
Activity-Sensitive Clock Tree Construction for Low Power *
Chunhong Chen

Dept. of Electrical & Computer Eng.
University of Windsor

Windsor, Ontario, Canada
Tel: 1-519-253-3000

cchen@uwindsor.ca

Changjun Kang
Dept. of Electrical and Computer Eng.

University of Windsor
Windsor, Ontario, Canada

Tel: 1-519-253-3000

kang@uwindsor.ca

Majid Sarrafzadeh
Computer Science Department

University of California at Los Angeles
Los Angeles, CA 90095-1596 USA

Tel: 1-310-794-4303

majid@cs.ucla.edu

ABSTRACT
This paper presents an activity-sensitive clock tree construction
technique for low power design of VLSI clock networks. We
introduce the term of node difference based on module activity
information, and show its relationship with the power
consumption. A binary clock tree is built using the node
difference between different modules to optimize the power
consumption due to the interconnections (i.e., clock gating signals
and clock edges). We also develop a method to determine gating
signals with minimum number of transitions. After the clock tree
is constructed, the gating signals are optimized for further power
savings.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – VLSI.

General Terms
Algorithms.

Keywords
Clock tree, low power, clock gating, activity pattern.

1. INTRODUCTION
In synchronous digital systems, the logic operation is
synchronized by clock signal. The clock is generated by a clock
generator and distributed across the chip by a clock tree. In
system-on-chips, the clock accounts for a large portion of power
consumption (20%-50%). The fact that not all of modules are
involved in some operations leads to clock gating technique. By
controlling the clock fed into modules, the clock gating signals (or
control signals) can prevent some unnecessary switching with
both clock tree and modules and, hence, save the power
consumption.

* This work was supported in part by NSERC (Natural Sciences
and Engineering Research Council of Canada) Grant #249499-02.

In general, the power consumption of a clock network is
contributed by three factors: modules, clock edges and control
signals. Previous work mainly focused on zero-skew clock trees
[1-3]. In [4], the authors proposed the activity-driven clock tree
design for low power. A binary clock tree is constructed by
combining two modules or internal nodes with similar activity
pattern so that the total active periods of the clock are reduced. As
a result, the power consumption of the clock tree decreases.
However, the effect of control signals was not addressed. Given
floor-planning information and activation frequencies of modules,
if highly active nodes are merged into the clock tree later than less
active nodes, then the overall activity in the tree can be reduced
[5].

In this paper, we first introduce the concept of node difference
based on activity patterns of modules and show how it is related
to the power consumption of clock network. Then we propose an
algorithm to construct a low-power clock tree. Once the clock tree
is available, we perform further power optimization by reducing
the penalty of control signals.

2. BACKGROUND
Let G = {V, E} denote the clock tree, where V = {vi | i = 1, 2, …,
mv} is the set of nodes, and E = {ej | j = 1, 2, …, mv − 1} is the set
of clock edges corresponding to each node (except the root node).
We use S = {vk | k = 1, 2, …, ms} (where ms < mv) to denote the
set of modules (namely, the leaf nodes). The rest (mv − ms) nodes
are called internal nodes. The root is said to be at level 0. Node

iv is said to be at level ni if there are ni edges on the path from iv

to the root. An example of clock tree is shown in Fig. 1, where the
tree is a binary tree for which each parent node has no more than
two children. The control signal gates a parent node to reach its
child node.

For each module, we can obtain the activity information from the
behavioral level description [1]. An activity pattern is a set of ‘1’
and ‘0’, where ‘1’ represents an active period while ‘0’ represents
an idle period. Each binary bit in the activity pattern stands for a
clock period. The number of bits for which the modules have
different logic values is referred to as node difference. For the
binary clock tree, we notice that a parent node must be active
whenever its left or right child is active. This means that the
activity pattern of the parent node is formed by OR-ing the
activity patterns of its left and right children. In contrast, the
activity pattern of a child node is obtained by AND-ing the
activity patterns of its parent node and control signal. A general

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008…$5.00.

Table I. Determining control signals from nodes’ activity

Parent node Child node Control signal

1 1 1

1 0 0

0 0 unchanged

0 1 (impossible)
combination)

rule for determining the control signals from the activity patterns
is given in Table I, where the entries “1” (or “0”) represent
“active” (or “idle”) for nodes, and “high” (or “low”) for control
signals.

