis algorithms. Capturing 3D data as depth-maps instead of a 2D

projection also helps to improve the analysis towards more view-invariant approaches.

1.2 Motivations

Current depth-based human activity analysis features can be divided into two major

groups: joint-based (so called skeleton-based) features, and direct depth-map based

ones.

Fig. 1.2 The corresponding frames of RGB (left), depth-map (middle), and skeletal

data (right) captured by Kinect 360. This example is taken from MSR-Daily Activity

3D dataset [109].
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Fig. 1.3 The schema of human skeleton joints provided by Kinect.

Fig. 1.4 Microsoft Kinect v.2 which was released with Microsoft Xbox one gaming

console in 2013.
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Join-based methods, only use the 3D locations of body joints as inputs to the

analysis algorithms. On the other hand, depth-based methods use depth videos as

inputs and extract features from them for analyzing the underlying human actions.

Regarding the strengths and weaknesses of these two classes of features, we infer

they are complementary to each other and to achieve higher levels of performance, we

have to combine them.

The main intuition behind the work of [110] was the fact that features of few

informative joints are good enough for recognizing each class of the actions. They

defined “actionlet” as the combination of features of a limited numbers of joints and

based on the discriminative power of each joint and each actionlet, they performed a

data mining procedure to find the best actionlets for each class of the actions. They

used mined actionlets as kernels in a multi-kernel multiclass SVM. Fig. 1.5 illustrates

the actionlet ensemble framework.

This work motivated us to further extend their framework by applying group

sparsity in a joint feature selection framework. To do so, we group the features of each

part (joint) and applied L1 norm between these groups to achieve a sparse set of active

parts to represent each action class.

Mixed norms are powerful tools to inject simultaneous sparsity and coupling effects

between the learning coefficients. They have been studied in a variety of fields. To

achieve the sparsity between parts, we generalize this to an L1/L2/L4 hierarchical

norm.

If multiple learning tasks at hand share some inherent constituents or structures,

“Multitask Learning” [14, 138, 116, 1] techniques could be globally beneficial. We

also utilize the shared latent factors between different binary action classifiers of a mul-

ticlass recognition system. We apply L2 regularization over the weights corresponding

to each feature across all the tasks, followed by an L1 between all the features at hand.

In realistic scenarios of human action recognition, adding RGB signals to the exist-

ing depth sequences is reasonable and economically efficient. The most popular depth

sensors, provide RGB videos at no extra cost. The complementary properties of RGB

and depth modalities for video analysis, encouraged us to move towards multimodal

RGB+D activity analysis by applying deep learning. To do so, we perform correlation

analysis between RGB-based and depth-based features in a every single layer of a deep

correlation analysis network. We also incorporate independent components in each

layer to maintain all the discriminative modality specific information, at each layer.

To evaluate depth-based and RGB+D-based activity analysis methods, there are a

number of different benchmark datasets. Although each of the current datasets provide
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Fig. 1.5 Framework of actionlet ensemble method [110] ©2013 IEEE.
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different important aspects for human activity analysis, they all have limitations on the

number of samples, classes, subjects, and camera viewpoints.

The mentioned shortcomings of current datasets, prevent us from applying data-

driven learning methods to the problem of RGB+D activity analysis. To mitigate these

limitations, we designed a data collection protocol and collected a large-scale dataset

for activity analysis in RGB+D videos. Table 5.1 shows the list of current datasets in

comparison with our large-scale RGB+D action recognition dataset.

The presence of this large-scale dataset motivates us to propose a data-driven deep

learning method for action analysis. We introduce a novel Recurrent Neural Network

(RNN) based framework and utilized our new dataset to train and evaluate it.

1.3 Thesis Contributions

The major contributions of this thesis are:

a) We integrate the part selection process into action classification’s learning phase

in order to select discriminative body parts for different action classes latently, and

utilize them to learn classifiers. In addition, a hierarchical mixed norm is proposed

to apply the desired simultaneous sparsity and regularization over different levels of

learning weights corresponding to our special multimodal-multipart features in a joint

group sparsity regression framework (chapter 3).

b) Towards human activity analysis in multimodal signals, we introduce a new deep

learning network for hierarchical correlation-independence factorization of RGB+D

features. A structured sparsity learning machine is also proposed to explore the

structure of hierarchical factorized representations for effective action classification

(chapter 4).

c) The introduction of our new large-scale dataset which will enable the community

to explore through new data-hungry learning frameworks for the task of RGB+D

human activity analysis. The advantages of our dataset over the existing ones are:

1- many more action classes, 2- many more samples for each action class, 3- much

more intra-class variations (poses, environmental conditions, interacted objects, age of

actors, ...), 4- more camera views, 5- more camera-to-subject distances, and 6- used

Kinect v.2 which provides more accurate depth-maps and 3D joints, especially in a

multi-camera setup compared to the previous version of Kinect.

In addition to the introduction of the dataset, we propose a novel action learn-

ing method based on Long Short-Term Memory (LSTM) networks and evaluate it

alongside some baseline methods on our new dataset (chapter 5)..
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1.4 Organization of the Thesis

This thesis is organized as follows: Chapter 1 introduces the motivations and contribu-

tions of the thesis. Chapter 2 reviews the related works in the literature. In chapters

3, our “multimodal-multipart” depth-based action learning framework is described.

Chapter 4, presents our “deep correlation-independence analysis” method for multi-

modal RGB+D activity learning. The description of “NTU-RGB+D action dataset”

and our part-based recurrent learning framework are provided in chapter 5. Finally,

chapter 6 concludes the thesis and shows our future research directions.





Chapter 2

Literature Review

During recent years, a decent number of methods were proposed for human activity

analysis in depth-based signals. In this chapter, we review the literature of notable

features, learning algorithms, techniques, and benchmark datasets in depth-based

human activity analysis.

2.1 3D Human Activity Analysis

Features extracted from depth signals for action analysis can be classified into two

major classes. The first are skeleton based features, which extract information from the

provided 3D locations of body joints on each frame of the sequence. Second are the

methods which extract features directly from depth-maps. In this section we review

these two groups of methods.

2.1.1 Skeleton-based Activity Recognition Methods

Essentially, skeletons have a very succinct and highly discriminative representation

of the actions. In ideal noiseless case, they are also fully view-invariant since they

represent the sequences of full body poses over time. These properties, makes skeleton-

based methods to be more convenient for human action analysis.

Yang and Tian [124] utilized skeletal data to extract 3D difference vectors between

all pairs of joint points as feature representation at each frame. They took the differ-

ences of these features between consecutive frames and the their changes compared to

the initial frame into account. To reduce the dimension of these long feature vectors,

they applied PCA to extract their “EigenJoints”. In the classification step, they shown
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Fig. 2.1 Framework of EigenJoints method [123] 2012IEEE.

nïve-bayes-nearest-neighbor classifier could outperformed SVM. Fig. 2.1 illustrates

this framework.

Ohn-Bar and Trivedi [65] combined second order joint-angle similarity represen-

tations of skeletons with a modified two step HOG feature on spatio-temporal depth

maps to build global representation of each video sample and utilized a linear SVM to

classify the actions.

Histogram of 3D joints (HOJ3D) was proposed by Xia et al. [121]. Unlike the

above mentioned work, they kept one of the joints (middle hip joint) as the reference

and all other joints were considered as the difference vector from the reference. To

do so, they put the reference joint in the center point of spherical coordinates and

divided the whole sphere into 84 sub-volumes (see Fig. 2.2). Histograms of the joint

points inside these bins were smoothed using a probabilistic voting scheme and linear

discriminant analysis was utilized to build a robust discriminative set of features. The

quantized feature vectors were passed into HMM to model the temporal changes and

final action classification.

A dictionary learning approach to encoding different skeleton variations was pro-

posed by Luo et al. [60]. To have discriminative codes, they learned class specific

dictionaries for each action label. They injected group sparsity and geometry con-

straints into their coding framework in order to have more consistent and robust

features. They claimed elastic net regularizer [141] could apply group sparsity within

their dictionary learning method, and geometric constraint [26] could force similar

samples from the same class to have alike codes. Dictionary codes then went through

a 3-level Temporal Pyramid Matching (TPM) [46] to build holistic discriminative

representations of input samples. Finally they applied SVM classifier as the final step.
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Fig. 2.2 Spherical coordinates for histogram calculation in HOJ3D method [121]

©2012 IEEE.

Vemulapalli et al. [100] represented different skeleton configurations as points on

a Lie group. Actions as time-series of skeletal configurations, were encoded as curves

on this manifold.

An interesting work was done on action recognition using both skeleton and depth

map features in [110]. The difference vectors of all pairs of joints was considered as

skeleton based features and local occupancy patters which where 3D histograms of

depth map pixels around each joint were took as depth map representation. For each

frame, all of these features were concatenated and after putting all the frames of each

sample together, each of these feature elements had a 1D signal over temporal axis.

To analyze the dynamics of each feature, they proposed to apply short time Fourier

transformation [66] over 3 layers of a temporal pyramid. The output coefficients were

called Fourier Temporal Pyramid (FTP) features which were highly robust against the

natural noise of the depth maps and miscalculations of skeleton joints. This set of

coefficients represented discriminative information about temporal changes of each

input feature, so it could be a useful carrier of information about the movements

and the action done in the input video sample. These ideas were followed by the

proposal of actionlet, which was defined as a conjunctive (AND) combination over

the Fourier temporal pyramid features. A mining technique was introduced to find

the most discriminative actionlets for each class which could play the role of SVM

kernels in a multi-class multi-kernel learning scheme. Figure 1.5 illustrates the general

framework of this method.

Evangelidis et al. [24] split the body to groups of joint quads and represented each

quad by a 6D vector. They utilized Fisher vectors to aggregate the quads as global

representation of the action samples.

Meng et al. [61] proposed a real-time action recognition method by applying

random forest classifier on a set of distance values between the body joints and

interacted objects.
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Wang and Wu [112] applied max-margin time warping to match the descriptors of

skeletons over the temporal axis and learn phantom templates for each action class.

Hu et al. [34] proposed dynamic skeletons as Fourier temporal pyramids of spline-

based interpolated skeleton points and their gradients, and HOG-based dynamic color

and depth patterns to be used in a RGB+D joint-learning model for action classification.

Wang et al. [101] modeled the actions as ordered sets of poses, or so called Key

Pose Motifs (KPM), to cope with the intra-class variations and small-sized training

data which are the challenges of 3D action recognition. They proposed a novel mining

technique to discover class-specific KPMs in the training data. To classify a query

action sample, they simply compared its matching scores with the mined KPMs of all

action classes.

The applications of recurrent neural networks for 3D human action recognition

were explored very recently [99, 22, 139].

Du et al. [22] applied a hierarchical RNN to discover common 3D action patterns

in a data-driven learning method. They divided the input 3D human skeletal data to five

groups of joints and fed them into a separated bidirectional RNN. The output hidden

representation of the first layer RNNs were concatenated to form upper-body and lower-

body mid-level representation and these were fed to the next layer of bidirectional

RNNs. The holistic representation for the entire body was obtained by concatenating

the output hidden representations of these second layer RNNs and it was fed to the last

RNN layer. The output hidden representation of the final RNN was fed to the softmax

classifier for action classification.

Differential RNN [99] added a new gating mechanism to the traditional LSTM to

extract the derivatives of internal state (DoS). The derived DoS was fed to the LSTM

gates to learn salient dynamic patterns in 3D skeleton data.

The work of [139] introduced an internal dropout mechanism applied to LSTM

gates for stronger regularization in the RNN-based 3D action learning network. To

further regularize the learning, a co-occurrence inducing norm was added to the

network’s cost function which enforced the learning to discover the groups of co-

occurring and discriminative joints for better action recognition.

The drawbacks of skeletal representation in action recognition are two-fold. The

presence of noise in depth maps and occlusion of body parts bounds the reliability of

this type of features. Another major deficiency of skeleton data is their incapacity to

represent the interactions of the body with other objects which is crucial for activity

interpretation.
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Fig. 2.3 3D point sampling method for salient posture representation ©2010 IEEE [51]

2.1.2 Depth-based Activity Recognition Methods

The other group, consists of features which are extracted directly from depth-maps.

Depth-maps consist of matrices of depth measurements from the observed scenes by

the acquisition sensor. Putting frames together over time axis, we have a sequence of

depth maps which carry 3D information about the observed scenes. To analyze human

actions in depth sequences, we first need to extract informative and discriminative

features, similar to RGB counterparts and use them as inputs to a feature analysis and

classification algorithm to decide about the observed actions.

One of the early attempts on depth-based analysis was proposed by Li et al. [51].

They built an action graph in which each node was a salient posture and actions were

represented as paths through graph nodes. They proposed a novel 3D point sampling

technique to build the salient postures and utilized Gaussian Mixture Models (GMM)

to model the statistics of the points on them. As illustrated in Figure 2.3, the depth

map was projected onto x-y, y-z and z-x planes and sampling was done over projected

points at equal distance along the contours of the projections.

To alleviate the occlusion and noise issues which are natural challenges in depth-

map analysis, Wang et al. [108] proposed Random Occupancy Pattern (ROP) features,

extracted from 4D randomly sampled sub-volumes of the sequence. A simple weighted

sampling method was also suggested to give more chance to discriminative sub-

volumes to be included. Finally they applied an elastic-net regularization [141] to find
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Fig. 2.4 The framework of Random Occupancy Features method proposed in [108]

©2012 Springer.

the most discriminative subset of features for action recognition. Figure 2.4 shows the

entire framework of this method.

Histograms of 3D point clouds in a 3D grid around each of the joints, or so

called Local Occupancy Patterns (LOP) was proposed by Wang et al. [110], to be

concatenated to skeleton-based features for action classification using the “actionlet

ensemble” framework.

Depth-map surface normals were shown to be very powerful representations of

body movements over depth signals by Oreifej et al. [67]. They calculated the 4D

oriented normals (X-Y-depth-time) from depth maps and accumulated them on spatio-

temporal cubes as quantized histograms over 120 vertices of a regular polychoron.

This idea was a generalization of Histogram of 3D Gradients (HOG3D) [37] to four

dimensional depth videos. They quantized the 4D normal vectors of depth surfaces

by taking their histograms (Histogram of 4D Oriented Normals or HON4D) over the

vertices of a 4D regular polychoron, which were shown to be highly informative for

action classification. Fig. 2.5 depicts the extraction framework of HON4D.

Wang et al. [112] added local HON4D [67] into joint features to learn a max-margin

temporal warping based action classifier.

Space-Time Interest Point (STIP) detection described by Histogram of Oriented

Gradients (HOG) [20] and Histogram of Optical Flow (HOF) was originally proposed

for recognition purposes on RGB videos [45], but Ni et al. [63] showed this could be
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Fig. 2.5 Flowchart of HON4D extraction from depth maps [67] ©2013 IEEE.

Fig. 2.6 The effect of noise supression on spatio-tempral interest point detection

[120]. Left shows the results without correction function and right shows the corrected

version. ©2013IEEE

easily generalized into RGB+D signals. To improve the discrimination of descriptors,

they generalized the idea of Motion History Images (MHI) [8] over depth maps.

Since Kinect depth signals are noisy, STIP detection needs a noise-suppression

preprocessing step in depth maps. Xia and Aggarwal [120], proposed a depth signal

noise-suppression method to fill the zero valued holes in the sequence. Fig. 2.6 shows

the effect of their proposed denoising method on detections of STIP. To encode the

interest points, a similarity feature for depth cuboids was also introduced. They learned

a dictionary of features and applied bag of words scheme to transform samples into

histograms of codewords. To further improve their results, they utilized a discriminative

feature mining technique.

Rahmani et al. [73] achieved higher levels of robustness against viewpoint vari-

ations by using Histograms of Oriented Principle Components (HOPC) of 3D point

clouds. In [70] local histograms of oriented gradients from spatio-temporal cells of

action videos were aggregated by Locality-Constrained Linear Coding (LLC). Yang

and Tian [125] proposed supernormal vectors as aggregated dictionary-based code-

words of four-dimensional normals over space-time grids. Lu et al. [58] applied τ test

based binary range-sample features on depth maps and achieved robust representa-

tion against noise, scaling, camera views, and background clutter. Random decision
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forests were utilized for learning and feature pruning over a combination of depth and

skeleton-based features by [72].

