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Abstract

In spite of many dataset efforts for human action recog-

nition, current computer vision algorithms are still severely

limited in terms of the variability and complexity of the ac-

tions that they can recognize. This is in part due to the sim-

plicity of current benchmarks, which mostly focus on sim-

ple actions and movements occurring on manually trimmed

videos. In this paper we introduce ActivityNet, a new large-

scale video benchmark for human activity understanding.

Our benchmark aims at covering a wide range of complex

human activities that are of interest to people in their daily

living. In its current version, ActivityNet provides samples

from 203 activity classes with an average of 137 untrimmed

videos per class and 1.41 activity instances per video, for

a total of 849 video hours. We illustrate three scenarios in

which ActivityNet can be used to compare algorithms for

human activity understanding: untrimmed video classifica-

tion, trimmed activity classification and activity detection.

1. Introduction

With the growth of online media, surveillance and mo-

bile cameras, the amount and size of video databases are

increasing at an incredible pace. For example, YouTube

reported that over 300 hours of video are uploaded every

minute to their servers [43]. Arguably, people are the most

important and interesting subjects of such videos. The com-

puter vision community has embraced this observation to

validate the crucial role that human activity/action recog-

nition plays in building smarter surveillance systems, se-

mantically aware video indexes, and more natural human-

computer interfaces. However, despite the explosion of

video data, the ability to automatically recognize and under-

stand human activities is still rather limited. This is primar-

ily due to impeding challenges inherent to the task, namely

the large variability in execution styles, complexity of the

visual stimuli in terms of camera motion, background clut-

ter and viewpoint changes, as well as, the level of detail

and number of activities that can be recognized. An im-

portant limitation that hinders the performance of current

techniques is the state of existing video datasets and bench-

marks available to action/activity recognition researchers.

For example, note that the range of activities performed

by one person in a day varies from making the bed after

waking up to brushing teeth before going to sleep. Between

these moments, he/she performs many activities relevant to

his/her daily life. The American Time Use Survey reports

that Americans spent an average 1.7 hours in household ac-

tivities against only 18 minutes participating in sports, ex-

ercise or recreation per day [37]. In spite of this fact, most

computer vision algorithms for human activity understand-

ing are benchmarked on datasets that cover a limited num-

ber of activity types. In fact, existing databases tend to be

specific and focus on certain types of activities i.e. sports,

cooking or simple actions. Typically, these datasets have a

small number of categories (around 100), a small number of

samples (short clips) per category (around 100), and limited

category diversity.

In this paper, we address these dataset limitations by

using a flexible framework that allows continuous acqui-

sition, crowdsourced annotation, and segmentation of on-

line videos, thus, culminating in a large-scale (large in

the number of categories and number of samples per cat-

egory), rich (diverse taxonomy), and easy-to-use (annota-

tions, baseline classification models will be available on-

line) activity dataset, known as ActivityNet. One of the

most important aspects of ActivityNet is that it is structured

around a semantic ontology which organizes activities ac-

cording to social interactions and where they usually take

place. It provides a rich activity hierarchy with at least four

levels of depth. For example, the activity Filing nails falls

under the third tier category Washing, dressing and groom-

ing, which belongs to the second tier Grooming and finally

the major category Personal care. Figure 1 illustrates other

examples of this organization. To the best of our knowl-

edge, ActivityNet is the first database for human activity

recognition organized under a rich semantic taxonomy.

We organize the paper as follows: we first review and

summarize existing benchmarks for human activity un-

derstanding. Then, we present the details of our dataset

collection and annotation framework and provide a sum-

mary of the properties of ActivityNet. We illustrate three
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Cleaning windowsInterior cleaningHouseworkHousehold activities
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Figure 1. ActivityNet organizes a large number of diverse videos that contain human activities into a semantic taxonomy. Top-row shows the root-leaf path

for the activity Cleaning windows. Bottom-row shows the root-leaf path for the activity Brushing teeth. Each box illustrates example videos that lie within

the corresponding taxonomy node. Green intervals indicate the temporal extent of the activity. All figures are best viewed in color.

benchmarking scenarios for evaluating the performance of

state-of-the-art algorithms: untrimmed video classification,

trimmed activity classification and activity detection.

