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Abstract
We study the theoretical advantages of active learning overpassive learning. Specifically, we prove
that, in noise-free classifier learning for VC classes, any passive learning algorithm can be trans-
formed into an active learning algorithm with asymptotically strictly superior label complexity for
all nontrivial target functions and distributions. We further provide a general characterization of
the magnitudes of these improvements in terms of a novel generalization of the disagreement co-
efficient. We also extend these results to active learning inthe presence of label noise, and find
that even under broad classes of noise distributions, we cantypically guarantee strict improvements
over the known results for passive learning.
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1. Introduction and Background

The recent rapid growth in data sources has spawned an equally rapid expansion in the number of
potential applications of machine learning methodologies to extract useful concepts from these data.
However, in many cases, the bottleneck in the application process is the needto obtain accurate an-
notation of the raw data according to the target concept to be learned. Forinstance, in webpage
classification, it is straightforward to rapidly collect a large number of webpages, but training an
accurate classifier typically requires a human expert to examine and label anumber of these web-
pages, which may require significant time and effort. For this reason, it is natural to look for ways
to reduce the total number of labeled examples required to train an accurate classifier. In the tradi-
tional machine learning protocol, here referred to aspassive learning, the examples labeled by the
expert are sampled independently at random, and the emphasis is on designing learning algorithms
that make the most effective use of the number of these labeled examples available. However, it
is possible to go beyond such methods by altering the protocol itself, allowing the learning algo-
rithm to sequentiallyselectthe examples to be labeled, based on its observations of the labels of
previously-selected examples; this interactive protocol is referred to asactive learning. The objec-
tive in designing this selection mechanism is to focus the expert’s efforts toward labeling only the
most informative data for the learning process, thus eliminating some degree of redundancy in the
information content of the labeled examples.

∗. Some of these (and related) results previously appeared in the author’s doctoral dissertation (Hanneke, 2009b).
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It is now well-established that active learning can sometimes provide significant practical and
theoretical advantages over passive learning, in terms of the number of labels required to obtain a
given accuracy. However, our current understanding of active learning in general is still quite limited
in several respects. First, since we are lacking a complete understandingof the potential capabil-
ities of active learning, we are not yet sure to what standards we shouldaspire for active learning
algorithms to meet, and in particular this challenges our ability to characterize howa “good” active
learning algorithm should behave. Second, since we have yet to identify acomplete set of general
principles for the design of effective active learning algorithms, in many cases the most effective
known active learning algorithms have problem-specific designs (e.g., designed specifically for lin-
ear separators, or decision trees, etc., under specific assumptions on the data distribution), and it
is not clear what components of their design can be abstracted and transferred to the design of
active learning algorithms for different learning problems (e.g., with different types of classifiers,
or different data distributions). Finally, we have yet to fully understand the scope of the relative
benefits of active learning over passive learning, and in particular the conditions under which such
improvements are achievable, as well as a general characterization of thepotential magnitudes of
these improvements. In the present work, we take steps toward closing this gap in our understanding
of the capabilities, general principles, and advantages of active learning.

Additionally, this work has a second theme, motivated by practical concerns. To date, the ma-
chine learning community has invested decades of research into constructing solid, reliable, and
well-behavedpassivelearning algorithms, and into understanding their theoretical properties. We
might hope that an equivalent amount of effort isnot required in order to discover and understand
effective active learning algorithms. In particular, rather than starting from scratch in the design
and analysis of active learning algorithms, it seems desirable to leverage thisvast knowledge of
passive learning, to whatever extent possible. For instance, it may be possible to design active
learning algorithms thatinherit certain desirable behaviors or properties of a given passive learning
algorithm. In this way, we can use a given passive learning algorithm as areference point, and
the objective is to design an active learning algorithm with performance guarantees strictly superior
to those of the passive algorithm. Thus, if the passive learning algorithm has proven effective in
a variety of common learning problems, then the active learning algorithm should be even better
for thosesamelearning problems. This approach also has the advantage of immediately supplying
us with a collection of theoretical guarantees on the performance of the active learning algorithm:
namely, improved forms of all known guarantees on the performance of thegiven passive learning
algorithm.

Due to its obvious practical advantages, this general line of informal thinking dominates the
existing literature on empirically-tested heuristic approaches to active learning, as most of the pub-
lished heuristic active learning algorithms make use of a passive learning algorithm as a subroutine
(e.g., SVM, logistic regression, k-NN, etc.), constructing sets of labeled examples and feeding them
into the passive learning algorithm at various times during the execution of theactive learning algo-
rithm (see the references in Section 7). Below, we take a more rigorous look at this general strategy.
We develop a reduction-style framework for studying this approach to the design of active learning
algorithms relative to a given passive learning algorithm. We then proceed todevelop and analyze a
variety of such methods, to realize this approach in a very general sense.

Specifically, we explore the following fundamental questions.
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• Is there a general procedure that, given any passive learning algorithm, transforms it into an
active learning algorithm requiring significantly fewer labels to achieve a given accuracy?

• If so, how large is the reduction in the number of labels required by the resulting active learn-
ing algorithm, compared to the number of labels required by the original passive algorithm?

• What are sufficient conditions for anexponentialreduction in the number of labels required?

• To what extent can these methods be made robust to imperfect or noisy labels?

In the process of exploring these questions, we find that for many interesting learning problems, the
techniques in the existing literature are not capable of realizing the full potential of active learn-
ing. Thus, exploring this topic in generality requires us to develop novel insights and entirely new
techniques for the design of active learning algorithms. We also develop corresponding natural
complexity quantities to characterize the performance of such algorithms. Several of the results we
establish here are more general than any related results in the existing literature, and in many cases
the algorithms we develop use significantly fewer labels than any previously published methods.

1.1 Background

The termactive learningrefers to a family of supervised learning protocols, characterized by the
ability of the learning algorithm to pose queries to a teacher, who has accessto the target concept
to be learned. In practice, the teacher and queries may take a variety of forms: a human expert,
in which case the queries may be questions or annotation tasks; nature, in which case the queries
may be scientific experiments; a computer simulation, in which case the queries maybe particu-
lar parameter values or initial conditions for the simulator; or a host of other possibilities. In our
present context, we will specifically discuss a protocol known aspool-basedactive learning, a type
of sequential design based on a collection of unlabeled examples; this seemsto be the most com-
mon form of active learning in practical use today (e.g., Settles, 2010; Baldridge and Palmer, 2009;
Gangadharaiah, Brown, and Carbonell, 2009; Hoi, Jin, Zhu, and Lyu, 2006; Luo, Kramer, Goldgof,
Hall, Samson, Remsen, and Hopkins, 2005; Roy and McCallum, 2001; Tongand Koller, 2001; Mc-
Callum and Nigam, 1998). We will not discuss alternative models of active learning, such asonline
(Dekel, Gentile, and Sridharan, 2010) orexact(Heged̈us, 1995). In the pool-based active learning
setting, the learning algorithm is supplied with a large collection of unlabeled examples (thepool),
and is allowed to select any example from the pool to request that it be labeled. After observing
the label of this example, the algorithm can then select another unlabeled example from the pool to
request that it be labeled. This continues sequentially for a number of rounds until some halting con-
dition is satisfied, at which time the algorithm returns a function intended to approximately mimic
and generalize the observed labeling behavior. This setting contrasts withpassive learning, where
the learning algorithm is supplied with a collection oflabeledexamples without any interaction.

Supposing the labels received agree with some true target concept, the objective is to use this
returned function to approximate the true target concept on future (previously unobserved) data
points. The hope is that, by carefully selecting which examples should be labeled, the algorithm can
achieve improved accuracy while using fewer labels compared to passivelearning. The motivation
for this setting is simple. For many modern machine learning problems, unlabeled examples are
inexpensive and available in abundance, while annotation is time-consuming or expensive. For in-
stance, this is the case in the aforementioned webpage classification problem,where the pool would
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be the set of all webpages, and labeling a webpage requires a human expert to examine the website
content. Settles (2010) surveys a variety of other applications for which active learning is presently
being used. To simplify the discussion, in this work we focus specifically onbinary classification, in
which there are only two possible labels. The results generalize naturally to multiclass classification
as well.

As the above description indicates, when studying the advantages of active learning, we are
primarily interested in the number of label requests sufficient to achieve a given accuracy, a quantity
referred to as thelabel complexity(Definition 1 below). Although active learning has been an active
topic in the machine learning literature for many years now, ourtheoreticalunderstanding of this
topic was largely lacking until very recently. However, within the past few years, there has been an
explosion of progress. These advances can be grouped into two categories: namely, therealizable
caseand theagnostic case.

1.1.1 THE REALIZABLE CASE

In the realizable case, we are interested in a particularly strict scenario, where the true label of
any example isdeterminedby a function of the features (covariates), and where that function has
a specific known form (e.g., linear separator, decision tree, union of intervals, etc.); the set of
classifiers having this known form is referred to as theconcept space. The natural formalization
of the realizable case is very much analogous to the well-known PAC model for passive learning
(Valiant, 1984). In the realizable case, there are obvious examples of learning problems where
active learning can provide a significant advantage compared to passive learning; for instance, in
the problem of learningthresholdclassifiers on the real line (Example 1 below), a kind ofbinary
searchstrategy for selecting which examples to request labels for naturally leads toexponential
improvements in label complexity compared to learning from random labeled examples (passive
learning). As such, there is a natural attraction to determine how general this phenomenon is.
This leads us to think about general-purpose learning strategies (i.e., which can be instantiated for
more than merely threshold classifiers on the real line), which exhibit this binary search behavior in
various special cases.

The first such general-purpose strategy to emerge in the literature was a particularly elegant
strategy proposed by Cohn, Atlas, and Ladner (1994), typically referred to as CAL after its dis-
coverers (Meta-Algorithm 2 below). The strategy behind CAL is the following. The algorithm
examines each example in the unlabeled pool in sequence, and if there are two classifiers in the
concept space consistent with all previously-observed labels, but which disagree on the label of this
next example, then the algorithm requests that label, and otherwise it does not. For this reason, be-
low we refer to the general family of algorithms inspired by CAL asdisagreement-basedmethods.
Disagreement-based methods are sometimes referred to as “mellow” active learning, since in some
sense this is theleastwe can expect from a reasonable active learning algorithm; it never requests
the label of an example whose label it caninfer from information already available, but otherwise
makes no attempt to seek out particularly informative examples to request the labels of. That is, the
notion of informativenessimplicit in disagreement-based methods is abinaryone, so that an exam-
ple is either informative or not informative, but there is no further rankingof the informativeness
of examples. The disagreement-based strategy is quite general, and obviously leads to algorithms
that are at leastreasonable, but Cohn, Atlas, and Ladner (1994) did not study the label complexity
achieved by their strategy in any generality.
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In a Bayesian variant of the realizable setting, Freund, Seung, Shamir, and Tishby (1997) studied
an algorithm known asquery by committee(QBC), which in some sense represents a Bayesian
variant of CAL. However, QBCdoesdistinguish between different levels of informativeness beyond
simple disagreement, based on theamountof disagreement on a random unlabeled example. They
were able to analyze the label complexity achieved by QBC in terms of a type of information gain,
and found that when the information gain is lower bounded by a positive constant, the algorithm
achieves a label complexity exponentially smaller than the known results for passive learning. In
particular, this is the case for the threshold learning problem, and also for the problem of learning
higher-dimensional (nearly balanced) linear separators when the data satisfy a certain (uniform)
distribution. Below, we will not discuss this analysis further, since it is for aslightly different
(Bayesian) setting. However, the results below in our present setting do have interesting implications
for the Bayesian setting as well, as discussed in the recent work of Yang,Hanneke, and Carbonell
(2011).

The first general analysis of the label complexity of active learning in the (non-Bayesian) real-
izable case came in the breakthrough work of Dasgupta (2005). In that work, Dasgupta proposed a
quantity, called thesplitting index, to characterize the label complexities achievable by active learn-
ing. The splitting index analysis is noteworthy for several reasons. First,one can show it provides
nearly tight bounds on theminimaxlabel complexity for a given concept space and data distribution.
In particular, the analysis matches the exponential improvements known to be possible for threshold
classifiers, as well as generalizations to higher-dimensional homogeneous linear separators under
near-uniform distributions (as first established by Dasgupta, Kalai, andMonteleoni, 2005, 2009).
Second, it provides a novel notion ofinformativenessof an example, beyond the simple binary
notion of informativeness employed in disagreement-based methods. Specifically, it describes the
informativeness of an example in terms of the number ofpairs of well-separated classifiers for
which at least one out of each pair will be contradicted, supposing the least-favorable label. Finally,
unlike any other existing work on active learning (present work included), it provides an elegant
description of thetrade-off between the number of label requests and the number of unlabeled ex-
amples needed by the learning algorithm. Another interesting byproduct of Dasgupta’s work is a
better understanding of thenatureof the improvements achievable by active learning in the general
case. In particular, his work clearly illustrates the need to study the label complexity as a quantity
that varies depending on the particular target concept and data distribution. We will see this issue
arise in many of the examples below.

Coming from a slightly different perspective, Hanneke (2007a) later analyzed the label com-
plexity of active learning in terms of an extension of theteaching dimension(Goldman and Kearns,
1995). Related quantities were previously used by Hegedüs (1995) and Hellerstein, Pillaipakkam-
natt, Raghavan, and Wilkins (1996) to tightly characterize the number of membership queries suf-
ficient for Exact learning; Hanneke (2007a) provided a natural generalization to thePAC learning
setting. At this time, it is not clear how this quantity relates to the splitting index. Froma practical
perspective, in some instances it may be easier to calculate (see the work ofNowak, 2008 for a
discussion related to this), though in other cases the opposite seems true.

The next progress toward understanding the label complexity of active learning came in the work
of Hanneke (2007b), who introduced a quantity called thedisagreement coefficient(Definition 9 be-
low), accompanied by a technique for analyzing disagreement-based active learning algorithms. In
particular, implicit in that work, and made explicit in the later work of Hanneke (2011), was the
first general characterization of the label complexities achieved by the original CAL strategy for
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active learning in the realizable case, stated in terms of the disagreement coefficient. The results of
the present work are direct descendants of that 2007 paper, and wewill discuss the disagreement
coefficient, and results based on it, in substantial detail below. Disagreement-based active learners
such as CAL are known to be sometimes suboptimal relative to the splitting index analysis, and
therefore the disagreement coefficient analysis sometimes results in largerlabel complexity bounds
than the splitting index analysis. However, in many cases the label complexity bounds based on
the disagreement coefficient are surprisingly good considering the simplicity of the methods. Fur-
thermore, as we will see below, the disagreement coefficient has the practical benefit of often being
fairly straightforward to calculate for a variety of learning problems, particularly when there is a
natural geometric interpretation of the classifiers and the data distribution is relatively smooth. As
we discuss below, it can also be used to bound the label complexity of activelearning in noisy
settings. For these reasons (simplicity of algorithms, ease of calculation, andapplicability beyond
the realizable case), subsequent work on the label complexity of active learning has tended to favor
the disagreement-based approach, making use of the disagreement coefficient to bound the label
complexity (Dasgupta, Hsu, and Monteleoni, 2007; Friedman, 2009; Beygelzimer, Dasgupta, and
Langford, 2009; Wang, 2009; Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2011; Koltchinskii,
2010; Beygelzimer, Hsu, Langford, and Zhang, 2010; Mahalanabis,2011; Wang, 2011). A signif-
icant part of the present paper focuses on extending and generalizing the disagreement coefficient
analysis, while still maintaining the relative ease of calculation that makes the disagreement coeffi-
cient so useful.

In addition to many positive results, Dasgupta (2005) also pointed out several negative results,
even for very simple and natural learning problems. In particular, for many problems, the minimax
label complexity of active learning will be no better than that of passive learning. In fact, Balcan,
Hanneke, and Vaughan (2010) later showed that, for a certain type of active learning algorithm—
namely,self-verifyingalgorithms, which themselves adaptively determine how many label requests
they need to achieve a given accuracy—there are even particular target concepts and data distribu-
tions for whichno active learning algorithm of that type can outperform passive learning.Since all
of the above label complexity analyses (splitting index, teaching dimension, disagreement coeffi-
cient) apply to certain respective self-verifying learning algorithms, thesenegative results are also
reflected in all of the existing general label complexity analyses.

While at first these negative results may seem discouraging, Balcan, Hanneke, and Vaughan
(2010) noted that if we do not require the algorithm to be self-verifying, instead simply measuring
the number of label requests the algorithm needs tofind a good classifier, rather than the number
needed to both find a good classifierand verifythat it is indeed good, then these negative results
vanish. In fact, (shockingly) they were able to show that for any concept space with finite VC
dimension, and any fixed data distribution, for any given passive learning algorithm there is an
active learning algorithm with asymptotically superior label complexity foreverynontrivial target
concept! A positive result of this generality and strength is certainly an exciting advance in our
understanding of the advantages of active learning. But perhaps equally exciting are the unresolved
questions raised by that work, as there are potential opportunities to strengthen, generalize, simplify,
and elaborate on this result. First, note that the above statement allows the active learning algorithm
to be specialized to the particular distribution according to which the (unlabeled) data are sampled,
and indeed the active learning method used by Balcan, Hanneke, and Vaughan (2010) in their proof
has a rather strong direct dependence on the data distribution (which cannot be removed by simply
replacing some calculations with data-dependent estimators). One interestingquestion is whether
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an alternative approach might avoid this direct distribution-dependence inthe algorithm, so that
the claim can be strengthened to say that the active algorithm is superior to thepassive algorithm
for all nontrivial target conceptsand data distributions. This question is interesting both theoreti-
cally, in order to obtain the strongest possible theorem on the advantages of active learning, as well
as practically, since direct access to the distribution from which the data aresampled is typically
not available in practical learning scenarios. A second question left open byBalcan, Hanneke, and
Vaughan (2010) regards themagnitudeof the gap between the active and passive label complexities.
Specifically, although they did find particularly nasty learning problems where the label complexity
of active learning will be close to that of passive learning (though always better), they hypothesized
that for most natural learning problems, the improvements over passive learning should typically
be exponentially large(as is the case for threshold classifiers); they gave many examples to illus-
trate this point, but left open the problem of characterizing general sufficient conditions for these
exponential improvements to be achievable, even when they are not achievable by self-verifying
algorithms. Another question left unresolved by Balcan, Hanneke, and Vaughan (2010) is whether
this type of general improvement guarantee might be realized by a computationally efficientactive
learning algorithm. Finally, they left open the question of whether such general results might be
further generalized to settings that involve noisy labels. The present work picks up where Balcan,
Hanneke, and Vaughan (2010) left off in several respects, making progress on each of the above
questions, in some cases completely resolving the question.

1.1.2 THE AGNOSTICCASE

In addition to the above advances in our understanding of active learningin the realizable case, there
has also been wonderful progress in making these methods robust to imperfect teachers, feature
space underspecification, and model misspecification. This general topicgoes by the nameagnostic
active learning, from its roots in the agnostic PAC model (Kearns, Schapire, and Sellie, 1994). In
contrast to the realizable case, in theagnostic case, there is not necessarily a perfect classifier of a
known form, and indeed there may even belabel noiseso that there is no perfect classifier ofany
form. Rather, we have a given set of classifiers (e.g., linear separators, or depth-limited decision
trees, etc.), and the objective is to identify a classifier whose accuracy is not much worse than the
best classifier of that type. Agnostic learning is strictly more general, and often more difficult, than
realizable learning; this is true for both passive learning and active learning. However, for a given
agnostic learning problem, we might still hope that active learning can achieve a given accuracy
using fewer labels than required for passive learning.