Convolutional Neural Networks (CNN) have also been utilized for depth based

action recognition by Wang et al. [117]. The fusion of various depth based features

is also studied by Zhu et al. [140]. Rahmani and Mian [74] introduced a nonlinear

knowledge transfer model to transform different views of human actions to a canon-

ical view. To apply ConvNet-based learning to this domain, [75] used synthetically

generated data and fitted them to real mocap data. Their learning method was able to

recognize actions from novel poses and viewpoints.

2.2 RGB+D Fusion for Action Recognition

Although depth-only methods achieved outstanding performances in human activity

analysis evaluations, in real scenarios we usually have RGB videos in addition to depth.

Because of the complementary properties of these two signals, multimodality analysis

of RGB+D action videos also attracted some research attention recently.

Ni et al. [63] introduced a RGB+D fusion method by concatenating depth descrip-

tors to RGB based representations of STIP points. A structured sparsity based fusion

of local RGB+D descriptors is also proposed by [84]. Liu and Shao [56] introduced a

genetic programming framework to improve the RGB and depth descriptors and their

fusion simultaneously through an iterative evolution. Song et al. [88] solved the prob-

lem of RGB+D action recognition by utilizing RGB information for better tracking

of interest point trajectories and describe them by depth-based local surface patches.

Hu et al. [34] proposed a heterogeneous multitask feature learning framework to mine

shared and modality-specific RGB+D features. Kong and Fu [38] applied projection

matrices to the common and independent spaces between RGB and depth modalities.

They learned their model by minimizing the rank of their proposed low-rank bilinear

classifier.

Upon successful analysis of human actions in a single camera, human tracking and

person re-identification techniques [95, 96, 98, 97, 57] can be utilized to extend the

analysis over a network of cameras.

2.3 Depth-based Activity Analysis Benchmark Datasets

After the release of Microsoft Kinect [134], several datasets are collected by different

groups to perform research on 3D action recognition and to evaluate different methods
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in this field. In this section we briefly review some of the publicly available 3D activity

analysis benchmark datasets and the standard evaluation protocols used on them. Here

we introduce a limited number of the most famous ones. For a more extensive list of

current 3D activity analysis datasets and methods, readers are referred to these survey

papers [132, 2, 17, 28, 59, 127, 12].

2.3.1 Datasets

MSR-Action3D dataset

MSR-Action3D dataset [51] was one of the earliest ones which opened up the research

in depth-based action analysis. The samples of this dataset were limited to depth

sequences of gaming actions. It provided depth sequences and skeleton information

of 567 samples for 20 gaming-based actions classes: high arm wave, horizontal arm

wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,

hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis

swing, tennis serve, golf swing, and pick up & throw. Later the body joint data was

added to the dataset. Actions are performed by 10 different subjects, two or three

times each. Evaluations are applied over a fixed cross-subject setting; Odd numbered

subjects are taken for training and even numbered ones for testing. Depth sequences

in this dataset have clean background which eases the recognition task. Later the body

joint data was added to the dataset. Joint information includes the 3D locations of 20

different body joints in each frame. A decent number of methods are evaluated on

this benchmark and recent ones reported close to saturation accuracies [60, 58, 83].

Fig. 2.7 shows the depth-maps from a sample in MSR-Action3D dataset.

CAD-60 and CAD-120 datasets

CAD-60 [90] and CAD-120 [39] contain RGB, depth, and skeleton data of human

actions. The special characteristic of these datasets is the variety of camera views.

Unlike most of the other datasets, camera is not bound to front-view or side-views.

However, the limited number of video samples (60 and 120) is their downside. Fig. 2.8

depicts the 3 modalities of the data from different samples in these datasets.

RGBD-HuDaAct dataset

RGBD-HuDaAct [63] is a large size benchmarks for human daily action recognition

in RGB+D. This dataset includes 1189 RGB+D video sequences from 13 action

classes:exit the room, make a phone call, get up from bed, go to bed, sit down, mop
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Fig. 2.7 Illustration of the depth-maps from a sample in MSR-Action3D dataset. This

sample shows the action “high arm wave”.
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Fig. 2.8 Illustration of the RGB frames and corresponding depth-maps and skeletons

from different samples in CAD-120 dataset.

floor, stand up, eat meal, put on jacket, drink water, enter room, take off jacket, and

background activity. Actions are performed by about 30 human subjects. This dataset

provided high variation in time lengths. The standard evaluation on this dataset is

defined on a leave-one-subject-out cross-validation setting. The special characteristic

of this dataset was that they synced and aligned the RGB and depth channels which

enabled local multimodal analysis of RBGD signals1. Fig. 2.9 shows the depth-maps

and corresponding RGB frames from a sample in RGBD-HuDaAct dataset. Fig. 2.10

depicts the RGB sample frames of different action classes in this dataset..

MSR-Daily Activity 3D dataset

According to its intra-class variations and choices of action classes, MSR-Daily

Activity 3D dataset [109], is one of the most challenging benchmarks for action

recognition in depth sequences. It contains RGB, depth, and skeleton information of

320 action samples, from 16 classes of daily activities in a living room: drink, eat, read

book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit

still, toss paper, play game, lie down on sofa, walk, play guitar, stand up, and sit down.

Each activity is done by 10 distinct subjects in two different ways and evaluations

are applied over a fixed cross-subject setting; first five subjects are taken for training

and others for testing. Unlike other datasets, MSR-DailyActivity has a more realistic

variation within each class. Subjects used both hands randomly to do the activities,

and samples of each class are captured in different poses. Small number of samples

and the fixed viewpoint of the camera are the limitations of this dataset. Recently

reported results on this dataset also achieved very high accuracies [58, 34, 60, 82].

Fig. 2.11 shows the depth-maps and corresponding RGB frames from a sample in

1 We emphasize the difference between RGBD and RGB+D terms. We suggest to use RGBD when

the two modalities are aligned pixel-wise, and RGB+D when the resolutions of the two are different

and frames are not aligned.
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Fig. 2.9 Illustration of the depth-maps and corresponding RGB frames from a sample

in RGBD-HuDaAct dataset. This sample shows the action “drink water”.
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Fig. 2.10 RGB sample frames of 12 different actions in RGBD-HuDaAct dataset.

MSR-Daily Activity 3D dataset. Fig. 2.12 illustrates the RGB sample frames of 16

different actions in this dataset.

UTKinect dataset

UTKinect dataset [121] also provided synchronized RGB, depth and skeleton infor-

mation. Action classes include: walk, sit down, stand up, pick up, carry, throw, push,

pull, wave hands, clap hands., which were peformed by 10 different subjects, twice

per subject. Overall, 200 action samples are collected. They introduced more intra-

class variations by asking the subjects to perform the actions differently. Very recent

methods [55] achieved close to saturation results on this dataset. Fig. 2.13 depicts the

two modalities of the data from different samples in these datasets.

3D Action Pairs dataset

To emphasize the importance of the temporal order of body poses on the meaning of

the actions, [67] proposed 3D Action Pairs dataset. It covers 6 pairs of similar actions:

Pick up a box/Put down a box, Lift a box/Place a box, Push a chair/Pull a chair, Wear

a hat/Take off a hat, Put on a backpack/Take off a backpack, and Stick a poster/Remove

a poster. The only difference between each pair is their temporal order so they include

similar skeleton, poses, and object shapes. Each action is performed by 10 subjects,

3 times. First five subjects are taken for testing and others for training. Due to the

fewer number of the action classes and absence of intra-class variations, this dataset
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Fig. 2.11 Illustration of the depth-maps and corresponding RGB frames from a sample

in MSR-Daily Activity 3D dataset. This sample shows the action “drink”.
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Fig. 2.12 RGB sample frames of 16 different actions in MSR-Daily Activity 3D

dataset.

Fig. 2.13 Illustration of the RGB frames and corresponding depth-maps from different

samples in UTKinect dataset.
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is one of the easiest benchmark among depth based action recognition datasets and

other methods already achieved very high accuracies on it. State-of-the-art methods

[38, 83, 82] achieved close to saturation accuracies on this benchmark. Fig. 2.14 shows

the depth-maps and corresponding RGB frames from a sample in 3D Action Pairs

dataset. Fig. 2.15 depicts RGB sample frames of 12 different actions in this dataset.

Online RGB+D Action dataset

Online RGB+D Action dataset [128] is another RGB+D benchmark for action recogni-

tion. Unlike most of the other RGB+D benchmarks, this dataset is collected in different

locations and provides a cross-environment evaluation setting. It includes samples of 7

daily action classes: drinking, eating, using laptop, reading cellphone, making phone

call, reading book, and using remote. For the recognition task, it provides videos of 24

actors. Each actor performs each of the actions twice. Overall, this dataset include

336 RGB+D video samples. Fig. 2.16 shows the depth-maps and corresponding RGB

frames from a sample in Online RGB+D Action dataset. Fig. 2.17 illustrates RGB

sample frames of 7 different actions in the two different environments from this dataset

ACT42 dataset

ACT42 [18] dataset was captured using 4 Kinect cameras at the same time. They

provided samples of 14 action classes: collapse, drink, make phone call, mop floor,

pick up, put on, read book, sit down, sit up, stumble, take off, throw away, twist open,

wipe clean, performed by 24 subjects. This dataset captured the outstanding 6844

number of action samples, which was among the biggest numbers of samples between

the depth-based human actions dataset.

Other datasets

Multiview 3D event [118] and Northwestern-UCLA [111] (Fig. 2.18) datasets also used

more than one Kinect cameras at the same time to collect multi-view representations

of the same action, and scale up the number of samples.

SBU Kinect Interaction [131], LIRIS Human Activities [119], G3Di [7], and Office

Activity [114] datasets are depth-based benchmarks which also include activities of

interactions between two or more subjects.

It is worth mentioning, there are more than 40 datasets specifically for 3D human

action recognition. The survey of Zhang et al. [132] provided a great coverage over
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Fig. 2.14 Illustration of the depth-maps and corresponding RGB frames from a sample

in 3D Action Pairs dataset. This sample shows the action “wear a hat”.
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Fig. 2.15 RGB sample frames of 12 different actions in 3D Action Pairs dataset. Each

pair of the actions are similar in appearance but different over temporal axis.

the current datasets and discussed their characteristics in different aspects. They also

provided the best performing methods for each dataset.

Although each of the current datasets provided important challenges of human

activity analysis, they have limitations in some aspects. Table 2.1 shows the comparison

between some of the current datasets with our large-scale RGB+D action recognition

dataset.

2.3.2 Evaluation Protocols

Various benchmark datasets determined different protocols as their standard evaluation

criteria. Below are the most commonly used evaluation protocols.

Cross-Subject Protocol

In cross-subject evaluation protocols, samples are divided to fix training and testing

sets based on their subject IDs. As an example, in MSR-Daily Activity 3D dataset,

samples of subjects one to five were assigned for training and the remaining samples

were kept out for testing.
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Fig. 2.16 Illustration of the depth-maps and corresponding RGB frames from a sample

in Online RGB+D Action dataset. This sample shows the action “eating”.
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Fig. 2.17 RGB sample frames of 7 different actions in Online RGB+D Action dataset.

Actions are performed in two different environments.

Fig. 2.18 RGB sample frames of different action classes in Northwestern-UCLA

dataset. The samples are taken in 3 different views.
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Cross-View Protocol

In multi-view datasets, cross-view evaluation protocol suggests to use some of the

camera views for training and keep unseen views for testing to evaluate the robustness

of the recognition algorithms in new view-points.

Cross-Environment Protocol

For the datasets which have samples captured in different environment, cross-environment

protocol is another option for evaluation to verify the strengths of the methods in dif-

ferent background conditions.

Leave-One-Subject-Out Cross-Validation

A more sophisticated evaluation protocol is repeat the experiment once per each subject

and on each round keep that subject out for testing and use all others for training. The

final performance will be calculated as the average of the performances over all the

iterations.
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Chapter 3

Multimodal Multipart Learning for

Action Recognition in Depth Videos

In our first work, the focus is on the 3D representations of the human bodies and

their kinetics in the context of activity analysis. We study the depth-based and 3D

skeleton-based features and propose a new framework to perform the feature analysis

and action classification effectively.

3.1 Introduction

Human actions consist of simultaneous flow of different body parts. Based on this

complex articulated essence of human movements, the analysis of these signals could

be highly complicated. To ease the task of classification, actions could be broken down

into their components. This is done by a body part detection on depth sequences of

human body movements [85]. Having the 3D locations of body joints in the scene,

we can separate the complicated motion of body into a concurrent set of behaviors on

major skeleton joints; therefore human action sequences can be considered as multipart

signals. Throughout this chapter, we use the term “part” to denote each body joint as

defined in [85].

Limiting the learning into skeleton based features cannot deliver high levels of

performance in action recognition, because: (1) most of the usual human actions

are defined based on the interaction of body with other objects, and (2) depth based

skeleton data is not always accurate due to the noise and occlusion of body parts.

To alleviate these issues, different depth based appearance features can be leveraged.

The work in [110] proposed LOP (local occupancy patterns) around each of the body

joints in order to represent 3D appearance of the interacting objects. Another solution
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is HON4D (histogram of oriented 4D normals) [67], which gives more descriptive

and robust models of the local depth based appearance and motion, around the joints.

Based on the complementary properties of mentioned features, it is beneficial to utilize

all of them as different descriptors for each joint. Combining heterogeneous features

of each part of the skeleton, leads into a multimodal-multipart combination, which

demands sophisticated fusion algorithms.

An interesting approach to handle the articulation of actions was recently proposed

by [110]. As the key intuition, they have shown each individual action class can be

represented by the behavior and appearance of few informative joints in the body.

They utilized a data mining technique to find these discriminative sets of joints for

each class of the available actions and tied up the features of those parts as “actionlets”.

They employed a multi-kernel learning method to build up ensembles of actionlets as

kernels for action classification. This method is highly robust against the noise in depth

maps, and the results show its strength to characterize human body motions and also

human-object interactions. However the downside of this approach is the inconsistency

of their heuristic selection process (mining actionlets) with the following learning

step. Moreover, it simply concatenates different types of features for multimodal

fusion, which is another drawback of their work. In this fashion, achieving the optimal

combination of features regarding the classification task cannot be guaranteed.

To overcome the limitations mentioned above, we propose a joint structured

sparsity regression based learning method which integrates part selection into the

learning process considering the heterogeneity of features for each joint. We associate

all the features for each part as a bundle and apply a group sparsity regularization

to select a small number of active parts for each action class. To model the precise

hierarchy of the multimodal-multipart features in an integrated learning and selection

framework, we propose a hierarchical mixed norm which includes three levels of

regularization over the learning weights. To apply the modality based coupling over

heterogeneous features of each part, it applies a mixed norm with two degrees of

“diversity” induction [78], followed by a group sparsity among the feature groups of

different parts to apply part selection.

Mixed norms are powerful tools to inject simultaneous sparsity and coupling

effects between the learning coefficients. They have been studied in a variety of

fields. In statistical domain, Yuan and Lin [129] proposed the “group Lasso”, as an

extension over “Lasso” [93] for a grouped variable selection in regression. Zhao

et al. [135] introduced “composite absolute penalty” for hierarchical variable selection.

“Hierarchical penalization” is also proposed to utilize prior structure of the variables

for a better fitting model [92]. In sparse regression, mixed norms have been used as
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regularization terms to link sparsity and persistence of variables [41]. A generalized

shrinkage scheme was proposed by [42] for structured sparse regression. Wang

et al. [106] used mixed norms as structured sparsity regularizers for heterogeneous

feature fusion, and [104] extended this idea for multi-view clustering. They proposed

robust self-taught learning [105] using mixed norms and [103] utilized a fractional

mixed norm for robust adaptive dictionary learning. In the proposed work in this

chapter, we regularize the multimodal features of each part by applying a mixed

L2/L4 norm. To achieve the sparsity between parts, we generalize this to an L1/L2/L4

hierarchical norm.