2. Related Work

The challenges of building systems that understand and

recognize complex activities in real environments and con-

ditions, has prompted the construction of standardized

datasets for algorithm training and evaluation. However,

current benchmarks are rather limited in at least one of these

aspects: number of categories, samples per category, tem-

poral length of each sample, diversity of video capturing

conditions or environments, and the diversity of category

taxonomy. Furthermore, extending most of these datasets

involves extremely costly manual labor.

We briefly review some of the most influential action

datasets available. The Hollywood dataset [20] contains

videos taken from Hollywood movies. Twelve action cat-

egories are performed by professional actors, which results

in more natural scenes than earlier simple action datasets

[33, 9]. Similarly, other datasets also relax the environ-

ment assumptions leading to challenging recognition tasks

with difficult background and camera angles. For example,

UCF Sports [30] and Olympic Sports [24] increase the ac-

tion complexity by focusing on highly articulated sporting

activities. However, the small number of categories keeps

the scope of the activities narrow, and cannot be considered

a representative sample of activities in the real-world. An-

other dimension of complexity is addressed by datasets that

focus on composable [21] and concurrent [41] activities, but

these are constrained with respect to the scene and environ-

ment assumptions.

Next in terms of sample size are the UCF101[17]-

Thumos’14[35] and the HMDB51[19] datasets, compiled

from YouTube videos and with more than 50 action cate-

gories. The resulting video samples are short and only con-

vey simplistic short-term actions or events. These videos

were collected through a manual and costly process, which

is difficult to scale if the size of the dataset is to be extended.

In terms of semantic organization, HMDB51 groups activi-

ties into 5 major types: general-facial, facial with object ma-

nipulation, general body movement, body movements with

object interaction and body movements for human interac-

tion. On the other hand, UCF101 groups categories into 5

types: human-object interaction, body motion only, playing

musical instruments, sports. Unfortunately, these are sim-

ple taxonomies with only two levels of resolution, and do

not provide a detailed organization of activities.

The MPII Human Pose Dataset [2] focuses on human

pose estimation, and was recently applied to action recog-

nition [29]. It provides short clips (41 frames or longer)

that depict human actions. Unfortunately, the distribution

of video samples per category is non-uniform and biased

towards some action categories.

Currently, the largest video dataset available is the

Sports-1M dataset [16], with about 500 sports-related cat-

egories, annotated by an automatic tagging algorithm. De-

spite its sheer size, this dataset is structured using a some-

what limited activity taxonomy, as it only focuses on sports

actions. Furthermore, the automatic collection process in-

troduces an undisclosed amount of label noise.

Also related to our work are the efforts to construct large-

scale benchmarks for object recognition in static images.

Image benchmarks such as ImageNet[5], SUN[42] and Tiny

Images[36] have spawned significant advances for com-

puter vision algorithms in the related tasks. An example

is the Large Scale Visual Recognition Challenge (ILSVRC)

[32], from which the AlexNet architecture [18] gains its pop-

ularity due to an outstanding performance in the challenge.

ActivityNet attempts to fill the gap in the following as-

pects: a large-scale dataset that covers activities that are

most relevant to how humans spend their time in their daily

living; a qualitative jump in terms of number and length



of each video (instead of short clips), diversity of activity

taxonomy and number of classes; a human-in-the-loop an-

notation process that can provide higher label accuracy as

compared to fully automatic annotation algorithms; and a

framework for continuous dataset expansion at low cost.

3. Building ActivityNet

ActivityNet aims at providing a semantic organization

of videos depicting human activities. In this section, we

introduce the activity lexicon and hierarchy that serves as

a backbone for ActivityNet. Another important goal is to

provide a large set of diverse video samples for each activity

of interest. In this section, we also describe our scalable

data collection and video annotation scheme. Finally, we

summarize some interesting properties of ActivityNet.

3.1. Defining the Activity lexicon

Our goal is to build ActivityNet upon a rich semantic

taxonomy. In contrast to the object domain, it is diffi-

cult to define an explicit semantic organization of activi-

ties. Beyond the shallow hierarchies that organize current

benchmarks, some attempts have been made at providing a

structured organization of activities within the computer vi-

sion community. Aloimonos et al. [10, 26] propose a two-

level organization of activities into 6 groups: ground, gen-

eral object, general person, specific object, specific person,

group; which connects to verbs in WordNet. Unfortunately,

verbs are more difficult to use directly, because unlike ob-

jects in ImageNet [5], there is more ambiguity and poly-

semism between verbs and activities, than between objects

and synsets. This may be partly explained by the fact that

our spoken language for activities needs more complicated

constructions compared to what is needed for objects.