The general topic of agnostic active learning got its first taste of real progress from Balcan,
Beygelzimer, and Langford (2006a, 2009) with the publication of theA2 (agnostic active) algorithm.
This method is a noise-robust disagreement-based algorithm, which can be applied with essentially
arbitrary types of classifiers under arbitrary noise distributions. It is interesting both for its effec-
tiveness and (as with CAL) its elegance. The original work of Balcan, Beygelzimer, and Langford
(2006a, 2009) showed that, in some special cases (thresholds, and homogeneous linear separators
under a uniform distribution), theA2 algorithm does achieve improved label complexities compared
to the known results for passive learning.

Using a different type of general active learning strategy, Hanneke (2007a) found that theteach-
ing dimensionanalysis (discussed above for the realizable case) can be extended beyond the real-
izable case, arriving at general bounds on the label complexity under arbitrary noise distributions.
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These bounds improve over the known results for passive learning in many cases. However, the
algorithm requires direct access to a certain quantity that depends on the noise distribution (namely,
the noise rate, defined in Section 6 below), which would not be available in many real-world learning
problems.

Later, Hanneke (2007b) established a general characterization of thelabel complexities achieved
by A2, expressed in terms of the disagreement coefficient. The result holds for arbitrary types of
classifiers (of finite VC dimension) and arbitrary noise distributions, and represents the natural gen-
eralization of the aforementioned realizable-case analysis of CAL. In manycases, this result shows
improvements over the known results for passive learning. Furthermore,because of the simplicity of
the disagreement coefficient, the bound can be calculated for a variety ofnatural learning problems.

Soon after this, Dasgupta, Hsu, and Monteleoni (2007) proposed a new active learning strat-
egy, which is also effective in the agnostic setting. LikeA2, the new algorithm is a noise-robust
disagreement-based method. The work of Dasgupta, Hsu, and Monteleoni(2007) is significant for
at least two reasons. First, they were able to establish a general label complexity bound for this
method based on the disagreement coefficient. The bound is similar in form to the previous label
complexity bound forA2 by Hanneke (2007b), but improves the dependence of the bound on the
disagreement coefficient. Second, the proposed method of Dasgupta, Hsu, and Monteleoni (2007)
set a new standard for computational and aesthetic simplicity in agnostic activelearning algorithms.
This work has since been followed by related methods of Beygelzimer, Dasgupta, and Langford
(2009) and Beygelzimer, Hsu, Langford, and Zhang (2010). In particular, Beygelzimer, Dasgupta,
and Langford (2009) develop a method capable of learning under an essentially arbitrary loss func-
tion; they also show label complexity bounds similar to those of Dasgupta, Hsu,and Monteleoni
(2007), but applicable to a larger class of loss functions, and stated in terms of a generalization of
the disagreement coefficient for arbitrary loss functions.

While the above results are encouraging, the guarantees reflected in these label complexity
bounds essentially take the form of (at best) constant factor improvements; specifically, in some
cases the bounds improve the dependence on the noise rate factor (defined in Section 6 below),
compared to the known results for passive learning. In fact, Kääriäinen (2006) showed that any
label complexity bound depending on the noise distribution only via the noise rate cannot do better
than this type of constant-factor improvement. This raised the question of whether, with a more de-
tailed description of the noise distribution, one can show improvements in theasymptotic formof the
label complexity compared to passive learning. Toward this end, Castro and Nowak (2008) studied
a certain refined description of the noise conditions, related to the margin conditions of Mammen
and Tsybakov (1999), which are well-studied in the passive learning literature. Specifically, they
found that in some special cases, under certain restrictions on the noise distribution, the asymptotic
form of the label complexitycanbe improved compared to passive learning, and in some cases the
improvements can even beexponentialin magnitude; to achieve this, they developed algorithms
specifically tailored to the types of classifiers they studied (threshold classifiers and boundary frag-
ment classes). Balcan, Broder, and Zhang (2007) later extended this result to general homogeneous
linear separators under a uniform distribution. Following this, Hanneke (2009a, 2011) generalized
these results, showing that both of the published general agnostic activelearning algorithms (Bal-
can, Beygelzimer, and Langford, 2009; Dasgupta, Hsu, and Monteleoni, 2007) can also achieve
these types of improvements in the asymptotic form of the label complexity; he further proved
general bounds on the label complexities of these methods, again based onthe disagreement coef-
ficient, which apply to arbitrary types of classifiers, and which reflect these types of improvements
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(under conditions on the disagreement coefficient). Wang (2009) later bounded the label complexity
of A2 under somewhat different noise conditions, in particular identifying weaker noise conditions
sufficient for these improvements to be exponential in magnitude (again, under conditions on the
disagreement coefficient). Koltchinskii (2010) has recently improved onsome of Hanneke’s results,
refining certain logarithmic factors and simplifying the proofs, using a slightly different algorithm
based on similar principles. Though the present work discusses only classes of finite VC dimen-
sion, most of the above references also contain results for various types of nonparametric classes
with infinite VC dimension.

At present, all of the published bounds on the label complexity of agnostic active learning also
apply toself-verifyingalgorithms. As mentioned, in the realizable case, it is typically possible to
achieve significantly better label complexities if we do not require the active learning algorithm to
be self-verifying, since the verification of learning may be more difficult than the learning itself
(Balcan, Hanneke, and Vaughan, 2010). We might wonder whether thisis also true in the agnostic
case, and whether agnostic active learning algorithms that are not self-verifying might possibly
achieve significantly better label complexities than the existing label complexity bounds described
above. We investigate this in depth below.

1.2 Summary of Contributions

In the present work, we build on and extend the above results in a variety of ways, resolving a
number of open problems. The main contributions of this work can be summarized as follows.

• We formally define a notion of a universal activizer, a meta-algorithm that transforms any pas-
sive learning algorithm into an active learning algorithm with asymptotically strictlysuperior
label complexities for all nontrivial distributions and target concepts in the concept space.

• We analyze the existing strategy of disagreement-based active learning from this perspec-
tive, precisely characterizing the conditions under which this strategy canlead to a universal
activizer for VC classes in the realizable case.

• We propose a new type of active learning algorithm, based on shatterable sets, and construct
universal activizers for all VC classes in the realizable case based onthis idea; in particular,
this overcomes the issue of distribution-dependence in the existing results mentioned above.

• We present a novel generalization of the disagreement coefficient, along with a new asymp-
totic bound on the label complexities achievable by active learning in the realizable case; this
new bound is often significantly smaller than the existing results in the published literature.

• We state new concise sufficient conditions for exponential improvements over passive learn-
ing to be achievable in the realizable case, including a significant weakeningof known con-
ditions in the published literature.

• We present a new general-purpose active learning algorithm for the agnostic case, based on
the aforementioned idea involving shatterable sets.

• We prove a new asymptotic bound on the label complexities achievable by active learning in
the presence of label noise (the agnostic case), often significantly smallerthan any previously
published results.
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• We formulate a general conjecture on the theoretical advantages of active learning over pas-
sive learning in the presence of arbitrary types of label noise.

1.3 Outline of the Paper

The paper is organized as follows. In Section 2, we introduce the basic notation used throughout,
formally define the learning protocol, and formally define the label complexity.We also define the
notion of anactivizer, which is a procedure that transforms a passive learning algorithm into an
active learning algorithm with asymptotically superior label complexity. In Section 3, we review
the established technique ofdisagreement-basedactive learning, and prove a new result precisely
characterizing the scenarios in which disagreement-based active learning can be used to construct
an activizer. In particular, we find that in many scenarios, disagreement-based active learning is not
powerful enough to provide the desired improvements. In Section 4, we move beyond disagreement-
based active learning, developing a new type of active learning algorithmbased onshatterablesets
of points. We apply this technique to construct a simple 3-stage procedure,which we then prove is a
universal activizer for any concept space of finite VC dimension. In Section 5, we begin by review-
ing the known results for bounding the label complexity of disagreement-based active learning in
terms of the disagreement coefficient; we then develop a somewhat more involved procedure, again
based on shatterable sets, which takes full advantage of the sequential nature of active learning. In
addition to being an activizer, we show that this procedure often achievesdramatically superior la-
bel complexities than achievable by passive learning. In particular, we define a novel generalization
of the disagreement coefficient, and use it to bound the label complexity of this procedure. This
also provides us with concise sufficient conditions for obtaining exponential improvements over
passive learning. Continuing in Section 6, we extend our framework to allowfor label noise (the
agnostic case), and discuss the possibility of extending the results from previous sections to these
noisy learning problems. We first review the known results for noise-robust disagreement-based ac-
tive learning, and characterizations of its label complexity in terms of the disagreement coefficient
and Mammen-Tsybakov noise parameters. We then proceed to develop a new type of noise-robust
active learning algorithm, again based on shatterable sets, and prove bounds on its label complexity
in terms of our aforementioned generalization of the disagreement coefficient. Additionally, we
present a general conjecture concerning the existence of activizersfor certain passive learning al-
gorithms in the agnostic case. We conclude in Section 7 with a host of enticing open problems for
future investigation.

2. Definitions and Notation

For most of the paper, we consider the following formal setting. There is a measurable space
(X ,FX ), whereX is called theinstance space; for simplicity, we suppose this is a standard Borel
space (Srivastava, 1998) (e.g.,R

m under the usual Borelσ -algebra), though most of the results gen-
eralize. Aclassifieris any measurable functionh : X → {−1,+1}. There is a setC of classifiers
called theconcept space. In the realizable case, the learning problem is characterized as follows.
There is a probability measureP onX , and a sequenceZX = {X1,X2, . . .} of independentX -valued
random variables, each with distributionP. We refer to these random variables as the sequence
of unlabeled examples; although in practice, this sequence would typically be large but finite, to
simplify the discussion and focus strictly on counting labels, we will suppose this sequence is inex-
haustible. There is additionally a special elementf ∈C, called thetarget function, and we denote by
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Yi = f (Xi); we further denote byZ = {(X1,Y1),(X2,Y2), . . .} the sequence oflabeled examples, and
for m∈ N we denote byZm = {(X1,Y1),(X2,Y2), . . . ,(Xm,Ym)} the finite subsequence consisting of
the firstm elements ofZ. For any classifierh, we define theerror rate er(h) = P(x : h(x) 6= f (x)).
Informally, the learning objective in the realizable case is to identify someh with small er(h) using
elements fromZ, without direct access tof .

An active learning algorithmA is permitted direct access to theZX sequence (the unlabeled
examples), but to gain access to theYi values it must request them one at a time, in a sequential
manner. Specifically, given access to theZX values, the algorithm selects any indexi ∈ N, requests
to observe theYi value, then having observed the value ofYi , selects another indexi′, observes the
value ofYi′ , etc. The algorithm is given as input an integern, called thelabel budget, and is permitted
to observe at mostn labels total before eventually halting and returning a classifierĥn =A(n); that
is, by definition, an active learning algorithm never attempts to access more than the given budgetn
number of labels. We will then study the values ofn sufficient to guaranteeE[er(ĥn)] ≤ ε, for any
given valueε ∈ (0,1). We refer to this as thelabel complexity. We will be particularly interested in
the asymptotic dependence onε in the label complexity, asε→ 0. Formally, we have the following
definition.

Definition 1 An active learning algorithmA achieves label complexityΛ(·, ·, ·) if, for every target
function f , distributionP, ε ∈ (0,1), and integer n≥ Λ(ε , f ,P), we haveE [er(A(n))]≤ ε.

This definition of label complexity is similar to one originally studied by Balcan, Hanneke, and
Vaughan (2010). It has a few features worth noting. First, the label complexity has an explicit
dependence on the target functionf and distributionP. As noted by Dasgupta (2005), we need
this dependence if we are to fully understand the range of label complexitiesachievable by active
learning; we further illustrate this issue in the examples below. The second feature to note is that
the label complexity, as defined here, is simply a sufficient budget size to achieve the specified
accuracy. That is, here we are asking only how many label requests are required for the algorithm
to achieve a given accuracy (in expectation). However, as noted by Balcan, Hanneke, and Vaughan
(2010), this number might not be sufficiently large todetectthat the algorithm has indeed achieved
the required accuracy based only on the observed data. That is, because the number of labeled
examples used in active learning can be quite small, we come across the problem that the number
of labels needed tolearna concept might be significantly smaller than the number of labels needed
to verify that we have successfully learned the concept. As such, this notion of label complexity
is most useful in thedesignof effective learning algorithms, rather than for predicting the number
of labels an algorithm should request in any particular application. Specifically, to design effective
active learning algorithms, we should generally desire small label complexity values, so that (in the
extreme case) if some algorithmA has smaller label complexity values than some other algorithm
A′ for all target functions and distributions, then (all other factors being equal) weshould clearly
prefer algorithmA over algorithmA′; this is true regardless of whether we have a means todetect
(verify) how large the improvements offered by algorithmA over algorithmA′ are for any particular
application. Thus, in our present context, performance guarantees in terms of this notion of label
complexity play a role analogous to concepts such asuniversal consistencyor admissibility, which
are also generally useful in guiding the design of effective algorithms, but are not intended to be
informative in the context of any particular application. See the work of Balcan, Hanneke, and
Vaughan (2010) for a discussion of this issue, as it relates to a definition of label complexity similar
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to that above, as well as other notions of label complexity from the active learning literature (some
of which include a verification requirement).

We will be interested in the performance of active learning algorithms, relative to the perfor-
mance of a givenpassive learning algorithm. In this context, a passive learning algorithmA takes
as input a finite sequence of labeled examplesL ∈ ⋃n(X ×{−1,+1})n, and returns a classifier
ĥ = A(L). We allow both active and passive learning algorithms to be randomized: thatis, to
have independent internal randomness, in addition to the given random data. We define the label
complexity for a passive learning algorithm as follows.

Definition 2 A passive learning algorithmA achieves label complexityΛ(·, ·, ·) if, for every target
function f , distributionP, ε ∈ (0,1), and integer n≥ Λ(ε , f ,P), we haveE [er(A(Zn))]≤ ε.

Although technically some algorithms may be able to achieve a desired accuracywithout any
observations, to make the general results easier to state (namely, those in Section 5), unless oth-
erwise stated we suppose label complexities (both passive and active) take strictly positive values,
amongN∪{∞}; note that label complexities (both passive and active) can be infinite, indicating
that the corresponding algorithm might not achieve expected error rateε for any n∈ N. Both the
passive and active label complexities are defined as a number of labels sufficient to guarantee the
expectederror rate is at mostε. It is also common in the literature to discuss the number of label
requests sufficient to guarantee the error rate is at mostε with high probability1− δ (e.g., Bal-
can, Hanneke, and Vaughan, 2010). In the present work, we formulate our results in terms of the
expected error rate because it simplifies the discussion of asymptotics, in that we need only study
the behavior of the label complexity as the single argumentε approaches 0, rather than the more
complicated behavior of a function ofε andδ as bothε andδ approach 0 at various relative rates.
However, we note that analogous results for these high-probability guarantees on the error rate can
be extracted from the proofs below without much difficulty, and in severalplaces we explicitly state
results of this form.

Below we employ the standard notation from asymptotic analysis, includingO(·), o(·), Ω(·),
ω(·), Θ(·), ≪, and≫. In all contexts below not otherwise specified, the asymptotics are always
considered asε → 0 when considering a function ofε, and asn→∞ when considering a function
of n; also, in any expression of the form “x→ 0,” we always mean the limitfrom above(i.e.,x ↓ 0).
For instance, when considering nonnegative functions ofε, λa(ε) andλp(ε), the above notations

are defined as follows. We sayλa(ε) = o(λp(ε)) when lim
ε→0

λa(ε)
λp(ε) = 0, and this is equivalent to

writing λp(ε) = ω(λa(ε)), λa(ε)≪ λp(ε), or λp(ε)≫ λa(ε). We sayλa(ε) = O(λp(ε)) when

limsup
ε→0

λa(ε)
λp(ε) <∞, which can equivalently be expressed asλp(ε) = Ω(λa(ε)). Finally, we write

λa(ε) = Θ(λp(ε)) to mean that bothλa(ε) = O(λp(ε)) andλa(ε) = Ω(λp(ε)) are satisfied. We
also use the standard notation for the limit of a sequence of sets, such as lim

r→0
Ar , defined by the

property1lim
r→0

Ar = lim
r→0

1Ar (if the latter exists), where1A is the indicator function for the setA.

Define the class of functions Polylog(1/ε) as thoseg : (0,1)→ [0,∞) such that, for some
k∈ [0,∞), g(ε) = O(logk(1/ε)). For a label complexityΛ, also define the set Nontrivial(Λ) as the
collection of all pairs( f ,P) of a classifier and a distribution such that,∀ε > 0,Λ(ε , f ,P)<∞, and
∀g∈ Polylog(1/ε), Λ(ε , f ,P) = ω(g(ε)).
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In this context, anactive meta-algorithmis a procedureAa taking as input a passive algorithm
Ap and a label budgetn, such that for any passive algorithmAp, Aa(Ap, ·) is an active learning
algorithm. We define anactivizerfor a given passive algorithm as follows.

Definition 3 We say an active meta-algorithmAa activizesa passive algorithmAp for a concept
spaceC if the following holds. For any label complexityΛp achieved byAp, the active learning
algorithmAa(Ap, ·) achieves a label complexityΛa such that, for every f∈C and every distribution
P onX with ( f ,P) ∈ Nontrivial(Λp), there exists a constant c∈ [1,∞) such that

Λa(cε , f ,P) = o(Λp(ε , f ,P)) .

In this case,Aa is called anactivizerfor Ap with respect toC, and the active learning algorithm
Aa(Ap, ·) is called theAa-activizedAp.

We also refer to any active meta-algorithmAa that activizeseverypassive algorithmAp for C
as auniversal activizerfor C. One of the main contributions of this work is establishing that such
universal activizers do exist for any VC classC.

A bit of explanation is in order regarding Definition 3. We might interpret it asfollows: an
activizerfor Ap strongly improves (in a little-o sense) the label complexity for allnontrivial target
functions and distributions. Here, we seek a meta-algorithm that, when given Ap as input, results
in an active learning algorithm with strictly superior label complexities. However, there is a sense
in which some distributionsP or target functionsf aretrivial relative toAp. For instance, perhaps
Ap has adefaultclassifier that it is naturally biased toward (e.g., with minimalP(x : h(x) = +1),
as in the Closure algorithm of Helmbold, Sloan, and Warmuth, 1990), so that when this default
classifier is the target function,Ap achieves a constant label complexity. In these trivial scenarios,
we cannot hope toimproveover the behavior of the passive algorithm, but instead can only hope
to competewith it. Thesensein which we wish to compete may be a subject of some controversy,
but the implication of Definition 3 is that the label complexity of the activized algorithm should be
strictly better than every nontrivial upper bound on the label complexity of the passive algorithm.
For instance, ifΛp(ε , f ,P) ∈ Polylog(1/ε), then we are guaranteedΛa(ε , f ,P) ∈ Polylog(1/ε)
as well, but ifΛp(ε , f ,P) = O(1), we are still only guaranteedΛa(ε , f ,P) ∈ Polylog(1/ε). This
serves the purpose of defining a framework that can be studied without requiring too much obsession
over small additive terms in trivial scenarios, thus focusing the analyst’s efforts toward nontrivial
scenarios whereAp has relativelylarge label complexity, which are precisely the scenarios for
which active learning is truly needed. In our proofs, we find that in factPolylog(1/ε) can be
replaced withO(log(1/ε)), giving a slightly broader definition of “nontrivial,” for which all of the
results below still hold. Section 7 discusses open problems regarding this issue of trivial problems.