If multiple learning tasks at hand share some inherent constituents or structures,

“Multitask Learning” [14, 138, 116, 1] techniques could be globally beneficial. In joint

sparse regression, multitask learning is formulated by a mixed norm. Liu et al. [52]

proposed an L1/L∞ norm to add this into Lasso for variable selection. In joint feature

selection, L1/L2 norm can provide multitask learning by applying selection between

the L2 regularized parameters of each feature [64]. The same is used in [130] as

a generalization of L1 norm in a multitask joint sparsity representation model to

fuse complementary visual features across recognition tasks. Zhang et al. [133]

studied different mixed norms when they applied multitask sparse learning in visual

tracking and based on their experimental results, they showed that L1/L2 is superior

among them. In this work, we use a similar norm to utilize the shared latent factors

between different binary action classifiers. We apply L2 regularization over the weights

corresponding to each feature across all the tasks, followed by an L1 between all the

features at hand.

We evaluate our method on four challenging depth-based action recognition

datasets: MSR Daily Activity 3D dataset [110], MSR Action3D dataset [51], 3D

ActionPairs dataset [67], and NTU RGB+D Action dataset (section 5.2 and [81]).

Our experimental results show that the proposed method is superior to other available

methods for action recognition on depth sequences.

The rest of this chapter is organized as follows: Section 3.2 presents the pro-

posed integrated feature selection and learning scheme. It also introduces the new

multimodal-multi part mixed norm which applies regularization and group sparsity

into the proposed learning model. Experimental results on three above-mentioned

benchmarks are covered in section 3.3 and we conclude the chapter in section 3.4.
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3.2 Multimodal Multipart Learning

Notations

Throughout this chapter, we use bold uppercase letters to represent matrices and bold

lowercase letters to indicate vectors. For a matrix X, we denote its j-th row as x j and

its i-th column as xi.

Assume the partition ξ is defined over a vector z to divide its elements into |ξ |

disjoint sets. We use ξi to represent the indices of the i-th set in ξ , and its corresponding

elements in z are referred to as zξi , also zξi,k represents the k-th element of zξi . The

Lp/Lq norm of z regarding ξ is represented by ∥z∥q,p|ξ and is defined as the Lq norms

of the elements inside each set of ξ followed by an Lp norm of the Lq values across

the sets; mathematically:

∥z∥q,p|ξ =

(
|ξ |

∑
i=1

∥zξi∥p
q

)1/p

=




|ξ |

∑
i=1

(
|ξi|

∑
k=1

|zξi,k|q

)p/q



1/p

(3.1)

in which |ξi| indicates the cardinality of set ξi.

Now consider the elements of each set ξi are further partitioned by operator ρ into

|ρ| disjoint subsets. Similarly, we indicate j-th ρ-subset of i-th ξ -set of z as zξi,ρj and

zξi,ρj,k represents its k-th element. The Lp/Lq/Lr norm of z regarding ξ and ρ is also

represented by ∥z∥r,q,p|ρ,ξ and is defined as the Lq/Lr norms (regarding ρ) of all |ξ |

sets followed by an Lp norm of the Lq/Lr values across the sets of ξ ; mathematically:

∥z∥r,q,p|ρ,ξ =

(
|ξ |

∑
i=1

∥zξi∥p

r,q|ρ

)1/p

=




|ξ |

∑
i=1




|ρ|

∑
j=1

(
|ρ j|

∑
k=1

|zξi,ρj,k|r

)q/r



p/q



1/p

(3.2)

This representation can be easily extended into higher orders of structural mixed

norms by further partitioning the subsets.

3.2.1 Multipart Learning by Structured Sparsity

Our purpose of learning is to recognize the actions in depth videos, based on depth and

skeleton based features extracted. The set of input features we use to describe each

action sample is a combination of multimodal multipart features. The entire body is

separated into a number of parts (as illustrated in Fig.3.1) and for each part we have

different types of features to represent the movement and local depth appearance. In
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Fig. 3.1 Three Levels of the Proposed Hierarchical Mixed Norm for Multimodal

Multipart Learning. We combine two levels of regularization inside modality groups

and between them for each part, followed by a sparsity inducing norm between the

parts to apply part selection.

this work, we consider each body joint as a part of the body and our multipart analysis

is performed among the joints.

Therefore, our input feature set for each input sample, can be represented by a

vector: z ∈ R
d , which consists of feature groups of different parts and modalities.

Assume operator π is partitioning z into P parts, and µ is defined over sets of π to

further partition them based on M number of feature modalities. So, the hierarchy

of features inside this vector is indicated by: z = [zπ1T , ...,zπP T ]T , in which each

zπi = [zµ1,πi T , ...,zµM,πi T ]T .

Now the problem of multiclass action recognition can be considered as multiple

binary regression based classification problems in a one-versus-all manner. Given

n training samples X = [x1, ...,xn] in which xi ∈ R
d and their corresponding labels
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for C distinct classes: Y = [y1, ...,yC] with yc ∈ {0,1}n and ∀i : ∑
C
c=1 yi

c = 1; we are

looking for a projection matrix W∗ ∈ R
d×C which minimizes a set of loss functions

Jc(⟨xi,w
∗
c⟩,y

i
c) for all classes c ∈ {1, ...,C} and samples i ∈ {1, ...,n}. Our choice

for the total loss function, without loss of generality, is sum of squared errors (∀c :

Jc(a,b) = (a−b)2).

The most common shrinkage methods to regularize the learning weights against

overfitting are to penalize Lp norms of the learning weights for each class:

w∗
c = argmin

wc

n

∑
i=1

Jc(⟨xi,wc⟩,y
i
c)+λ∥wc∥p (3.3)

in which λ is the regularization factor. Employing L2 norm (p = 2) leads into a

general weight decay and minimization of the magnitude of W, and applying L1 norm

(p = 1) yields simultaneous shrinkage and sparsity among the individual features.

Such methods simply ignore the structural information between the features, which can

be useful for classification; therefore, it is beneficial to embed these feature relations

into our learning scheme via structured sparsity inducing mixed norms.

In the context of depth based action recognition, features are naturally partitioned

into parts. “Actionlet ensemble” method [110] tried to discover discriminative joint

groups using a data mining process, which led into an interesting improvement on

the performance; however, their heuristic selection process is discrete and separated

from the following learning step. To address these issues, we propose to apply group

sparsity to perform part selection and classification in a regression based framework,

in contrast to the mining based joint group discovery of [110].

We know that the discriminative strength of features in each part are highly cor-

related regarding all the classes at hand. So we expect the corresponding learning

parameters (elements of each wc) to be triggered or halted concurrently within each set

of π partitioning (for each action class). To apply a grouping effect on these features,

we consider each set in π as a unit and measure its strength with an L2 norm of the

included learning weights. On the other hand, we seek a sparse set of parts to be

activated for each class at hand, so we apply an L1 norm between the L2 values of the

groups. Such an intuition can be formulated by an L1/L2 mixed norm based on π for

each class:

w∗
c = argmin

wc

n

∑
i=1

Jc(⟨xi,wc⟩,y
i
c)+λ∥wc∥2,1|π (3.4)
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Adding this up for all the action classes with the same regularization factor, we have:

W∗ = argmin
W

C

∑
c=1

n

∑
i=1

Jc(⟨xi,wc⟩,y
i
c)+λ

C

∑
c=1

∥wc∥2,1|π , (3.5)

= argmin
W

J(XT W,Y)+λ∥vec(W)∥2,1,1|π,τ , (3.6)

in which vec(.) is the vectorization operator and τ is the partitioning operator of vec(W)

elements based on their corresponding tasks (or columns here): ∀(k,c) : τ(wk
c) = c.

We will refer to this multipart learning method as “MP”.

Minimization of (3.6) applies the desired grouping effect into the features of each

part and guarantees the sparsity on the number of active parts for each class in a smooth

and simpler way, compared to the actionlet method.

3.2.2 Multimodal Multipart Learning via Hierarchical Mixed Norm

In the above formulation, we apply an L2 regularization norm over heterogeneous

features of all the modalities for each part, and ignore the modality structures between

them. In other words, applying a general L2 norm may cause the suppression of the

information at some dimensions. These issues are more severe when training samples

are limited (which is the case for action recognition in depth), in which it might lead

to weak generalization of the learning.

To overcome these limitations, we utilize L∞ to regularize the coefficients inside

each modality, so that “diversity” [41] can be encouraged. It is already known that the

behavior of Lp norm for p > 2 rapidly moves towards L∞ [76]; since L∞ is not easy to

optimize directly, we picked L4 as the most efficient approximation of it. Higher order

norms like L6 apply the same effect but with a slightly more expensive processing cost.

By applying the L4 norm to regularize the weights in each modality group of each

part, now we have a three-level L1/L2/L4 mixed norm. Inner L4 gives more “diversity”

to regularize the features inside each partiality-modality subset. L2 norm employs a

magnitude based regularization over the L4 values to link different modalities of each

part, and the outer L1 applies the soft part selection between the L2/L4 values of each

action class (Fig.3.1).
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Replacing the previous structured norm by the proposed hierarchical mixed norm

in (3.6), we have:

W∗ = argmin
W

J(XT W,Y)+λ
C

∑
c=1

∥wc∥4,2,1|µ,π (3.7)

= argmin
W

J(XT W,Y)+λ∥vec(W)∥4,2,1,1|µ,π,τ (3.8)

Here, π indicates the partitioning of features based on their source body part, and

µ represents further partitioning of each part’s set regarding the modalities of the

features. Table 3.1 lists all the partitioning operators used in this work. In the rest of

this chapter, we use the abbreviation “MMMP” to refer to this method. It is worthwhile

to note that changing the inner norm to L2 will reduce the hierarchical norm into a two

level mixed norm, i.e. ∥vec(W)∥2,2,1,1|µ,π,τ = ∥vec(W)∥2,1,1|π,τ derived directly from

the definition of hierarchical norm (3.2).

When different learning tasks have similar latent features, “Multitask Learning”

[14] techniques can improve the performance of the entire system by applying informa-

tion sharing between the tasks. Here we are learning classifiers for C different classes

which essentially have many latent components in common, so pushing them to share

some features is beneficial for the classification task. This can be done by applying an

L2 grouping on all the weights corresponding to each individual feature. Each of these

L2 values represents the magnitude of strength for its corresponding feature among

all the tasks. Then applying an L1 over the magnitudes can apply a shared variable

selection considering all the tasks. Adding the new multitask term into (3.8), we have:

W∗ = argmin
W

J(XT W,Y)+λ1

d

∑
k=1

∥wk∥2 +λ2∥vec(W)∥4,2,1,1|µ,π,τ (3.9)

= argmin
W

J(XT W,Y)+λ1∥vec(W)∥2,1|φ +λ2∥vec(W)∥4,2,1,1|µ,π,τ (3.10)

Here, d is the number of rows in W which is equal to the size of the entire feature

vector, and φ defines the partitioning of vec(W) elements based on their corresponding

individual features: ∀(k,c) : φ(wk
c) = k. For a review on the used partitioning operators

in this work, please see Table 3.1.

Combining these two regularization terms can be considered as a trade off between

sparsity and persistence of features [43] based on their relations across the parts,

modalities, and between the action classes.

In our experiments, we use P = 20 body joints as partitioning operator π . Since

each column of W has the same hierarchical partitioning as input features: W = [w
j
c],
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Table 3.1 Definition of the different partitioning operators in the proposed method.

Symbol Name Definition

π part-based partitioning based on the index of

the corresponding body joint

µ modality-based partitioning based on the index of

the feature group

partitioning based on the index of

τ task-based the corresponding action class or

the index of the columns in the weight matrix

partitioning based on the index of

φ individual feature-based each feature element or the index of the

rows in the weight matrix

in which c counts the number of classes and j counts the feature groups for P joints.

The features for each joint come from M = 3 different modalities: skeletons, LOP,

and HON4D; this defines the µ operator. Therefore, each w
j
c = [w

j,1
c

T
, ...,w

j,M
c

T
]T , in

which each w
j,m
c is the corresponding weight elements to class c, joint j and modality

m. This way (3.10) will be expanded to:

W∗ = argmin
W

∥XT W−Y∥2
F +λ1

d

∑
k=1

∥wk∥2 +λ2

C

∑
c=1

P

∑
j=1

(
M

∑
m=1

∥w j,m
c ∥2

4)
1/2 (3.11)

3.2.3 Two Step Learning Approach

The size of the learning weights are very large in comparison to the size of training

samples, specifically for older benchmark datasets. This limits the ability of a one-

step overall learning framework to converge to an ideal optimum point. To resolve

this difficulty, we break this to two easier-to-solve steps. First we learn the partially

optimum weights for multipart features of each modality separately. In the second step,

we solve the overall multimodal multipart optimization problem by fine-tuning the

weights and prevent them from deviating from their corresponding partially optimum

points.

Since each of the modalities has the part-based structure in their input features, we

use the proposed multipart learning in presence of multitask learning term. To learn
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the partially optimum weights for input modality m, we optimize:

Ŵm = argmin
Wm

J(XT
mWm,Y)+ λ̂1∥vec(Wm)∥2,1|φ + λ̂2∥vec(Wm)∥2,1,1|π,τ (3.12)

where Xm denotes the input features for mth modality.

After achieving the partially optimum point for each modality, we merge the Ŵm

values for all M modalities:

Ŵ = [ŴT
1 , ...,Ŵ

T
M]T (3.13)

Next is to fine-tune the weights in the multimodal-multipart learning fashion, on

a neighborhood of Ŵ values. To do so, we expect the global optimum weight not to

diverge too much from their partially optimal points:

W∗ = argmin
W

J(XT W,Y)+λ1∥vec(W)∥2,1|φ

+λ2∥vec(W)∥4,2,1,1|µ,π,τ +λ3∥W−Ŵ∥2
F (3.14)

The last term in (3.14) will limit the deviation of learning weights from their

partially optimal point, as we expect them to be just fine-tuned in this step.

Upon optimization over training data, the detection of the learned classifier for

each testing sample xi can be obtained by:

f (xi) = argmax
c

⟨xi,w
∗
c⟩ (3.15)

Broyden–Fletcher–Goldfarb–Shanno (BFGS) is an optimization algorithm that

solves the unconstrained minimization problem iteratively. All it needs at each iteration

is the value of the cost function and its gradient. This algorithm does not require the

Hessian matrix of the cost function, neither its inverses. The limited-memory BFGS

(L-BFGS) iteratively finds a minimizer by approximating the inverse of the Hessian

matrix of the cost function by utilizing the information from last iterations. This

technique saves the memory usage and computational complexity for large-sized

problems.

Our optimization steps are all done by Limited memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) algorithm using off-the-shelf “minFunc” tool [80].

Another limitation of the proposed work in this chapter is the batch nature of the

optimization algorithm. All the input features and learning weights are supposed to be
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kept in memory throughout the learning process. This limits the ability of this method

to combine a big number of features or learn on very large scale datasets.

3.3 Experiments

This section describes our experimental setup details and then provides the results

of the proposed method on three depth based action recognition benchmarks. The

description of the datasets are provided in section 2.3.1.

3.3.1 Experimental Setup

All the provided experiments are done on Kinect based datasets. Kinect captures RGB

frames, depth map signals and 3D locations of major joints. To have a fair comparison

with other depth based methods, we ignore the RGB signals. Skeleton extraction is

done automatically by Kinect’s SDK based on the part-based human pose recognition

system of [85]. On each frame, we have an estimation of 3D positions of 20 joints

in the body. All of our features are defined based on these joints as the multipart

partitioning operator (π); therefore, each feature necessarily belongs to one of these

parts.

To represent skeleton based features, first we normalize the 3D locations of joints

against size, position and direction of the body in the scene. The original body joints

data are measured in camera coordinate system. First we translate all of the joints

to the body coordinate system. The origin of the new coordinate system is on the

“middle of the spine” joint (number 3 in Fig. 1.3), followed by a 3D rotation to fix

the X axis towards the vector from “right shoulder” to “left shoulder”, and Y axis

from “spine base” to “spine”. The new Z axis is obtained from X ×Y . In the last

step of normalization, we scale all the joint point locations based on the distance

between “spine base” and “spine” joints. This normalization step eases the task of

comparison between body poses. On the other hand, it removes the location and

rotation information of the body at each frame. This extracted body locations and

directions could also be highly discriminative for some action classes like “walking” or

“lying down”; therefore we add the translation and rotation vectors of the normalization

step into the features under a new auxiliary part.

