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Abstract. This paper uses accelerometer-embedded mobile phones to
monitor one’s daily physical activities for sake of changing people’s seden-
tary lifestyle. In contrast to the previous work of recognizing user’s phys-
ical activities by using a single accelerometer-embedded device and plac-
ing it in a known position or fixed orientation, this paper intends to
recognize the physical activities in the natural setting where the mobile
phone’s position and orientation are varying, depending on the position,
material and size of the hosting pocket. By specifying 6 pocket positions,
this paper develops a SVM based classifier to recognize 7 common phys-
ical activities. Based on 10-folder cross validation result on a 48.2 hour
data set collected from 7 subjects, our solution outperforms Yang’s solu-
tion and SHPF solution by 5~6%. By introducing an orientation insen-
sitive sensor reading dimension, we boost the overall F-score from 91.5%
to 93.1%. With known pocket position, the overall F-score increases to
94.8%.
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1 Introduction

The prevailing sedentary lifestyle in modern society has lead to various physical
and mental diseases, such as obesity, coronary heart diseases, type II diabetes
and depression, which request enormous medical cost. According to World Health
Organization, there are at least 1.9 million people die as a result of physical in-
activity annually [1]. In U.S. alone, it leads to about 300, 000 preventable deaths
and more than 90$ billion direct health cost annually [2]. Even though people are
aware of the benefits of exercises, there is a lack of external intervention which
can properly bring the busy people out of the sedentary routine, thus an auto-
matic and personal reminder will be very helpful if it can monitor one’s physical
activities and persuade people to participate in physical activities regularly at
the right time and place.
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Activity recognition technology is a key enabling technology to tackle this
problem as it’s able to monitor individual’s physical daily activities and the
lasting duration so as to estimate the calories consumed each day. Based on the
consumed calorie, the system can provide recommendation and advices when
they fail to complete enough exercise and also build systems to encourage people
to conduct more activities [4,5, 3]. There are several ways to recognize people’s
daily activities. One way is using cameras to visually detect people’s motion
[8,7]. The drawback of this solution is that to monitor a moving person, large
number of cameras need be deployed with high cost. And also the system should
be designed to aggregate the information from each camera and deal with the
influential factors such as lighting condition, mounting distance and angel, which
make the system very complicate and impractical. Another way is using personal
companion devices such as mobile phones or watches with sensing and comput-
ing power embedded to detect physical activities. The merit of this solution is
that we don’t need to deploy additional devices and the system is simple and
easy to use. Since people carry their personal companion devices all the time
and have the full control of their own devices, thus those devices won’t make
the users feel intrusive or cause extra money burden. Out of the two companion
devices, the watches are normally placed on the wrist. Since the casual moving of
arms doesn’t have a direct and obvious relationship with ongoing activities, also
modern watches are still not powerful enough to do data processing, therefore
personal watches have a lot of constraints in detecting one’s physical activities.
On the contrary, mobile phones are becoming increasingly intelligent and pow-
erful. When they are carried by people in pockets or bags, they are moving with
the pace of the human body, thus they appear to be the ideal platforms for
detecting people’s physical activities such as sitting, walking, running and etc.
Modern mobile phones like iPhone or Nokia N97 are embedded with various sen-
sors such as the accelerometer, approximity sensor, magnetometer, GPS and etc.
Of all these embedded sensors, the accelerometer is commonly used for activity
recognition. Although GPS could detect one’s movement in terms of location
and speed, it cannot tell the user moves in an accurate manner. In particular,
GPS doesn’t work inside buildings where people spend most of their time in.
Therefore, using the accelerometer-embedded mobile phones to recognize peo-
ple’s physical activities becomes the primary choice among all the solutions.