The definition of Nontrivial(·) also only requires the activized algorithm to be effective in sce-
narios where the passive learning algorithm hasreasonablebehavior (i.e., finite label complexities);
this is only intended to keep with the reduction-based style of the framework, and in fact this re-
striction can easily be lifted using a trick from Balcan, Hanneke, and Vaughan (2010) (aggregating
the activized algorithm with another algorithm that is always reasonable).

Finally, we also allow a constant factorc loss in theε argument toΛa. We allow this to be an
arbitrary constant, again in the interest of allowing the analyst to focus onlyon the most signifi-
cant aspects of the problem; for most reasonable passive learning algorithms, we typically expect
Λp(ε , f ,P) = Poly(1/ε), in which casec can be set to 1 by adjusting the leading constant factors of
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Λa. A careful inspection of our proofs reveals thatc can always be set arbitrarily close to 1 without
affecting the theorems below (and in fact, we can even getc= (1+o(1)), a function ofε).

Throughout this work, we will adopt the usual notation for probabilities, such asP(er(ĥ)> ε),
and as usual we interpret this as measuring the corresponding event in the (implicit) underlying
probability space. In particular, we make the usual implicit assumption that all sets involved in
the analysis are measurable; where this assumption does not hold, we may turn to outer prob-
abilities, though we will not make further mention of these technical details. We will also use
the notationP k(·) to representk-dimensional product measures; for instance, for a measurable set
A⊆ X k, Pk(A) = P((X′1, . . . ,X

′
k) ∈ A), for independentP-distributed random variablesX′1, . . . ,X

′
k.

Additionally, to simplify notation, we will adopt the convention thatX 0 = {∅} andP0(X 0) = 1.
Throughout, we will denote by1A(z) the indicator function for a setA, which has the value 1 when
z ∈ A and 0 otherwise; additionally, at times it will be more convenient to use the bipolar indicator
function, defined as1±A (z) = 21A(z)−1.

We will require a few additional definitions for the discussion below. For any classifierh :X →
{−1,+1} and finite sequence of labeled examplesL ∈ ⋃m(X ×{−1,+1})m, define theempirical
error rate erL(h) = |L|−1∑

(x,y)∈L1{−y}(h(x)); for completeness, define er∅(h) = 0. Also, for
L=Zm, the firstm labeled examples in the data sequence, abbreviate this as erm(h) = erZm(h). For
any probability measureP onX , set of classifiersH, classifierh, andr > 0, define BH,P (h, r) =
{g∈ H : P (x : h(x) 6= g(x)) ≤ r}; whenP = P, the distribution of the unlabeled examples, andP
is clear from the context, we abbreviate this as BH(h, r) = BH,P(h, r); furthermore, whenP = P
andH = C, the concept space, and bothP andC are clear from the context, we abbreviate this
as B(h, r) = BC,P(h, r). Also, for any set of classifiersH, and any sequence of labeled examples
L ∈ ⋃m(X ×{−1,+1})m, defineH[L] = {h ∈ H : erL(h) = 0}; for any (x,y) ∈ X ×{−1,+1},
abbreviateH[(x,y)] =H[{(x,y)}] = {h∈H : h(x) = y}.

We also adopt the usual definition of “shattering” used in learning theory (e.g., Vapnik, 1998).
Specifically, for any set of classifiersH, k ∈ N, andS= (x1, . . . ,xk) ∈ X k, we sayH shatters Sif,
∀(y1, . . . ,yk) ∈ {−1,+1}k, ∃h∈ H such that∀i ∈ {1, . . . ,k}, h(xi) = yi ; equivalently,H shattersS
if ∃{h1, . . . ,h2k} ⊆ H such that for eachi, j ∈ {1, . . . ,2k} with i 6= j, ∃ℓ ∈ {1, . . . ,k} with hi(xℓ) 6=
h j(xℓ). To simplify notation, we will also say thatH shatters∅ if and only ifH 6= {}. As usual,
we define theVC dimensionof C, denotedd, as the largest integerk such that∃S∈ X k shattered by
C (Vapnik and Chervonenkis, 1971; Vapnik, 1998). To focus on nontrivial problems, we will only
consider concept spacesC with d > 0 in the results below. Generally, any such concept spaceC

with d <∞ is called aVC class.

2.1 Motivating Examples

Throughout this paper, we will repeatedly refer to a few canonical examples. Although themselves
quite toy-like, they represent the boiled-down essence of some important distinctions between var-
ious types of learning problems. In some sense, the process of grapplingwith the fundamental
distinctions raised by these types of examples has been a driving force behind much of the recent
progress in understanding the label complexity of active learning.

The first example is perhaps the most classic, and is clearly the first that comes to mind when
considering the potential for active learning to provide strong improvementsover passive learning.

Example 1 In the problem of learningthreshold classifiers, we considerX = [0,1] and
C= {hz(x) = 1±[z,1](x) : z ∈ (0,1)}.
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There is a simple universal activizer for threshold classifiers, based on a kind of binary search.
Specifically, supposen ∈ N and thatAp is any given passive learning algorithm. Consider the
points in{X1,X2, . . . ,Xm}, for m= 2n−1, and sort them in increasing order:X(1),X(2), . . . ,X(m). Also
initialize ℓ= 0 andu= m+1, and defineX(0) = 0 andX(m+1) = 1. Now request the label ofX(i) for
i = ⌊(ℓ+u)/2⌋ (i.e., the median point betweenℓ andu); if the label is−1, let ℓ = i, and otherwise
let u= i; repeat this (requesting this median point, then updatingℓ or u accordingly) until we have
u= ℓ+1. Finally, letẑ=X(u), construct the labeled sequenceL= {(X1,hẑ(X1)) , . . . ,(Xm,hẑ(Xm))},
and return the classifierĥ=Ap(L).

Since each label request at least halves the set of integers betweenℓ andu, the total number
of label requests is at most log2(m)+ 1 = n. Supposingf ∈ C is the target function, this proce-
dure maintains the invariant thatf (X(ℓ)) = −1 and f (X(u)) = +1. Thus, once we reachu= ℓ+1,
since f is a threshold, it must be somehz with z ∈ (ℓ,u]; therefore everyX( j) with j ≤ ℓ has
f (X( j)) = −1, and likewise everyX( j) with j ≥ u has f (X( j)) = +1; in particular, this meansL
equalsZm, the true labeled sequence. But this meansĥ = Ap(Zm). Sincen = log2(m)+ 1, this
active learning algorithm will achieve an equivalent error rate to whatAp achieves withm labeled
examples, but using only log2(m)+1 label requests. In particular, this implies that ifAp achieves
label complexityΛp, then this active learning algorithm achieves label complexityΛa such that
Λa(ε , f ,P) ≤ log2 Λp(ε , f ,P)+2; as long as 1≪ Λp(ε , f ,P) <∞, this iso(Λp(ε , f ,P)), so that
this procedure activizesAp for C.

The second example we consider is almost equally simple (only increasing the VC dimension
from 1 to 2), but is far more subtle in terms of how we must approach its analysis in active learning.

Example 2 In the problem of learninginterval classifiers, we considerX = [0,1] and
C= {h[a,b](x) = 1±[a,b](x) : 0< a≤ b< 1}.

For the intervals problem, we can also construct a universal activizer,though slightly more
complicated. Specifically, suppose again thatn ∈ N and thatAp is any given passive learning
algorithm. We first request the labels{Y1,Y2, . . . ,Y⌈n/2⌉} of the first⌈n/2⌉ examples in the sequence.
If every one of these labels is−1, then we immediately return the all-negative constant classifier
ĥ(x) = −1. Otherwise, consider the points{X1,X2, . . . ,Xm}, for m= max

{

2⌊n/4⌋−1,n
}

, and sort
them in increasing orderX(1),X(2), . . . ,X(m). For some valuei ∈ {1, . . . ,⌈n/2⌉} with Yi = +1, let
j+ denote the corresponding indexj such thatX( j) = Xi . Also initialize ℓ1 = 0, u1 = ℓ2 = j+, and
u2 = m+1, and defineX(0) = 0 andX(m+1) = 1. Now if ℓ1+1 < u1, request the label ofX(i) for
i = ⌊(ℓ1+u1)/2⌋ (the median point betweenℓ1 andu1); if the label is−1, letℓ1 = i, and otherwise
let u1 = i; repeat this (requesting this median point, then updatingℓ1 or u1 accordingly) until we
haveu1 = ℓ1+1. Now if ℓ2+1< u2, request the label ofX(i) for i = ⌊(ℓ2+u2)/2⌋ (the median point
betweenℓ2 andu2); if the label is−1, letu2 = i, and otherwise letℓ2 = i; repeat this (requesting this
median point, then updatingu2 or ℓ2 accordingly) until we haveu2 = ℓ2+1. Finally, letâ= u1 and

b̂= ℓ2, construct the labeled sequenceL=
{(

X1,h[â,b̂](X1)
)

, . . . ,
(

Xm,h[â,b̂](Xm)
)}

, and return the

classifierĥ=Ap(L).
Since each label request in the second phase halves the set of values between eitherℓ1 and

u1 or ℓ2 andu2, the total number of label requests is at most min{m,⌈n/2⌉+2log2(m)+2} ≤ n.
Supposef ∈ C is the target function, and letw( f ) = P(x : f (x) = +1). If w( f ) = 0, then with
probability 1 the algorithm will return the constant classifierĥ(x) =−1, which has er(ĥ) = 0 in this
case. Otherwise, ifw( f )> 0, then for anyn≥ 2

w( f ) ln 1
ε , with probability at least 1− ε, there exists
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i ∈ {1, . . . ,⌈n/2⌉} with Yi = +1. Let H+ denote the event that such ani exists. Supposing this is
the case, the algorithm will make it into the second phase. In this case, the procedure maintains the
invariant thatf (X(ℓ1)) =−1, f (X(u1)) = f (X(ℓ2)) =+1, andf (X(u2)) =−1, whereℓ1 < u1≤ ℓ2 < u2.
Thus, once we haveu1 = ℓ1+1 andu2 = ℓ2+1, sincef is an interval, it must be someh[a,b] with
a∈ (ℓ1,u1] andb∈ [ℓ2,u1); therefore, everyX( j) with j ≤ ℓ1 or j ≥ u2 has f (X( j)) =−1, and like-
wise everyX( j) with u1 ≤ j ≤ ℓ2 has f (X( j)) = +1; in particular, this meansL equalsZm, thetrue

labeled sequence. But this meansĥ= Ap(Zm). SupposingAp achieves label complexityΛp, and

that n≥ max
{

8+4log2 Λp(ε , f ,P), 2
w( f ) ln 1

ε

}

, thenm≥ 2⌊n/4⌋−1 ≥ Λp(ε , f ,P) andE
[

er(ĥ)
]

≤
E
[

er(ĥ)1H+

]

+(1−P(H+))≤ E [er(Ap(Zm))]+ ε ≤ 2ε. In particular, this means this active learn-
ing algorithm achieves label complexityΛa such that, for anyf ∈Cwith w( f )=0,Λa(2ε , f ,P)=0,

and for anyf ∈C with w( f )> 0,Λa(2ε , f ,P)≤max
{

8+4log2 Λp(ε , f ,P), 2
w( f ) ln 1

ε

}

. If ( f ,P)∈
Nontrivial(Λp), then 2

w( f ) ln 1
ε = o(Λp(ε , f ,P)) and 8+4log2 Λp(ε , f ,P) = o(Λp(ε , f ,P)), so that

Λa(2ε , f ,P) = o(Λp(ε , f ,P)). Therefore, this procedure activizesAp for C.
This example also brings to light some interesting phenomena in the analysis of thelabel com-

plexity of active learning. Note that unlike the thresholds example, we have amuch stronger de-
pendence on the target function in these label complexity bounds, via thew( f ) quantity. This
issue is fundamental to the problem, and cannot be avoided. In particular,whenP([0,x]) is con-
tinuous, this is the very issue that makes theminimax label complexity for this problem (i.e.,
minΛa maxf∈C Λa(ε , f ,P)) no betterthan passive learning (Dasgupta, 2005). Thus, this problem
emphasizes the need for any informative label complexity analysis of activelearning to explicitly
describe the dependence of the label complexity on the target function, asadvocated by Dasgupta
(2005). This example also highlights theunverifiabilityphenomenon explored by Balcan, Hanneke,
and Vaughan (2010), since in the case ofw( f ) = 0, the error rate of the returned classifier iszero,
but (for nondegenerateP) there is no way for the algorithm to verify this fact based only on the
finite number of labels it observes. In fact, Balcan, Hanneke, and Vaughan (2010) have shown that
under continuousP, for any f ∈C with w( f ) = 0, the number of labels required to bothfind a clas-
sifier of small error rateand verifythat the error rate is small based only on observable quantities is
essentiallyno betterthan for passive learning.

These issues are present to a small degree in the intervals example, but were easily handled
in a very natural way. The target-dependence shows up only in an initial phase of waiting for a
positive example, and the always-negative classifiers were handled bysetting adefaultreturn value.
However, we can amplify these issues so that they show up in more subtle andinvolved ways.
Specifically, consider the following example, studied by Balcan, Hanneke,and Vaughan (2010).

Example 3 In the problem of learningunions of i intervals, we considerX = [0,1] and

C=

{

hz(x) = 1±⋃i
j=1[z2 j−1,z2 j ]

(x) : 0< z1≤ z2≤ . . .≤ z2i < 1

}

.

The challenge of this problem is that, because sometimesz j = z j+1 for somej values, we do not
know how many intervals are required to minimally represent the target function: only that it is at
mosti. This issue will be made clearer below. We can essentially think of any effective strategy here
as having two components: one component that searches (perhaps randomly) with the purpose of
identifying at least one example from each decision region, and another component that refines our
estimates of the end-points of the regions the first component identifies. Later, we will go through
the behavior of a universal activizer for this problem in detail.
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3. Disagreement-Based Active Learning

At present, perhaps the best-understood active learning algorithms arethose choosing their label
requests based on disagreement among a set of remaining candidate classifiers. The canonical algo-
rithm of this type, a version of which we discuss below in Section 5.1, was proposed by Cohn, Atlas,
and Ladner (1994). Specifically, for any setH of classifiers, define theregion of disagreement:

DIS(H) = {x∈ X : ∃h1,h2 ∈H s.t. h1(x) 6= h2(x)} .

The basic idea of disagreement-based algorithms is that, at any given time in thealgorithm,
there is a subsetV ⊆ C of remaining candidates, called theversion space, which is guaranteed to
contain the targetf . When deciding whether to request a particular labelYi , the algorithm simply
checks whetherXi ∈ DIS(V): if so, the algorithm requestsYi , and otherwise it does not. This gen-
eral strategy is reasonable, since for anyXi /∈ DIS(V), the label agreed upon byV must bef (Xi),
so that we would get no information by requestingYi ; that is, forXi /∈ DIS(V), we can accurately
infer Yi based on information already available. This type of algorithm has recently received sub-
stantial attention, not only for its obvious elegance and simplicity, but also because (as we discuss
in Section 6) there are natural ways to extend the technique to the general problem of learning with
label noise and model misspecification (theagnosticsetting). The details of disagreement-based
algorithms can vary in how they update the setV and how frequently they do so, but it turns out
almost all disagreement-based algorithms share many of the same fundamentalproperties, which
we describe below.

3.1 A Basic Disagreement-Based Active Learning Algorithm

In Section 5.1, we discuss several known results on the label complexities achievable by these types
of active learning algorithms. However, for now let us examine a very basic algorithm of this type.
The following is intended to be a simple representative of the family of disagreement-based active
learning algorithms. It has been stripped down to the bare essentials of what makes such algorithms
work. As a result, although the gap between its label complexity and that achieved by passive
learning is not necessarily as large as those achieved by the more sophisticated disagreement-based
active learning algorithms of Section 5.1, it has the property that wheneverthose more sophisticated
methods have label complexities asymptotically superior to those achieved by passive learning, that
guarantee will also be true for this simpler method, and vice versa. The algorithm operates in only
2 phases. In the first, it uses one batch of label requests to reduce the version spaceV to a subset of
C; in the second, it uses another batch of label requests, this time only requesting labels for points
in DIS(V). Thus, we have isolated precisely that aspect of disagreement-based active learning that
involves improvements due to only requesting the labels of examples in the regionof disagreement.
The procedure is formally defined as follows, in terms of an estimatorP̂n(DIS(V)) specified below.
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Meta-Algorithm 0
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. Request the first⌊n/2⌋ labels{Y1, . . . ,Y⌊n/2⌋}, and lett← ⌊n/2⌋
1. LetV = {h∈ C : er⌊n/2⌋(h) = 0}
2. Let ∆̂← P̂n(DIS(V))
3. LetL← {}
4. Form= ⌊n/2⌋+1, . . .⌊n/2⌋+ ⌊n/(4∆̂)⌋
5. If Xm∈ DIS(V) andt < n, request the labelYm of Xm, and let ˆy←Ym andt← t +1
6. Else let ˆy← h(Xm) for an arbitraryh∈V
7. LetL←L∪{(Xm, ŷ)}
8. ReturnAp(L)

Meta-Algorithm 0 depends on a data-dependent estimatorP̂n(DIS(V)) of P(DIS(V)), which
we can define in a variety of ways using onlyunlabeledexamples. In particular, for the theorems
below, we will take the following definition for̂Pn(DIS(V)), designed to be a confidence upper
bound onP(DIS(V)). LetUn = {Xn2+1, . . . ,X2n2}. Then define

P̂n(DIS(V)) = max







2
n2

∑

x∈Un

1DIS(V)(x),
4
n







. (1)

Meta-Algorithm 0 is divided into two stages: one stage where we focus on reducingV, and a
second stage where we construct the sampleL for the passive algorithm. This might intuitively seem
somewhat wasteful, as one might wish to use the requested labels from the first stage to augment
those in the second stage when constructingL, thus feeding all of the observed labels into the
passive algorithmAp. Indeed, this can improve the label complexity in some cases (albeit only by
a constant factor); however, in order to get thegeneralproperty of being an activizer forall passive
algorithmsAp, we construct the sampleL so that the conditional distribution of theX components
in L given|L| isP |L|, so that it is (conditionally) an i.i.d. sample, which is essential to our analysis.
The choice of the number of (unlabeled) examples to process in the secondstage guarantees (by a
Chernoff bound) that the “t < n” constraint in Step 5 is redundant; this is a trick we will employ in
several of the methods below. As explained above, becausef ∈V, this implies that every(x,y) ∈ L
hasy= f (x).