Outside the vision community, there are efforts that or-

ganize general knowledge into structured repositories, such

as Freebase[8], FrameNet[7], among others. Since none of

them are specific to activities, their richness and depth are

limited. On the other hand, there are also efforts more spe-

cific to activities. In the medical community, Ainsworth et

al. [1] organizes a small number of physical human activi-

ties into a two level taxonomy.

Since we aim at a large scale benchmark with high ac-

tivity diversity, we propose the use of the activity taxonomy

built by the Department of Labor for conducting the Ameri-

can Time Use Survey [37]. The ATUS taxonomy organizes

more than 2000 activities according to two key dimensions:

a) social interactions and b) where the activity usually takes

place. The ATUS coding lexicon contains a large variety

of daily human activities organized under 18 top level cate-

gories such as Personal Care, Work-Related, Education and

Household activities. In addition, there are two more levels

of granularity under these top level categories. For exam-

ple, the activity Polishing shoes, appears in the hierarchy

Household
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Figure 3. Visualization of the sub-tree of the top level category Household

activities. Full taxonomy is available in the supplementary material.

as a leaf node under the third category, Sewing, repairing

and maintaining textiles, which is part of the second tier

category, Housework, which falls under the Household ac-

tivities top level category.

For the first release of ActivityNet, we have manually

selected a subset of 203 activity categories, out of the more

than two thousand activity examples provided by the ATUS

activity hierarchy. The activity classes belong to 7 differ-

ent top level categories: Personal Care, Eating and Drink-

ing, Household, Caring and Helping, Working, Socializing

and Leisure and Sports and Exercises. Figure 3 illustrates

the sub-tree for the top-level category Household activities.

The rich taxonomy in ActivityNet, which has four levels

of granularity, constitutes a semantic organization backbone

that may be useful in algorithms that are able to exploit the

hierarchy during model training.

3.2. Collecting and annotating human activities

Building benchmark datasets for visual recognition has

been traditionally a difficult and time consuming task. The

goal of ActivityNet is to provide a large-scale dataset of ac-

tivities that can be expanded and annotated continously at

a reasonably low cost. Traditional data collection practices

that require many expert researcher hours are prohibitive.

On the other hand, fully automatic methods introduce label

noise that is difficult to erradicate.

We now describe the collection and annotation process

for obtaining ActivityNet. Inspired by [5, 11, 38], we follow

a semi-automatic crowdsourcing strategy to collect and an-

notate videos (Figure 2). We first search the web for poten-

tial videos depicting a particular human activity. Then, we



a) Unlabeled Videos b) Untrimmed Videos c) Trimmed Activity Instances

Figure 2. Video collection and annotation process. (a) We start with a large number of candidate videos, for which the labels are partially unknown. (b)

AMT workers verify if an activity of interest is present in each video, so that we can discard false positive videos (in red). This results in a set of untrimmed

videos that contain the activity (in green). (c) Finally, we obtain temporal boundaries for activity instances (in green) with the help of AMT workers.

rely on Amazon Mechanical Turk (AMT) workers to verify

the presence of the activity in each video. Finally, multiple

workers annotate each video with the temporal boundaries

associated to the activity.

Search the Web: At this stage, we have a textual list

of human activity classes and our goal is to search the web

to retrieve videos related to each activity. Exploiting the

large amount of video data on online repositories such as

YouTube, we search videos using text based queries. These

queries are expanded with WordNet [23] using hyponyms,

hypernyms and synonyms in order to increase the number

of retrieved videos and content variety.

Labeling Untrimmed Videos: We verify all videos re-

trieved and remove those not related with the activity at

hand. We employ AMT workers (turkers) to review each

video and determine if it contains an intended activity class.

In order to keep the annotation quality high, we insert ver-

ifiable labeling questions and only employ multiple expert

turkers. Due to the inaccuracy of text-based queries, we

usually discard many videos that are not related with any of

the intended activity classes. At the end of this process, we

have a set of verified untrimmed videos that are associated

to at least one ground truth activity label.