With the accelerometer-embedded mobile phone, there are two possibilities
to monitor people’s physical activities. One is turning the mobile phone as a
pedometer, measuring the step counts and calorie consumption [9] for each user.
The other is recognizing precise physical activities such as walking, running,
bicycling, driving and etc. Apparently the pedometer solution is quite simple, it
provides good indication for each user’s calorie consumed. While it works well
for the cases of walking, running, taking staircases, etc., it fails to estimate the
calorie consumption correctly in the case of bicycling (helpful to the health but
cannot be measured by pedometer). On the contrary, recognizing one’s physical
activities and the lasting duration can infer more accurate and comprehensive
information about people’s life style. Besides informing the calorie consumed
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more accurately, the activity patterns can inform users’ preferences and habits,
which can serve as the basis for further exercise recommendation.

[10] shows that 60% of men put their mobile phones in their pockets. With
different clothes dressed each day, people are used to putting the mobile phone
in different pocket (often the most convenient one). Depending on the position,
material and size of the pocket, the mobile phones often have varying orienta-
tion, especially when the very pocket swings with human body. Till now, the
prior work on activity recognition with accelerometer-equipped mobile devices
assumes a fixed mobile phone position or certain orientation [11-17], this as-
sumption usually doesn’t hold for the usual case of carrying the phone in the
pocket. In this work we choose to recognize seven most representative daily ac-
tivities that are strongly linked to physical exercises, and we intend to investigate
the activity recognition issue assuming that the mobile phone is freely placed in
one of the pockets. Under this assumption, the accelerometer sensor inside the
phone will take the position and orientation associated with the moving pocket.

With the varying orientation of the mobile phone, the experienced force will
cause varying effect on the three components of the acceleration signal [17]. This
paper attempts to propose an orientation independent sensor reading dimension
which can relieve the effect of the varying orientation on the performance of
the activity recognition. For the position variation of the mobile phone, besides
training a single optimal SVM classifier for all seven physical activities in all
the pocket positions, we would like to train an optimal classifier for each pocket
location and hopefully can select the right classifier according to the mobile
phone position detected in the future.

The rest of the paper is organized as follows: in Section 2, the related work
about activity recognition using mobile or wearable devices is summarized. Then
in Section 3, our design hypothesis is elaborated to set-up the stage for the re-
search work. Section 4 presents the detailed design process for feature extraction
and classification, aiming at developing an orientation insensitive algorithm. Sec-
tion 5 describes the experimentation strategy to select the optimal size of the
window as well as the optimal set of SVM parameters corresponding to different
pocket position. In Section 6, the experimental results and analysis are provided
to demonstrate the effectiveness of the proposed approaches for tackling the
varying orientation and position issue. Finally, Section 7 gives the conclusions
about the paper.

2 Related Work

Activity recognition with wearable sensors has been a hot research field in the
last decade. Much research work has been done to recognize physical activities
such as sitting, standing, running and so on for wellbeing management. In order
to differentiate diverse activities or gestures, sensors are best placed at locations
where the intrinsic characteristics of the target activities can be well captured.
For example, an accelerometer placed in the ankle can measure the leg motion
properly, and a barometers fixed on human body can detect the altitude change



4 L. Sun et al.

quite well. In a well cited paper by Bao et al [11], five biaxial accelerometers are
placed simultaneously on the right ankle, the left thigh, the waist, the left upper
arm and right wrist respectively. The work could distinguish not only the whole
body movement like walking or running, but also those activities involving par-
tial body movement such as standing still, folding laundry and brushing teeth,
watching TV or reading. In [12], dozens of heterogeneous sensors are placed in
various parts of the body to measure 18 different quantities, such as the ac-
celeration of the chest and wrist, heart rate from finger, forechead and chest,
temperature of the environment and skin. With the large number of sensing
sources, even similar activities like Nordic walk and walk can be accurately dis-
tinguished. However, the drawbacks of all the multiple-sensor multiple-position
solutions for activity recognition are high deployment cost and large deployment
constraints, which lead to difficulty for real usage.