To give some basic intuition for how this algorithm behaves, consider the example of learning
threshold classifiers (Example 1); to simplify the explanation, for now we ignore the fact thatP̂n

is only an estimate, as well as the “t < n” constraint in Step 5 (both of which will be addressed in
the general analysis below). In this case, suppose the target function isf = hz. Let a= max{Xi :
Xi < z,1≤ i ≤ ⌊n/2⌋} andb= min{Xi : Xi ≥ z,1≤ i ≤ ⌊n/2⌋}. ThenV = {hz′ : a< z′ ≤ b} and
DIS(V) = (a,b), so that the second phase of the algorithm only requests labels for a number of
points in the region(a,b). With probability 1− ε, the probability mass in this region is at most
O(log(1/ε)/n), so that|L| ≥ ℓn,ε = Ω(n2/ log(1/ε)); also, since the labels inL are all correct, and
theXm values inL are conditionally iid (with distributionP) given |L|, we see that the conditional
distribution ofL given|L|= ℓ is the same as the (unconditional) distribution ofZℓ. In particular, if
Ap achieves label complexityΛp, andĥn is the classifier returned by Meta-Algorithm 0 applied to
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Ap, then for anyn= Ω
(√

Λp(ε , f ,P) log(1/ε)
)

chosen so thatℓn,ε ≥ Λp(ε , f ,P), we have

E
[

er
(

ĥn
)]

≤ ε + sup
ℓ≥ℓn,ε

E [er(Ap(Zℓ))]≤ ε + sup
ℓ≥Λp(ε, f ,P)

E [er(Ap(Zℓ))]≤ 2ε .

This indicates the active learning algorithm achieves label complexityΛa with Λa(2ε , f ,P) =
O
(√

Λp(ε , f ,P) log(1/ε)
)

. In particular, if∞> Λp(ε , f ,P) = ω(log(1/ε)), thenΛa(2ε , f ,P) =
o(Λp(ε , f ,P)). Therefore, Meta-Algorithm 0 is a universal activizer for the space of threshold
classifiers.

In contrast, consider the problem of learning interval classifiers (Example 2). In this case,
suppose the target functionf hasP(x : f (x) = +1) = 0, and thatP is uniform in[0,1]. Since (with
probability one) everyYi =−1, we haveV = {h[a,b] : {X1, . . . ,X⌊n/2⌋}∩ [a,b] = ∅}. But this contains
classifiersh[a,a] for every a ∈ (0,1) \ {X1, . . . ,X⌊n/2⌋}, so that DIS(V) = (0,1) \ {X1, . . . ,X⌊n/2⌋}.
Thus,P(DIS(V)) = 1, and|L| = O(n); that is,Ap gets run with no more labeled examples than
simple passive learning would use. This indicates we should not expect Meta-Algorithm 0 to be
a universal activizer for interval classifiers. Below, we formalize this by constructing a passive
learning algorithmAp that Meta-Algorithm 0 does not activize in scenarios of this type.

3.2 The Limiting Region of Disagreement

In this subsection, we generalize the examples from the previous subsection. Specifically, we prove
that the performance of Meta-Algorithm 0 is intimately tied to a particular limiting set, referred to
as thedisagreement core. A similar definition was given by Balcan, Hanneke, and Vaughan (2010)
(there referred to as theboundary, for reasons that will become clear below); it is also related to
certain quantities in the work of Hanneke (2007b, 2011) described belowin Section 5.1.

Definition 4 Define thedisagreement coreof a classifier f with respect to a set of classifiersH and
probability measureP as

∂H,P f = lim
r→0

DIS(BH,P ( f , r)) .

WhenP = P, the data distribution onX , andP is clear from the context, we abbreviate this as
∂H f = ∂H,P f ; if additionallyH = C, the full concept space, which is clear from the context, we
further abbreviate this as∂ f = ∂C f = ∂C,P f .

As we will see, disagreement-based algorithms often tend to focus their labelrequests around
the disagreement core of the target function. As such, the concept of the disagreement core will
be essential in much of our discussion below. We therefore go through a few examples to build
intuition about this concept and its properties. Perhaps the simplest example tostart with isC
as the class ofthresholdclassifiers (Example 1), underP uniform on [0,1]. For anyhz ∈ C and
sufficiently smallr > 0, B( f , r) = {hz′ : |z′− z| ≤ r}, and DIS(B( f , r)) = [z− r, z+ r). There-
fore, ∂hz = lim

r→0
DIS(B(hz, r)) = lim

r→0
[z− r, z+ r) = {z}. Thus, in this case, the disagreement core

of hz with respect toC andP is precisely the decision boundary of the classifier. As a slightly
more involved example, consider again the example ofinterval classifiers (Example 2), again un-
derP uniform on [0,1]. Now for anyh[a,b] ∈ C with b− a > 0, for any sufficiently smallr > 0,
B(h[a,b], r) = {h[a′,b′] : |a− a′|+ |b− b′| ≤ r}, and DIS(B(h[a,b], r)) = [a− r,a+ r)∪ (b− r,b+ r].
Therefore,∂h[a,b] = lim

r→0
DIS(B(h[a,b], r)) = lim

r→0
[a− r,a+ r)∪ (b− r,b+ r] = {a,b}. Thus, in this

case as well, the disagreement core ofh[a,b] with respect toC andP is again the decision boundary
of the classifier.
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As the above two examples illustrate,∂ f often corresponds to the decision boundary off in
some geometric interpretation ofX and f . Indeed, under fairly general conditions onC andP,
the disagreement core off does correspond to (a subset of) the set of points dividing the two
label regions off ; for instance, Friedman (2009) derives sufficient conditions, underwhich this is
the case. In these cases, the behavior of disagreement-based active learning algorithms can often
be interpreted in the intuitive terms of seeking label requests near the decision boundary of the
target function, to refine an estimate of that boundary. However, in some more subtle scenarios
this is no longer the case, for interesting reasons. To illustrate this, let us continue the example of
interval classifiers from above, but now considerh[a,a] (i.e., h[a,b] with a = b). This time, for any
r ∈ (0,1) we have B(h[a,a], r) = {h[a′,b′] ∈ C : b′−a′ ≤ r}, and DIS(B(h[a,a], r)) = (0,1). Therefore,
∂h[a,a] = lim

r→0
DIS(B(h[a,a], r)) = lim

r→0
(0,1) = (0,1).

This example shows that in some cases, the disagreement core does not correspond to the de-
cision boundary of the classifier, and indeed hasP(∂ f ) > 0. Intuitively, as in the above example,
this typically happens when the decision surface of the classifier is in some sensesimpler than it
could be. For instance, consider the spaceC of unions of two intervals(Example 3 withi = 2)
under uniformP. The classifiersf ∈ C with P(∂ f ) > 0 are precisely those representable (up to
probability zero differences) as a single interval. The others (with 0< z1 < z2 < z3 < z4 < 1) have
∂hz = {z1, z2, z3, z4}. In these examples, thef ∈ C with P(∂ f )> 0 are not only simpler than other
nearby classifiers inC, but they are also in some sensedegeneraterelative to the rest ofC; however,
it turns out this is not always the case, as there exist scenarios(C,P), even withd = 2, and even
with countableC, for whichevery f∈ C hasP(∂ f )> 0; in these cases, every classifier is in some
important sensesimplerthan some other subset of nearby classifiers inC.

In Section 3.3, we show that the label complexity of disagreement-based active learning is in-
timately tied to the disagreement core. In particular, scenarios whereP(∂ f ) > 0, such as those
mentioned above, lead to the conclusion that disagreement-based methods aresometimes insuffi-
cient for activized learning. This motivates the design of more sophisticatedmethods in Section 4,
which overcome this deficiency, along with a corresponding refinement ofthe definition of “dis-
agreement core ” in Section 5.2 that eliminates the above issue with “simple” classifiers.

3.3 Necessary and Sufficient Conditions for Disagreement-Based Activized Learning

In the specific case of Meta-Algorithm 0, for largen we may intuitively expect it to focus its second
batch of label requests in and around the disagreement core of the target function. Thus, when-
everP(∂ f ) = 0, we should expect the label requests to be quite focused, and therefore the algo-
rithm should achieve smaller label complexity compared to passive learning. On the other hand, if
P(∂ f )> 0, then the label requests willnotbecome focused beyond a constant fraction of the space,
so that the improvements achieved by Meta-Algorithm 0 over passive learning should be, at best, a
constant factor. This intuition is formalized in the following general theorem, the proof of which is
included in Appendix A.

Theorem 5 For any VC classC, Meta-Algorithm 0 is a universal activizer forC if and only if every
f ∈ C and distributionP hasP (∂C,P f ) = 0.

While the formal proof is given in Appendix A, the general idea is simple. As we always have
f ∈V, anyŷ inferred in Step 6 must equalf (x), so that all of the labels inL are correct. Also, asn
grows large, classic results on passive learning imply the diameter of the setV will become small,
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shrinking to zero asn→∞ (Vapnik and Chervonenkis, 1971; Vapnik, 1982; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989). Therefore, asn→∞, DIS(V) should converge to a subset of∂ f ,
so that in the caseP(∂ f ) = 0, we have∆̂→ 0; thus|L| ≫ n, which implies an asymptotic strict
improvement in label complexity over the passive algorithmAp thatL is fed into in Step 8. On the
other hand, since∂ f is defined by classifiers arbitrarily close tof , it is unlikely that any finite sample
of correctly labeled examples can contradict enough classifiers to make DIS(V) significantly smaller
than∂ f , so that we always haveP(DIS(V)) ≥ P(∂ f ). Therefore, ifP(∂ f )> 0, then∆̂ converges
to some nonzero constant, so that|L| = O(n), representing only a constant factor improvement in
label complexity. In fact, as is implied from this sketch (and is proven in Appendix A), the targets
f and distributionsP for which Meta-Algorithm 0 achieves asymptotic strict improvements for all
passive learning algorithms (for whichf andP are nontrivial) are precisely those (and only those)
for whichP(∂C,P f ) = 0.

There are some general conditions under which the zero-probability disagreement cores con-
dition of Theorem 5 will hold. For instance, it is not difficult to show this will always hold when
X is countable. Furthermore, with some effort one can show it will hold for most classes having
VC dimension one (e.g., any countableC with d = 1). However, as we have seen, not all spaces
C satisfy this zero-probability disagreement cores property. In particular, for the interval classifiers
studied in Section 3.2, we haveP(∂h[a,a]) = P((0,1)) = 1. Indeed, the aforementioned special
cases aside, formostnontrivial spacesC, one can construct distributionsP that in some sense make
C mimic the intervals problem, so that we should typically expect disagreement-based methods will
not be activizers. For detailed discussions of various scenarios where theP(∂C,P f ) = 0 condition
is (or is not) satisfied for variousC,P, and f , see the works of Hanneke (2009b), Hanneke (2007b),
Hanneke (2011), Balcan, Hanneke, and Vaughan (2010), Friedman(2009), Wang (2009) and Wang
(2011).

4. Beyond Disagreement: A Basic Activizer

Since the zero-probability disagreement cores condition of Theorem 5 is not always satisfied, we are
left with the question of whether there could be other techniques for activelearning, beyond simple
disagreement-based methods, which could activizeeverypassive learning algorithm foreveryVC
class. In this section, we present an entirely new type of active learning algorithm, unlike anything
in the existing literature, and we show that indeed it is a universal activizerfor any classC of finite
VC dimension.

4.1 A Basic Activizer

As mentioned, the caseP(∂ f ) = 0 is already handled nicely by disagreement-based methods, since
the label requests made in the second stage of Meta-Algorithm 0 will become focused into a small
region, andL therefore grows faster thann. Thus, the primary question we are faced with is what
to do whenP(∂ f ) > 0. Since (loosely speaking) we have DIS(V)→ ∂ f in Meta-Algorithm 0,
P(∂ f )> 0 corresponds to scenarios where the label requests of Meta-Algorithm0 will not become
focused beyond a certain extent; specifically, as we show in Appendix B (Lemmas 35 and 36),
P(DIS(V)⊕∂ f )→ 0 almost surely, where⊕ is the symmetric difference, so that we expect Meta-
Algorithm 0 will request labels for at least some constant fraction of the examples inL.

On the one hand, this is definitely a major problem for disagreement-based methods, since it
prevents them from improving over passive learning in those cases. On the other hand, if we do not
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restrict ourselves to disagreement-based methods, we may actually be able toexploit properties of
this scenario, so that it works to ouradvantage. In particular, in addition to the fact thatP(DIS(V)⊕
∂C f )→ 0, we show in Appendix B (Lemma 35) thatP(∂V f ⊕∂C f ) = 0 (almost surely) in Meta-
Algorithm 0; this implies that for sufficiently largen, a random pointx1 in DIS(V) is likely to be in
∂V f . We can exploit this fact by usingx1 to splitV into two subsets:V[(x1,+1)] andV[(x1,−1)].
Now, if x1∈ ∂V f , then (by definition of the disagreement core) inf

h∈V[(x1,+1)]
er(h) = inf

h∈V[(x1,−1)]
er(h) =

0. Therefore, for almost every pointx /∈ DIS(V[(x1,+1)]), the label agreed upon forx by classifiers
in V[(x1,+1)] should bef (x). Likewise, for almost every pointx /∈ DIS(V[(x1,−1)]), the label
agreed upon forx by classifiers inV[(x1,−1)] should bef (x). Thus, we can accuratelyinfer the label
of any pointx /∈ DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]) (except perhaps a zero-probability subset).
With these setsV[(x1,+1)] andV[(x1,−1)] in hand, there is no longer a need to request the labels of
points for which either of them has agreement about the label, and we can focus our label requests
to the region DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]), which may bemuch smallerthan DIS(V). Now
if P(DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]))→ 0, then the label requests will become focused to a
shrinking region, and by the same reasoning as for Theorem 5 we can asymptotically achieve strict
improvements over passive learning by a method analogous to Meta-Algorithm0 (with the above
changes).

Already this provides a significant improvement over disagreement-basedmethods in many
cases; indeed, in some cases (such as intervals) this fully addresses thenonzero-probability dis-
agreement core issue in Theorem 5. In other cases (such as unions oftwo intervals), it does
not completely address the issue, since for some targets we do not haveP(DIS(V[(x1,+1)])∩
DIS(V[(x1,−1)]))→ 0. However, by repeatedly applying this same reasoning, wecan address
the issue in full generality. Specifically, ifP(DIS(V[(x1,+1)]) ∩DIS(V[(x1,−1)])) 9 0, then
DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]) essentially converges to a region∂C[(x1,+1)] f ∩ ∂C[(x1,−1)] f ,
which has nonzero probability, and is nearly equivalent to∂V[(x1,+1)] f ∩∂V[(x1,−1)] f . Thus, for suffi-
ciently largen, a randomx2 in DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]) will likely be in ∂V[(x1,+1)] f ∩
∂V[(x1,−1)] f . In this case, we can repeat the above argument, this time splittingV into four sets
(V[(x1,+1)][(x2,+1)], V[(x1,+1)][(x2,−1)], V[(x1,−1)][(x2,+1)], andV[(x1,−1)][(x2,−1)]), each
with infimum error rate equal zero, so that for a pointx in the region of agreement of any of these
four sets, the agreed-upon label will (almost surely) bef (x), so that we can infer that label. Thus,
we need only request the labels of those points in theintersectionof all four regions of disagree-
ment. We can further repeat this process as many times as needed, until we get a partition ofV with
shrinking probability mass in the intersection of the regions of disagreement, which (as above) can
then be used to obtain asymptotic improvements over passive learning.

Note that the above argument can be written more concisely in terms ofshattering. That is, any
x∈DIS(V) is simply anx such thatV shatters{x}; a pointx∈DIS(V[(x1,+1)])∩DIS(V[(x1,−1)])
is simply one for whichV shatters{x1,x}, and for anyx /∈DIS(V[(x1,+1)])∩DIS(V[(x1,−1)]), the
labely we infer aboutx has the property that the setV[(x,−y)] does not shatter{x1}. This continues
for each repetition of the above idea, withx in the intersection of the four regions of disagreement
simply being one for whichV shatters{x1,x2,x}, and so on. In particular, this perspective makes it
clear that we need only repeat this idea at mostd times to get a shrinking intersection region, since
no set ofd+1 points is shatterable. Note that there may be unobservable factors (e.g., the target
function) determining the appropriate number of iterations of this idea sufficient to have a shrinking
probability of requesting a label, while maintaining the accuracy of inferred labels. To address this,
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we can simply try alld+1 possibilities, and then select one of the resultingd+1 classifiers via a
kind of tournament of pairwise comparisons. Also, in order to reduce the probability of a mistaken
inference due tox1 /∈ ∂V f (or similarly for laterxi), we can replace each singlexi with multiple
samples, and then take a majority vote over whether to infer the label, and whichlabel to infer if
we do so; generally, we can think of this as estimating certain probabilities, andbelow we write
these estimators aŝPm, and discuss the details of their implementation later. Combining Meta-
Algorithm 0 with the above reasoning motivates a new type of active learning algorithm, referred to
as Meta-Algorithm 1 below, and stated as follows.

Meta-Algorithm 1
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. Request the firstmn = ⌊n/3⌋ labels,{Y1, . . . ,Ymn}, and lett←mn

1. LetV = {h∈ C : ermn(h) = 0}
2. Fork= 1,2, . . . ,d+1
3. ∆̂(k)← P̂mn

(

x : P̂
(

S∈ X k−1 : V shattersS∪{x}|V shattersS
)

≥ 1/2
)

4. LetLk←{}
5. Form= mn+1, . . . ,mn+ ⌊n/(6·2k∆̂(k))⌋
6. If P̂m

(

S∈ X k−1 : V shattersS∪{Xm}|V shattersS
)

≥ 1/2 andt < ⌊2n/3⌋
7. Request the labelYm of Xm, and let ˆy←Ym andt← t +1
8. Else, let ˆy← argmax

y∈{−1,+1}
P̂m
(

S∈ X k−1 :V[(Xm,−y)] does not shatterS|V shattersS
)

9. LetLk←Lk∪{(Xm, ŷ)}
10. Return ActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)},⌊n/3⌋,{Xmn+maxk |Lk|+1, . . .})

Subroutine: ActiveSelect
Input: set of classifiers{h1,h2, . . . ,hN}, label budgetm, sequence of unlabeled examplesU
Output: classifier̂h

0. For eachj,k∈ {1,2, . . . ,N} s.t. j < k,

1. LetRjk be the first
⌊

m
j(N− j) ln(eN)

⌋

points inU∩{x : h j(x) 6= hk(x)} (if such values exist)

2. Request the labels forRjk and letQ jk be the resulting set of labeled examples
3. Letmk j = erQ jk(hk)

4. Returnhk̂, wherek̂= max
{

k∈ {1, . . . ,N} : maxj<k mk j ≤ 7/12
}

Meta-Algorithm 1 is stated as a function of three types of estimated probabilities:namely,

P̂m

(

S∈ X k−1 : V shattersS∪{x}
∣

∣

∣
V shattersS

)

,

P̂m

(

S∈ X k−1 : V[(x,−y)] does not shatterS
∣

∣

∣V shattersS
)

,

andP̂m

(

x : P̂
(

S∈ X k−1 : V shattersS∪{x}
∣

∣

∣
V shattersS

)

≥ 1/2
)

.