To encode the dynamics of skeleton based features, we apply “Fourier temporal

pyramid” as suggested by [110] and keep first four frequency coefficients of each short

time Fourier transformation. This leads to a feature vector of size 1,876 for each action

sample.
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In addition to skeleton based features, other modalities we use are local HON4D

[67] and LOP [110] to represent depth based local dynamics and appearance around

each joint. On each frame, LOPs are extracted on a (96,96,320)-sized depth neigh-

borhood of each joint, which is divided into 3× 3× 4 number of (32,32,80)-sized

bins. To represent LOP based kinetics, we use a similar Fourier temporal pyramid

transformation. HON4D features are also extracted locally over the location of joints

on each frame. We encode HON4D features using LLC (locality-constrained linear

coding) [113] to reduce their dimensionality while preserving the locality of 4D surface

normals. A dictionary size of 100 is picked for the clustering step. LLC codes go

through a max pooling over a 3 level temporal pyramid. Dimensions of the features

for LOP and HON4D are 5,040 and 14,000 respectively. The overall dimensionality

of input features for each sample is 20,916.

The hyper-parameters λ̂1, λ̂2,λ1,λ2, and λ3 are set by leave-one-sample-out cross-

validation over training data. We found the optimal values for these hyper-parameters

between [1e−5,1e−4, ...,1, ...1e+5] values.

3.3.2 MSR Daily Activity 3D Dataset

First, to verify the strengths of our proposed hierarchical mixed norm, we evaluate

the performance of the classification in a subject-wise cross-validation scenario. We

evaluate the performance of the plain L2 norm, the multipart structured norm (MP),

and the proposed hierarchical mixed norm (MMMP), in all 252 possible train/test

splits of 5 out of 10 subjects. To have a proper comparison between these norms, we

have not applied the multitask term. The results of this experiment are shown in Table

3.2. Adding part based grouping, when it ignores the modality associations between

the features, can slightly improve the performance from 80.61% into 81.55%. By

adding multimodality grouping and applying the proposed hierarchical mixed norm,

improvement is more significant and reaches 84.03%.

Next, we verify the results of our method by applying mentioned norms on the

standard train/test split of the subjects. As provided in Table 3.3, applying simple

feature selection using a plain L1 norm leads into 86.88% of accuracy. By applying

a plain L2 norm on all the features we get 87.50%. Multipart learning regardless of

heterogeneity of the modalities leads into 88.13%. Finally by adding the multipart

learning via the proposed hierarchical mixed norm we reach the interesting accuracy

of 91.25% on this dataset. Applying higher orders for the inner-most norm (like

L1/L2/L6) achieved the same level of accuracy at a slightly higher processing time.
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Table 3.2 Subject-wise Cross-Validation Performance Comparison of the Proposed

Hierarchical Mixed Norm with Plain and Multipart Group Sparsity Norm on the MSR

Daily Activity 3D Dataset

Method Structure/Hierarchical Norm Used Accuracy

L2 ∥vec(W)∥2
2 80.61±2.49%

MP ∥vec(W)∥2,1,1|π,τ 81.55±2.43%

MMMP ∥vec(W)∥4,2,1,1|µ,π,τ 84.03±2.16%

To assess the strength of the proposed multipart learning, we evaluate our method

on single modality setting using (3.12). As shown in Table 3.4, on skeleton based fea-

tures, we got 79.38% compared to 74% of the baseline actionlet method. Using LOPs,

our method achieved 79.38% which is more than 18 percentage points higher than the

actionlet’s performance. For local HON4D features, we achieved 81.88% compared

to 80.00% of the baseline local HON4D method. Now we use the partially learned

weights of single modality multipart learning and employ them for the optimization of

(3.14) to learn globally optimum projections. First we try the combination of skeleton

based features with LOP. Using proposed learning, we get 88.13% of accuracy which

outperforms the baseline’s best result of 85.75%. [112] used skeleton and HON4D

features in a temporal warping framework and got 88.75%. Our method outperforms

it using the same set of features by achieving 89.38% of accuracy. And finally using

all three modalities, our method achieves the performance level of 91.25%. Table 3.4

shows the complete set of results for this experiment.

Our implementation is done in MATLAB, and not fully optimized for time ef-

ficiency. The average training and testing time of MMMP on a 3.2 GHz Core-i5

machine are 170 and 2×10−4 seconds respectively, with no parallel processing.

It is worth pointing out some of the published works on this dataset applied

other train/test splits, e.g. [3] reported 93.1% of accuracy on a leave-one-subject-out

cross-validation. On this setup, proposed MMMP method achieves 97.5%.

3.3.3 MSR Action 3D Dataset

The reported results on this dataset are divided in two different scenarios. First is the

average cross-subject performance on three action subsets defined in [51], and second

is the overall cross-subject accuracy regardless of subsets, as done in [110]. Following

[100], we call them as protocols of [51] and [110].
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Table 3.3 Performance Comparison of the Proposed Method Using Plain/ Structured/

Hierarchical Norms on the Standard Evaluation Split of the MSR Daily Activity 3D

Dataset

Method Structure/Hierarchical Norm Used Accuracy

L1 ∥vec(W)∥1 86.88%

L2 ∥vec(W)∥2
2 87.50%

MP ∥vec(W)∥2,1,1|π,τ 88.13%

MMMP ∥vec(W)∥4,2,1,1|µ,π,τ 91.25%

Table 3.4 Performance Comparison on the Standard Evaluation Split of the MSR Daily

Activity 3D Dataset using Single Modality and Multimodal Features.

Method Modalities Accuracy

Actionlet Ensemble [110] LOP 61%

Proposed MP LOP 79.38%

Orderlet Mining [128] Skeleton 73.8%

Actionlet Ensemble [110] Skeleton 74%

Proposed MP Skeleton 79.38%

Local HON4D [67] HON4D 80.00%

Proposed MP HON4D 81.88%

Actionlet Ensemble [110] Skeleton+LOP 85.75%

Proposed MMMP Skeleton+LOP 88.13%

MMTW [112] Skeleton+HON4D 88.75%

Proposed MMMP Skeleton+HON4D 89.38%

DSTIP [120] DCSF+LOP 88.20%

Proposed MMMP Skeleton+LOP+HON4D 91.25%

Tables 3.5 and 3.6 show the results. Although we still have the highest accuracy

among the reported results, the achieved margin is not as large as other datasets. This

is because of the simplicity of actions in this dataset. Since there are no interactions

with other objects, most of the classes are highly distinguishable using skeleton only

features; therefore our multimodality could not boost up the results that much, but the

multipart learning still shows its advantage over other methods.
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Table 3.5 Average Cross-Subject Performance for MSR Action 3D Dataset on Three

Action Subsets of [51]

Method (protocol of [51]) Accuracy

Action Graph on Bag of 3D Points [51] 74.7%

Histogram of 3D Joints [121] 79.0%

EigenJoints [124] 83.3%

Random Occupancy Patterns [108] 86.5%

Skeletal Quads [24] 89.9%

HOG3D-LLC [70] 90.9%

Depth HOG [126] 91.6%

Lie Group [100] 92.5%

JAS+HOG2 [65] 94.8%

DL-GSGC+TPM [60] 96.7%

Proposed MMMP 98.2%

Table 3.6 Performance Comparison for MSR Action 3D Dataset Over All Action

Classes

Method (protocol of [110]) Accuracy

Depth HOG [126] (as reported in [112]) 85.5%

Actionlet Ensemble [110] 88.2%

HON4D [67] 88.9%

DSTIP [120] 89.3%

Lie Group [100] 89.5%

HOPC [73] 91.6%

Max Margin Time Warping [112] 92.7%

Proposed MMMP 93.1%

3.3.4 3D Action Pairs Dataset

Here we apply our full multimodal multipart learning method using all three available

modalities of features. As shown in Table 3.7, the proposed method, outperforms all

others and saturates the benchmark by achieving the perfect performance level on this

dataset.
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Table 3.7 Performance Comparison for 3D Action Pairs Dataset

Method Accuracy

Depth HOG [126] (as reported in [112]) 66.11%

Actionlet Ensemble [110] (as reported in [112]) 82.22%

HON4D [67] 96.67%

Max Margin Time Warping [112] 97.22%

HOG3D-LLC [70] 98.33%

HOPC [73] 98.33%

Proposed MMMP 100.0%

Table 3.8 Performance Comparison for input features and proposed method on Cross-

Subject evaluation protocol of NTU RGB+D Action Dataset. The dimensionality of

the input features are reduced by PCA.

Method/Feature Accuracy

FTP on Skeletons 58.62%

FTP on LOP 36.67%

LLC on HON4D 53.33%

Proposed MMMP 63.97%

3.3.5 NTU RGB+D Action dataset

NTU RGB+D Action is a large scale benchmark dataset for 3D action recognition.

The details about this dataset are provided in section 5.2. The large scale of this dataset

makes it possible to study the proposed algorithm further and verify other aspects of it

in more detail.

For our experiments in this section, we use the same set of features used for the

other datasets, which are explained in section 3.3.1. Our studies are done on the

cross-subject evaluation protocol of this dataset. To better study the behavior of the

method regarding body joints, we removed the features of the auxiliary part introduced

in the normalization step. Since the number of training samples of this dataset are

more than others in orders of magnitude, we apply PCA to reduce the dimensionality

of each input modality and keep the entire inputs matrix in a feasible size.

Table 3.8 shows the performance of the proposed MMMP method in contrast with

the input features used.
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To ease the study of next experimental results, we mention the list of action

classes and joint names here. The 60 action classes in NTU RGB+D dataset are:

1-drinking, 2-eating, 3-brushing teeth, 4-brushing hair, 5-dropping, 6-picking up,

7-throwing, 8-sitting down, 9-standing up (from sitting position), 10-clapping, 11-

reading, 12-writing, 13-tearing up paper, 14-wearing jacket, 15-taking off jacket,

16-wearing a shoe, 17-taking off a shoe, 18-wearing on glasses, 19-taking off glasses,

20-puting on a hat/cap, 21-taking off a hat/cap, 22-cheering up, 23-hand waving,

24-kicking something, 25-reaching into self pocket, 26-hopping, 27-jumping up, 28-

making/answering a phone call, 29-playing with phone, 30-typing, 31-pointing to

something, 32-taking selfie, 33-checking time (on watch), 34-rubbing two hands

together, 35-bowing, 36-shaking head, 37-wiping face, 38-saluting, 39-putting palms

together, 40-crossing hands in front. 41-sneezing/coughing, 42-staggering, 43-falling

down, 44-touching head (headache), 45-touching chest (stomachache/heart pain), 46-

touching back (back-pain), 47-touching neck (neck-ache), 48-vomiting, 49-fanning

self. 50-punching/slapping other person, 51-kicking other person, 52-pushing other

person, 53-patting other’s back, 54-pointing to the other person, 55-hugging, 56-

giving something to other person, 57-touching other person’s pocket, 58-handshaking,

59-walking towards each other, and 60-walking apart from each other.

The 25 body joints in this dataset are illustrated in Fig. 5.2. The names of the

joints are: 1-base of the spine, 2-middle of the spine, 3-neck, 4-head, 5-left shoulder,

6-left elbow, 7-left wrist, 8-left hand, 9-right shoulder, 10-right elbow, 11-right wrist,

12-right hand, 13-left hip, 14-left knee, 15-left ankle, 16-left foot, 17-right hip, 18-

right knee, 19-right ankle, 20-right foot, 21-spine, 22-tip of the left hand, 23-left thumb,

24-tip of the right hand, and 25-right thumb.

Fig. 3.2 illustrates the ℓ2 norm of the group of the weights corresponding to each

joint of the body for all the action classes. This shows how each body joint participates

in the weights learned for each action class. As expected, for each action, a small

number of joints have notable weights which can be considered activated. Some of

the joints are activated for most of the actions. They are 8-left hand, 12-right hand,

22-tip of the left hand, and 24-tip of the right hand. This is reasonable, because

the articulated motion of the hands are highly discriminative for most of the human

actions.

In addition, for each action class, we can observe the activated joints. For example,

actions 24-kicking something, 26-hopping, 27-jumping up, and 43-falling down have

the block of lower-body joints (number 13 to 20) activated. Unlike most of the other

actions, 35-bowing does not activate hand joints, instead it has 1-base of the spine,

13-left hip, and 17-right hip as important joints.
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Fig. 3.2 ℓ2 norm values of the weights assigned to each body part, for all of the action

classes. Horizontal axis shows the 60 action classes. Vertical axis denotes the index of

joints.



3.3 Experiments 49

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

35

40

45

50

55

60

65

Fig. 3.3 Comparison of the MMMP performance for different values of parameter λ̂1

on the cross-subject evaluation protocol of NTU RGB+D Action Dataset. The red line

shows the valued for λ̂1 = 0. The vertical axis shows the performance in percents and

the horizontal axis shows the values for the evaluated parameter.

To further study the sensitiveness of the proposed method on the values of different

parameters, we evaluate the final performance of the MMMP method on a range of dif-

ferent values for each of the hyper-parameters: λ̂1, λ̂2,λ1,λ2, and λ3. Figures 3.3-3.7

illustrate the results of these evaluations, which show the robustness of the proposed

MMMP method on a large range of values for each parameter, although very large

values for each of the parameters can deviate the optimization from the desired opti-

mum point. Comparing the values with the red lines which denote the performance of

the method with the zero-valued parameter, show all of the corresponding terms are

effective in the overall performance of the method. Specifically, Fig. 3.7 illustrates the

effect of the values of λ3 in comparison to its zero value. This shows the importance

of the last term in equation 3.14 which keeps the learning weights close to the partially

optimum values learned by multipart method separately for each modality.

Finally, Table 3.9 shows the performance of the proposed MMMP method in

contrast to other depth-based action recognition methods.
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Fig. 3.4 Comparison of the MMMP performance for different values of parameter λ̂2

on the cross-subject evaluation protocol of NTU RGB+D Action Dataset. The red line

shows the valued for λ̂2 = 0. The vertical axis shows the performance in percents and

the horizontal axis shows the values for the evaluated parameter.
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Fig. 3.5 Comparison of the MMMP performance for different values of parameter λ1

on the cross-subject evaluation protocol of NTU RGB+D Action Dataset. The red line

shows the valued for λ1 = 0. The vertical axis shows the performance in percents and

the horizontal axis shows the values for the evaluated parameter.
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Fig. 3.6 Comparison of the MMMP performance for different values of parameter λ2

on the cross-subject evaluation protocol of NTU RGB+D Action Dataset. The red line

shows the valued for λ2 = 0. The vertical axis shows the performance in percents and

the horizontal axis shows the values for the evaluated parameter.
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Fig. 3.7 Comparison of the MMMP performance for different values of parameter λ3

on the cross-subject evaluation protocol of NTU RGB+D Action Dataset. The red line

shows the valued for λ3 = 0. The vertical axis shows the performance in percents and

the horizontal axis shows the values for the evaluated parameter.
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Method Accuracy

HOG2 [65] 32.24%

Super Normal Vector [125] 24.56%

HON4D [67] 30.56%

Lie Group [100] 50.08%

Skeletal Quads [24] 38.62%

FTP Dynamic Skeletons [34] 60.23%

Proposed MMMP 63.97%

Table 3.9 Comparison of the proposed MMMP with other methods on the cross-subject

evaluation protocol of NTU RGB+D Action Dataset.

3.4 Chapter Summary

This chapter presents a new multimodal multipart learning approach for action clas-

sification in depth sequences. We show that a sparse combination of multimodal

part-based features can effectively and discriminatively represent all the available

action classes at hand. Based on the nature of the problem, we utilize a heterogeneous

set of features from skeleton based 3D joint trajectories, depth occupancy patterns

and histograms of depth surface normals and show the proper way of using them as

multimodal features set for each part.

The proposed method does the group feature selection, weight regularization, and

classifier learning in a consistent optimization step. It applies the proposed hierarchical

mixed norm to model the proper structure of multimodal multipart input features by

applying a diversity norm over the coefficients of each part-modality group, linking

different modalities of each part by a magnitude based norm, and utilizing a soft part

selection by a sparsity inducing norm.