Compared to the multiple-sensor multiple-position solutions, putting multi-
ple sensors in a single platform and one part of the human body is a preferable
way for physical activity recognition. Apparently, all the sensors can only sense
the information specific to the target part of the body, the ability to distinguish
diverse activities decreases because the feature characteristics reflected in the
attached position might be very similar. Lester [13] mounts one board embed-
ded with eight sensors on the shoulder to classify physical activities such as
sitting, standing, walking (stairs) and etc. Ravi et al [14] places an accelerome-
ter embedded hoarder board near the pelvic region to detect similar activities,
demonstrating the ability of distinguishing daily physical activities with a single
accelerometer. To investigate the effect of the sensor position on the activity
recognition performance, Maurer [15] deploys a multi-sensor device eWatch in
locations like the left wrist, belt, necklace, right trousers pocket, shirt pocket
and bag, and compares the recognition performance in those cases. The eWatch
contains a dual axes accelerometer, a light sensor, a temperature sensor and a
microphone, the experimental results show that with the eWatch fixed in all the
locations, activities like walking, standing, sitting and running can be well de-
tected, but ascending stairs and descending stairs are difficult to be distinguished
from walking. In all the above-mentioned cases, the position of the sensor de-
vice is known and predefined, the case of unknown device position and varying
orientation is not considered.

To investigate the effect of varying sensor placement on activity recognition,
Lester [16] places a multi-sensor board on three representative locations, includ-
ing the wrist, the waist and the shoulder. A general HMM model is built to
recognize the physical activities for all three locations, in contrast to a sepa-
rate HMM model for each location. The result shows that the general model
performs slightly worse than separate models. However, as we can see, addi-
tional straps are usually needed to fix the device in the target location, causing
fixed orientations of the platform, which is different from the common case of
putting the phone in a normal pocket. To tackle the issue of varying orientations,
Yang [17] proposes to compute the vertical and horizontal component of each
accelerometer sensor reading for compensating the effect of gravity, based on
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the gravity-related estimation work of Mizell [18]. However, Yang’s work doesn’t
show the performance improvement of using his approach, compared to the case
without using the orientation-independent feature. In addition, his work doesn’t
consider influence of the varying positions of the sensor platforms. Baek [21]
proposes to eliminate the gravity component with a second-order Butterworth
highpass filter(SHPF) and extract the motion acceleration component.

Different from the prior work, we intend to address the varying position and
orientation issues simultaneously in accelerometer-based physical activity recog-
nition. The research challenges are inspired by the commonly observed phenom-
ena that most of the people put their mobile phones in one of their pockets,
and the mobile phone’s position and orientation are varying, depending on the
position, material and size of the hosting pocket. For the varying orientation
issue, we plan to extract features that are independent or insensitive to orienta-
tion change, for the activity classification. While for the pocket position change
issue, we would like to develop two solutions: One is to build a single and robust
SVM classifier for all physical activities in all the pocket positions, handling the
unknown phone hosting pocket problem; the other is to train a separate SVM
classifier for each pocket location and hopefully the system can select the right
classifier according to the mobile phone position detected using certain tech-
niques. Experiment result shows that our proposed method outperforms Yang’s
work and Baek’s work for over 4%. By introducing an orientation insensitive sen-
sor reading dimension, we boost the overall F-score from 91.5% to 93.1%. With
known pocket position, the overall F-score slightly increases to 94.8%, which is
in consistent with the result shown in [16].

3 Ouwur Hypothesis

In this section, we set up the hypothesis for the considered problem. We define
our hypothesis space in three dimensions, i.e., pocket locations, mobile phone
orientations, and physical activities. The proposed method and the experiments
in the following sections are limited in the defined hypothesis space.

Generally speaking, there are six common pocket locations in people’s daily
costume that are frequently used to place mobile phones, including the two
front pocket and two rear pockets on the trousers, and two front pockets on
the coat, as shown in Fig 1(a). The size, shape and orientation of the pocket
at each location may vary for different clothes such that the motion patterns
of the mobile phone can be very different. For example, front pockets on casual
trousers are usually looser and deeper than those on jeans. This will lead to
higher vibration magnitude when walking or running. In this paper, we will
investigate the influence of the six pockets locations and use location-specific
classifiers to relieve such kinds of influences.