Annotating the Activity Instances: Most current ac-

tivity classification systems require training videos to be

trimmed to only contain the intended activity. Neverthe-

less, it is hard to find web videos containing only informa-

tion with a specific activity. For example, when searching

YouTube with the query “Preparing pasta”, results include

videos containing contextual information about the chef. In

this direction, we aim to manually annotate the temporal

boundaries where an activity is performed in a video. To

tackle this manual process, we rely on AMT workers to

temporally annotate all the activity instances present in a

video. In order to ensure quality, the temporal extent of

each activity instance is labelled by multiple expert turkers.

Then, we cluster their annotations to obtain robust annota-

tion agreements. This stage produces a curated set of activ-

ity instances, each of them associated to exactly one ground

truth activity label. Moreover, it is important to note that

within one untrimmed video, there may be more than one

activity instance from more than one activity class.

3.3. ActivityNet at a Glance

We now look into some of the properties of the videos

in ActivityNet. We first report statistics related to the video

data. Second, we compare ActivityNet to several existing

datasets for the benchmarking of human activities.

Video Properties All ActivityNet videos are obtained

from online video sharing sites. We download the original

videos at the best quality available. In order to limit the total

storage requirement, we prioritize the search toward videos

less than 20 minutes long. In practice, a large proportion of

videos have a duration between 5 and 10 minutes. Around

50% of the videos are in HD resolution (1280×720), while

the majority have a frame rate of 30 FPS.

Collection and Annotation Summary Figure 4-(top

rows) shows the number of untrimmed videos and trimmed

activity instances per class in the current version of Activ-

ityNet. The distribution is close to uniform, which helps

to avoid data unbalance when training classifiers. Also

note that there is a factor of 1.41 trimmed instances per

untrimmed video in average. Finally, our collection pro-

cess will allow easy expansion of ActivityNet in terms of

number of samples per category and number of categories.

Comparison with existing datasets We compare Activ-

ityNet with several action datasets [17, 19, 20, 24, 35, 16,

31] in terms of: 1) variety in terms of the type of activities,

and 2) number of activity classes and samples per class. To

compare the variety on activity types, we manually anno-

tate all the actions in each dataset with a parent top level

category from the ActivityNet hierarchy. For example, the

action Push ups from UCF101 is annotated under Sports

and exercising. In Figure 4(bottom-left), we plot a stacked

histogram for the actions assigned to each top level cate-

gory. It illustrates the lack of variety on activity types for all

existing datasets. In contrast, ActivityNet strives for includ-

ing activities in top level categories that are rarely consid-

ered in current benchmarks: Household activities, Personal

care, Education and Working activities. To analyze the scale

of ActivityNet compared to the existing action datasets, we

plot in Figure 4(bottom-right) the number of instances per

class vs the number of activity/action classes. The current

version of ActivityNet ranks second largest activity analysis

dataset but it is the most varied in terms of activity types.
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4. Experimental Results

This section presents a series of evaluations that show-

case several benchmarking scenarios in which ActivityNet

can be used. These evaluations also serve to illustrate the

challenge that general activity understanding is to current

computer vision algorithms.

The rest of the section is organized as follows. We first

describe the video representations adopted in our evaluation

scenarios. Then, we examine the performance of a state-

of-the-art algorithm for action recognition in three different

tasks: a) Untrimmed video classification, b) Trimmed activ-

ity classification, and c) Activity detection. For this study

we choose the state-of-the-art action recognition pipeline

from [25], which consists of improved trajectories, static

and deep features encoded using fisher vectors, and a one-

vs-all linear SVM as classifier. Lastly, we provide a cross-

task analysis and discussions about the results obtained.

4.1. Video Representation

In order to capture visual patterns in each input video, we

construct a video representation using a combination of sev-

eral feature types: motion features, static features and deep

features. This is motivated by the observation that combin-

ing multiple feature types can lead to significant improve-

ments in action recognition [34, 25].