The provided experimental evaluations on four challenging depth based action

recognition datasets show the proposed method can successfully apply the structure of

the input features into a concurrent group feature selection and learning and confirm

the strengths of the suggested framework compared to other methods.

A part of the work presented in this chapter is published in [83].



Chapter 4

Deep Correlation-Independence

Analysis for RGB+D Action

Recognition

In previous chapter, we studied the fusion of different depth-based features for action

classification. However, in realistic settings of Kinect-based human activity analysis,

RGB videos are also available in addition to depth-maps.

Since the analysis of activities on traditional RGB videos has been extensively

studied during last decade, it is reasonable to move towards RGB+D multimodality

analysis in order to achieve better understanding and higher performance accuracy in

human action recognition problem.

Therefore, in this chapter we focus on multimodal RGB+D based action recognition

and propose a new action analysis framework which analyses the input RGB+D

features based on their mutually correlated and their modality-specific components.

4.1 Introduction

Recent advances in hand-crafted [107, 68] and convnet-based [86] feature extraction

and analysis of RGB action videos achieved impressive performance. They generally

recognize action classes based on appearance and motion patterns in videos. The

major limitation of RGB sequences is the absence of 3D structure from the scene.

Although some works are done towards this direction [23], recovering depth from

RGB in general is an underdetermined problem. As a result, depth sequences provide

an exclusive modality of information about the 3D structure of the scene, which suits

the problem of activity analysis [67, 73, 100, 110, 112, 120, 128]. This complements
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the textural and appearance information from RGB. Our purpose in this chapter is

to analyze the multimodal RGB+D signals for identifying the strengths of respective

modalities through teasing out their mutual and independent components and to utilize

them for improving the classification of human actions.

Having multiple sources of information, one can find a new space of common

components which can be more robust than any of the input features. Through linear

projections, Canonical Correlation Analysis (CCA) [30, 33] gives us the correlated

form of input modalities which in essence is a robust representation of multimodal

signals. However, the downside of CCA is the linearity limitation. Kernel Canonical

Correlation Analysis (KCCA) [44] extended this idea into nonlinear kernel-based

projections, which is still limited to the representation capacity of the kernel’s space

and is not able to disentangle the high-level nonlinear complexities between the input

modalities. Further, the traditional solutions of CCA and KCCA are to solve the

maximization of correlation between the projected vectors analytically, which does

not scale well with the size of the data.

To overcome these limitations, a new deep autoencoder-based nonlinear correlation

analysis network is proposed to discover the common components of input RGB+D

signals.

Besides the correlated components, each input modality has independent features

which carry discriminative information for the recognition task. In this respect, we can

enhance the representation by incorporating the independent components of respective

modalities [13, 79]. Based on this intuition, at each layer our deep network factorizes

the multimodal input features into their correlated and mutually independence compo-

nents. By stacking such layers, we further decode the complex and highly nonlinear

representations of the input modalities in a nonlinear fashion.

Across the layers, our deep correlation-independence analysis extracts a set of

structured features which consist of hierarchically factorized correlated and inde-

pendent components. The correlated components are robust against noise and miss-

ing information between the modalities, and the independent components carry the

modality-specific features. To effectively perform recognition tasks on our structured

features, we design a structured sparsity-based learning framework. With different

mixed norms, features of each component can be grouped together and group selection

can be applied to learn a better classifier. We also show that the advantage of our

learning framework is more significant as the network gets deeper.

One of the most related methods to this work is [35] which factorized the input

features to shared and private components by applying structured sparsity, for the task

of multi-view learning on human pose estimation, with linearity assumption. In addi-
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tion, Cai et al. [13] proposed a nonlinear factorization of the features into common and

individual components, towards a better representation of features for action recogni-

tion. They utilized mixture models to add nonlinearity to linear probabilistic CCA [5].

In contrast, the proposed analysis technique in this chapter stacks layers of nonlinear

correlation analysis to progressively disentangle highly nonlinear correlations between

the input features.

While learning frameworks in [103–106] applied structured sparsity for other

similar tasks, our structured sparsity learning machine extends the sparse selection

into two levels of concurrent component and layer selection, which is more suited to

the hierarchical outputs from our deep factorization network.

There are other works which utilized deep networks for multimodal learning. Sri-

vastave and Salakhutdinov [89] and Ngiam et al. [62] used deep Boltzmann machines

(DBM) for finding a common space representation for two input modalities, and

predict one modality from the other. Andrew et al. [4] proposed a deep canonical

correlation analysis (DCCA) network with two stacks of deep embedding followed by

a canonical correlation analysis(CCA) on top layer.

The proposed method in this chapter is different from these works in two major

aspects. First, the previous work performed the correlation analysis in just one layer

of the deep network, but our proposed method performs correlation analysis in every

single layer. Second, we incorporate independent components in each layer to maintain

all the modality specific information, at each layer. Our solution is general and can be

applied on any type of RGB and depth based features to analyze their correlated and

independent components.

The rest of this chapter is organized as follows. Section 4.2 describes the proposed

deep component factorization network. Section 4.3 presents our structured sparsity-

based classification framework for factorized components. Section 4.4 introduces

a CCA-based baseline method for multimodal RGB+D analysis and factorization.

Section 4.5 provides our experimental results, and section 4.6 concludes the chapter.

4.2 Deep Correlation-Independence Analysis

We have two sets of features extracted from different modalities of data (RGB and

depth signals) as our input for the task of action classification. State-of-the-art RGB

based features [102, 107] include 2D motion patterns and appearance information of

objects and scenes. On the other hand, various depth-based features [67, 73, 110, 120]

encode 3D shape and motion information, without appearance and texture details.
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Consequently, it is beneficial to fuse the complementary RGB and depth-based features

for better performance in action analysis.

There are different techniques for feature fusion. The choice of fusion strategy

should rely on dependency of features [79]. Since RGB and depth based features

encode an entangled combination of common and modality-specific information of

the observed action, they are neither independent nor fully correlated. Therefore, it is

reasonable to embed the input data into a space of factorized correlated components

and independent components. The combination of the correlated and independent

components in input features can be very complex and highly nonlinear. To disentangle

them, we stack layers of nonlinear autoencoder-based component factorization to form

a deep correlation-independence analysis network.

In this section, we first introduce our basic framework of correlation-independence

analysis for multimodal signal factorization, then describe the deep network of stacked

layers, where each layer performs correlation-independence analysis and collectively

produce a hierarchical set of correlated and independent components.

4.2.1 Single Layer Correlation-Independence Analysis

Let us notate input RGB features by Xr and depth features by Xd . We propose to

factorize each input feature pattern into two spaces: first, common component space

which corresponds to the highest correlation with the other modality (Yr,Yd), and

second, its independent feature component space (Zr,Zd):




Yr

Yd

Zr

Zd



= g(Xr,Xd;Ω) (4.1)

where Ω is the set of model parameters that will be learned from the training data.

We propose a sparse autoencoder-based network as the g(.) function, as illustrated in

Fig. 4.1.

Feature vectors of each modality are factorized into Y and Z which represent

shared and individual components of each modality respectively. Each component is

derived from a linear projection of the input features followed by a nonlinear activation.
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Fig. 4.1 Illustration of the proposed single layer correlation-independence analysis. Xr

and Xd are input RGB and depth based features. We factorize each input feature into

correlated (Y) and independent (Z) components by enforcing the Y components to be

close, and the input features to be reconstructible from derived components.

Mathematically:

Yr = f (WrXr +bYr
1n) (4.2)

Zr = f (VrXr +bZr
1n) (4.3)

in which f (.) is a nonlinear activation function. We used sigmoid scaling in our

implementation. W. and V. are learning weights, and b. are learning bias terms.

Similarly, for the depth based input, we have:

Yd = f (WdXd +bYd
1n) (4.4)

Zd = f (VdXd +bZd
1n) (4.5)

To prevent output degeneration, we expect the original features to be reconstructible

from their factorized components [48]:

X̃r = f (
[
Qr Ur

][Yr

Zr

]
+b

X̃r
1n)

= f (QrYr +UrZr +b
X̃r

1n) (4.6)

X̃d = f (
[
Qd Ud

][Yd

Zd

]
+b

X̃d
1n)

= f (QdYd +UdZd +b
X̃d

1n) (4.7)
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where Q. and U. are learning weights, and b. are learning bias terms. Now we can

formulate the desired component factorization into an optimization problem with the

cost function:

Ω∗ = argmin
Ω

∆(Yr,Yd)+λ ∥Ω∥2

+ ζr ∆(Xr, X̃r)+ζd ∆(Xd, X̃d)

+ αr Ψ(Yr;ρY )+αd Ψ(Yd;ρY )

+ βr Ψ(Zr;ρZ)+βd Ψ(Zd;ρZ) (4.8)

where Ω = {W.,V.,Q.,b.} is the set of all parameters, and [λ ,ζ.,α.,β.] are hyper-

parameters of trade-off between terms.

The first term in (4.8) enforces the correlated components of the two modalities

(Yr and Yd) to be as close as possible. We formulate this term as the Frobenius norm

of the difference between two matrices:

∆(Yr,Yd) = ∥Yr −Yd∥F (4.9)

The second term is the general weight regularization term, applied on the projection

weights to prevent networks from overfitting training data.

The reconstruction costs are represented as ∆(Xr, X̃r) and ∆(Xd, X̃d) to prevent

the model from degeneration. Here, we use Frobenius norm (the same as (4.9)) of the

reconstruction error for the reconstruction cost term.

Similar to the traditional sparse auto-encoder frameworks, applying sparsity on the

learned hidden units is crucial for learning and discovery of hidden structures of the

input data, especially when the size of the hidden representations are not much less

than the size of the input vectors.

Last four terms of (4.8) are sparsity penalty terms over Y and Z hidden representa-

tions separately. It has been shown in [49, 77] that applying sparsity on the features

of Y and Z will help to improve the learning capability, especially when components

are overcomplete. As our sparsity penalty functions (Ψ), we use KL-divergence term,

applied between Y components the sparsity parameters ρY , and between Z components

and ρZ .

It is worth pointing out, since the proposed framework is built on a sparse

autoencoder-like scheme and has sigmoid scaling nonlinearity, it is necessary to

apply PCA whitening on the input matrices Xr and Xd and scale their elements into

the range of [0,1].
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In this formulation, the independence of Zd and Zr components is enforced im-

plicitly. The similarity inducing norm pushes the correlated components of the two

modalities to move inside Y components. Therefore, we expect the remaining features

in each of Z components to be highly different across the modalities.

4.2.2 Deep Correlation-Independence Analysis

State-of-the-art RGB and depth based features for action recognition, are extracted by

multiple linear and nonlinear layers of projection, embedding, spatial and temporal

pooling, statistical distribution encodings, e.g. bag of visual words [87], Fisher Vectors

[69] or Fourier temporal pyramids in [110]. Hence the correlated components between

modalities can lie on highly complex and nonlinear subspaces of input data, and one

layer of the proposed correlation-independence analysis cannot decode these correlated

components well.

By cascading multiple correlation-independence analysis layers, we build a deep

network to further factorize input features based on their higher orders of shared and

independent information between modalities. To do so, we feed Y components of the

previous layer as multimodal inputs of the current layer and apply the same method

with new learning parameters in order to further factorize the features. As illustrated

in Fig. 4.2, each layer extracts independent components of the modalities and passes

the shared components for further factorization in the next layer:




Y
(i)
r

Y
(i)
d

Z
(i)
r

Z
(i)
d



=





g(Xr,Xd;Ω(i)) if i = 1

g(Y
(i−1)
r ,Y

(i−1)
d ;Ω(i)) if i > 1

(4.10)

For almost all of the depth-based action recognition datasets, the number of training

samples are not high enough compared to the number of learning weights of the overall

network. In this way, optimizing the entire network in an end-to-end manner leads to

overfitting. Therefore, our deep network is trained greedily and layer-wise, similar

to [6, 31, 50]. In other words, the optimization of each layer is started upon the

convergence of the previous layer’s training.

Upon training of the deep network, each input sample will be factorized into a pair

of independent components (Z
(i)
r ,Z

(i)
d ) for each layer i∈ [1, .., l], plus the concatenation

of last layer’s correlated components (Y
(l)
r ,Y

(l)
d ).
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Fig. 4.2 Cascading factorization layers to a deep correlation-independence network. To

disentangle the highly nonlinear combination of correlated-independent components,

factorization layers are stacked by feeding the Y components of each layer as inputs

of the next layer.

4.2.3 Convolutional Correlation-Independence Analysis

By limiting our analysis into holistic RGB+D features, we may lose discriminative

local information in both modalities. In addition, local features also have dependencies

across modalities and their correlation-independence analysis (CIA) is important.

Therefore, as depicted in Fig. 4.3, we first train the local deep CIA network (CIAL) on

local RGB+D features of smaller cubes of training samples videos. Then we apply the

learned CIAL to decompose the features of all local cubes. By concatenating all the

factorized components of local cubes together with corresponding holistic features of

video samples, we build the input for the holistic CIA network (CIAH), similar to [47].

The inputs of CIAH are PCA whitened and scaled into the range of [0,1].

Overall, we have L = l1 + l2 layers of factorization where l1 and l2 are the number

of layers in CIAL and CIAH networks respectively. By applying the trained local-

holistic networks into the features of each video sample, we have a set of 2L+ 1

independent components:

A = {(Z1
r )

T
,(Z1

d)
T
, ...,(ZL

r )
T
,(ZL

d)
T
,(YL)T}T (4.11)

where YL =

[
YL

r

YL
d

]
is the concatenation of last layer’s correlated components.
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Fig. 4.3 Schema of our convolutional and holistic networks of correlation-independence

analysis (CIA). We divide each video into n local cubes. Local features Xi
r and Xi

d

are extracted from the ith cube. Convolutional network (denoted as CIAL) is trained

and then applied to decompose local features. The factorized components are then

combined with holistic features XH
r and XH

d . This combination undergoes PCA and is

fed into the holistic network (denoted as CIAH) as its multimodal input.
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4.2.4 Optimization Algorithm

The proposed formulation of cost function (4.8) is not a convex function of training

parameters. Therefore, optimization of the learning parameters is not feasible in a

single step. We iteratively optimize subsets of the parameters while keeping others

fixed to achieve a suboptimal solution which is already shown effective in different

applications [122].

Specifically, the learning parameters of each layer can be divided into two sub-

sets. First are the ones defined for projection and reconstruction of the correlated

components Y., and second consists of similar parameters for individual component

Z.. These two sets are:

ΩY = {Wr,Wd,Qr,Qd,bYr
,bYd

,b
X̃r
,b

X̃d
} (4.12)

ΩZ = {Vr,Vd,Ur,Ud,bZr
,bZd

,b
X̃r
,b

X̃d
} (4.13)

Now, to optimize the overall cost, we first fix ΩZ (except b
X̃.

) and minimize the cost

function (4.8) regarding ΩY . Then fix parameters of ΩY (except b
X̃.

) and optimize

regarding ΩZ and repeat this iteratively to converge into a suboptimal point.

In our implementation, all the optimization steps are done by “L-BFGS” algorithm

using off-the-shelf “minFunc” software [80].

4.3 Structured Sparsity Learning Machine

Previous correlation-independence analysis steps were all unsupervised and applied

just based on the dependency of the two modalities. As a result, the factorized features

of each component are not guaranteed to be equally discriminative for the following

classification step. Hence we adopt the structured sparsity regularization method of

[104, 106] aiming to select a number of components/layers sparsely to achieve more

robust classification. Since the features of each component are highly correlated,

our structured sparsity regularizer bounds the weights of the features inside each

component to become activated or deactivated together.

Mathematically, we want to learn a linear projection matrix B to project our

hierarchically factorized features A (see align 4.11), to a class assignment matrix F
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defined as:

f
j

i =





1 if jth sample belongs to the ith class

0 otherwise
(4.14)

so that AT B would be as close as possible to F.

Each column of A consists of 2L+ 1 components of features for each training

sample. We use the notation AG to denote the rows of A which include the features of

component G. Variable G is the index of the group of the feature elements and can take

values between 1 and 2L+1 or their corresponding component labels. Correspondingly,

columns of B have the same structure, and we denote the Gth component’s parameters

as BG. We refer to the ith column of B as bi which is the projection to our binary

classifier for the ith action. Finally bG
i refers to the ith column of BG.