Based on the observation to a large number of people, we find that there are
only a very limited number of orientations for a mobile phone to be placed into
a pocket, since most people’s habits and most pocket styles only fall into a few
numbers of most common ones. As shown in Fig 1(b), people normally put the
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mobile phone into the front pocket of the trousers vertically, which can result in
4 possible orientations: upward facing out, downward facing out, upward facing
in, and downward facing in. Noting that, after the mobile phone is placed inside
the pocket, it may slip or rotate when the user is moving. We don’t consider
these uncertain cases in this paper. In the following sections, we will investigate
the influences of the four mobile phone orientations and use an additional feature
to relieve such kind of influences.

Fig. 1. (a) Pocket locations. For each pocket shown, there is a corresponding one in
the left side of the body. (b) Four phone orientations when users put the mobile phone
into the right front jean’s pocekt. (¢) Coordinate system of the accelerometer in Nokia
phones.

In our real life, we observed that seven physical activities are conducted by
people every day, including stationary, walking, running, bicycling, ascending
stairs, descending stairs and driving. In this paper we aim to distinguish these
seven physical activities with an accelerometer-embedded mobile phone. Noting
that in our experimentation, some activities such as bicycling and driving require
people to sit down upon something. In these cases, the mobile phone cannot be
put in their rear pockets on the trousers and the experimental results for these
cases are absent.

4 Activity Recognition Methodology

The proposed activity recognition method based on an accelerometer-embedded
mobile phone comprises the following three steps: 1) collecting and pre-processing
the sensor data from mobile phones, 2) extracting features, and 3) training clas-
sifiers. It is worth noting that in the first step, we add an additional sensor
reading dimension, named acceleration magnitude, to enhance the insensitiv-
ity to the influences of the phone orientation. And in the third step, we train
location-specific SVM classifiers to adapt the different pocket locations.

4.1 Sensor Data Preprocessing

The embedded triaxial accelerometer inside a mobile phone can continuously
sample the experienced accelerations at each sampling interval and produce 3-D
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acceleration readings A = (ay,ay,a,), which are measures of the acceleration
experienced in the three orthogonal axes: X-axis, Y-axis and Z-axis. Taking the
Nokia mobile phone for example, the coordinate system with respect to the phone
body is shown in Fig 1(c). When the orientation of the phone body changes, the
coordinate system will rotate accordingly and the readings at the three axes will
change. Since the acceleration magnitude is a measure for the quantity of accel-
eration and has no directions, it is insensitive for the orientations of the mobile
phones. Furthermore, we will show it is also a discriminative feature for the con-
sidered physical activities in the experimental results. As the exact orientation of
the acceleration is unknown, to relieve the influences of the phone orientations,
we add an additional orientation insensitive feature, i.e., the magnitude of A to
the sensor readings. The sensor readings at each time slice thus becomes to be
a 4-D vector A = (A4, ||A]])) = (ag, ay, az, |6z, ay, az]]).

4.2 Feature Extraction

We use a half overlapping sliding window to separate the collected sensing data
into a number of windows. Then, each window is further divided into multiple
frames as shown in Fig 2. Instead of fixing the number of frames inside a window,
we choose the frame size one second, as the collected sensing data shows that
one second is long enough to comprise more than one footstep. When a window
contains more footsteps, it takes information from longer time to make a classifi-
cation decision, which is intuitively capable of eliminating short time noise. Var-
ious kinds of features of the accelerometer sensing data have been investigated
in previous activity recognition work, including Mean, Variance, Correlation,
Energy, Frequency-Domain Entropy, Cepstral Coefficients, Log FFT Frequency
Bands and etc [11-17,19]. When the application scenarios change, the contribu-
tions of these features may change accordingly. To the best of our knowledge,
little general analysis of the contributions has been reported. Applying more
features may bring benefits to the recognition accuracy in the case of computing
on the powerful computers. However, when we are trying to implement these
features inside the resource and power limited mobile phones, we should try to
avoid the features that need complex computing workload, since it consumes
much of computing resources and energy, which is critical to the user experience
and acceptance of such application.

| ] | [ | oo o

== ————— ==
framel frame  frame3

Fig. 2. Half overlapping windows and frame definitions within a window.
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Table 1. The extracted feature matrix for the collected sensing data.