These can be defined in a variety of ways to make this a universal activizer for C. Generally, the
only requirement seems to be that they converge to the appropriate respective probabilities at a
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sufficiently fast rate. For the theorem stated below regarding Meta-Algorithm 1, we will take the
specific definitions stated in Appendix B.1.

Meta-Algorithm 1 requests labels in three batches: one to initially prune down the version
spaceV, a second one to construct the labeled samplesLk, and a third batch to select among the
d+ 1 classifiersAp(Lk) in the ActiveSelect subroutine. As before, the choice of the number of
(unlabeled) examples to process in the second batch guarantees (by a Chernoff bound) that the
“ t < ⌊2n/3⌋” constraint in Step 6 is redundant. The mechanism for requesting labels in the second
batch is motivated by the reasoning outlined above, using the shatterable setsS to split V into
2k−1 subsets, each of which approximates the target with high probability (for large n), and then
checking whether the new pointx is in the regions of disagreement for all 2k−1 subsets (by testing
shatterability ofS∪{x}). To increase confidence in this test, we use many suchSsets, and let them
vote on whether or not to request the label (Step 6). As mentioned, ifx is not in the region of
disagreement for one of these 2k−1 subsets (call itV ′), the agreed-upon labely has the property that
V[(x,−y)] does not shatterS (sinceV[(x,−y)] does not intersect withV ′, which represents one of
the 2k−1 labelings required to shatterS). Therefore, we infer that this labely is the correct label
of x, and again we vote over many suchS sets to increase confidence in this choice (Step 8). As
mentioned, this reasoning leads to correctly inferred labels in Step 8 as long asn is sufficiently large
andPk−1(S∈X k−1 :V shattersS)9 0. In particular, we are primarily interested in the largest value
of k for which this reasoning holds, since this is the value at which the probability of requesting a
label (Step 7) shrinks to zero asn→∞. However, since we typically cannot predict a priori what
this largest validk value will be (as it is target-dependent), we try alld+1 values ofk, to generate
d+1 hypotheses, and then use a simple pairwise testing procedure to select among them; note that
we need at most tryd+1 values, sinceV definitely cannot shatter anyS∈ X d+1. We will see that
the ActiveSelect subroutine is guaranteed to select a classifier with error rate never significantly
larger than the best among the classifiers given to it (say within a factor of 2, with high probability).
Therefore, in the present context, we need only consider whether somek has a setLk with correct
labelsand |Lk| ≫ n.

4.2 Examples

In the next subsection, we state a general result for Meta-Algorithm 1. But first, to illustrate how
this procedure operates, we walk through its behavior on our usual examples; as we did for the
examples of Meta-Algorithm 0, to simplify the explanation, for now we will ignorethe fact that
the P̂m values are estimates, as well as the “t < ⌊2n/3⌋” constraint of Step 6, and the issue of
effectiveness of ActiveSelect; in the proofs of the general results below, we will show that these
issues do not fundamentally change the analysis. For now, we merely focus on showing that some
k hasLk correctly labeled and|Lk| ≫ n.

For threshold classifiers (Example 1), we haved = 1. In this case, thek = 1 round of the
algorithm is essentially identical to Meta-Algorithm 0 (recall our conventions that X 0 = {∅},
P(X 0) = 1, andV shatters∅ iff V 6= {}), and we therefore have|L1| ≫ n, as discussed previ-
ously, so that Meta-Algorithm 1 is a universal activizer for threshold classifiers.

Next consider interval classifiers (Example 2), withP uniform on[0,1]; in this case, we have
d = 2. If f = h[a,b] for a < b, then again thek = 1 round behaves essentially the same as Meta-
Algorithm 0, and since we have seenP(∂h[a,b]) = 0 in this case, we have|L1| ≫ n. However, the
behavior becomes far more interesting whenf = h[a,a], which was precisely the case that prevented
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Meta-Algorithm 0 from improving over passive learning. In this case, as we know from above,
the k = 1 round will have|L1| = O(n), so that we need to consider larger values ofk to identify
improvements. In this case, thek = 2 round behaves as follows. With probability 1, the initial
⌊n/3⌋ labels used to defineV will all be negative. Thus,V is precisely the set of intervals that do
not contain any of the initial⌊n/3⌋ points. Now consider anyS= {x1} ∈ X 1, with x1 not equal to
any of these initial⌊n/3⌋ points, and consider anyx /∈ {x1,X1, . . . ,X⌊n/3⌋}. First note thatV shatters
S, since we can optionally put a small interval aroundx1 using an element ofV. If there is a point
x′ among the initial⌊n/3⌋ between xandx1, then anyh[a,b] ∈ V with x ∈ [a,b] cannot also have
x1 ∈ [a,b], as it would also contain the observed negative point between them. Thus,V doesnot
shatter{x1,x}= S∪{x}, so that thisSwill vote to infer (rather than request) the label ofx in Step 6.
Furthermore, we see thatV[(x,+1)] does not shatterS, whileV[(x,−1)] does shatterS, so that this
Swould also vote for the label ˆy=−1 in Step 8. For sufficiently largen, with high probability, any
given x not equal one of the initial⌊n/3⌋ should havemost(probability at least 1−O(n−1 logn))
of the possiblex1 values separated from it by at least one of the initial⌊n/3⌋ points, so that the
outcome of the vote in Step 6 will be a decision to infer (not request) the label, and the vote in
Step 8 will be for−1. Since, with probability one, everyXm 6= a, we have everyYm = −1, so that
every point inL2 is labeled correctly. This also indicates that, for sufficiently largen, we have
P(x : P1(S∈ X 1 : V shattersS∪{x}|V shattersS)≥ 1/2) = 0, so that the size ofL2 is only limited
by the precision of estimation in̂Pmn in Step 3. Thus, as long as we implementP̂mn so that its value
is at mosto(1) larger than the true probability, we can guarantee|L2| ≫ n.

The unions ofi intervals example (Example 3), again underP uniform on [0,1], is slightly
more involved; in this case, the appropriate value ofk to consider for any given target depends on
the minimum number of intervals necessary to represent the target function (up to zero-probability
differences). Ifj intervals are required for this, then the appropriate value isk= i− j +1. Specifi-
cally, suppose the target is minimally representable as a union ofj ∈ {1, . . . , i} intervals of nonzero
width: [z1, z2]∪ [z3, z4]∪ · · · ∪ [z2 j−1, z2 j ]: that is,z1 < z2 < .. . < z2 j−1 < z2 j . Every target inC
has distance zero to some classifier of this type, and will agree with that classifier on all samples
with probability one, so we lose no generality by assuming allj intervals have nonzero width. Then
consider anyx ∈ (0,1) andS= {x1, . . . ,xi− j} ∈ X i− j such that, between any pair of elements of
S∪{x}∪{z1, . . . , z2 j}, there is at least one of the initial⌊n/3⌋ points, and none ofS∪{x} are them-
selves equal to any of those initial points. First note thatV shattersS, since for anyxℓ not in one of
the[z2p−1, z2p] intervals (i.e., negative), we may optionally add an interval[xℓ,xℓ] while staying inV,
and for anyxℓ in one of the[z2p−1, z2p] intervals (i.e., positive), we may optionally split[z2p−1, z2p]
into two intervals to barely exclude the pointxℓ (and a small neighborhood around it), by adding at
most one interval to the representation; thus, in total we need to add at mosti− j intervals to the
representation, so that the largest number of intervals used by any of these 2i− j classifiers involved
in shattering isi, as required; furthermore, note that one of these 2i− j classifiers actually requiresi
intervals. Now for any suchx andSas above, since one of the 2i− j classifiers inV used to shatter
S requiresi intervals to represent it, andx is separated from each element ofS∪{z1, . . . , z2 j} by a
labeled example, we see thatV cannot shatterS∪{x}. Furthermore, iff (x) = y, then any labeled
example to the immediate left or right ofx is also labeledy, and in particular among the 2i− j classi-
fiersh from V that shatterS, the oneh that requiresi intervals to represent must also haveh(x) = y,
so thatV[(x,−y)] does not shatterS. Thus, any setSsatisfying this separation property will vote to
infer (rather than request) the label ofx in Step 6, and will vote for the labelf (x) in Step 8. Fur-
thermore, for sufficiently largen, for any givenx separated from{z1, . . . , z2 j} by {X1, . . . ,X⌊n/3⌋},
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with high probability most of the setsS∈ X i− j will satisfy this pairwise separation property, and
therefore so will most of the shatterable setsS∈ X i− j , so that the overall outcome of the votes will
favor inferring the label ofx, and in particular inferring the labelf (x) for x. On the other hand, forx
not satisfying this property (i.e., not separated from somezp by any of the initial⌊n/3⌋ examples),
for any setSas above,V canshatterS∪{x}, since we can optionally increase or decrease thiszp to
include or excludex from the associated interval, in addition to optionally adding the extra intervals
to shatterS; therefore, by the same reasoning as above, for sufficiently largen, any suchx will sat-
isfy the condition in Step 6, and thus have its label requested. Thus, for sufficiently largen, every
example inLi− j+1 will be labeled correctly. Finally, note that with probability one, the set of points
x separated from each of thezp values by at least one of the⌊n/3⌋ initial points has probability
approaching one asn→∞, so that again we have|Li− j+1| ≫ n.

The above examples give some intuition about the operation of this procedure. Next, we turn to
general results showing that this type of improvement generally holds.

4.3 General Results on Activized Learning

Returning to the abstract setting, we have the following general theorem, representing one of the
main results of this paper. Its proof is included in Appendix B.

Theorem 6 For any VC classC, Meta-Algorithm 1 is a universal activizer forC.

This result is interesting both for its strength and generality. Recall that it means that given any
passive learning algorithmAp, the active learning algorithm obtained by providingAp as input to
Meta-Algorithm 1 achieves a label complexity that strongly dominates that ofAp for all nontrivial
distributionsP and target functionsf ∈ C. Results of this type were not previously known. The
specific technical advance over existing results (namely, those of Balcan, Hanneke, and Vaughan,
2010) is the fact that Meta-Algorithm 1 has no direct dependence on the distributionP; as mentioned
earlier, the (very different) approach proposed by Balcan, Hanneke, and Vaughan (2010) has a strong
direct dependence on the distribution, to the extent that the distribution-dependence in that approach
cannot be removed by merely replacing certain calculations with data-dependent estimators (as we
did in Meta-Algorithm 1). In the proof, we actually show a somewhat more general result: namely,
that Meta-Algorithm 1 achieves these asymptotic improvements for any target function f in the
closureof C (i.e., any f such that∀r > 0,B( f , r) 6= ∅).

The following corollary is one concrete implication of Theorem 6.

Corollary 7 For any VC classC, there exists an active learning algorithm achieving a label com-
plexityΛa such that, for all target functions f∈ C and distributionsP,

Λa(ε , f ,P) = o(1/ε).

Proof Theone-inclusion graphpassive learning algorithm of Haussler, Littlestone, and Warmuth
(1994) is known to achieve label complexity at mostd/ε, for every target functionf ∈ C and dis-
tributionP. Thus, Theorem 6 implies that the (Meta-Algorithm 1)-activized one-inclusion graph
algorithm satisfies the claim.

As a byproduct, Theorem 6 also establishes the basic fact that thereexistactivizers. In some
sense, this observation opens up a new realm for exploration: namely, characterizing theproperties
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that activizers can possess. This topic includes a vast array of questions, many of which deal with
whether activizers are capable ofpreservingvarious properties of the given passive algorithm (e.g.,
margin-based dimension-independence, minimaxity, admissibility, etc.). Section 7describes a vari-
ety of enticing questions of this type. In the sections below, we will consider quantifying how large
the gap in label complexity between the given passive learning algorithm andthe resulting activized
algorithm can be. We will additionally study the effects of label noise on the possibility of activized
learning.

4.4 Implementation and Efficiency

Meta-Algorithm 1 typically also has certain desirable efficiency guarantees. Specifically, suppose
that for anym labeled examplesQ, there is an algorithm with poly(d ·m) running time that finds
someh ∈ C with erQ(h) = 0 if one exists, and otherwise returns a value indicating that no such
h exists inC; for many concept spaces there are known methods with this capability (e.g.,linear
or polynomial separators, rectangles,k-DNF) (Khachiyan, 1979; Karmarkar, 1984; Valiant, 1984;
Kearns and Vazirani, 1994), while for others this is known to be hard (e.g., k-term DNF, bounded-
size decision trees) (Pitt and Valiant, 1988; Alekhnovich, Braverman, Feldman, Klivans, and Pitassi,
2004). Given such a subroutine, we can create an efficient implementationof the main body of
Meta-Algorithm 1. Specifically, rather than explicitly representingV in Step 1, we can simply store
the setQ0 = {(X1,Y1), . . . ,(Xmn,Ymn)}. Then for any step in the algorithm where we need to test
whetherV shatters a setR, we can simply try all 2|R| possible labelings ofR, and for each one
temporarily add these|R| additional labeled examples toQ0 and check whether there is anh ∈ C

consistent with all of the labels. At first, it might seem that these 2k evaluations would be prohibitive;
however, supposinĝPmn is implemented so that it isΩ(1/poly(n)) (as it is in Appendix B.1), note
that the loop beginning at Step 5 executes a nonzero number of times only ifn/∆̂(k) > 2k, so that
2k ≤ poly(n); we can easily add a condition that skips the step of calculating∆̂(k) if 2k exceeds this
poly(n) lower bound onn/∆̂(k), so that even those shatterability tests can be skipped in this case.
Thus, for the actual occurrences of it in the algorithm, testing whetherV shattersR requires only
poly(n) ·poly(d · (|Q0|+ |R|)) time. The total number of times this test is performed in calculating
∆̂(k) (from Appendix B.1) is itself only poly(n), and the number of iterations of the loop in Step 5 is
at mostn/∆̂(k) = poly(n). Determining the label ˆy in Step 8 can be performed in a similar fashion.
So in general, the total running time of the main body of Meta-Algorithm 1 is poly(d ·n).

The only remaining question is the efficiency of the final step. Of course, we can requireAp

to have running time polynomial in the size of its input set (andd). But beyond this, we must con-
sider the efficiency of the ActiveSelect subroutine. This actually turns out to have some subtleties
involved. The way it is stated above is simple and elegant, but not always efficient. Specifically,
we have no a priori bound on the number of unlabeled examples the algorithmmust process before
finding a pointXm whereh j(Xm) 6= hk(Xm). Indeed, ifP(x : h j(x) 6= hk(x)) = 0, we may effectively
need to examine the entire infinite sequence ofXm values to determine this. Fortunately, these prob-
lems can be corrected without difficulty, simply by truncating the search at a predetermined number
of points. Specifically, rather than taking the next⌊m/

(N
2

)

⌋ examples for whichh j andhk disagree,
simply restrict ourselves to at most this number, or at most the number of suchpoints among the
next M unlabeled examples. In Appendix B, we show that ActiveSelect, as originally stated, has
a high-probability (1−exp{−Ω(m)}) guarantee that the classifier it selects has error rate at most
twice the best of theN it is given. With the modification to truncate the search atM unlabeled exam-
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ples, this guarantee is increased to mink er(hk)+max{er(hk),m/M}. For the concrete guarantee of
Corollary 7, it suffices to takeM≫m2. However, to guarantee the modified ActiveSelect can still
be used in Meta-Algorithm 1 while maintaining (the stronger) Theorem 6, we needM at least as big
asΩ (min{exp{mc} ,m/mink er(hk)}), for any constantc> 0. In general, if we have a 1/poly(n)
lower bound on the error rate of the classifier produced byAp for a given number of labeled ex-
amples as input, we can setM as above using this lower bound in place of mink er(hk), resulting
in an efficient version of ActiveSelect that still guarantees Theorem 6.However, it is presently not
known whether there always exist universal activizers forC that are efficient (either poly(d ·n) or
poly(d/ε) running time) when the above assumptions on efficiency ofAp and findingh∈ C with
erQ(h) = 0 hold.

5. The Magnitudes of Improvements

In the previous section, we saw that we can always improve the label complexity of a passive
learning algorithm by activizing it. However, there remains the question of how large the gap is
between the passive algorithm’s label complexity and the activized algorithm’slabel complexity.
In the present section, we refine the above procedures to take greateradvantage of the sequential
nature of active learning. For each, we characterize the improvements it achieves relative to any
given passive algorithm.

As a byproduct, this provides concise sufficient conditions forexponentialgains, addressing
an open problem of Balcan, Hanneke, and Vaughan (2010). Specifically, consider the following
definition, essentially similar to one explored by Balcan, Hanneke, and Vaughan (2010).

Definition 8 For a concept spaceC and distributionP, we say that(C,P) is learnable at an ex-
ponential rateif there exists an active learning algorithm achieving label complexityΛ such that,
∀ f ∈ C, Λ(ε , f ,P) ∈ Polylog(1/ε). We further sayC is learnable at an exponential rate if there
exists an active learning algorithm achieving label complexityΛ such that, for all distributionsP
and all f ∈ C, Λ(ε , f ,P) ∈ Polylog(1/ε).

5.1 The Label Complexity of Disagreement-Based Active Learning

As before, to establish a foundation to build upon, we begin by studying the label complexity gains
achievable by disagreement-based active learning. From above, we already know that disagreement-
based active learning is not sufficient to achieve the best possible gains; but as before, it will serve as
a suitable starting place to gain intuition for how we might approach the problem of improving Meta-
Algorithm 1 and quantifying the improvements achievable over passive learning by the resulting
more sophisticated methods.

The upper bounds on the label complexity of disagreement-based learningin this subsection are
essentially already known and available in the published literature (though in aslightly less gen-
eral form). Specifically, we review (a modified version of) the method of Cohn, Atlas, and Ladner
(1994), referred to as Meta-Algorithm 2 below, which was historically the original disagreement-
based active learning algorithm. We then state the known results on the label complexities achiev-
able by this method, in terms of a quantity known as the disagreement coefficient; that result is due
to Hanneke (2011, 2007b). We further provide a novel lower bound on the label complexity of this
method, again in terms of the disagreement coefficient; in particular, this shows that the stated upper
bounds represent a fairly tight analysis of this method.
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5.1.1 THE CAL ACTIVE LEARNING ALGORITHM

To begin, we consider the following simple disagreement-based method, typically referred to as
CAL after its discoverers Cohn, Atlas, and Ladner (1994), though the version here is slightly modi-
fied compared to the original (see below). It essentially represents a refinement of Meta-Algorithm
0 to take greater advantage of the sequential aspect of active learning.That is, rather than request-
ing only two batches of labels, as in Meta-Algorithm 0, this method updates the version space after
every label request, thus focusing the region of disagreement (and therefore the region in which it
requests labels) after each label request.