Motion Features (MF): These features aim to capture

local motion patterns in a video. In practice, we first extract

improved trajectories [39] to obtain a set of local descriptors

i.e. HOG, HOF, and MBH. We encode these descriptors us-

ing the Fisher vector (FV) coding scheme [28], where each

descriptor type is represented separately. In all our experi-

ments, we first learn a GMM with 512 components and re-

duce the dimensionality of the final encoding to half using

PCA. This is similar to the procedures in [39, 3, 4].

Static Features (SF): These features aim to encode con-

textual scene information. These context cues are usually

helpful to discriminate human activities [12, 13]. In prac-



tice, we capture contextual scene information by extracting

SIFT features every ten frames. These features are encoded

using FV with a GMM of 1024 components, which is then

reduced to a feature size of 48 dimensions using PCA. The

final representation for each video aggregates all descriptors

in a single FV.

Deep Features (DF): These features aim to encode in-

formation about the objects in the scene. In many activities

involving object interactions, this is an important cue for

disambiguation [6]. In practice, we adopt features derived

from convolutional networks that have been trained for the

task of object recognition. This is motivated by the versatil-

ity of these features, which have been successfully applied

to many visual recognition tasks. For the network imple-

mentation, we adopt the AlexNet [18] architecture trained

on ILSVRC-2012 [32] as provided by Caffe [15]. We retain

activations of the network associated with the top-3 fully-

connected layers (fc-6, fc-7, and fc-8). We encode temporal

information in the activity by averaging activations across

several frames. In practice, we compute these deep features

every ten frames for all the videos in our dataset.

4.2. ActivityNet Benchmarks

We define three different application scenarios in which

ActivityNet can be used for benchmarking. First, we inves-

tigate the performance of an activity recognition algorithm

on the task of Untrimmed video classification. For the sec-

ond task, we use the manually annotated trimmed video in-

stances to construct the largest dataset for Trimmed activity

classification. Finally, we benchmark Activity detection on

all the untrimmed videos in ActivityNet.

4.2.1 Untrimmed Video Classification

In this task, we evaluate the capability of predicting activi-

ties in untrimmed video sequences. Here, videos can con-

tain more than one activity, and typically large time lapses

of the video are not related with any activity of interest.

Dataset: Using the labeled untrimmed videos from Ac-

tivityNet, we define a dataset for benchmarking untrimmed

video classification. The dataset consists of 27801 videos

that belong to 203 activity classes. We randomly split the

data into three different subsets: train, validation and test,

where 50% is used for training, and 25% for validation and

testing.

Classifiers: Using the training set, we learn a set of lin-

ear SVM activity classifiers using a one-vs-all strategy. We

use the validation set in order to tune the parameters of each

classifier. Finally, we evaluate the models in the testing set,

where the activity of each test video is predicted to be the

one corresponding to the classifier with the largest margin.

Results: In this experiment, we measure the mean av-

erage precision (mAP) obtained by each activity classifier.

Untrimmed Classification Trimmed Classification

(mAP) (mAP)

Feature Validation Test Validation Test

Motion features (MF)

HOG 29.2% 28.6% 35.9% 36.1%

HOF 32.7% 31.8% 40.1% 40.2%

MBH 34.1% 33.6% 41.7% 41.9%

Deep features (DF)

fc-6 28.3% 28.1% 42.7% 43.1%

fc-7 28.0% 27.9% 41.1% 41.6%

fc-8 25.3% 24.9% 38.1% 38.2%

Per feature type

MF 39.8% 39.2% 47.8% 47.6%

DF 28.9% 28.7% 43.7% 43.0%

SF 24.7% 24.5% 38.3% 37.9%

Combined

MF+DF 41.2% 40.9% 49.5% 49.1%

MF+SF 40.3% 40.1% 48.9% 48.6%

DF+SF 32.7% 32.6% 44.2% 44.0%

MF+DF+SF 42.5% 42.2% 50.5% 50.2%

Table 1. Summary of classification results. The first two columns report

results on the untrimmed video classification task, while the last two report

results on trimmed video classification. The evaluation measure is mean

average precision (mAP). We report validation and test performance, when

different feature combinations are used. MF and DF refers to the concate-

nation of HOG, HOF and MBH features, and fc-6 and fc-7 respectively.