Our classifier is formulated as another optimization problem with the cost function

below.

B∗ = argmin
B

∥∥AT B−F
∥∥2

F
+ γE ∥B∥GE

+ γL ∥B∥GL
+ γW ∥B∥F (4.15)

The first term of (4.15) is the squared distance norm between the projections and

the ground truth classification labels of F. The second term, is the mixed norm to group

and regularize the weights of each component together and apply sparsity between

them to enforce a component selection regime. Similarly, the third term applies a

layer-wise selection and regularization within each layer. The last norm in (4.15) is a

general weight decay regularizer to prevent the entire classifier from overfitting.

Component-wise regularizer norm, ∥B∥GE
, groups the weights of each component

by applying a ℓ2 norm. Then applies the component selection by a ℓ1 norm over the ℓ2

values of all components. Mathematically:

∥B∥GE
=

c

∑
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2L+1
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∥∥∥bG
i
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2

=
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∥∥∥
2
+

∥∥∥∥b
Z

j
d

i
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2

)
+

c

∑
i=1

∥∥∥bY L

i

∥∥∥
2

(4.16)

where c is the number of class labels.

This mixed norm dictates the component-wise weight learning regarding their

discriminative strength for each action class. Since it applies ℓ2 norm inside the com-

ponents and ℓ1 norm between them, it regularizes the weights within each component,

while sparsely selects discriminative components for different classes.
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On the other hand, a layer-wise group selection can also be beneficial, because

discriminative features may become factorized in some layers of our hierarchical deep

network. Based on this intuition, we apply another group sparsity mixed norm to

enforce layer selection. Similar to GE norm, our layer selection norm (GL) groups the

learning parameters corresponding to the components of each layer of the network,

and applies ℓ1 sparsity between them:

∥B∥GL
=

c

∑
i=1

L

∑
j=1

∥∥∥∥∥∥


b

Z
j
r

i

b
Z

j
d

i



∥∥∥∥∥∥

2

+
c

∑
i=1

∥∥∥bY L

i

∥∥∥
2

(4.17)

Similar to previous section, this optimization is also done using “L-BFGS” algo-

rithm. Upon training the classifier and finding the optimal B∗, we classify each testing

sample with exemplar features aq as:

h(aq) = argmax
c

⟨ aq,b
∗
c ⟩ (4.18)

4.4 CCA-RICA Factorization as a Baseline Method

As a baseline to the proposed method to perform the correlation-independence analysis

of the RGB+D inputs, we combined canonical correlation analysis (CCA) [33, 30] and

reconstruction independent component analysis (RICA) [48], to extract correlated and

independent components of input features. In this section we describe this baseline

method.

We use the notation Xr to represent input local RGB features, and Xd for cor-

responding local depth features. We define the linear projections of the two input

features as:

Yr = Wr,cXr , Yd = Wd,cXd (4.19)

and to make them maximally correlated we maximize:

maximize
w

j
r,c,w

j
d,c

Corr(Y j
r ,Y

j
d)

= Corr(w j
r,cXr,w

j
d,cXd) (4.20)

in which superscript j refers to the jth row of the corresponding matrices.
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Canonical correlation analysis [33, 30] solves this analytically as an eigenproblem,

in which each eigenvector gives one row of the projection and altogether provides the

full projection matrices which lead to the maximum correlation between them.

Based on our intuition about insufficiency of correlated components for recognition

tasks, in the second step, we fix correlation projections (Wr,c,Wd,c) and apply a

reconstruction independent component analysis formulation [48], to extract modality-

specific components for RGB and depth separately.

Zr = Wr,iXr , Zd = Wd,iXd (4.21)

For RGB features we optimize:

mininize
wr,i

λ

m

∥∥∥X̃r −Xr

∥∥∥
2

F
+ ∑

j

∥∥∥W
j
r,iXr

∥∥∥
1

where X̃r =
[
WT

r,c,W
T
r,i

]
[

Wr,c

Wr,i

]
Xr (4.22)

Similarly for depth features we optimize:

mininize
wd,i

λ

m

∥∥∥X̃d −Xd

∥∥∥
2

F
+ ∑

j

∥∥∥W
j
d,iXd

∥∥∥
1

where X̃d =
[
WT

d,c,W
T
d,i

]
[

Wd,c

Wd,i

]
Xd (4.23)

Upon convergence of (4.22) and (4.23), the RGB+D features of each trajectory (k)

can be represented as a quadruple: {Zr(k),Yr(k),Yd(k),Zd(k)}.

4.5 Experiments

This section presents our experimental setup and the results of the proposed methods

on three RGB+D action recognition datasets. The description of the datasets are

provided in section 2.3.1.

4.5.1 Experimental Setup

The proposed methods are evaluated on three RGB+D action recognition datasets. All

these datasets are collected using the Microsoft Kinect sensor in an indoor environment.
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Since the RGB and depth sequences are not fully aligned and not synced in Kinect

sequences, convolutional cubes have to be large enough so that they mostly cover

the same parts of the video between the two modalities. To apply the convolutional

network, we consider four temporal quarters of the videos. In this way, each input

sample has four temporal segments in our convolutional network and the factorized

components of all these segments, together with holistic features of the entire sample

are considered as the inputs of the stacked network.

To cover various aspects of RGB+D motion and appearances of input samples,

we used a combination of different features. For depth channel, we extract histogram

of oriented 4D normals (HON4D) [67], dynamic skeletons (DS), and dynamic depth

patterns (DDP) [34]. From RGB videos, we extract dynamic color patterns (DCP)

[34] and dense trajectory features [107]. In all of the experiments, different features of

each modality are concatenated and then fed to a PCA to reduce their dimensions to a

fixed size of 200 elements for local level and 400 for holistic level analysis.

The proper depth of the networks is found to be two layers for the local convolu-

tional and three layers for the holistic network, via cross-validation. The size of X.,

Y., and Z. vectors is fixed as 100 for local features and 200 for holistic and stacked

networks in our experiments.

In our experiments, the optimal values of the hyper-parameters in CIA aand SSLM

are found via leave-one-sample-out cross-validation over training samples. Due to the

difference of the datasets, these hyper-parameters are tuned for each dataset separately.

To show the effectiveness of our method, we compare it with two baseline methods

below:

Baseline method 1: descriptor level fusion. In this method, we concatenate all the

input RGB and depth-based features and train a linear SVM for classification.

Baseline method 2: kernel level combination. For this baseline method, we

calculate the RBF kernel matrices based on all the input RGB and depth-based features

and combine them linearly to classify in the form of multi-kernel SVM. We find the

weights of kernels via a brute force search in a cross-validation setting using training

samples [10].

In the following tables, we report the results of our method in two settings:

Ours Kernel is the kernel combination of the hierarchically factorized components

of our correlation-independence analysis network. This is similar to the approach of

baseline method 2, but using the factorized components of the deep CIA network for

calculation of the kernel values.

Ours SSLM: refers to the proposed structured sparsity learning machine based on

the hierarchically factorized components described in section 4.3.



4.5 Experiments 67

4.5.2 Online RGB+D Action Dataset

Three different recognition scenarios are defined on this dataset. The first and second

scenarios are cross-subject tests. In the first scenario, the first 8 actors are assigned for

training and the second 8 actors are for testing. The samples of the second scenario

are the same as the first one but training and testing samples are swapped. The third

scenario is a cross-environment setting. The videos of the third 8 actors are collected

in another location and are considered as test data. The other 16 actors’ videos are

used for training. The first and second scenarios are cross-subject and the third is a

cross-environment evaluation.

Table 4.1 compares the results of the deep correlation-independence analysis (CIA)

and structure sparsity learning machine (SSLM), and baseline methods on this dataset.

The results of this experiment show our deep correlation-independence networks

successfully decompose input features into a more powerful representation which

leads into a clear improvement on the classification performance. They also show

our SSLM can select the discriminative components and layers and learns a better

classifier.

We also compare different structures of our deep correlation-independence analysis

networks. For each scenario, we report the performance of three structures. “Holistic”

refers to the 3-layer deep network applied on holistic features. “Local” is the 2-

layer convolutional network applied on local features. “Stacked local+holistic” is the

stacked local and holistic networks, as illustrated in Fig. 4.3. The results are reported

in Table 4.2. We conclude that the local and holistic features are complementary and

applying stacked local+holistic network can improve the final classification accuracy.

In our third experiment on this dataset, performance of the proposed networks is

compared with a similar network without independent components. The reference

network acts similarly to traditional CCA methods. We compare these two networks

on the “local” network of third scenario. The result is shown in Table 4.3. We can

see including independent components is beneficial and improves the accuracy. The

second observation is our method improves the performance more significantly by

having multiple layers. Without independent components, the values of correlated

units can not change much, on higher layers. This shows our proposed structure is

suitable for cascading more layers and decomposing the features layer by layer.

Table 4.4 compares our results with the state-of-the-art method on this dataset. Due

to the recency of this dataset, only two other works reported results on this dataset. As

shown, our method outperforms their results with a large margin, which demonstrates
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Evaluation Baseline Baseline Ours Ours

Dataset Method 1 Method 2 Kernel SSLM

Online RGB+D Action S1 86.6% 91.1% 92.9% 95.5%

Online RGB+D Action S2 85.6% 91.0% 91.9% 93.7%

Online RGB+D Action S3 73.0% 80.2% 82.0% 83.8%

MSR Daily Activity 3D 91.9% 94.4% 96.3% 97.5%

3D Action Pairs 97.7% 98.3% 100.0% 100.0%

RGBD-HuDaAct 95.1% 97.6% 98.3% 99.0%

Table 4.1 Comparison of the results of our methods with the baselines in all the three

datasets: Online RGB+D Action, MSR Daily Activity 3D, 3D Action Pairs, and

RGBD-HuDaAct datasets. S1, S2, and S3 refers to the three different scenarios of

the Online RGB+D Action dataset. First column shows the performance of descriptor

concatenation on all RGB+D input features. Second column reports the accuracy of the

kernel combination on the same set of features. Third column shows the result of our

correlation-independence analysis. It employs a kernel combination for classification.

Last column reports the accuracy of proposed structured sparsity learning machine.

the importance of RGB+D fusion for action recognition as well as the effectiveness of

our proposed method for this task.

4.5.3 MSR Daily Activity 3D Dataset

Results of the evaluation on this benchmark are reported in Tables 4.1 and 4.2.

Table 4.5 also shows the accuracy comparison between the proposed method and

the state-of-the-art results reported on this benchmark, in which we outperform all the

other methods with about two percentage points of accuracy. This shows our RGB+D

analysis method can effectively improve the performance of the action recognition

system.

4.5.4 3D Action Pairs Dataset

Table 4.6 compares the accuracies between the proposed framework and the state-of-

the-art methods reported on this benchmark. Our method ties with BHIM [38]) and

our MMMP method (chapter 3) in saturating the benchmark by achieving the flawless

100% accuracy on this dataset.
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Evaluation Network Ours Ours

Dataset Structure Kernel SSLM

Online RGB+D Action S1 Holistic 90.2% 92.0%

Online RGB+D Action S1 Local 92.9% 93.8%

Online RGB+D Action S1 Stacked Local+Holistic 92.9% 95.5%

Online RGB+D Action S2 Holistic 87.4% 91.0%

Online RGB+D Action S2 Local 88.3% 89.2%

Online RGB+D Action S2 Stacked Local+Holistic 91.9% 93.7%

Online RGB+D Action S3 Holistic 79.3% 82.0%

Online RGB+D Action S3 Local 75.7% 77.5%

Online RGB+D Action S3 Stacked Local+Holistic 82.0% 83.8%

MSR Daily Activity 3D Holistic 95.0% 96.3%

MSR Daily Activity 3D Local 95.0% 96.9%

MSR Daily Activity 3D Stacked Local+Holistic 96.3% 97.5%

3D Action Pairs Holistic 98.9% 99.4%

3D Action Pairs Local 99.4% 98.9%

3D Action Pairs Stacked Local+Holistic 100.0% 100.0%

RGBD-HuDaAct Holistic 98.3% 99.0%

RGBD-HuDaAct Local 98.7% 98.7%

RGBD-HuDaAct Stacked Local+Holistic 98.3% 99.0%

Table 4.2 Performance comparison for holistic network, local network, and stacked

local+holistic (Fig. 4.3) networks on all the four datasets. Reported are the results of

our method using kernel combination and SSLM.

Network Layer 1 SSLM 2 Layers SSLM

Local Without Z 73.0% 73.9%

Local With Z 76.6% 77.5%

Table 4.3 Comparison with a correlation network (without independent components) on

the Online RGB+D Action dataset, local network, scenario 3. Without Z components,

the network is limited to the correlated ones and acts similar to CCA.
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Methods Setup Accuracy

Orderlet [128] Same environment 71.4%

Meng et al. [61] Same environment 75.8%

Proposed Method Same environment 94.6%

Orderlet [128] Cross-environment 66.1%

Proposed Method Cross-environment 83.8%

Table 4.4 Performance comparison of proposed multimodal correlation-independence

analysis with the state-of-the-art results on Online RGB+D Action dataset. Same

environment setup is the average of S1 and S2 scenarios, and cross-environment setup

is the same as S3 scenario.

Method Accuracy

HON4D [67] 80.0%

SSFF [84] 81.9%

ToSP [88] 84.4%

RGGP [56] 85.6%

Actionlet [110] 85.8%

SVN [125] 86.3%

BHIM [38] 86.9%

DCSF+Joint [120] 88.2%

MMTW [112] 88.8%

Depth Fusion [140] 88.8%

MMMP [83] 91.3%

DL-GSGC [60] 95.0%

JOULE-SVM [34] 95.0%

Range-Sample [58] 95.6%

Proposed Method 97.5%

Table 4.5 Performance comparison of the proposed multimodal correlation-

independence analysis with the state-of-the-art methods on MSR Daily Activity

dataset.
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Method Accuracy

DHOG [126] 66.11%

Actionlet [110] 82.22%

HON4D [67] 96.67%

MMTW [112] 97.22%

HOG3D-LLC [70] 98.33%

HOPC [73] 98.33%

SVN [125] 98.89%

BHIM [38] 100.0%

MMMP (chapter 3) 100.0%

Proposed Method 100.0%

Table 4.6 Performance comparison of proposed multimodal correlation-independence

analysis with the state-of-the-art methods on 3D Action Pairs dataset.

4.5.5 Comparison with Single Modality

In Table 4.7, we compare our method with baseline method 2, based on single modality

features. Since each modality also has holistic and multiple local features, we perform

baseline kernel combination to produce the results. For a fair comparison, we use

kernel combination for classification based on our factorized components. It is not

surprising to observe that our method outperforms the baseline, since ours integrates

RGB and depth information effectively.

4.5.6 Analysis of Factorized Components

Next is to study how much of information each of the factorized components in the

proposed deep network hold. Table 4.8 shows the proportion of the weights assigned by

SSLM to the factorized components of the stacked local+holistic networks. Reported

values are the ℓ2 norms of all the corresponding weights to each of the components,

learned by SSLM on the stacked local+holistic networks. The assigned weights to Y3

are relatively high on all the evaluations, which supports our initial argument about

robustness and discriminative properties of the correlated factorized components. The

independent components of both the modalities in all three layers also gain weights,

which shows they also carry informative features and are complementary for the action

classification task.
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MSR Daily 3D RGBD Online Online Online

Method Activity Action HuDa RGBD RGBD RGBD

3D Pairs Act Action S1 Action S2 Action S3

Baseline 2 on

RGB-based 89.4% 97.7% 95.2% 81.3% 85.6% 75.7%

Local+Holistic

Baseline 2 on

depth-based 92.5% 97.7% 79.1% 85.7% 84.7% 66.7%

Local+Holistic

Ours Kernel 96.3% 100.0% 98.3% 92.9% 91.9% 82.0%

Table 4.7 Comparison between our method and baseline method 2 on single modality

RGB and depth based input features, on all the datasets.

