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ABSTRACT 
This paper presents an activity-sensitive clock tree construction 
technique for low power design of VLSI clock networks. We 
introduce the term of node difference based on module activity 
information, and show its relationship with the power 
consumption. A binary clock tree is built using the node 
difference between different modules to optimize the power 
consumption due to the interconnections (i.e., clock gating signals 
and clock edges). We also develop a method to determine gating 
signals with minimum number of transitions. After the clock tree 
is constructed, the gating signals are optimized for further power 
savings.   

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – VLSI. 

General Terms 
Algorithms. 

Keywords 
Clock tree, low power, clock gating, activity pattern. 

1. INTRODUCTION 
In synchronous digital systems, the logic operation is 
synchronized by clock signal. The clock is generated by a clock 
generator and distributed across the chip by a clock tree. In 
system-on-chips, the clock accounts for a large portion of power 
consumption (20%-50%). The fact that not all of modules are 
involved in some operations leads to clock gating technique. By 
controlling the clock fed into modules, the clock gating signals (or 
control signals) can prevent some unnecessary switching with 
both clock tree and modules and, hence, save the power 
consumption. 
 
* This work was supported in part by NSERC (Natural Sciences 
and Engineering Research Council of Canada) Grant #249499-02. 

 

 

 

 

 

 

In general, the power consumption of a clock network is 
contributed by three factors: modules, clock edges and control 
signals. Previous work mainly focused on zero-skew clock trees 
[1-3]. In [4], the authors proposed the activity-driven clock tree 
design for low power. A binary clock tree is constructed by 
combining two modules or internal nodes with similar activity 
pattern so that the total active periods of the clock are reduced. As 
a result, the power consumption of the clock tree decreases. 
However, the effect of control signals was not addressed. Given 
floor-planning information and activation frequencies of modules, 
if highly active nodes are merged into the clock tree later than less 
active nodes, then the overall activity in the tree can be reduced 
[5]. 

In this paper, we first introduce the concept of node difference 
based on activity patterns of modules and show how it is related 
to the power consumption of clock network. Then we propose an 
algorithm to construct a low-power clock tree. Once the clock tree 
is available, we perform further power optimization by reducing 
the penalty of control signals. 

2. BACKGROUND 
Let G = {V, E} denote the clock tree, where V = {vi | i = 1, 2, …, 
mv} is the set of nodes, and E = {ej | j = 1, 2, …, mv − 1} is the set 
of clock edges corresponding to each node (except the root node). 
We use S = {vk | k = 1, 2, …, ms} (where ms < mv) to denote the 
set of modules (namely, the leaf nodes). The rest (mv − ms) nodes 
are called internal nodes. The root is said to be at level 0. Node 

iv is said to be at level ni if there are ni edges on the path from iv  

to the root. An example of clock tree is shown in Fig. 1, where the 
tree is a binary tree for which each parent node has no more than 
two children.  The control signal gates a parent node to reach its 
child node. 

For each module, we can obtain the activity information from the 
behavioral level description [1]. An activity pattern is a set of ‘1’ 
and ‘0’, where ‘1’ represents an active period while ‘0’ represents 
an idle period. Each binary bit in the activity pattern stands for a 
clock period. The number of bits for which the modules have 
different logic values is referred to as node difference. For the 
binary clock tree, we notice that a parent node must be active 
whenever its left or right child is active. This means that the 
activity pattern of the parent node is formed by OR-ing the 
activity patterns of its left and right children. In contrast, the 
activity pattern of a child node is obtained by AND-ing the 
activity  patterns  of  its parent node and control signal.  A general 
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Table I.  Determining control signals from nodes’ activity 

Parent node Child node Control signal 

1 1 1 

1 0 0 

0 0 unchanged 

0 1 (impossible) 
combination)  

rule for determining the control signals from the activity patterns 
is given in Table I, where the entries “1” (or “0”) represent 
“active” (or “idle”) for nodes, and “high” (or “low”) for control 
signals. 