Since each untrimmed video may contain more than one ac-

tivity label, we measure performance using mAP instead of

a confusion matrix. Table 1 summarizes our results. We

see that combining multiple features improves overall per-

formance. Also, note that deep features obtain a competi-

tive performance compared to the state-of-the-art improved

trajectories features. The best results of deep features is ob-

tained when we concatenate the activation of fc-6 and fc-7.

4.2.2 Trimmed Activity Classification

This task aims to predict the correct label of a trimmed

video clip that contains a single activity instance. Here, we

use all the trimmed activity instances annotated in Activi-

tyNet to train classifiers and evaluate performance.

Dataset: We define a dataset for benchmarking human

activity classification algorithms. The dataset includes 203

activity classes with 193 samples per category on average.

These samples correspond to trimmed activity instances in

ActivityNet. When generating the training, validation, and

test subsets, we constrain the instances from a single video

to be in the same subset so as to avoid data contamination.

Classifiers: As compared to untrimmed video classifi-

cation, we build classifiers here with features that are only

extracted from the trimmed activity itself. We learn a linear

SVM classifier for each feature type. When combining mul-

tiple features, we simply sum the kernels before the learning

procedure. To enable multi-class classification, we utilize a

one-vs-all learning approach. Given a test video clip, we

select the class with highest score.

Results: To measure recognition performance for this



task, we compute the mean average precision (mAP) over

all the classes. As shown in Table 1, performance im-

proves when multiple feature types are combined. As in the

untrimmed video classification task, the DF model achieves

a mAP score of 43.0% on the test subset. It reveals that

these deep features by themselves encode discriminative in-

formation for human activities. We attribute this to the in-

tuition that these features encode object appearance infor-

mation and many activity categories involve human-object

interactions.

4.2.3 Activity Detection

In this task, the goal is to find and recognize all activity

instances within an untrimmed test video sequence. Ac-

tivity detection algorithms should provide start and end

frames, designating the duration of each activity present

in the video. To evaluate the different classification mod-

els, we exploit ActivityNet annotations for the evaluation,

thus, forming the largest and most diverse activity detection

dataset in the literature.

Dataset: To the best of our knowledge, the ActivityNet-

based detection dataset we use here is the largest existing

dataset for this task. It contains a total of 849 hours of video,

where 68.8 hours of video contain 203 human-centric activ-

ities. Here, we split the dataset in three different subsets as

in the video classification tasks above.

Classifiers: We initialize our SVM models using the

classifiers learned in the trimmed activity classification task.

Then, we employ five rounds of hard negative mining,

which generate a set of negative samples for each activity

class. After each round, we only keep the hardest negatives

in order to maintain a reasonable runtime. Given a test video

sequence, we apply the learned classifiers using a sliding

temporal window approach. From the training videos, we

find that 7 temporal window lengths typically exist: 25, 60,

78, 100, 150, 190 and 250 frames. We then fix a sliding

step size of 10 frames. Finally, we perform non-maximum

suppression to ignore overlapping detection windows.

Results: To measure the performance of our model, we

compute the mAP score over all activity classes. To do

this, a detection is determined to be a true positive accord-

ing to the following procedure: 1) we compute the overlap

(measured by the intersection over union score) between a

predicted temporal segment and a ground truth segment, 2)

we mark the detection as positive if the overlap is greater

than a threshold α. In practice, we vary the threshold α

between 0.1 and 0.5. Table 2 summarizes the detection re-

sults. We see that MF consistently outperforms both DF and

SF, across the different α values. In spite of the low perfor-

mance of DF and SF, our model reveals a significant in-

crease in performance when all feature types are combined.

In general, it is clear that the detection task is very challeng-

Feature α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

MF 11.7% 11.4% 10.6% 9.7% 8.9%

DF 7.2% 6.8% 4.9% 4.1% 3.7%

SF 4.2% 3.9% 3.1% 2.1% 1.9%

MF+DF+SF 12.5% 11.9% 11.1% 10.4% 9.7%

Table 2. Summary of activity detection results. We report the mAP score

for all activity classes. Due to the ambiguity inherent to the temporal an-

notation of activities, we use multiple values for the overlap threshold (α).

We also investigate the performance of the different feature types, individ-

ually and collectively.

ing for state-of-the-art detection methods.

4.3. Discussions

We provide further analysis along three directions.