Dataset Z1
r Z2

r Z3
r Y3 Z3

d Z2
d Z1

d

Online S1 0.12 0.13 0.18 0.20 0.13 0.05 0.18

Online S2 0.29 0.06 0.03 0.42 0.06 0.11 0.03

Online S3 0.14 0.12 0.06 0.26 0.13 0.00 0.28

Daily 0.17 0.10 0.09 0.19 0.15 0.11 0.19

Pairs 0.06 0.02 0.16 0.42 0.01 0.03 0.29

Table 4.8 Proportion of the weights to factorized components in the learned SSLM

classifier, for all the three datasets. Reported values are the ℓ2 norms of all the

corresponding weights to each of the components, learned by SSLM on the stacked

local+holistic networks.
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4.5.7 RGBD-HuDaAct Dataset

In our experiments for this dataset, we follow the evaluation setup described in [63].

Atomic Local Level Feature Analysis

Unlike most of the other datasets, this benchmark provides fully synchronized and

aligned set of RGB and depth videos. This important characteristic enables us to apply

the atomic level of analysis on local RGB and depth features within the video samples.

As our atomic local level features, we extract the tracked dense trajectories [107]

in RGB sequences and their HOG, HOF, MBHX, and MBHY descriptors from both

modalities.

To evaluate the effectiveness of the proposed RGB+D analysis, we apply a sin-

gle layer CIA to decompose RGB and depth descriptors of the trajectories to their

correlated and independent components. For training stage, we sample a set of 40K

trajectories from training set. The output of the analysis, which are four factorized

components for each trajectory are clustered separately by K-Means with codebook

size 1K. LLC coding [113] and BOF framework are applied on the codes of all the

trajectories from each RGB+D video sample to extract their global representations.

In the final step, a linear SVM is used as the action classifier trained on the extracted

global representations of the action video samples.

We evaluated the performance of canonical correlation analysis (CCA) method

also. In our implementation of the CCA-RICA method (section 4.4) we used the

provided codes by the authors of [9] for CCA and [48] for RICA.

Table 4.9 shows the results of all the experiments described in this section and

compares them with other state-of-the-art methods.

At first, we evaluated the performance of correlated components of CCA without

any modality specific features, which achieves 93.9% outperforming all the reported

results on this benchmark. Compared to the accuracy of RGB+D linear coding [53],

which has the most similar pipeline of action recognition to ours, CCA components

shows about two percents improvement. This approves the robustness of correlated

components and their advantage over using a simple combination of features from the

two modalities.

In the next step, we apply RICA to extract modality-specific components for RGB

and depth local features. Adding independent components improves the accuracy

of the classification by 2.5 more percents. This supports our argument about the

importance of modality-specific components and their discriminative strengths for

action classification.
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A B C D E F G H I J K L M

exit the room A 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

make a phone call B 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01

get up from bed C 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

go to bed D 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sit down E 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mop floor F 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

stand up G 0.00 0.04 0.00 0.00 0.06 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00

eat meal H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

put on jacket I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.02 0.00

drink water J 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.94 0.00 0.00 0.01

enter room K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

take off jacket L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.00

background activity M 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.79

Fig. 4.4 Confusion matrix for CCA-RICA method on atomic local level features

RGBD-HuDaAct dataset. Ground truth action labels are on rows and detections are on

columns of the grid.

The confusion matrix for this method is illustrated in Fig. 4.4. The majority of

the misclassification are caused by the background activity class. This class contains

samples of random motion and other simple activities which are not covered by other

12 classes, like walking around or stay seated without much of motion. Therefore it is

inevitable to have some confusion between this class with classes which contain very

small amount of clear motion e.g. making a phone call. Similar action classes with

reverse temporal order are also mixed up, e.g. sit down and stand up, or put on jacket

and take off jacket classes have the same appearance within individual frames, and

their only differences are the arrangement of frames over time.

Next, we evaluate the CIA method on this atomic local level. Since the extraction of

correlated and independent components are done together in this method, optimization

of the overall cost function can effectively discover a proper range of the correlated

components between RGB and depth and assign the remaining information inside

the input features as independent components. We believe this is the reason CIA

outperforms all other techniques by performing 97.9% of correct classification and

achieves the state-of-the-art accuracy on this dataset. Compared to CCA-RICA method,

CIA improves the error rate by more than 40% which is a notable improvement. The

confusion matrix of this experiment is also reported in Fig. 4.5. Compared to the

mixed up cases of the CCA-RICA method (Fig. 4.4), the confusion patterns are similar

but furthered improved.
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A B C D E F G H I J K L M

exit the room A 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

make a phone call B 0.00 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

get up from bed C 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

go to bed D 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sit down E 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mop floor F 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.02

stand up G 0.00 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00

eat meal H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.02 0.00 0.00 0.00

put on jacket I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

drink water J 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.96 0.00 0.00 0.01

enter room K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

take off jacket L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.96 0.00

background activity M 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.92

Fig. 4.5 Confusion matrix for CIA method on atomic local level features of RGBD-

HuDaAct dataset. Ground truth action labels are on rows and detections are on columns

of the grid.

Global Level Feature Analysis

Similar to other three datasets reported in this chapter, we perform the proposed

RGB+D analysis on the global representations extracted from input samples. For

RGB signals, the features are HOG, HOF, MBHX, and MBHY descriptors of dense

trajectories [107], followed by a K-means clustering and locality-constrained linear

coding (LLC) [113] to calculate their global representations as bags-of-features. For

depth, we extract HON4D features [67] for holistic and local depth based features.

The results of this experiment are reported in Tables 4.9, 4.1, 4.2, and 4.7 in a similar

evaluation setup to other datasets.

As can be seen in Table 4.9, applying CIA analysis in a deep and stacked framework

outperforms all the current methods as well as the atomic local level analysis, and

achieved the outstanding performance of 99.0% on this benchmark, which shows

more than 50% improvement on the error rate compared to the atomic local level CIA

analysis.

Other reported results are also in accord with our results on other datasets and ap-

prove our arguments about the effectiveness of the structure of the proposed framework

in this chapter.

4.6 Chapter Summary

This chapter presents a new deep learning framework for a hierarchical correlated-

independent component factorization, to analyze RGB+D features of human action
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Method Accuracy

3D-MHIs [63] 70.5%

iM2EDM [15] 76.8%

MF-HMM [40] 78.6%

DLMC-STIPs [63] 81.5%

DIMC-STIPs [137] 87.7%

STIP HOGHOF+LDP [136] 89.1%

Part-based BOW-Pyramid [94] 91.7%

RGB+D Linear Coding [53] 92.0%

CCA (Atomic Level) 93.9%

CCA-RICA (Atomic Level) 96.4%

Single Unit CIA (Atomic Level) 97.9%

Deep Stacked CIA (Global Level) 99.0%

Table 4.9 Performance Comparison on RGBD-HuDaAct Dataset

videos. Each layer of the proposed network is an autoencoder based component

factorization unit, which decomposes its multimodal input features into correlated and

independent parts. We further extended our deep factorization framework by applying

it in a convolutional setting.

In addition, we proposed a structured sparsity based classifier which utilizes mixed

norms to apply component and layer selection for a proper fusion of decomposed

feature components.

Provided experimental results on four RGB+D action recognition datasets show

the strength of our deep correlation-independence analysis and the proposed structured

sparsity learning machine by achieving the state-of-the-art performances on all the

reported benchmarks.



Chapter 5

NTU-RGB+D: A Large Scale Dataset

for 3D Human Activity Analysis

During our research and experiments on depth-based and RGB+D based human activity

analysis in previous chapters, we found a major bottleneck of the research in this

direction: lack of enough data. To the best of our knowledge, all the current RGB+D

human action datasets were highly limited in various aspects. These limitations

prevents us from moving towards more complex learning frameworks.

This urged us to collect and propose a new large-sized RGB+D human actions

dataset. In this chapter, we introduce our dataset and propose a novel data-driven

learning framework for action recognition, trained and evaluated on this dataset.

5.1 Introduction

Unlike the RGB-based counterpart, 3D video analysis suffers from the lack of large-

sized benchmark datasets. Yet there are no sources of publicly shared 3D videos

such as the YouTube to supply “in-the-wild” samples. This limits our ability to build

large-sized benchmarks to evaluate and compare the strengths of different methods,

especially the recent data-hungry techniques like deep learning. To the best of our

knowledge, all the current 3D action recognition benchmarks have limitations in

various aspects.

First is the small number of subjects and very narrow range of performers’ ages,

which makes the intra-class variation of the actions very limited. The constitution of

human activities depends on the age, gender, culture and even physical conditions of

the subjects. Therefore, variation of human subjects is crucial for an action recognition

benchmark.
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The second factor is the number of action classes. When only a very small number

of classes are available, each action class can be easily distinguished by finding a

simple motion pattern or even the appearance of an interacted object. But when the

number of classes grows, the motion patterns and interacting objects will be shared

between classes and classifying them would be more challenging.

Third is the highly restricted camera views. For most of the datasets, all the samples

are captured from a front view with a fixed camera viewpoint. For some others, views

are bounded to fixed front and side views, using multiple cameras at the same time.

Finally and most importantly, the highly limited number of video samples prevents

us from applying the most advanced data-driven learning methods to this problem.

Although some attempts have been done to do so [22, 117], they suffered from

overfitting and had to scale down the size of learning parameters; as a result, they

clearly need many more samples to generalize and perform better on testing data.

To overcome these limitations, we develop a new large-scale benchmark dataset

for 3D human activity analysis. The proposed dataset consists of 56,880 RGB+D

video samples, captured from 40 different human subjects, using Microsoft Kinect

v2. We have collected RGB videos, depth sequences, skeleton data (3D locations

of 25 major body joints), and infrared frames. Samples are captured in 80 distinct

camera viewpoints. The age range of the subjects in our dataset is from 10 to 35 years

which brings more realistic variation to the quality of actions. Although our dataset is

limited to indoor scenes, due to the operational limitation of the acquisition sensor,

we provide the ambiance inconstancy by capturing in various background conditions.

This large amount of variation in subjects and views makes it possible to have more

accurate cross-subject and cross-view evaluations for various 3D-based action analysis

methods. Table 5.1 shows the comparison between our dataset and other currently

existing datasets for depth-based action recognition. In almost all of the quantitative

aspects, we provide larger size of data in orders of magnitude.

The proposed dataset can help the community to move forward in 3D human

activity analysis and make it possible to apply data-hungry methods such as deep

learning techniques for this task.

As another contribution, inspired by the physical characteristics of human body

motion, we propose a novel part-aware extension of the long short-term memory

(LSTM) model [32]. Human actions can be interpreted as interactions of different

parts of the body. In this way, the joints of each body part always move together

and the combination of their 3D trajectories form more complex motion patterns. By

splitting the memory cell of the LSTM into part-based sub-cells, the recurrent network
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will learn the long-term patterns specifically for body parts and the output of the unit

will be learned from all the sub-cells.

Our experimental results on the proposed dataset shows the clear advantages of

data-driven learning methods over state-of-the-art hand-crafted features.

The rest of this chapter is organized as follows: Section 5.2 introduces the proposed

dataset, its structure, and defined evaluation criteria. Section 5.3 presents our new

part-aware long short-term memory network for action analysis in a recurrent neural

network fashion. Section 5.4 shows the experimental evaluations of state-of-the-

art hand-crafted features as well as the proposed recurrent learning method on our

benchmark, and section 5.5 concludes the chapter.
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5.2 NTU-RGB+D Action Dataset

This section introduces the details and the evaluation criteria of the proposed RGB+D

action recognition dataset.

5.2.1 The Structure of the Dataset

Data Modalities: To collect this dataset, we utilized Microsoft Kinect v2 sensors.

We collected four different modalities of data from this sensor, which are depth-map

sequences, RGB videos, IR frames, and skeletal data. Depth maps are sequences of

two dimensional depth values in millimeters. To maintain all the information, we

applied lossless compression for each individual frame. The resolution of each depth

frame is 512×424. Joint information consists of 3-dimensional locations of 25 major

body joints for detected and tracked human bodies in the scene. The corresponding

pixels on RGB frames and depth maps are also provided for each joint and every frame.

The configuration of body joints is illustrated in Fig. 5.2. RGB videos are recorded

in the provided resolution of 1920×1080. Infrared sequences are also collected and

stored frame by frame in 512×424.

Action Classes: We have 60 action classes in total, which are divided into three

major groups.

Daily actions: 1-drinking, 2-eating, 3-brushing teeth, 4-brushing hair, 5-dropping,

6-picking up, 7-throwing, 8-sitting down, 9-standing up (from sitting position), 10-

clapping, 11-reading, 12-writing, 13-tearing up paper, 14-wearing jacket, 15-taking

off jacket, 16-wearing a shoe, 17-taking off a shoe, 18-wearing on glasses, 19-taking

off glasses, 20-puting on a hat/cap, 21-taking off a hat/cap, 22-cheering up, 23-hand

waving, 24-kicking something, 25-reaching into self pocket, 26-hopping, 27-jumping

up, 28-making/answering a phone call, 29-playing with phone, 30-typing, 31-pointing

to something, 32-taking selfie, 33-checking time (on watch), 34-rubbing two hands

together, 35-bowing, 36-shaking head, 37-wiping face, 38-saluting, 39-putting palms

together, 40-crossing hands in front.

Medical actions: 41-sneezing/coughing, 42-staggering, 43-falling down, 44-touching

head (headache), 45-touching chest (stomachache/heart pain), 46-touching back (back-

pain), 47-touching neck (neck-ache), 48-vomiting, 49-fanning self.

Mutual actions: 50-punching/slapping other person, 51-kicking other person,

52-pushing other person, 53-patting other’s back, 54-pointing to the other person,

55-hugging, 56-giving something to other person, 57-touching other person’s pocket,

58-handshaking, 59-walking towards each other, 60-walking apart from each other.
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Fig. 5.1 The arrangement of the three Kinect cameras at the same time. For each setup,

the three cameras were located at the same height but from three different horizontal

viewing angles: front view, 45 degrees view, and side view, and each subject was asked

to perform each action twice, once towards the left camera and once towards the right

camera. Overall, we collect two front views, one left side view, one right side view,

one left side 45 degrees view, and one right side 45 degrees view.

Subjects: We invited 40 distinct subjects for our data collection. The ages of the

subjects are between 10 and 35. Fig. 5.5 shows the variety of the subjects in age,

gender, and height. Each subject is assigned a consistent ID number over the entire

dataset.

Views: We used three cameras at the same time to capture three different views

from the same action. In this way, we capture two front views, one left side view, one

right side view, one left side 45 degrees view, and one right side 45 degrees view. The

three cameras are assigned consistent camera numbers. Camera 1 always sees the 45

degrees views, while camera 2 and 3 see front and side views. This is illustrated in

Fig. 5.1.

To further increase the camera views, on each setup we changed the height and

distances of the cameras to the subjects, as reported in Table 5.2. All the camera and

setup numbers are annotated for each video sample.

5.2.2 Benchmark Evaluations

To have standard evaluations for all the reported results on this benchmark, we define

precise criteria for two types of action classification evaluation, as described in this

section. For each of these two, we report the classification accuracy in percentage.
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Setup Height Distance Setup Height Distance

No. (m) (m) No. (m) (m)

1 1.7 3.5 2 1.7 2.5

3 1.4 2.5 4 1.2 3.0

5 1.2 3.0 6 0.8 3.5

7 0.5 4.5 8 1.4 3.5

9 0.8 2.0 10 1.8 3.0

11 1.9 3.0 12 2.0 3.0

13 2.1 3.0 14 2.2 3.0

15 2.3 3.5 16 2.7 3.5

17 2.5 3.0

Table 5.2 Height and distance of the three cameras for each collection setup. All height

and distance values are in meters.

Cross-Subject Evaluation

In cross-subject evaluation, we split the 40 subjects into training and testing groups.

Each group consists of 20 subjects. For this evaluation, the training and testing sets

have 40,320 and 16,560 samples, respectively. The IDs of training subjects in this

evaluation are: 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38;

remaining subjects are reserved for testing.

Cross-View Evaluation

For cross-view evaluation, we pick all the samples of camera 1 for testing and samples

of cameras 2 and 3 for training. In other words, the training set consists of front and

two side views of the actions, while testing set includes left and right 45 degree views

of the action performances. For this evaluation, the training and testing sets have

37,920 and 18,960 samples, respectively.

5.3 Part-Aware LSTM Network

In this section, we introduce a new data-driven learning method to model the human

actions using our collected 3D action sequences.