3. NODE DIFFERENCE AND POWER 
CONSUMPTION 
3.1 Node-Difference Based Power Analysis 
In this section, we show that node difference plays an important 
role in low-power clock tree construction. For an extreme case 
where two nodes with the same activity pattern are combined, the 
activity pattern of parent node is the same as its children’s activity 
patterns. Thus, no transitions occur with the control signals.  The 
number of active periods for the parent node is the same as that 
for each child. We refer to this extreme case as the ideal point. If 
we change one child’s distribution of activity periods while 
keeping the number of its active periods unchanged, the node 
difference between two children is increased by exactly the 
increased number of active periods of the parent node. This is 
given by the following equation: 

)()( 21 chpchpdinc AAAALA −+−==            (1) 

where incA  is the increased number of active periods, dL  is the 

node difference between child 1 and child 2, and pA , 1chA  and 

2chA  are the numbers of active periods for the parent, child 1 and 

child 2 nodes, respectively. Since reducing the incA can lead to 

the saved power of the clock edges, the nodes with smaller node 
difference should be combined with higher priority during the 
clock tree construction.  

An intuitive idea is that minimizing the node difference of 
neighboring nodes can result in the reduced number of control 
signals’ transitions required. Since the state of a control signal 
depends on its previous state when both parent and children are 
idle (refer to Table I), it would be impossible to formulate the 
relationship between the node difference and transitions of control 
signals by combinational logic. Therefore, we conducted some 
experiments to obtain the correlation between the total transitions 
of control signals and total node difference of all modules (i.e., 
nodes). Fig. 2 shows the experimental result with 20 nodes and 20 
clock periods. In this experiment, we keep the activity densities 
for all nodes fixed, and the nodes are paired sequentially (i.e., 
node 1 is paired with node 2, and node 3 is paired with node 4, 
etc.). The total transition is the sum of transitions of control 
signals for all nodes. The total node difference is the sum of node 
differences for all node pairs. We change the total logic distance 
by shuffling the activity patterns of nodes without changing the 
activity density, and obtain the corresponding total transitions.  It 
can be seen from Fig. 2 that the number of total transitions of 
control signals is proportional to the total node difference.  

In order to take into account the power consumption for both 
clock edges and control signals, we define a merging power, for 
each pair of modules to be combined, as a weighted sum of logic 
distance (i.e., dL ) and the number of transitions of control signals 

(denoted by cT ): 

cctrdclkmeg TWLWP ** +=          (2) 

where clkW  and ctrW  are the weights for clock edges and for 

control signals, representing the power consumption contributed 
by each active period of clock edges and by each transition of 
control signals, respectively.  These weights are proportional to 
the wiring capacitances of the associated clock edges or control 
logic. 
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Figure 2. The correlation between total transitions and total 

node difference. 

3.2 Power Consumption of Binary Clock 
Trees 
Consider a typical construction process of the binary clock tree. 
The top level of the tree is the clock source. Leaves or modules 
are at the bottom level.  Each node has no more than two children 
nodes. The number of nodes at each level is not necessarily power 
of 2, depending on the total number of modules. If, at a specific 

 Figure 1. A binary gated clock tree. 

 



level, the number of nodes is odd, there must be one node that 
doesn’t combine with any other node.  

To estimate the physical wiring information, we take an H tree for 
example. Fig. 3 shows the H tree with eight modules that are 
placed in uniform grids. Assuming the clock wiring length at the 

bottom level is clkl , the clock wiring length at level n is given by 

0)0( =clkL      (3) 

clk
nNlf

nclk lL ]2/)1[(
)( 2 −−=        (4) 

where N is the number of levels ( Nn <≤0 ), and ][xfl is the 

floor value of positive number x. Wire length of the source is 0. 
Eq. (4) means that the wire length of clock edges doubles at every 
other level upward. Assuming all control signals are generated 
from the central [5]. The routing of the control signals is parallel 
to the clock routing. 

The wire length of each control signal at level n is given by 

0)( =nctrL           1,0=nfor        (5) 

∑
−

=

−−=
1

1

]2/)1[(
)( 2

n

k

kNfl
clknctr lL    for  n > 1 (6) 

Since there is no control signal for the source, )0(ctrL is 0.  If we 

assume the clock gate is placed as close as possible to the upper 
level, then )1(ctrL can also be considered as 0. As to other levels, 

the wire length of control signals is the sum of the wire lengths of 
upper level clock edge all ways up to the root. Therefore, the 
power consumed by clock edge i at level n can be expressed as: 

inclknclkiclkiclk AWLAkP )()()( ==              (7) 

where clkk  is a constant, )()( nclkclknclk LkW = , and iA  is the 

number of active periods of the node connected to clock edge i.  
Similarly, the power consumed by control signal j at level n is 
given by 

jnctrnctrjctrjctr TWLTkP )()()( ==            (8) 

where ctrk is a constant,  )()( nctrctrnctr LkW = , and jT  is the 

number of transitions of control signal j. The total power 
consumption, P , of the clock network consists of the 
contributions by modules (Pm) and by interconnections, i.e., 