Qualitative results: Figure 5 shows some example re-

sults for the easiest and hardest activity classes for the tasks

of untrimmed video classification and trimmed activity clas-

sification. These results are obtained using all three feature

types. A sample set of correct detections are shown in the

third column, while some hard false positive/negative sam-

ples for each activity class are shown in the last column.

For untrimmed video classification, we find that the two

easiest classes correspond to the Sports and exercise cat-

egory. These activity classes are easier to classify, since

they typically contain a repetitive and structured temporal

sequence and are usually performed in similar scene con-

texts. We notice that activities occupying almost the entire

video (in temporal length) are the hardest to classify. Re-

garding trimmed activity classification, the best classifiers

tend to generate false positives when there are similar mo-

tions in the video. For example, the most confident false

positives for the Platform diving class are from activities

such as Bungee jumping and Balance beam, which contain

motions that resemble those in platform diving. We also

note that the most difficult classes tend to be confused with

activities that have similar object or context appearance.

Where in the hierarchy are the easiest and hardest

activity classes? To answer this question, we compute the

mAP score per top level category. Table 3 shows these re-

sults for trimmed activity classification. We note that the

activities related with Sports and exercises achieve the high-

est mAP. In contrast, Household activities achieve the low-

est performance, due primarily to their unstructured nature,

variability, and lack of temporal constraints. In contrast,

Sports and exercises generally have a defined temporal or-

dering, and involve specific human-object interactions.

Comparing performance with existing datasets: To

emphasize the difficulty of ActivityNet, we compare results

for several datasets in Table 4. We consistently observe that

ActivityNet constitutes a significant challenge to state-of-

the-art recognition methods and is substantially more diffi-

cult than existing activity benchmarks. We attribute this to

the following: a) ActivityNet increases the number of cate-

gories by a factor of two, and b) the variety in the video data

represents a real world challenge for existing algorithms.



Figure 5. Example results for the two hardest and easiest activity classes in the untrimmed and trimmed classification tasks. Results are obtained using all

three feature types (MF, DF, and SF). The third column shows some correct prediction samples for each class. The last two columns illustrate some hard

false positive and hard false negative samples.

Category Validation Test

Household 34.2% 33.9%

Caring and helping 36.2% 36.7%

Personal care 41.5% 41.3%

Work-related 53.6% 53.1%

Eating and drinking 57.6% 57.2%

Socializing and leisure 63.8% 63.3%

Sports and exercises 66.6% 66.1%

Average 50.5% 50.2%

Table 3. Accuracy analysis on activity classification. We report mAP re-

sults for classifying each top-level class in ActivityNet. Here, all three

feature types are used: motion, deep and static features.

Dataset Method Performance

Untrimmed video classification

Thumos’14 [14] 71% (mAP)

Sports-1M [16] 63.9% (mAP)

ActivityNet 42.2% (mAP)

Trimmed activity classification

UCF101 [40] 85.9% (Accuracy)

HMDB51 [27] 66.7% (Accuracy)

ActivityNet 45.9% (Accuracy)

Activity detection

Thumos’14 [25] 33.6% (mAP)

ActivityNet 11.9% (mAP)

Table 4. Cross-dataset performance comparison. State-of-the-art results

are reported for each dataset. Reported results for the activity detection

task corresponds to the performance obtained with α = 0.2

5. Conclusions

In this paper, we introduce ActivityNet, a new large scale

benchmark for human activity understanding. It is made

possible by a large and continuous video collection and an-

notation effort that is easily scalable to larger numbers of

activities and larger samples per activity, at a reasonably

low cost. We compare ActivityNet with existing datasets

for action/activity recognition. We show that ActivityNet

presents more variety in terms of activity diversity and rich-

ness of taxonomy. It also contains more categories and sam-

ples per category than traditional action datasets. We also

introduce three possible applications for using ActivityNet:

untrimmed video classification, trimmed activity classifica-

tion, and activity detection. The results obtained in these

tasks reveal that ActivityNet unveils new challenges in un-

derstanding and recognizing human activities.

Since a key goal of ActivityNet is to enable further de-

velopment, research, and benchmarking in the field of hu-

man activity understanding, we are releasing our bench-

mark to the vision community. Annotations, algorithmic

baselines and a toolkit will be available at our website

http://www.activity-net.org.
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