‘ feature vector

ti11 t12 ... t1n

to1 too ... ton
test cases
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Five types of features are employed in this work, including Mean, Variance,
Correlation, FFT Energy and Frequency-Domain Entropy, as they have shown
good performance in [19]. For each frame, there are 22 features (4 features for
Mean, Variance, Energy, Frequency-Domain Entropy, respectively, and 6 features
for Correlation). All the K frames inside a sliding window will produce a feature
vector of 22 x K elements.

Normalization is performed on the extracted feature vectors before training.
All the extracted feature vectors form an m % n matrix T as shown in Table 1,
where m is the number of the windows and n is the number of elements in a
feature vector for a window. For the cth column ﬁ c=1,2,...,n) in T, the
maximum value M ax(t_g) and minimum value Min(t.) are selected to scale the
column to [0, 1] with equation (1).

o= fei — Min(%c) i=1...m (1)
T Max(%) - Min(R))

4.3 SVM Classification and Evaluation Metrics

In this paper, we adopt LibSVM [20] to perform SVM training and classification
within our experimentation. We use the RBF (Radial Basis Function) kernel and
choose the optimal tradeoff parameter C' and the bandwidth Gamma in RFB
kernel by conducting a grid search with cross validation using the gird.py python
script provided with LibSVM.

We use the balanced F-score as the performance index to evaluate the ex-
periment results. The definition is as following:

precision x recall

(2)

F-score = 2 x — .
precision + recall

For the test result, the F-score is calculated for each activity and the overall
F-score for the classification model is computed by averaging the F-scores for all
the activities.

5 Experimentation Methodology

We program a python application to collect accelerometer information from two
Nokia N97s to conduct the experimentation. The data sampling rate is reduced
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to 10Hz by getting the mean of the data from 0.1 seconds. In order to ease the
data labeling work, we build a simple touch screen user interface to label the data
when launching the application as shown in Fig 3. Before recording data, the
application lables the test with user’s selection of the activities, pocket locations
and phone orientations. After successfully launching the application, testers put
the mobile phone into the right pocket with the chosen orientation and start to
conduct the selected activity.

In order to fully investigate the influences of the orientation, we asked the
test subjects to test the aforementioned 4 possible orientations for each pocket
and each activity. Noting that when dealing with front pockets of the coat, the
mobile phone is horizontally facing the body instead of vertically facing the body,
which is different with the trousers scenario.

Fig. 3. Experiment interface on Nokia N97.

One female and six males test subjects aged 25~46 were volunteered to con-
duct the experiment from Institute TELECOM SudParis during a period of
three weeks. Before conducting the experiments, an introduction of how to use
the application was given to the test subjects. Before each test, they were only
given instructions about in which pocket and in which orientation to put the mo-
bile phone. There were no limitations for the clothes, such as whether to wear
tight or loose clothes, or whether to wear a jeans or a pant. Each time the test
subject carried two mobile phones. They launched the application in the mobile
phone, selected the setups, put them into the target pockets and started to do
the target application. When the test was finished, the test subject took out
the mobile phone and stopped the application. A log file whose name contains
information about the activity type, pocket locations, phone orientation and the
starting time was produced with the contents of time stamps and accelerometer
readings and stored in the mobile phone memory. During the experimentation,
no concerns were given to the mobile phones.

The data at the beginning and the end of the log file was cut off since people

need time to put the mobile phones inside the pockets and also take it out.
Observations from the experiment suggest that the dirty data is about less than
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10 seconds. So we exclude 10 seconds data from the beginning and the end of
the log file. Totally about 48.2 hours sampling data is collected (Table 2).