Meta-Algorithm 2
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. V← C, t← 0, m← 0,L← {}
1. While t < ⌈n/2⌉ andm≤ 2n

2. m←m+1
3. If Xm∈ DIS(V)
4. Request the labelYm of Xm and lett← t +1
5. LetV←V[(Xm,Ym)]
6. Let ∆̂← P̂m(DIS(V))
7. Do⌊n/(6∆̂)⌋ times
8. m←m+1
9. If Xm∈ DIS(V) andt < n
10. Request the labelYm of Xm and letŷ←Ym andt← t +1
11. Else let ˆy= h(Xm) for an arbitraryh∈V
12. LetL←L∪{(Xm, ŷ)} andV←V[(Xm, ŷ)]
13. ReturnAp(L)

The procedure is specified in terms of an estimatorP̂m; for our purposes, we define this as in
(13) of Appendix B.1 (withk= 1 there). Every exampleXm added to the setL in Step 12 either has
its label requested (Step 10) or inferred (Step 11). By the same Chernoff bound argument mentioned
for the previous methods, we are guaranteed (with high probability) that the“ t < n” constraint in
Step 9 is always satisfied whenXm∈DIS(V). Since we assumef ∈C, an inductive argument shows
that we will always havef ∈ V as well; thus, every label requestedor inferred will agree withf ,
and therefore the labels inL are all correct.

As with Meta-Algorithm 0, this method has two stages to it: one in which we focus onreducing
the version spaceV, and a second in which we focus on constructing a set of labeled examplesto
feed into the passive algorithm. The original algorithm of Cohn, Atlas, and Ladner (1994) essen-
tially used only the first stage, and simply returned any classifier inV after exhausting its budget for
label requests. Here we have added the second stage (Steps 6-13) sothat we can guarantee a certain
conditional independence (given|L|) among the examples fed into the passive algorithm, which is
important for the general results (Theorem 10 below). Hanneke (2011) showed that the original
(simpler) algorithm achieves the (less general) label complexity bound of Corollary 11 below.
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5.1.2 EXAMPLES

Not surprisingly, by essentially the same argument as Meta-Algorithm 0, onecan show Meta-
Algorithm 2 satisfies the claim in Theorem 5. That is, Meta-Algorithm 2 is a universal activizer
for C if and only ifP(∂ f ) = 0 for everyP and f ∈ C. However, there are further results known on
the label complexity achieved by Meta-Algorithm 2. Specifically, to illustrate the types of improve-
ments achievable by Meta-Algorithm 2, consider our usual toy examples; asbefore, to simplify the
explanation, for these examples we ignore the fact thatP̂m is only an estimate, as well as the “t < n”
constraint in Step 9 (both of which will be addressed in the general resultsbelow).

First, consider threshold classifiers (Example 1) under a uniformP on [0,1], and suppose
f = hz ∈ C. Suppose the given passive algorithm has label complexityΛp. To get expected error at
mostε in Meta-Algorithm 2, it suffices to have|L| ≥Λp(ε/2, f ,P) with probability at least 1−ε/2.
Starting from any particularV set obtained in the algorithm, call itV0, the set DIS(V0) is simply the
region between the largest negative example observed so far (sayzℓ) and the smallest positive exam-
ple observed so far (sayzr ). With probability at least 1− ε/n, at least one of the nextO(log(n/ε))
examples in this[zℓ, zr ] region will be in[zℓ+(1/3)(zr −zℓ), zr − (1/3)(zr −zℓ)], so that after pro-
cessing that example, we definitely haveP(DIS(V))≤ (2/3)P(DIS(V0)). Thus, upon reaching Step
6, since we have maden/2 label requests, a union bound implies that with probability 1− ε/2, we
haveP(DIS(V)) ≤ exp{−Ω(n/ log(n/ε))}, and therefore|L| ≥ exp{Ω(n/ log(n/ε))}. Thus, for
some valueΛa(ε , f ,P) = O(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), any n≥ Λa(ε , f ,P)
gives|L| ≥ Λp(ε/2, f ,P) with probability at least 1− ε/2, so that the activized algorithm achieves
label complexityΛa(ε , f ,P) ∈ Polylog(Λp(ε/2, f ,P)/ε).

Consider also the intervals problem (Example 2) under a uniformP on [0,1], and suppose
f = h[a,b] ∈ C, for b > a. In this case, as with any disagreement-based algorithm, until the al-
gorithm observes the first positive example (i.e., the firstXm ∈ [a,b]), it will request the label of
every example (see the reasoning above for Meta-Algorithm 0). However, at every time after ob-
serving this first positive point, sayx, the region DIS(V) is restricted to the region between the
largest negative point less thanx and smallest positive point, and the region between the largest
positive point and the smallest negative point larger thanx. For each of these two regions, the
same arguments used for the threshold problem above can be applied to show that, with probability
1−O(ε), the region of disagreement is reduced by at least a constant fraction every O(log(n/ε))
label requests, so that|L| ≥ exp{Ω(n/ log(n/ε))}. Thus, again the label complexity is of the form
O(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), which is Polylog(Λp(ε/2, f ,P)/ε), though this
time there is a significant (additive) target-dependent term (roughly∝ 1

b−a log(1/ε)), accounting for
the length of the initial phase before observing any positive examples. On the other hand, as with
anydisagreement-based algorithm, whenf = h[a,a], because the algorithm never observes a positive
example, it requests the label of every example it considers; in this case, by the same argument given
for Meta-Algorithm 0, upon reaching Step 6 we haveP(DIS(V)) = 1, so that|L| = O(n), and we
observe no improvements for some passive algorithmsAp.

A similar analysis can be performed for unions ofi intervals underP uniform on[0,1]. In that
case, we find that anyhz∈C not representable (up to zero-probability differences) by a union ofi−1
or fewer intervals allows for the exponential improvements of the type observed in the previous two
examples; this time, the phase of exponentially decreasingP(DIS(V)) only occurs after observing
an example in each of thei intervals and each of thei−1 negative regions separating the intervals,
resulting in an additive term of roughly∝ 1

min1≤ j<2i z j+1−z j
log(i/ε) in the label complexity. However,
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anyhz ∈ C representable (up to zero-probability differences) by a union ofi−1 or fewer intervals
hasP(∂hz)= 1, which means|L|=O(n), and therefore (as with any disagreement-based algorithm)
Meta-Algorithm 2 will not provide improvements for some passive algorithmsAp.

5.1.3 THE DISAGREEMENTCOEFFICIENT

Toward generalizing the arguments from the above examples, consider thefollowing definition of
Hanneke (2007b).

Definition 9 For ε ≥ 0, thedisagreement coefficientof a classifier f with respect to a concept space
C under a distributionP is defined as

θ f (ε) = 1∨sup
r>ε

P (DIS(B( f , r)))
r

.

Also abbreviateθ f = θ f (0).

Informally, the disagreement coefficient describes the rate of collapse of the region of disagree-
ment, relative to the distance fromf . It has been useful in characterizing the label complexities
achieved by several disagreement-based active learning algorithms (Hanneke, 2007b, 2011; Das-
gupta, Hsu, and Monteleoni, 2007; Beygelzimer, Dasgupta, and Langford, 2009; Wang, 2009;
Koltchinskii, 2010; Beygelzimer, Hsu, Langford, and Zhang, 2010), and itself has been studied
and bounded for various families of learning problems (Hanneke, 2007b,2011; Balcan, Hanneke,
and Vaughan, 2010; Friedman, 2009; Beygelzimer, Dasgupta, and Langford, 2009; Mahalanabis,
2011; Wang, 2011). See the paper of Hanneke (2011) for a detailed discussion of the disagreement
coefficient, including its relationships to several related quantities, as well as a variety of general
properties that it satisfies. In particular, below we use the fact that, for any constantc ∈ [1,∞),
θ f (ε)≤ θ f (ε/c)≤ cθ f (ε). Also note thatP(∂ f ) = 0 if and only ifθ f (ε) = o(1/ε). See the papers
of Friedman (2009) and Mahalanabis (2011) for some general conditions onC andP, under which
every f ∈ C hasθ f <∞, which (as we explain below) has particularly interesting implications for
active learning (Hanneke, 2007b, 2011).

To build intuition about the behavior of the disagreement coefficient, we briefly go through its
calculation for our usual toy examples from above. The first two of thesecalculations are taken from
Hanneke (2007b), and the last is from Balcan, Hanneke, and Vaughan (2010). First, consider the
thresholds problem (Example 1), and for simplicity suppose the distributionP is uniform on[0,1].
In this case, as in Section 3.2, B(hz, r) = {hz′ ∈ C : |z′− z| ≤ r}, and DIS(B(hz, r))⊆ [z− r, z+ r)
with equality for sufficiently smallr. Therefore,P(DIS(B(hz, r)))≤ 2r (with equality for smallr),
andθhz(ε)≤ 2 with equality for sufficiently smallε. In particular,θhz = 2.

On the other hand, consider the intervals problem (Example 2), again under P uniform on[0,1].
This time, forh[a,b] ∈ C with b−a> 0, we have for 0< r < b−a, B(h[a,b], r) = {h[a′,b′] ∈ C : |a−
a′|+ |b−b′| ≤ r}, DIS(B(h[a,b], r))⊆ [a−r,a+r)∪(b−r,b+r], andP(DIS(B(h[a,b], r)))≤ 4r (with
equality for sufficiently smallr). But for 0< b−a≤ r, we have B(h[a,b], r)⊇ {h[a′,a′] : a′ ∈ (0,1)},
so that DIS(B(h[a,b], r)) = (0,1) andP(DIS(B(h[a,b], r))) = 1. Thus, we generally haveθh[a,b](ε)≤
max

{

1
b−a,4

}

, with equality for sufficiently smallε. However, this last reasoning also indicates∀r >
0,B(h[a,a], r)⊇ {h[a′,a′] : a′ ∈ (0,1)}, so that DIS(B(h[a,a], r)) = (0,1) andP(DIS(B(h[a,a], r))) = 1;
therefore,θh[a,a](ε) =

1
ε , the largest possible value for the disagreement coefficient; in particular, this

also meansθh[a,a] =∞.
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Finally, consider the unions ofi intervals problem (Example 3), again underP uniform on[0,1].
First take anyhz ∈ C such that anyhz′ ∈ C representable as a union ofi−1 intervals hasP({x :
hz(x) 6= hz′(x)}) > 0. Then for 0< r < min

1≤ j<2i
z j+1− z j , B(hz, r) = {hz′ ∈ C :

∑

1≤ j≤2i
|z j − z′j | ≤ r},

so thatP(DIS(B(hz, r))) ≤ 4ir , with equality for sufficiently smallr. For r > min
1≤ j<2i

z j+1− z j ,

B(hz, r) contains a set of classifiers that flips the labels (compared tohz) in that smallest region and
uses the resulting extra interval to disagree withhz on a tiny region at an arbitrary location (either
by encompassing some point with a small interval, or by splitting an interval into twointervals
separated by a small gap). Thus, DIS(B(hz, r))= (0,1), andP(DIS(hz, r))= 1. So in total,θhz(ε)≤
max

{

1
min

1≤ j<2i
z j+1−z j

,4i

}

, with equality for sufficiently smallε. On the other hand, ifhz ∈ C can be

represented by a union ofi−1 (or fewer) intervals, then we can use the extra interval to disagree with
hz on a tiny region at an arbitrary location, while still remaining in B(hz, r), so that DIS(B(hz, r)) =
(0,1), P(DIS(B(hz, r))) = 1, andθhz(ε) =

1
ε ; in particular, in this case we haveθhz =∞.

5.1.4 GENERAL UPPERBOUNDS ON THELABEL COMPLEXITY OF META-ALGORITHM 2

As mentioned, the disagreement coefficient has implications for the label complexities achievable
by disagreement-based active learning. The intuitive reason for this is that, as the number of label
requests increases, thediameterof the version space shrinks at a predictable rate. The disagreement
coefficient then relates the diameter of the version space to the size of its region of disagreement,
which in turn describes the probability of requesting a label. Thus, the expected frequency of label
requests in the data sequence decreases at a predictable rate related to the disagreement coefficient,
so that|L| in Meta-Algorithm 2 can be lower bounded by a function of the disagreementcoefficient.
Specifically, the following result was essentially established by Hanneke (2011, 2007b), though
actually the result below is slightly more general than the original.

Theorem 10 For any VC classC, and any passive learning algorithmAp achieving label com-
plexityΛp, the active learning algorithm obtained by applying Meta-Algorithm 2 withAp as input
achieves a label complexityΛa that, for any distributionP and classifier f∈ C, satisfies

Λa(ε , f ,P) = O

(

θ f
(

Λp(ε/2, f ,P)−1) log2 Λp(ε/2, f ,P)
ε

)

.

The proof of Theorem 10 is similar to the original result of Hanneke (2011, 2007b), with only
minor modifications to account for usingAp instead of returning an arbitrary element ofV. The
formal details are implicit in the proof of Theorem 16 below (since Meta-Algorithm 2 is essentially
identical to thek= 1 round of Meta-Algorithm 3, defined below). We also have the following simple
corollaries.

Corollary 11 For any VC classC, there exists a passive learning algorithmAp such that, for every
f ∈C and distributionP, the active learning algorithm obtained by applying Meta-Algorithm 2 with
Ap as input achieves label complexity

Λa(ε , f ,P) = O
(

θ f (ε) log2(1/ε)
)

.
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Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth (1994) is a passive
learning algorithm achieving label complexityΛp(ε , f ,P) ≤ d/ε. Plugging this into Theorem 10,
using the fact thatθ f (ε/2d)≤ 2dθ f (ε), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factor ofd is not actually necessary.

Corollary 12 For any VC classC and distributionP, if ∀ f ∈ C, θ f <∞, then(C,P) is learnable
at an exponential rate. If this is true for allP, thenC is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 11, sinceθ f (ε)≤ θ f . The second claim then
follows from the fact that Meta-Algorithm 2 is adaptive toP (has no direct dependence onP except
via the data).

Aside from the disagreement coefficient andΛp terms, the other constant factors hidden in the
big-O in Theorem 10 are onlyC-dependent (i.e., independent off andP). As mentioned, if we are
only interested in achieving the label complexity bound of Corollary 11, we can obtain this result
more directly by the simpler original algorithm of Cohn, Atlas, and Ladner (1994) via the analysis
of Hanneke (2011, 2007b).

5.1.5 GENERAL LOWER BOUNDS ON THELABEL COMPLEXITY OF META-ALGORITHM 2

It is also possible to prove a kind oflower boundon the label complexity of Meta-Algorithm 2 in
terms of the disagreement coefficient, so that the dependence on the disagreement coefficient in
Theorem 10 is unavoidable. Specifically, there are two simple observationsthat intuitively explain
the possibility of such lower bounds. The first observation is that the expected number of label
requests Meta-Algorithm 2 makes among the first⌈1/ε⌉ unlabeled examples is at leastθ f (ε)/2
(assuming it does not halt first). Similarly, the second observation is that, to arrive at a region of
disagreement with expected probability mass less thanP(DIS(B( f ,ε)))/2, Meta-Algorithm 2 re-
quires a budgetn of size at leastθ f (ε)/2. These observations are formalized in Appendix C as
Lemmas 47 and 48. The relevance of these observations in the context of deriving lower bounds
based on the disagreement coefficient is clear. In particular, we can use the latter of these insights to
arrive at the following theorem, which essentially complements Theorem 10, showing that it cannot
generally be improved beyond reducing the constants and logarithmic factors, without altering the
algorithm or introducing additionalAp-dependent quantities in the label complexity bound. The
proof is included in Appendix C.

Theorem 13 For any set of classifiersC, f ∈ C, distributionP, and nonincreasing functionλ :
(0,1)→ N, there exists a passive learning algorithmAp achieving a label complexityΛp with
Λp(ε , f ,P) = λ (ε) for all ε > 0, such that if Meta-Algorithm 2, withAp as its argument, achieves
label complexityΛa, then

Λa(ε , f ,P) = Ω
(

θ f
(

Λp(2ε , f ,P)−1)) .

Recall that there are many natural learning problems for whichθ f =∞, and indeed where
θ f (ε) = Ω(1/ε): for instance, intervals withf = h[a,a] under uniformP, or unions ofi intervals un-
der uniformP with f representable asi−1 or fewer intervals. Thus, since we have just seen that the
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improvements gained by disagreement-based methods are well-characterized by the disagreement
coefficient, if we would like to achieve exponential improvements over passive learning for these
problems, we will need to move beyond these disagreement-based methods. In the subsections that
follow, we will use an alternative algorithm and analysis, and prove a general result that is always
at least as good as Theorem 10 (in a big-O sense), and often significantly better (in a little-o sense).
In particular, it leads to a sufficient condition for learnability at an exponential rate, strictly more
general than that of Corollary 12.

5.2 An Improved Activizer

In this subsection, we define a new active learning method based on shattering, as in Meta-Algorithm
1, but which also takes fuller advantage of the sequential aspect of active learning, as in Meta-
Algorithm 2. We will see that this algorithm can be analyzed in a manner analogous to the disagree-
ment coefficient analysis of Meta-Algorithm 2, leading to a new and often dramatically-improved
label complexity bound. Specifically, consider the following meta-algorithm.

Meta-Algorithm 3
Input: passive algorithmAp, label budgetn
Output: classifier̂h

0. V←V0 = C, T0← ⌈2n/3⌉, t← 0, m← 0
1. Fork= 1,2, . . . ,d+1
2. LetLk←{}, Tk← Tk−1− t, and lett← 0
3. While t < ⌈Tk/4⌉ andm≤ k ·2n

4. m←m+1
5. If P̂m

(

S∈ X k−1 : V shattersS∪{Xm}|V shattersS
)

≥ 1/2
6. Request the labelYm of Xm, and let ˆy←Ym andt← t +1
7. Else let ˆy← argmax

y∈{−1,+1}
P̂m
(

S∈ X k−1 :V[(Xm,−y)] does not shatterS|V shattersS
)

8. LetV←Vm =Vm−1 [(Xm, ŷ)]
9. ∆̂(k)← P̂m

(

x : P̂
(

S∈ X k−1 : V shattersS∪{x}|V shattersS
)

≥ 1/2
)

10. Do⌊Tk/(3∆̂(k))⌋ times
11. m←m+1
12. If P̂m

(

S∈ X k−1 : V shattersS∪{Xm}|V shattersS
)

≥ 1/2 andt < ⌊3Tk/4⌋
13. Request the labelYm of Xm, and let ˆy←Ym andt← t +1
14. Else, let ˆy← argmax

y∈{−1,+1}
P̂m
(

S∈ X k−1 :V[(Xm,−y)] does not shatterS|V shattersS
)

15. LetLk←Lk∪{(Xm, ŷ)} andV←Vm =Vm−1 [(Xm, ŷ)]
16. Return ActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)},⌊n/3⌋,{Xm+1,Xm+2, . . .})

As before, the procedure is specified in terms of estimatorsP̂m. Again, these can be defined in a
variety of ways, as long as they converge (at a fast enough rate) to their respective true probabilities.
For the results below, we will use the definitions given in Appendix B.1: that is, the same definitions
used in Meta-Algorithm 1. Following the same argument as for Meta-Algorithm 1, one can show
that Meta-Algorithm 3 is a universal activizer forC, for any VC classC. However, we can also
obtain more detailed results in terms of a generalization of the disagreement coefficient given below.
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As with Meta-Algorithm 1, this procedure has three main components: one in which we focus
on reducing the version spaceV, one in which we focus on collecting a (conditionally) i.i.d. sample
to feed intoAp, and one in which we select from among thed+ 1 executions ofAp. However,
unlike Meta-Algorithm 1, here the first stage is also broken up based on thevalue ofk, so that each
k has its own first and second stages, rather than sharing a single first stage. Again, the choice of the
number of (unlabeled) examples processed in each second stage guarantees (by a Chernoff bound)
that the “t < ⌊3Tk/4⌋” constraint in Step 12 is redundant. Depending on the type of label complexity
result we wish to prove, this multistage architecture is sometimes avoidable. In particular, as with
Corollary 11 above, to directly achieve the label complexity bound in Corollary 17 below, we can
use a much simpler approach that replaces Steps 9-16, instead simply returning an arbitrary element
of V upon termination.