3. NODE DIFFERENCE AND POWER
CONSUMPTION
3.1 Node-Difference Based Power Analysis
In this section, we show that node difference plays an important
role in low-power clock tree construction. For an extreme case
where two nodes with the same activity pattern are combined, the
activity pattern of parent node is the same as its children’s activity
patterns. Thus, no transitions occur with the control signals. The
number of active periods for the parent node is the same as that
for each child. We refer to this extreme case as the ideal point. If
we change one child’s distribution of activity periods while
keeping the number of its active periods unchanged, the node
difference between two children is increased by exactly the
increased number of active periods of the parent node. This is
given by the following equation:

)()(21 chpchpdinc AAAALA −+−== (1)

where incA is the increased number of active periods, dL is the

node difference between child 1 and child 2, and pA , 1chA and

2chA are the numbers of active periods for the parent, child 1 and

child 2 nodes, respectively. Since reducing the incA can lead to

the saved power of the clock edges, the nodes with smaller node
difference should be combined with higher priority during the
clock tree construction.

An intuitive idea is that minimizing the node difference of
neighboring nodes can result in the reduced number of control
signals’ transitions required. Since the state of a control signal
depends on its previous state when both parent and children are
idle (refer to Table I), it would be impossible to formulate the
relationship between the node difference and transitions of control
signals by combinational logic. Therefore, we conducted some
experiments to obtain the correlation between the total transitions
of control signals and total node difference of all modules (i.e.,
nodes). Fig. 2 shows the experimental result with 20 nodes and 20
clock periods. In this experiment, we keep the activity densities
for all nodes fixed, and the nodes are paired sequentially (i.e.,
node 1 is paired with node 2, and node 3 is paired with node 4,
etc.). The total transition is the sum of transitions of control
signals for all nodes. The total node difference is the sum of node
differences for all node pairs. We change the total logic distance
by shuffling the activity patterns of nodes without changing the
activity density, and obtain the corresponding total transitions. It
can be seen from Fig. 2 that the number of total transitions of
control signals is proportional to the total node difference.

In order to take into account the power consumption for both
clock edges and control signals, we define a merging power, for
each pair of modules to be combined, as a weighted sum of logic
distance (i.e., dL) and the number of transitions of control signals

(denoted by cT):

cctrdclkmeg TWLWP ** += (2)

where clkW and ctrW are the weights for clock edges and for

control signals, representing the power consumption contributed
by each active period of clock edges and by each transition of
control signals, respectively. These weights are proportional to
the wiring capacitances of the associated clock edges or control
logic.

0

10

20

30

40

50

60

70

80

90

0 2 6 10 16 24 32 40 50 60

Total node difference

T
o

ta
l n

u
m

b
er

 o
f

tr
an

si
ti

o
n

s

Figure 2. The correlation between total transitions and total

node difference.

3.2 Power Consumption of Binary Clock
Trees
Consider a typical construction process of the binary clock tree.
The top level of the tree is the clock source. Leaves or modules
are at the bottom level. Each node has no more than two children
nodes. The number of nodes at each level is not necessarily power
of 2, depending on the total number of modules. If, at a specific

 Figure 1. A binary gated clock tree.

level, the number of nodes is odd, there must be one node that
doesn’t combine with any other node.

To estimate the physical wiring information, we take an H tree for
example. Fig. 3 shows the H tree with eight modules that are
placed in uniform grids. Assuming the clock wiring length at the

bottom level is clkl , the clock wiring length at level n is given by

0)0(=clkL (3)

clk
nNlf

nclk lL]2/)1[(
)(2 −−= (4)

where N is the number of levels (Nn <≤0), and][xfl is the

floor value of positive number x. Wire length of the source is 0.
Eq. (4) means that the wire length of clock edges doubles at every
other level upward. Assuming all control signals are generated
from the central [5]. The routing of the control signals is parallel
to the clock routing.

The wire length of each control signal at level n is given by

0)(=nctrL 1,0=nfor (5)

∑
−

=

−−=
1

1

]2/)1[(
)(2

n

k

kNfl
clknctr lL for n > 1 (6)

Since there is no control signal for the source,)0(ctrL is 0. If we

assume the clock gate is placed as close as possible to the upper
level, then)1(ctrL can also be considered as 0. As to other levels,

the wire length of control signals is the sum of the wire lengths of
upper level clock edge all ways up to the root. Therefore, the
power consumed by clock edge i at level n can be expressed as:

inclknclkiclkiclk AWLAkP)()()(== (7)

where clkk is a constant,)()(nclkclknclk LkW = , and iA is the

number of active periods of the node connected to clock edge i.
Similarly, the power consumed by control signal j at level n is
given by

jnctrnctrjctrjctr TWLTkP)()()(== (8)

where ctrk is a constant,)()(nctrctrnctr LkW = , and jT is the

number of transitions of control signal j. The total power
consumption, P , of the clock network consists of the
contributions by modules (Pm) and by interconnections, i.e.,

 Figure 3. The topology of H tree.