Table 2. The sampling time of the each activity during the experimentation

Activity Time(Hour)
Stationary 10.4
Walking 9.8
Running 6.3
Bicycling 6.6
Ascending stairs 4.6
Descending stairs 4.0
Driving 6.5
Total 48.2

6 Result Analysis

We collect a data set of about 48.2 hours from the experimentation. The window
size is chosen as 1 second as it’s normally sufficient for more than 1 steps. In
order to optimize the SVM model, a grid search is performed to choose the best
Cost and Gamma paramters.

The 10-folder cross-validation is used to evaluate the SVM models. We put
all the test cases in one data set and then randomly divide it into 10 equal-sized
folders. Each time we choose one folder as the test data set and the rest as the
training data set. We train the SVM model with the training data set, evaluate
it with the test data set and get the precision, recall and the F-score for each
activity. After each folder is tested, we compute the average F-score of all the
folders as the overall results for the activities.

6.1 Generic SVM Model Analysis

We train a generic SVM model to recognize these activities without the consid-
eration of the exact pocket where the phone is in. The window length represents
the time duration of the accelerometer data that is needed to distinguish an ac-
tivity. When the frame size is fixed, with small window size, the decision is made
with the information within short time duration and the features may be insuf-
ficient to describe an activity. On the contrary, with large length, the decision
is made with large amount of features over long time duration and with limited
training data, it may cause over-fitting problems. So there should be a suitable
window length that could achieve the best tradeoff. To choose the best window
length for the generic SVM model, we evaluate the window length from 1 to 6
seconds. The mean F-scores produced by the cross-validation for each window
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length are shown as the blue line in Fig 4. One can see that the F-score achieves
the peak 93.1% when the window length is 4 seconds. When the window length
is smaller or larger, the F-score decreases.

0.94

()
I}
(8]
o
W
0.88 - -
—#— with magnitude
—<— without magnitude
0.86
1 2 3 4 5 6

frame size (seconds)

Fig. 4. The overall F-score for the generic SVM models w/ and w/o the acceleration
magnitude.

In order to verify the classification contributions of the acceleration mag-
nitude, we build generic SVM models without the acceleration magnitude as
one element of the sensor readings for all the window lengths. The overall F-
score with respect to the window length is shown as the red line in Fig 4. One
can see that the overall F-scores with acceleration magnitude outperform those
without it for all the frame sizes. It is also interesting to note that the optimal
window length shifts to 5 seconds, which suggests that, without the orientation
insensitive features, we need more time to achieve the best performance.

The confusion matrix for the generic SVM model is shown in Table 4 and
the precision, recall and F-score of each acitivity are shown in Table 5.0ne can
see that both the precision and recall of "running” is very high compared with
other activities, meaning that it is quite distinguishable than other activities.

To compare with Yang’s solution, we estimate the gravity acceleration by
averaging the signal in each axis during a sampling interval of 10 seconds as
proposed in Yang’s work and use the result to compute the vertical and horizontal
accelerations. To compare with Baek’s work, we also use SHPF to filter the
sampling data. then use the same feature extraction and parameter optimization
process for SVM to conduct the activity recogntion work. The result is shown in
Table 3. We can see that our method outperforms their method about 5~6%.

6.2 Location Adaptation Analysis

We train location-specific SVM models with the experiment data from each
pocket and compare the classification F-score with the generic SVM model
for each activity. Fig 5 shows that the individual SVM model outperforms the
generic SVM models for all the activities, meaning that with the location context
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Table 3. Recognition result comparison.

Solution Precision|Recall|F-score
Our solution | 93.2% [93.0%| 93.1%
Yang’s solution| 87.5% |87.0%| 87.2%
SHPF 88.5% [88.0%| 88.1%

Table 4. Confusion matrix for the generic SVM model with window length 3 seconds.