 
 Figure 3. The topology of H tree. 
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4. ALGORITHMS 
Based on the above discussions, we develop a so-called Merging 
Algorithm (MA) for the low-power clock tree construction. The 
algorithm consists of two parts. Given the total number of clock 
periods, the number of modules and their activity patterns, we 
first construct the binary clock tree based on Eq. (6) in a bottom-
up manner. This is done level by level toward the root node of the 
tree. Then we perform an optimization step by looking at the 
tradeoff between the power penalty from control signals and the 
power savings from gated clock edges.  

4.1 Clock Tree Construction 
The basic idea for the clock tree construction is to combine every 
two nodes with smallest value of megP  from leaf nodes towards 

the root node. All node pairs at one level are combined to obtain 
their parent nodes at the next level. If the number of nodes at a 
specific level is odd, then one node at this level will combine with 
a dummy node that has no active periods and no transition on its 
control signal. Each parent’s activity pattern is obtained by OR-
ing the activity patterns of the children. The control signals of 
children are determined by the method described in Section 2. 

From Eq. (2), the merging power for node i and j  at level n  is 

written as: 

)()()(),( jinctrdnclkjimeg TTWLWP ++=  (10) 

where iT  ( jT ) is the number of transitions of the control signal 

for node i (node j). If there are M nodes at a given level, the 
number of possible merging powers values is 2/)1( −MM . We 

sort all these values in ascending order. The two nodes with 
smallest value are paired to form their parent node, and then are 
deleted from the list. This process repeats until all nodes are 
paired. If the number of nodes is odd, the last node pairs with a 
dummy node. All parent nodes so obtained at the upper level can 
be used to determine the control signals of their children. The 

depth of the tree is log ms , where ms is the number of modules. 

4.2 Local Ungating 
After the clock tree is constructed, every node (except the root) 
has an associated control signal. The control signals can reduce 
the power consumption due to clock edges and/or modules. 
However, the transition of control signals consumes additional 
power, which may offset the power savings. This requires more 
attention especially at some levels close to the leaf nodes, where 
the weights of control signals are relatively high (see Eq. (6)). 
The control signals’ power penalty caused by their transitions can 
be reduced by incrementally changing some of their periods from 
‘0’ to ‘1’. This operation is called local ungating, which is 
acceptable if it can result in the overall power reduction. 

5. EXPERIMENTAL RESULTS 
We created the CDFG (Control Data Flow Graph) files from the 
benchmarks described in VHDL by using CDFG Tool, version 



1.0. [6].  The ASAP (i.e., As Soon As Possible) scheduling was 
done based on the CDFG files. After the scheduling, we obtained 
the number of periods and minimum resource required, i.e., 
modules that include adder, subtractor, multiplier and multiplexer 
etc. The merging algorithm is applied on the activity patterns 
followed by local ungating. We compared the merging algorithm 
with conventional clock construction that does not account for 
node difference.  The results are shown in Table II, where the 
power savings and wire-length are relative to that from a standard 
clock with gating. The merging algorithm results in fewer active 
periods on clock tree and fewer transitions of control signals, 
reducing power consumption of the clock tree. By combining the 
nodes with smallest node difference, it is much likely to produce 
the control signals that are always high at most periods. Thus, the 
ungating reduces the number of control signals and total wire 
length as well. As can be seen from Table II, there is also a 
significant decrease in control signals’ wire length.  

Table II.  Performance of the proposed algorithm on 
benchmarks 

Bench-
mark 

#  
Periods 

#  
Modules 

Power 
savings 

Wire-
length red. 

iir7 13 19 13.5% 50.9% 
ellipf 14 8 21.2% 30.9% 
diffeq 5 8 23.1% 57.1% 

parallel 9 17 24.8% 73.9% 
nc 12 26 28.9% 55.0% 

 

6. CONCLUSIONS 
In this paper we have dealt with the activity-sensitive clock tree 
problem. We have presented the method of determining the 
control signals such that their transitions are reduced.  By using 
modules’ activity information, the clock tree construction 
algorithm and local ungating technique have been introduced for 
power savings. It has been shown that node difference plays an 
important role in low-power clock tree design.  
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