Human actions can be interpreted as time series of body configurations. These

body configurations can be effectively and succinctly represented by the 3D locations

of major joints of the body. In this fashion, each video sample can be modeled as a

sequential representation of configurations.
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Fig. 5.2 Configuration of 25 body joints in our dataset. The labels of the joints are:

1-base of the spine 2-middle of the spine 3-neck 4-head 5-left shoulder 6-left elbow

7-left wrist 8-left hand 9-right shoulder 10-right elbow 11-right wrist 12-right hand 13-

left hip 14-left knee 15-left ankle 16-left foot 17-right hip 18-right knee 19-right ankle

20-right foot 21-spine 22-tip of the left hand 23-left thumb 24-tip of the right hand

25-right thumb



5.3 Part-Aware LSTM Network 85

Recurrent Neural Networks (RNNs) and Long Short-Term Memory Networks

(LSTMs) [32] have been shown to be among the most successful deep learning models

to encode and learn sequential data in various applications [91, 21, 11, 36].

In this section, we introduce the traditional recurrent neural networks and then

propose our part-aware LSTM model.

5.3.1 Traditional RNN and LSTM

A recurrent neural network transforms an input sequence (X) to another sequence

(Y) by updating its internal state representation (ht) at each time step (t) as a linear

function of the last step’s state and the input at the current step, followed by a nonlinear

scaling function. Mathematically:

ht = σ

(
W

(
xt

ht−1

))
(5.1)

yt = σ
(

Vht

)
(5.2)

where t ∈ {1, ..,T} represents time steps, and σ ∈ {Sigm,Tanh} is a nonlinear scaling

function.

Layers of RNNs can be stacked to build a deep recurrent network:

hl
t = σ

(
Wl

(
hl−1

t

hl
t−1

))
(5.3)

h0
t := xt (5.4)

yt = σ
(

VhL
t

)
(5.5)

where l ∈ {1, ...,L} represents layers.

Traditional RNNs have limited abilities to keep long-term representation of the

sequences and were unable to discover relations among long-ranges of inputs. To

alleviate this drawback, Long Short-Term Memory Network [32] was introduced to

keep a long term memory inside each RNN unit and learn when to remember or forget

information stored inside its internal memory cell (ct):
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Fig. 5.3 Schema of a long short-term memory (LSTM) unit. o is the output gate, i is

the input gate, g is the input modulation gate, and f is the forget gate. c is the memory

cell to keep the long term context.



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g




=




Sigm

Sigm

Sigm

Tanh




(
W

(
xt

ht−1

))
(5.6)

ct = f ⊙ ct−1 + i⊙g (5.7)

ht = o⊙Tanh(ct) (5.8)

In this model, i, f ,o, and g denote input gate, forget gate, output gate, and input

modulation gate respectively. Operator ⊙ denotes element-wise multiplication. Fig. 5.3

shows the schema of this recurrent unit.

The output yt is fed to a softmax layer to transform the output codes to probability

values of class labels. To train such networks for action recognition, we fix the training

output label for each input sample over time.

5.3.2 Proposed Part-Aware LSTM

In human actions, body joints move together in groups. Each group can be assigned

to a major part of the body, and actions can be interpreted based on the interactions

between body parts or with other objects. Based on this intuition, we propose a

part-aware LSTM human action learning model. We dub the method P-LSTM.

Instead of keeping a long-term memory of the entire body’s motion in the cell, we

split it to part-based cells. It is intuitive and more efficient to keep the context of each

body part independently and represent the output of the P-LSTM unit as a combination

of independent body part context information. In this fashion, each part’s cell has
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Fig. 5.4 Illustration of the proposed part-aware long short-term memory (P-LSTM)

unit.

its individual input, forget, and modulation gates, but the output gate will be shared

among the body parts. In our model, we group the body joints into five part groups:

torso, two hands, and two legs.

At each frame t, we concatenate the 3D coordinates of the joints inside each part

p ∈ {1, ...,P} and consider them as the input representation of that part, denoted as x
p
t .

Thusly, the proposed P-LSTM is modeled as:




ip

f p

gp


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


Sigm

Sigm

Tanh


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(
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(
x

p
t

ht−1

))
(5.9)

c
p
t = f p ⊙ c

p
t−1 + ip ⊙gp (5.10)

o = Sigm


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...
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ht = o⊙Tanh




c1
t
...

cP
t


 (5.12)

A graphical representation of the propsed P-LSTM is illustrated in Fig. 5.4.
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Our P-LSTM learns the common temporal patterns of the parts independently and

combines them in the global level representation for action recognition.

5.4 Experiments

In our experiments, we evaluate state-of-the-art depth-based action recognition meth-

ods and compare them with RNN, LSTM, and the proposed P-LSTM based on the

evaluation criteria of our dataset.

5.4.1 Experimental Setup

We use the publicly available implementation of six depth-based action recognition

methods and apply them on our new dataset benchmark. Among them, HOG2 [65],

Super Normal Vector [125], and HON4D [67] extract features directly from depth

maps without using the skeletal information. Lie group [100], Skeletal Quads [24],

and FTP Dynamic Skeletons [34] are skeleton based methods.

The other evaluated methods are RNN, LSTM, and the proposed P-LSTM method.

For skeletal representation, we apply a normalization preprocessing step. The

original 3D locations of the body joints are provided in camera coordinate system.

We translate them to the body coordinate system with its origin on the “middle of the

spine” joint (number 2 in Fig. 5.2), followed by a 3D rotation to fix the X axis parallel

to the 3D vector from “right shoulder” to “left shoulder”, and Y axis towards the 3D

vector from “spine base” to “spine”. The Z axis is fixed as the new X ×Y . In the last

step of normalization, we scale all the 3D points based on the distance between “spine

base” and “spine” joints.

In the cases of having more than one body in the scene, we transform all of them

with regard to the main actor’s skeleton. To choose the main actor among the available

skeletons, we pick the one with the highest amount of 3D body motion.

Kinect’s body tracker is prone to detecting some objects e.g. seats or tables as

bodies. To filter out these noisy detections, for each tracked skeleton we calculate the

spread of the joint locations towards image axis and filtered out the ones whose X

spread were more than 0.8 of their Y spread.

For our recurrent model evaluation, we reserve about five percent of the training

data as validation set. The networks are trained on a large number of iterations and we

pick the network with the least validation error among all the iterations and report its

performance on testing data.
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Cross- Cross-

Method Subject View

Accuracy Accuracy

HOG2 [65] 32.24% 22.27%

Super Normal Vector [125] 24.56% 13.61%

HON4D [67] 30.56% 07.26%

Lie Group [100] 50.08% 52.76%

Skeletal Quads [24] 38.62% 41.36%

FTP Dynamic Skeletons [34] 60.23% 65.22%

1 Layer RNN 56.02% 60.24%

2 Layer RNN 56.29% 64.09%

1 Layer LSTM 59.14% 66.81%

2 Layer LSTM 60.69% 67.29%

l Layer P-LSTM 62.05% 69.40%

2 Layer P-LSTM 62.93% 70.27%

Table 5.3 The results of the two evaluation settings of our benchmark using different

methods. First three rows are depth-map based baseline methods. Rows 4, 5, and 6

are three skeleton based baseline methods. Following rows report the performance

of RNN, LSTM and the proposed P-LSTM model. Our P-LSTM learning model

outperforms other methods on both of the evaluation settings.

For each video sample at each training iteration, we split the video to T = 8 equal

sized temporal segments and randomly pick one frame from each segment to feed

the skeletal information of that frame as input to the recurrent leaning models in

t ∈ {1, ...,T} time steps.

For the baseline methods which use SVM as their classifier, to be able to manage

the large scale of the data, we use Libliner SVM toolbox [25].

Our RNN, LSTM, and P-LSTM implementations are done on the Torch toolbox

platform [19]. We use a Nvidia Tesla K40 GPU to run our experiments. In average,

our training and testing takes about 50 and 2 milliseconds per sample on the above-

mentioned platform.

5.4.2 Experimental Evaluations

The results of our evaluations of the above-mentioned methods are reported in Table 5.3.

First three rows show the accuracies of the evaluated depth-map features. They perform

better in cross-subject evaluation compared to the cross-view one. The reason for

this difference is that in the cross-view scenario, the depth appearance of the actions
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are different and these methods are more prone to learning the appearances or view-

dependent motion patterns.

Skeletal based features (Lie group [100], Skeletal Quads [24], and FTP Dynamic

Skeletons [34]), perform better with a notable gap on both settings. They are stronger to

generalize between the views because the 3D skeletal representation is view-invariant

in essence, but it’s prone to errors of the body tracker.

At the next step, we evaluate the discussed recurrent networks on this benchmark.

Although RNN has the limitation in discovering long-term interdependency of inputs,

they perform competitively with the hand-crafted methods. Stacking one more RNN

layer improves the overall performance of the network, especially in cross-view

scenario.

By utilizing long-term context in LSTM, the performances are improved signifi-

cantly. LSTM’s performance improves slightly by stacking one more layer.

At the last step, we evaluate the proposed P-LSTM model. By isolating the context

memory of each body part and training the classifier based on their combination, we

model a new way of regularization in the learning process of LSTM parameters. It

utilizes the high intra-part and low inter-part correlation of input features to improve the

learning process of the LSTM network. As shown in Table 5.3 P-LSTM outperforms

all other methods by achieving 62.93% in cross-subject, and 70.27% in cross-view

evaluation scenarios.

5.5 Chapter Summary

A large-scale RGB+D action recognition dataset is introduced in this chapter. Our

dataset includes 56880 video samples collected from 60 action classes in highly variant

camera settings. Compared to the current datasets for this task, our dataset is larger in

orders and contains much more variety in different aspects.

The large scale of the collected data enables us to apply data-driven learning

methods like Long Short-Term Memory networks in this problem and achieve better

performance accuracies compared to hand-crafted features.

We also propose a Part-aware LSTM model to utilize the physical structure of the

human body to further improve the performance of the LSTM learning framework.

The provided experimental results show the availability of large-scale data enables

the data-driven learning frameworks to outperform hand-crafted features. They also

show the effectiveness of the proposed P-LSTM model over traditional recurrent

models.
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Fig. 5.5 Sample RGB frames from our dataset. First four rows show the variety in

human subjects and camera views. Fifth row depicts the intra-class variation of the

performances. The last row illustrates RGB, RGB+joints, depth, depth+joints, and IR

modalities of a sample frame.
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Although the proposed dataset mitigates a lot of limitations in depth-based action

recognition benchmark datasets, it still has a number of limitations. First is the artificial

nature of the performed actions. All the action samples are performed by actors as

subjects. The ideal collection is supposed to be done in a free-running situation to

capture real actions when subjects are performing them. Next, in our dataset, we

limited our action classes to the ones with vertical body poses to help the Kinect’s

SDK to track and extract more precise skeleton data. That is why we did not have

action classes like “going to bed”, “wake up”, “crawling”, etc. in our dataset. The

same reason prevented us from including top and back views of the actions in our

dataset. Finally, lack of an efficient video compression for depth sequences made us to

store the depth-maps frame by frame which leads to a very large file sizes and makes

it troublesome to transfer the dataset over the web. An ideal depth sequence video

compression technique can help to reduce the size of the dataset drastically.

The work proposed in this chapter is published in [81].



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed various methods to improve human activity analysis in

depth-based videos. The major contributions of this thesis are focused on feature

analysis in different depth-based and RGB+D based scenarios for action recognition.

First, we introduced an integrated learning and classification framework on mul-

tiple depth-based input features of human actions. Our proposed method utilized

hierarchical mixed-norm to perform multimodal multipart learning over a set of ex-

tracted features. The intuition of part-sparsity was utilized in the higher layer of the

proposed hierarchical mixed-norm to apply sparsity between the features of various

body parts to perform a soft part selection. Within each group of part-based features, a

two-level mixed norm was used to apply a diversity norm on the elements of each input

feature type while regularizing the weight decay of their combination by the middle

level norm. The proposed learning framework integrates the group feature selection

and weight regularization within the classifier learning. The reported results on three

benchmark datasets, showed the effectiveness of our proposed learning framework in

applying soft part selection and utilizing the prior structure of the input features into

the learning step.

Second, we studied the mutual properties of depth-based features with RGB-based

counterparts for the task of action recognition. We proposed a new deep learning

framework to perform a hierarchical correlated-independent component factorization,

in order to achieve a better representation of input RGB+D features. In each layer, the

proposed network factorized the input multimodal features into their correlated and

independent components in an autoencoder based analysis framework. An advantage

of the proposed factorization technique is its ability to be applied in a convolutional
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setting over temporal and spatial axes. To utilize the independence of derived hierar-

chical components in the classification step, we proposed a structured sparsity based

classifier. Our suggested classifier regularized the learning by applying mixed-norms

to perform soft component and layer-wise group selection to achieve optimal fusion of

factorized components. We evaluated our method on four RGB+D action recognition

benchmark datasets, in which we showed the strength of the proposed deep correlation-

independence network and the suggested structured sparsity learning machine. We

achieved the state-of-the-art performances on all the evaluated benchmarks.

Third, to alleviate the size-related limitations of depth-based human activity anal-

ysis datasets for applying data-driven learning techniques, we proposed the first

large-scale RGB+D action recognition dataset . This dataset includes more than 50K

human video samples and more than 4 million video frames of human activities. We

invited 40 distinct human subjects to perform 60 different action classes. The samples

of this dataset are highly variant in the quality of action performance and camera views.

To the best of our knowledge, ours is the largest RGB+D human activity analysis

dataset in all of the comparison aspects. The scales of the collected dataset makes it

possible to apply data-hungry analysis methods e.g. deep learning networks on this

problem and surpass hand-crafted feature representations in performance accuracies.

Lastly, we proposed a new recurrent network based learning framework for

skeleton-based human action recognition. Based on the intuition of the high cor-

relation among the motion of the body joints within each limb, and low correlation

between the limbs, our part-aware LSTM applies the grouping of input body configura-

tion inside LSTM units to improve the performance of the action learning framework.

Our experimental evaluations of this method on our proposed dataset, first showed the

effectiveness of the large-scale data in applying data-driven learning frameworks, and

second, showed the strength of the proposed P-LSTM model over traditional recurrent

models.
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6.2 Future Work

In this section, we introduce some of our potential research directions to follow in

future.

6.2.1 Convolutional Networks for Depth Videos

The introduction of our large scale RGB+D action dataset, removes the barriers of

applying various deep learning techniques. The most successful classes of deep

networks in visual recognition tasks are convolutional networks [27].

Although some attempts have been done so far, but the small scales of depth based

action datasets prevented us to apply deep convnets on these type of data directly. One

of our directions in future is to apply convnets for depth based action recognition using

our dataset.

Multitask learning frameworks can also be applied in a similar fashion to utilize the

trained deep networks on the larger scale dataset for learning features and classifiers

on smaller sized datasets jointly.

6.2.2 Learning 3D Skeleton Configurations for Better Action Recog-

nition

The collected dataset provides three different horizontal views of the same action at

the same time. In the current evaluation setup of the dataset this correspondence is

ignored and the three views are considered as different samples.

Utilizing this information can help us to improve the 3D skeletons to more accurate

annotations as the precise ground truth body pose representation. Applying different

data-driven techniques (e.g. convnets, recurrent nets, and their combination) we can

train a network to extract more reliable body poses from a sequence of depth maps

in videos. The trained network can be effectively used to extract better body pose

configurations on other datasets which can lead to better performance in skeleton-based

action recognition.

This idea can easily be extended into skeleton learning from RGB+D by learning

skeleton on jointly on depth and RGB videos.

6.2.3 Joint-based Recurrent Networks

The proposed framework in section 5.3 can be further improved by learning recurrent

cells for each joint. In a deep joint-based recurrent network, each cell will receive the
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hidden state of the previous joint in a predefined sequence of body joints, as well as

the hidden states of the same cell in previous time step, and on previous network layer,

and learns how to project its input to the optimal hidden representation at each step.

In this fashion, each recurrent unit will learn the spatial and temporal behavior of

the corresponding body joint and its relation with other joints in order to maximize the

discriminative strength of the final layer’s representation.

This idea is developed during the examination period of this thesis and published

in [55, 54].
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