Predicted Actual Sta. Walk. Run. Bicy. Asce. Desc. Drive.
Stationary 6450 96 139 85 41 73 376
Walking 33 6475 65 29 197 155 10
Running 15 24 6490 2 14 66 8
Bicycling 56 28 17 4256 16 36 56
Ascending 6 123 21 34 6310 222 12
Descending 18 89 99 25 260 6281 10
Driving 262 5 9 129 2 7 4088

of the mobile phone, we could train location-specific SVM classifiers to achieve
higher accuracy. This result also implies that, compared with the generic SVM
model, location-specific models only reflect the acceleration patterns from one
fixed location and should have less uncertainty.

Table 6 shows the overall Precision, Recall and F-score of the generic SVM
model without acceleration magnitude, generic SVM model with acceleration
magnitude and the individual SVM models. We can see that an overall F-score
of 91.5% has been achieved for unknown pocket positions. By introducing an
orientation insensitive feature, the overall F-score is boosted to 93.1%. With
known pocket position, the overall F-score increases to 94.8%.

7 Conclusion and Future Work

In this paper, we investigated the physical activity recognition issue on an
accelerometer-embedded mobile phone, considering most of people’s habit of
putting the mobile in one of the pockets. In contrast to the previous work of
assuming that the phone is placed in a known position or fixed orientation, this
paper intends to recognize the physical activities in the natural setting where the
mobile phone’s position and orientation are varying, depending on the position,
material and size of the hosting pocket.

For the varying orientation issue, we add the acceleration magnitude as a
new sensor reading dimension, which can relieve the effect of the orientation
change on the performance of activity classification. While for the pocket position
change issue, we develop two solutions: One is building a single and robust
SVM classifier for all physical activities in all the pocket positions, handling
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Table 5. Precision, recall and F-score for the generic SVM model.

Sta. |Walk.|Run. | Bicy.|Asce.|Desc.|drive |overall
Precision|0.888(0.930(0.981|0.953|0.938(0.926|0.908| 0.932
Recall 0.943/0.947(0.949(0.933|0.922|0.920{0.900| 0.930
F-score [0.915(0.938|0.964|0.943|0.930{0.922(0.902| 0.931

I Generic SVM F-score
Left front pocket of trousers | [l individual SVM F-score  Right front pocket of trousers
T

0.9 0.9
0.8

F-score
4
®
F-score

0.7 0.7

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Left rear pocket of trousers Right rear pocket of trousers

F-score
o
®
F-score
o
®

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Left front pocket of coat Right front pocket of coat

F-score
o
@
F-score
5}
@

0.6 0.6

Fig. 5. F-score comparison of each activity for the generic SVM model and individual
models.

the unknown phone hosting pocket problem; the other is training a separate
SVM classifier for each pocket location so that the system can select the right
classifier according to the mobile phone position detected. Five features including
mean, variance, correlation, energy and entropy are extracted to build the SVM
classifiers with optimized cost and gamma parameters.

By specifying six pocket positions for hosting the mobile phone, this paper
targets to recognize seven common physical activities, including stationary, walk-
ing, running, bicycling, ascending stairs, descending stairs and driving. Based on
48.2 hours data collected from seven subjects, our method is shown to have better
perfomance than the works in [17,21]. By adding the magnitude of the acceler-
ation as the 4th data dimension for feature extraction, we manage to boost the
overall F-score of SVM classifier to 93.1%. With the magnitude of the acceler-
ation as the 4th data dimension for feature extraction and selecting a separate
SVM classifier for each pocket position, the overall F-score of the classifiers for
the seven activities can increase to 94.8%.

For the future work, we plan to implement other classification algorithms
and compare their performance with that of the SVM-based classifiers presented
in this paper. We also plan to build the exercise reminder application on top of
the activity recognition algorithms, aiming to achieve the goal of prompting the
mobile user at the right time, in the right place and the right manner.
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Table 6. Precision, recall and F-score comparisons.
Overall Precision|Overall Recall|Overall F-score
Generic SVM without Magnitude 91.6% 91.4% 91.5%
Generic SVM with Magnitude 93.2% 93.0% 93.1%
Individual SVM with Magnitude 94.8% 94.8% 94.8%
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