∑∑∑ ++=)()(jctriclkm PPPP (9)

4. ALGORITHMS
Based on the above discussions, we develop a so-called Merging
Algorithm (MA) for the low-power clock tree construction. The
algorithm consists of two parts. Given the total number of clock
periods, the number of modules and their activity patterns, we
first construct the binary clock tree based on Eq. (6) in a bottom-
up manner. This is done level by level toward the root node of the
tree. Then we perform an optimization step by looking at the
tradeoff between the power penalty from control signals and the
power savings from gated clock edges.

4.1 Clock Tree Construction
The basic idea for the clock tree construction is to combine every
two nodes with smallest value of megP from leaf nodes towards

the root node. All node pairs at one level are combined to obtain
their parent nodes at the next level. If the number of nodes at a
specific level is odd, then one node at this level will combine with
a dummy node that has no active periods and no transition on its
control signal. Each parent’s activity pattern is obtained by OR-
ing the activity patterns of the children. The control signals of
children are determined by the method described in Section 2.

From Eq. (2), the merging power for node i and j at level n is

written as:

)()()(),(jinctrdnclkjimeg TTWLWP ++= (10)

where iT (jT) is the number of transitions of the control signal

for node i (node j). If there are M nodes at a given level, the
number of possible merging powers values is 2/)1(−MM . We

sort all these values in ascending order. The two nodes with
smallest value are paired to form their parent node, and then are
deleted from the list. This process repeats until all nodes are
paired. If the number of nodes is odd, the last node pairs with a
dummy node. All parent nodes so obtained at the upper level can
be used to determine the control signals of their children. The

depth of the tree is log ms , where ms is the number of modules.

4.2 Local Ungating
After the clock tree is constructed, every node (except the root)
has an associated control signal. The control signals can reduce
the power consumption due to clock edges and/or modules.
However, the transition of control signals consumes additional
power, which may offset the power savings. This requires more
attention especially at some levels close to the leaf nodes, where
the weights of control signals are relatively high (see Eq. (6)).
The control signals’ power penalty caused by their transitions can
be reduced by incrementally changing some of their periods from
‘0’ to ‘1’. This operation is called local ungating, which is
acceptable if it can result in the overall power reduction.

5. EXPERIMENTAL RESULTS
We created the CDFG (Control Data Flow Graph) files from the
benchmarks described in VHDL by using CDFG Tool, version

1.0. [6]. The ASAP (i.e., As Soon As Possible) scheduling was
done based on the CDFG files. After the scheduling, we obtained
the number of periods and minimum resource required, i.e.,
modules that include adder, subtractor, multiplier and multiplexer
etc. The merging algorithm is applied on the activity patterns
followed by local ungating. We compared the merging algorithm
with conventional clock construction that does not account for
node difference. The results are shown in Table II, where the
power savings and wire-length are relative to that from a standard
clock with gating. The merging algorithm results in fewer active
periods on clock tree and fewer transitions of control signals,
reducing power consumption of the clock tree. By combining the
nodes with smallest node difference, it is much likely to produce
the control signals that are always high at most periods. Thus, the
ungating reduces the number of control signals and total wire
length as well. As can be seen from Table II, there is also a
significant decrease in control signals’ wire length.

Table II. Performance of the proposed algorithm on
benchmarks

Bench-
mark

Periods

Modules

Power
savings

Wire-
length red.

iir7 13 19 13.5% 50.9%
ellipf 14 8 21.2% 30.9%
diffeq 5 8 23.1% 57.1%

parallel 9 17 24.8% 73.9%
nc 12 26 28.9% 55.0%

6. CONCLUSIONS
In this paper we have dealt with the activity-sensitive clock tree
problem. We have presented the method of determining the
control signals such that their transitions are reduced. By using
modules’ activity information, the clock tree construction
algorithm and local ungating technique have been introduced for
power savings. It has been shown that node difference plays an
important role in low-power clock tree design.

7. REFERENCES
[1] Tsay R. S. An exact zero-skew clock routing algorithm.

IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 2 (February 1993), 242-
249.

[2] Chao T. H., Hsu Y. C., Ho J. M., Boese K. D., and Kahng A.
B. Zero skew routing with minimum wirelength. IEEE
Trans. on Circuits and Systems, vol. 39, no. 11 (1992), 799-
814.

[3] Edahiro M. Delay minimization for zero-skew routing. in
Proceedings of ICCAD (Nov. 1993), 563-566.

[4] Farrahi A. H., Chen C. H., Sarrafzadeh M., and Tellez G.
Activity-driven clock design. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20,
no. 6 (June 2001), 706-714.

[5] Oh J. and Pedram M. Gated clock routing for low-power
microprocessor design. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 20, no. 6
(June 2001), 715-722.

[6] http://poppy.snu.ac.kr/~shlee/class/icda2001/CDFGTool.pdf