Within each value ofk, Meta-Algorithm 3 behaves analogous to Meta-Algorithm 2, requesting
the label of an example only if it cannot infer the label from known information, and updating the
version spaceV after every label request; however, unlike Meta-Algorithm 2, for values of k > 1,
the mechanism for inferring a label is based on shatterable sets, as in Meta-Algorithm 1, and is mo-
tivated by the same argument of splittingV into subsets containing arbitrarily good classifiers (see
the discussion in Section 4.1). Also unlike Meta-Algorithm 2, even the inferred labels can be used
to reduce the setV (Steps 8 and 15), since they are not only correct but also potentially informative
in the sense thatx∈DIS(V). As with Meta-Algorithm 1, the key to obtaining improvement guaran-
tees is that some value ofk has|Lk| ≫ n, while maintaining that all of the labels inLk are correct;
ActiveSelect then guarantees the overall performance is not too much worse than that obtained by
Ap(Lk) for this value ofk.

To build intuition about the behavior of Meta-Algorithm 3, let us consider ourusual toy exam-
ples, again under a uniform distributionP on [0,1]; as before, for simplicity we ignore the fact that
P̂m is only an estimate, as well as the constraint ont in Step 12 and the effectiveness of ActiveSelect,
all of which will be addressed in the general analysis. First, for the behavior of the algorithm for
thresholds and nonzero-width intervals, we may simply refer to the discussion of Meta-Algorithm
2, since thek = 1 round of Meta-Algorithm 3 is essentially identical to Meta-Algorithm 2; in this
case, we have already seen that|L1| grows as exp{Ω(n/ log(n/ε))} for thresholds, and does so for
nonzero-width intervals after some initial period of slow growth related to the width of the target
interval (i.e., the period before finding the first positive example). As with Meta-Algorithm 1, for
zero-width intervals, we must look to thek = 2 round of Meta-Algorithm 3 to find improvements.
Also as with Meta-Algorithm 1, for sufficiently largen, everyXm processed in thek= 2 round will
have its label inferred (correctly) in Step 7 or 14 (i.e., it does not request any labels). But this means
we reach Step 9 withm= 2 ·2n+1; furthermore, in these circumstances the definition ofP̂m from
Appendix B.1 guarantees (for sufficiently largen) that ∆̂(2) = 2/m, so that|L2|∝n ·m= Ω (n·2n).
Thus, we expect the label complexity gains to beexponentially improvedcompared toAp.

For a more involved example, consider unions of 2 intervals (Example 3), under uniformP
on [0,1], and supposef = h(a,b,a,b) for b− a > 0; that is, the target function is representable as
a single nonzero-width interval[a,b] ⊂ (0,1). As we have seen,∂ f = (0,1) in this case, so that
disagreement-based methods are ineffective at improving over passive. This also means thek = 1
round of Meta-Algorithm 3 will not provide improvements (i.e.,|L1| = O(n)). However, consider
thek= 2 round. As discussed in Section 4.2, for sufficiently largen, after the first round (k= 1) the
setV is such that any label we infer in thek= 2 round will be correct. Thus, it suffices to determine
how large the setL2 becomes. By the same reasoning as in Section 4.2, for sufficiently largen, the
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examplesXm whose labels are requested in Step 6 are precisely thosenot separated from botha and
b by at least one of them−1 examples already processed (sinceV is consistent with the labels of all
m−1 of those examples). But this is the same set of points Meta-Algorithm 2 would query for the
intervalsexample in Section 5.1; thus, the same argument used there implies that in this problem we
have|L2| ≥ exp{Ω(n/ log(n/ε))} with probability 1− ε/2, which means we should expect a label
complexity ofO(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), whereΛp is the label complexity
of Ap. For the casef = h(a,a,a,a), k= 3 is the relevant round, and the analysis goes similarly to the
h[a,a] scenario for intervals above. Unions ofi > 2 intervals can be studied analogously, with the
appropriate value ofk to analyze being determined by the number of intervals required to represent
the target up to zero-probability differences (see the discussion in Section 4.2).

5.3 Beyond the Disagreement Coefficient

In this subsection, we introduce a new quantity, a generalization of the disagreement coefficient,
which we will later use to provide a general characterization of the improvements achievable by
Meta-Algorithm 3, analogous to how the disagreement coefficient characterized the improvements
achievable by Meta-Algorithm 2 in Theorem 10. First, let us define the following generalization of
the disagreement core.

Definition 14 For an integer k≥ 0, define the k-dimensional shatter coreof a classifier f with
respect to a set of classifiersH and probability measureP as

∂k
H,P f = lim

r→0

{

S∈ X k : BH,P ( f , r) shatters S
}

.

As before, whenP = P, andP is clear from the context, we will abbreviate∂k
H f = ∂k

H,P f , and
when we also intendH = C, the full concept space, andC is clearly defined in the given context,
we further abbreviate∂k f = ∂k

C
f = ∂k

C,P f . We have the following definition, which will play a key
role in the label complexity bounds below.

Definition 15 For any concept spaceC, distributionP, and classifier f ,∀k∈ N, ∀ε ≥ 0, define

θ (k)
f (ε) = 1∨sup

r>ε

Pk
(

S∈ X k : B( f , r) shatters S
)

r
.

Then define

d̃f = min
{

k∈ N : Pk
(

∂k f
)

= 0
}

and
θ̃ f (ε) = θ (d̃f )

f (ε).

Also abbreviateθ (k)
f = θ (k)

f (0) and θ̃ f = θ̃ f (0).

We might refer to the quantityθ (k)
f (ε) as the order-k (or k-dimensional) disagreement coeffi-

cient, as it represents a direct generalization of the disagreement coefficientθ f (ε). However, rather
than merely measuring the rate of collapse of the probability ofdisagreement(one-dimensional
shatterability),θ (k)

f (ε) measures the rate of collapse of the probability ofk-dimensional shatterabil-

ity. In particular, we havẽθ f (ε) = θ (d̃f )
f (ε) ≤ θ (1)

f (ε) = θ f (ε), so that this new quantity is never
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larger than the disagreement coefficient. However, unlike the disagreement coefficient, wealways
haveθ̃ f (ε) = o(1/ε) for VC classesC. In fact, we could equivalently definẽθ f (ε) as the value

of θ (k)
f (ε) for the smallestk with θ (k)

f (ε) = o(1/ε). Additionally, we will see below that there are

many interesting cases whereθ f =∞ (evenθ f (ε) = Ω(1/ε)) but θ̃ f <∞ (e.g., intervals with a
zero-width target, or unions ofi intervals where the target is representable as a union ofi− 1 or
fewer intervals). As was the case forθ f , we will see that showing̃θ f <∞ for a given learning prob-
lem has interesting implications for the label complexity of active learning (Corollary 18 below). In
the process, we have also defined the quantityd̃f , which may itself be of independent interest in the
asymptotic analysis of learning in general. For VC classes,d̃f always exists, and in fact is at most
d+1 (sinceC cannot shatter anyd+1 points). Whend =∞, the quantityd̃f might not be defined
(or defined as∞), in which casẽθ f (ε) is also not defined; in this work we restrict our discussion to
VC classes, so that this issue never comes up; Section 7 discusses possible extensions to classes of
infinite VC dimension.

We should mention that the restriction ofθ̃ f (ε)≥ 1 in the definition is only for convenience, as
it simplifies the theorem statements and proofs below. It is not fundamental to the definition, and
can be removed (at the expense of slightly more complicated theorem statements). In fact, this only
makes a difference to the value ofθ̃ f (ε) in some (seemingly unusual) degenerate cases. The same
is true ofθ f (ε) in Definition 9.

The process of calculating̃θ f (ε) is quite similar to that for the disagreement coefficient; we
are interested in describing B( f , r), and specifically the variety of behaviors of elements of B( f , r)
on points inX , in this case with respect to shattering. To illustrate the calculation ofθ̃ f (ε), con-
sider our usual toy examples, again underP uniform on [0,1]. For the thresholds example (Ex-

ample 1), we havẽdf = 1, so thatθ̃ f (ε) = θ (1)
f (ε) = θ f (ε), which we have seen is equal 2 for

small ε. Similarly, for the intervals example (Example 2), anyf = h[a,b] ∈ C with b− a > 0 has

d̃f = 1, so thatθ̃ f (ε) = θ (1)
f (ε) = θ f (ε), which for sufficiently smallε, is equal max

{

1
b−a,4

}

.

Thus, for these two examples,θ̃ f (ε) = θ f (ε). However, continuing the intervals example, consider
f = h[a,a] ∈ C. In this case, we have seen∂1 f = ∂ f = (0,1), so thatP(∂1 f ) = 1 > 0. For any
x1,x2 ∈ (0,1) with 0 < |x1− x2| ≤ r, B( f , r) can shatter(x1,x2), specifically using the classifiers
{h[x1,x2],h[x1,x1],h[x2,x2],h[x3,x3]} for any x3 ∈ (0,1) \ {x1,x2}. However, for anyx1,x2 ∈ (0,1) with
|x1− x2| > r, no element of B( f , r) classifies both as+1 (as it would need width greater thanr,
and thus would have distance fromh[a,a] greater thanr). Therefore,{S∈ X 2 : B( f , r) shattersS}=
{(x1,x2)∈ (0,1)2 : 0< |x1−x2| ≤ r}; this latter set has probability 2r(1− r)+ r2 = (2− r) · r, which

shrinks to 0 asr→ 0. Therefore,d̃f = 2. Furthermore, this shows̃θ f (ε)= θ (2)
f (ε)= supr>ε(2−r)=

2− ε ≤ 2. Contrasting this withθ f (ε) = 1/ε, we seeθ̃ f (ε) is significantly smaller than the dis-
agreement coefficient; in particular,θ̃ f = 2<∞, while θ f =∞.

Consider also the space of unions ofi intervals (Example 3) underP uniform on [0,1]. In
this case, we have already seen that, for anyf = hz ∈ C not representable (up to zero-probability
differences) by a union ofi−1 or fewer intervals, we haveP(∂1 f ) = P(∂ f ) = 0, so thatd̃f = 1,

and θ̃ f = θ (1)
f = θ f = max

{

1
min

1≤p<2i
zp+1−zp

,4i

}

. To generalize this, supposef = hz is minimally

representable as a union of any numberj ≤ i of intervals of nonzero width:[z1, z2]∪ [z3, z4]∪ · · ·∪
[z2 j−1, z2 j ], with 0< z1 < z2 < · · · < z2 j < 1. For our purposes, this is fully general, since every
element ofC has distance zero to somehz of this type, andθ̃h = θ̃h′ for anyh,h′ with P(x : h(x) 6=
h′(x)) = 0. Now for anyk< i− j +1, and anyS= (x1, . . . ,xk) ∈ X k with all elements distinct, the
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set B( f , r) can shatterS, as follows. Begin with the intervals[z2p−1, z2p] as above, and modify the
classifier in the following way for each labeling ofS. For any of thexℓ values we wish to label+1,
if it is already in an interval[z2p−1, z2p], we do nothing; if it is not in one of the[z2p−1, z2p] intervals,
we add the interval[xℓ,xℓ] to the classifier. For any of thexℓ values we wish to label−1, if it is not
in any interval[z2p−1, z2p], we do nothing; if it is in some interval[z2p−1, z2p], we split the interval
by setting to−1 the labels in a small region(xℓ− γ ,xℓ+ γ), for γ < r/k chosen small enough so
that (xℓ− γ ,xℓ+ γ) does not contain any other element ofS. These operations add at mostk new
intervals to the minimal representation of the classifier as a union of intervals, which therefore has
at mostj +k≤ i intervals. Furthermore, the classifier disagrees withf on a set of size at mostr, so
that it is contained in B( f , r). We therefore havePk(S∈X k : B( f , r) shattersS) = 1. However, note
that for 0< r < min

1≤p<2 j
zp+1− zp, for anyk andS∈ X k with all elements ofS∪{zp : 1≤ p≤ 2 j}

separated by a distance greater thanr, classifying the points inS opposite tof while remaining
r-close tof requires us to increase to a minimum ofj +k intervals. Thus, fork= i− j +1, anyS=
(x1, . . . ,xk)∈X k with min

y1,y2∈S∪{zp}p:y1 6=y2

|y1−y2|> r is notshatterable by B( f , r). We therefore have

{S∈X k : B( f , r) shattersS}⊆
{

S∈ X k : min
y1,y2∈S∪{zp}p:y1 6=y2

|y1−y2| ≤ r

}

. Forr < min
1≤p<2 j

zp+1−zp,

we can bound the probability of this latter set by considering sampling the pointsxℓ sequentially;
the probability theℓth point is within r of one ofx1, . . . ,xℓ−1, z1, . . . , z2 j is at most 2r(2 j + ℓ−1),
so (by a union bound) the probability any of thek pointsx1, . . . ,xk is within r of any other or any

of z1, . . . , z2 j is at most
∑k

ℓ=12r(2 j + ℓ− 1) = 2r
(

2 jk+
(k

2

)

)

= (1+ i − j)(i + 3 j)r. Since this

approaches zero asr→ 0, we haved̃f = i− j+1. Furthermore, this analysis showsθ̃ f = θ (i− j+1)
f ≤

max

{

1
min

1≤p<2 j
zp+1−zp

,(1+ i− j)(i+3 j)

}

. In fact, careful further inspection reveals that this upper

bound is tight (i.e., this is the exact value ofθ̃ f ). Recalling thatθ f (ε) = 1/ε for j < i, we see that
againθ̃ f (ε) is significantly smaller than the disagreement coefficient; in particular,θ̃ f <∞ while
θ f =∞.

Of course, for the quantitỹθ f (ε) to be truly useful, we need to be able to describe its behav-
ior for families of learning problems beyond these simple toy problems. Fortunately, as with the
disagreement coefficient, for learning problems with simple “geometric” interpretations, one can
typically bound the value of̃θ f without too much difficulty. For instance, considerX the surface of
a unit hypersphere inp-dimensional Euclidean space (withp≥ 3), withP uniform onX , andC the
space of linear separators:C= {hw,b(x) = 1±[0,∞)(w ·x+b) : w∈Rp,b∈R}. Balcan, Hanneke, and
Vaughan (2010) proved that(C,P) is learnable at an exponential rate, by a specialized argument
for this space. In the process, they established that for anyf ∈ C with P(x : f (x) = +1) ∈ (0,1),
θ f <∞; in fact, a similar argument showsθ f ≤ 4π√p/minyP(x : f (x) = y). Thus, in this case,
d̃f = 1, andθ̃ f = θ f <∞. However, considerf ∈C withP(x : f (x)= y)= 1 for somey∈{−1,+1}.
In this case, everyh∈C with P(x : h(x) =−y)≤ r hasP(x : h(x) 6= f (x))≤ r and is therefore con-
tained in B( f , r). In particular, for anyx∈X , there is such anh that disagrees withf on only a small
spherical cap containingx, so that DIS(B( f , r)) = X for all r > 0. But this means∂ f = X , which

impliesθ f (ε) = 1/ε andd̃f > 1. However, let us examine the value ofθ (2)
f . Let Ap =

2π p/2

Γ( p
2)

denote

the surface area of the unit sphere inRp, and letCp(z) =
1
2ApI2z−z2

(

p−1
2 , 1

2

)

denote the surface

area of a spherical cap of heightz ∈ (0,1) (Li, 2011), whereIx(a,b) =
Γ(a+b)

Γ(a)Γ(b)
∫ x

0 ta−1(1− t)b−1dt
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is the regularized incomplete beta function. In particular, since
√

p
12 ≤

Γ( p
2)

Γ( p−1
2 )Γ( 1

2)
≤ 1

2

√
p−2, the

probability massCp(z)
Ap

= 1
2

Γ( p
2)

Γ( p−1
2 )Γ( 1

2)

∫ 2z−z2

0 t
p−3

2 (1− t)−
1
2 dt contained in a spherical cap of height

z satisfies

Cp(z)

Ap
≥ 1

2

√

p
12

∫ 2z−z2

0
t

p−3
2 dt =

√

p
12

(2z− z2)
p−1

2

p−1
≥ (2z− z2)

p−1
2√

12p
, (2)

and letting ¯z = min{z,1/2}, also satisfies

Cp(z)

Ap
≤ 2Cp (z̄)

Ap
≤ 1

2

√

p−2
∫ 2z̄−z̄2

0
t

p−3
2 (1− t)−

1
2 dt

≤
√

p−2
∫ 2z−z2

0
t

p−3
2 dt =

2
√

p−2
p−1

(2z− z2)
p−1

2 ≤ (2z− z2)
p−1

2
√

p/6
≤ (2z)

p−1
2

√

p/6
. (3)

Consider any linear separatorh∈ B( f , r) for r < 1/2, and letz(h) denote the height of the spherical

cap whereh(x) = −y. Then (2) indicates the probability of this region is at least(2z(h)−z(h)2)
p−1

2√
12p

.

Sinceh∈B( f , r), we know this probability mass is at mostr, and we therefore have 2z(h)−z(h)2≤
(√

12pr
) 2

p−1 . Now for anyx1 ∈ X , the set ofx2 ∈ X for which B( f , r) shatters(x1,x2) is equivalent
to the set DIS({h ∈ B( f , r) : h(x1) = −y}). But if h(x1) = −y, thenx1 is in the aforementioned
spherical cap associated withh. A little trigonometry reveals that, for any spherical cap of height

z(h), any two points on the surface of this cap are within distance 2
√

2z(h)− z(h)2≤ 2
(√

12pr
) 1

p−1

of each other. Thus, for any pointx2 further than 2
(√

12pr
) 1

p−1 from x1, it must be outside the
spherical cap associated withh, which meansh(x2) = y. But this is true for everyh∈ B( f , r) with
h(x1) =−y, so that DIS({h∈B( f , r) : h(x1) =−y}) is contained in the spherical cap of all elements

of X within distance 2
(√

12pr
) 1

p−1 of x1; a little more trigonometry reveals that the height of this

spherical cap is 2
(√

12pr
) 2

p−1 . Then (3) indicates the probability mass in this region is at most
2p−1√12pr√

p/6
= 2p
√

18r. Thus,P2((x1,x2) : B( f , r) shatters(x1,x2)) =
∫ P(DIS({h∈ B( f , r) : h(x1) =

−y}))P(dx1) ≤ 2p
√

18r. In particular, since this approaches zero asr → 0, we haved̃f = 2. This

also shows that̃θ f = θ (2)
f ≤ 2p

√
18, a finite constant (albeit a rather large one). Following similar

reasoning, using the opposite inequalities as appropriate, and takingr sufficiently small, one can
also showθ̃ f ≥ 2p/(12

√
2).

5.4 Bounds on the Label Complexity of Activized Learning

We have seen above that in the context of several examples, Meta-Algorithm 3 can offer signif-
icant advantages in label complexity over any given passive learning algorithm, and indeed also
over disagreement-based active learning in many cases. In this subsection, we present a general re-
sult characterizing the magnitudes of these improvements over passive learning, in terms ofθ̃ f (ε).
Specifically, we have the following general theorem, along with two immediate corollaries. The
proof is included in Appendix D.
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Theorem 16 For any VC classC, and any passive learning algorithmAp achieving label complex-
ity Λp, the (Meta-Algorithm 3)-activizedAp algorithm achieves a label complexityΛa that, for any
distributionP and classifier f∈ C, satisfies

Λa(ε , f ,P) = O

(

θ̃ f
(

Λp(ε/4, f ,P)−1) log2 Λp(ε/4, f ,P)
ε

)

.

Corollary 17 For any VC classC, there exists a passive learning algorithmAp such that, the
(Meta-Algorithm 3)-activizedAp algorithm achieves a label complexityΛa that, for any distribution
P and classifier f∈ C, satisfies

Λa(ε , f ,P) = O
(

θ̃ f (ε) log2(1/ε)
)

.

Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth (1994) is a passive
learning algorithm achieving label complexityΛp(ε , f ,P) ≤ d/ε. Plugging this into Theorem 16,
using the fact that̃θ f (ε/4d)≤ 4dθ̃ f (ε), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factor ofd is not actually necessary.

Corollary 18 For any VC classC and distributionP, if ∀ f ∈ C, θ̃ f <∞, then(C,P) is learnable
at an exponential rate. If this is true for allP, thenC is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 17, sincẽθ f (ε)≤ θ̃ f . The second claim then
follows from the fact that Meta-Algorithm 3 is adaptive toP (has no direct dependence onP except
via the data).

Actually, in the proof we arrive at a somewhat more general result, in thatthe bound of The-
orem 16 actually holds for any target functionf in the “closure” ofC: that is, any f such that
∀r > 0,B( f , r) 6= ∅. As previously mentioned, if our goal is only to obtain the label complexity
bound of Corollary 17 by a direct approach, then we can use a simpler procedure (which cuts out
Steps 9-16, instead returning an arbitrary element ofV), analogous to how the analysis of the orig-
inal algorithm of Cohn, Atlas, and Ladner (1994) by Hanneke (2011) obtains the label complexity
bound of Corollary 11 (see also Algorithm 5 below). However, the general result of Theorem 16 is
interesting in that it applies to any passive algorithm.

Inspecting the proof, we see that it is also possible to state a result that separates the prob-
ability of success from the achieved error rate, similar to the PAC model of Valiant (1984) and
the analysis of active learning by Balcan, Hanneke, and Vaughan (2010). Specifically, suppose
Ap is a passive learning algorithm such that,∀ε ,δ ∈ (0,1), there is a valueλ (ε ,δ , f ,P) ∈ N

such that∀n≥ λ (ε ,δ , f ,P), P(er(Ap(Zn))> ε) ≤ δ . Supposêhn is the classifier returned by the
(Meta-Algorithm 3)-activizedAp with label budgetn. Then for some(C,P, f )-dependent constant
c∈ [1,∞), ∀ε ,δ ∈ (0,e−3), lettingλ = λ (ε/2,δ/2, f ,P),

∀n≥ cθ̃ f
(

λ−1) log2(λ/δ ) , P
(

er
(

ĥn
)

> ε
)

≤ δ .

For instance, ifAp is an empirical risk minimization algorithm, then this is∝θ̃ f (ε)polylog
(

1
εδ
)

.
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5.5 Limitations and Potential Improvements

Theorem 16 and its corollaries represent significant improvements over most known results for
the label complexity of active learning, and in particular over Theorem 10 and its corollaries. As
for whether this also represents the best possible label complexity gains achievable by any active
learning algorithm, the answer is mixed. As with most algorithms and analyses, Meta-Algorithm
3, Theorem 16, and corollaries, represent one set of solutions in a spectrum that trades strength
of performance guarantees with simplicity. As such, there are several possible modifications one
might make, which could potentially improve the performance guarantees. Here we sketch a few
such possibilities. This subsection can be skipped by the casual reader without loss of continuity.

Even with Meta-Algorithm 3 as-is, various improvements to the bound of Theorem 16 should
be possible, simply by being more careful in the analysis. For instance, as mentioned, Meta-
Algorithm 3 is auniversal activizerfor any VC classC, so in particular we know that whenever
θ̃ f (ε) 6= o

(

1/
(

ε log2(1/ε)
))

, the above bound is not tight (see the work of Balcan, Hanneke, and
Vaughan, 2010 for a construction leading to suchθ̃ f (ε) values), and indeed any bound of the form
θ̃ f (ε)polylog(1/ε) will not be tight in some cases of this type. A more refined analysis may close
this gap.

Another type of potential improvement is in the constant factors. Specifically, in the case when
θ̃ f <∞, if we are only interested inasymptoticlabel complexity guarantees in Corollary 17, we can
replace “sup

r>0
” in Definition 15 with “limsup

r→0
,” which can sometimes be significantly smaller and/or

easier to study. This is true for the disagreement coefficient in Corollary 11 as well. Additionally,
the proof (in Appendix D) reveals that there are significant(C,P, f )-dependent constant factors
other thanθ̃ f (ε), and it is quite likely that these can be improved by a more careful analysis of
Meta-Algorithm 3 (or in some cases, possibly an improved definition of the estimatorsP̂m).

However, even with such refinements to improve the results, the approach of using θ̃ f to prove
learnability at an exponential rate has limits. For instance, it is known that anycountableC is learn-
able at an exponential rate (Balcan, Hanneke, and Vaughan, 2010).However, there are countable
VC classesC for which θ̃ f =∞ for some elements ofC (e.g., take the tree-paths concept space of
Balcan, Hanneke, and Vaughan (2010), except instead of all infinite-depth paths from the root, take
all of the finite-depth paths from the root, but keep one infinite-depth pathf ; for this modified space
C, which is countable, everyh∈ C hasd̃h = 1, and for that one infinite-depthf we haveθ̃ f =∞).

Inspecting the proof reveals that it is possible to make the results slightly sharper by replacing
θ̃ f (r0) (for r0 = Λp(ε/4, f ,P)−1) with a somewhat more complicated quantity: namely,

min
k<d̃f

sup
r>r0

r−1 ·P
(

x∈ X : Pk
(

S∈ X k : B( f , r) shattersS∪{x}
)

≥ P

(

∂k f
)

/16
)

. (4)

This quantity can be bounded in terms ofθ̃ f (r0) via Markov’s inequality, but is sometimes smaller.
As for improving Meta-Algorithm 3 itself, there are several possibilities. Oneimmediate im-

provement one can make is to replace the condition in Steps 5 and 12 by min1≤ j≤k P̂m(S∈ X j−1 :
V shattersS∪{Xm}|V shattersS) ≥ 1/2, likewise replacing the corresponding quantity in Step 9,
and substituting in Steps 7 and 14 the quantity max1≤ j≤k P̂m(S∈ X j−1 : V[(Xm,−y)] does not shat-
ter S|V shattersS); in particular, the results stated for Meta-Algorithm 3 remain valid with this
substitution, requiring only minor modifications to the proofs. However, it is not clear what gains
in theoretical guarantees this achieves.
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Additionally, there are various quantities in this procedure that can be altered almost arbitrarily,
allowing room for fine-tuning. Specifically, the 2/3 in Step 0 and 1/3 in Step 16 can be set to
arbitrary constants summing to 1. Likewise, the 1/4 in Step 3, 1/3 in Step 10, and 3/4 in Step 12
can be changed to any constants in(0,1), possibly depending onk, such that the sum of the first
two is strictly less than the third. Also, the 1/2 in Steps 5, 9, and 12 can be set to any constant in
(0,1). Furthermore, thek ·2n in Step 3 only prevents infinite looping, and can be set to any function
growing superlinearly inn, though to get the largest possible improvements it should at least grow
exponentially inn; typically, any active learning algorithm capable of exponential improvements
over reasonable passive learning algorithms will require access to a number of unlabeled examples
exponential inn, and Meta-Algorithm 3 is no exception to this.

One major issue in the design of the procedure is an inherent trade-off between the achieved
label complexity and the number of unlabeled examples used by the algorithm. This is noteworthy
both because of the practical concerns of gathering such large quantities of unlabeled data, and also
for computational efficiency reasons. In contrast to disagreement-based methods, the design of the
estimators used in Meta-Algorithm 3 introduces such a trade-off, though in contrast to the splitting
index analysis of Dasgupta (2005), the trade-off here seems only in the constant factors. The choice
of theseP̂m estimators, both in their definition in Appendix B.1, and indeed in the very quantities
they estimate, is such that we can (if desired) limit the number of unlabeled examples the main body
of the algorithm uses (the actual number it needs to achieve Theorem 16 can be extracted from the
proofs in Appendix D.1). However, if the number of unlabeled examples used by the algorithm is
not a limiting factor, we can suggest more effective quantities. Specifically,following the original
motivation for using shatterable sets, we might consider a greedily-constructed distribution over the
set{S∈X j : V shattersS,1≤ j < k, and eitherj = k−1 or P(s : V shattersS∪{s}) = 0}. We can
construct the distribution implicitly, via the following generative model. First we set S= {}. Then
repeat the following. If|S|= k−1 orP(s∈X : V shattersS∪{s}) = 0, outputS; otherwise, sample
saccording to the conditional distribution ofX given thatV shattersS∪{X}. If we denote this distri-
bution (overS) asP̃k, then replacing the estimatorP̂m

(

S∈ X k−1 : V shattersS∪{Xm}|V shattersS
)

in Meta-Algorithm 3 with an appropriately constructed estimator ofP̃k (S: V shattersS∪{Xm})
(and similarly replacing the other estimators) can lead to some improvements in the constant factors
of the label complexity. However, such a modification can also dramatically increase the number
of unlabeled examples required by the algorithm, since rejection-sampling to get a point from the
conditional distribution ofX givenV shattersS∪{X} can be costly, as can determining whether
P(s∈ X : V shattersS∪{s})≈ 0.

Unlike Meta-Algorithm 1, there remain serious efficiency concerns aboutMeta-Algorithm 3. If
we knew the value of̃df andd̃f ≤ clog2(d) for some constantc, then we could potentially design an
efficient version of Meta-Algorithm 3 still achieving Corollary 17. Specifically, suppose we can find
a classifier inC consistent with any given sample, or determine that no such classifier exists, in time
polynomial in the sample size (andd), and also thatAp efficiently returns a classifier inC consistent
with the sample it is given. Then restricting the loop of Step 1 to thosek ≤ d̃f and returning
Ap(Ld̃f

), the algorithm becomes efficient, in the sense that with high probability, its running time
is poly(d/ε), whereε is the error rate guarantee from inverting the label complexity at the value
of n given to the algorithm. To be clear, in some cases we may obtain valuesm∝exp{Ω(n)}, but
the error rate guaranteed byAp is Õ(1/m) in these cases, so that we still havem polynomial in
d/ε. However, in the absence of this access tod̃f , the values ofk > d̃f in Meta-Algorithm 3 may
reach values ofm much larger than poly(d/ε), since the error rates obtained from theseAp(Lk)
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evaluations are not guaranteed to be better than theAp(Ld̃f
) evaluations, and yet we may have

|Lk|≫ |Ld̃f
|. Thus, there remains a challenging problem of obtaining the results above (Theorem 16

and Corollary 17) via an efficient algorithm, adaptive to the value ofd̃f .

6. Toward Agnostic Activized Learning

The previous sections addressed learning in therealizablecase, where there is a perfect classifier
f ∈ C (i.e., er( f ) = 0). To move beyond these scenarios, to problems in whichf is not a perfect
classifier (i.e., stochastic labels) or not well-approximated byC, requires a change in technique to
make the algorithms more robust to such issues. As we will see in Section 6.2, the results we can
prove in this more general setting are not quite as strong as those of the previous sections, but in
some ways they are more interesting, both from a practical perspective, as we expect real learning
problems to involve imperfect teachers or underspecified instance representations, and also from a
theoretical perspective, as the class of problems addressed is significantly more general than those
encompassed by the realizable case above.

In this context, we will be largely interested in more general versions of the same types of
questions as above, such as whether one can activize a given passive learning algorithm, in this
case guaranteeing strictly improved label complexities for all nontrivial jointdistributions over
X ×{−1,+1}. In Section 6.3, we present a general conjecture regarding this type ofstrong dom-
ination. To approach such questions, we will explore techniques for making the above algorithms
robust to label noise. Specifically, we will use a natural generalization ofa technique developed for
noise-robust disagreement-based active learning. Toward this end, as well as for the sake of com-
parison, we will review the known techniques and results for disagreement-based agnostic active
learning in Section 6.5. We then extend these techniques in Section 6.6 to develop a new type of ag-
nostic active learning algorithm, based on shatterable sets, which relates to the disagreement-based
agnostic active learning algorithms in a way analogous to how Meta-Algorithm 3relates to Meta-
Algorithm 2. Furthermore, we present a bound on the label complexities achieved by this method,
representing a natural generalization of both Corollary 17 and the knownresults on disagreement-
based agnostic active learning (Hanneke, 2011).

Although we present several new results, in some sense this section is lessabout what we know
and more about what we do not yet know. As such, we will focus less onpresenting a complete
and elegant theory, and more on identifying potentially promising directions for exploration. In
particular, Section 6.8 sketches out some interesting directions, which couldpotentially lead to a
resolution of the aforementioned general conjecture from Section 6.3.

6.1 Definitions and Notation

In this setting, there is a joint distributionPXY onX ×{−1,+1}, with marginal distributionP on
X . For any classifierh, we denote by er(h) = PXY((x,y) : h(x) 6= y). Also, denote byν∗(PXY) =

inf
h:X→{−1,+1}

er(h) theBayes error rate, or simplyν∗ whenPXY is clear from the context; also define

the conditional label distributionη(x;PXY) = P(Y = +1|X = x), where(X,Y) ∼ PXY, or η(x) =
η(x;PXY) whenPXY is clear from the context. For a given concept spaceC, denoteν(C;PXY) =
inf
h∈C

er(h), called thenoise rateofC; whenC and/orPXY is clear from the context, we may abbreviate

ν = ν(C) = ν(C;PXY). ForH⊆ C, thediameteris defined as diam(H;P) = sup
h1,h2∈H

P(x : h1(x) 6=
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h2(x)). Also, for anyε > 0, define theε-minimal setC(ε;PXY) = {h ∈ C : er(h) ≤ ν + ε}. For
any set of classifiersH, define theclosure, denoted cl(H;P), as the set of all measurableh : X →
{−1,+1} such that∀r > 0,BH,P(h, r) 6= ∅. WhenPXY is clear from the context, we will simply refer
toC(ε) =C(ε;PXY), and whenP is clear, we write diam(H) = diam(H;P) and cl(H) = cl(H;P).

In the noisy setting, rather than being aperfectclassifier, we will let f denote an arbitrary
element of cl(C;P) with er( f ) = ν(C;PXY): that is, f ∈ ⋂

ε>0
cl(C(ε;PXY);P). Such a classifier

must exist, since cl(C) is compactin the pseudo-metricρ(h,g) =
∫ |h−g|dP∝P(x : h(x) 6= g(x))

(in the usual sense of the equivalence classes being compact in theρ-induced metric). This can be
seen by recalling thatC is totally bounded (Haussler, 1992), and thus so is cl(C), and that cl(C) is
a closed subset ofL1(P), which is complete (Dudley, 2002), so cl(C) is also complete (Munkres,
2000). Total boundedness and completeness together imply compactness (Munkres, 2000), and this
implies the existence off since monotone sequences of nonempty closed subsets of a compact space
have a nonempty limit set (Munkres, 2000).

As before, in the learning problem there is a sequenceZ = {(X1,Y1),(X2,Y2), . . .}, where the
(Xi ,Yi) are independent and identically distributed, and we denote byZm= {(Xi ,Yi)}mi=1. As before,
the Xi ∼ P, but rather than having eachYi value determined as a function ofXi , instead we have
each pair(Xi ,Yi)∼PXY. The learning protocol is defined identically as above; that is, the algorithm
has direct access to theXi values, but must request theYi (label) values one at a time, sequentially,
and can request at mostn total labels, wheren is a budget provided as input to the algorithm. The
label complexity is now defined just as before (Definition 1), but generalized by replacing( f ,P)
with the joint distributionPXY. Specifically, we have the following formal definition, which will be
used throughout this section (and the corresponding appendices).

Definition 19 An active learning algorithmA achieves label complexityΛ(·, ·) if, for any joint
distributionPXY, for anyε ∈ (0,1) and any integer n≥ Λ(ε ,PXY), we haveE [er(A(n))]≤ ε.

However, because there may not be any classifier with error rate less than any arbitraryε ∈ (0,1),
our objective changes here to achieving error rate at mostν + ε for any givenε ∈ (0,1). Thus, we
are interested in the quantityΛ(ν + ε ,PXY), and will be particularly interested in this quantity’s
asymptotic dependence onε, asε → 0. In particular,Λ(ε ,PXY) may often be infinite forε < ν .

The label complexity for passive learning can be generalized analogously, again replacing( f ,P)
byPXY in Definition 2 as follows.

Definition 20 A passive learning algorithmA achieves label complexityΛ(·, ·) if, for any joint
distributionPXY, for anyε ∈ (0,1) and any integer n≥Λ(ε ,PXY), we haveE [er(A(Zn))]≤ ε.

For any label complexityΛ in the agnostic case, define the set Nontrivial(Λ;C) as the set of all
distributionsPXY onX ×{−1,+1} such that∀ε > 0,Λ(ν + ε ,PXY)<∞, and∀g∈ Polylog(1/ε),
Λ(ν + ε ,PXY) = ω(g(ε)). In this context, we can define anactivizerfor a given passive algorithm
as follows.

Definition 21 We say an active meta-algorithmAa activizesa passive algorithmAp for C in
the agnostic case if the following holds. For any label complexityΛp achieved byAp, the ac-
tive learning algorithmAa(Ap, ·) achieves a label complexityΛa such that, for every distribution
PXY ∈ Nontrivial(Λp;C), there exists a constant c∈ [1,∞) such that

Λa(ν +cε ,PXY) = o(Λp(ν + ε ,PXY)) .

1512



ACTIVIZED LEARNING

In this case,Aa is called anactivizerfor Ap with respect toC in the agnostic case, and the active
learning algorithmAa(Ap, ·) is called theAa-activizedAp.

6.2 A Negative Result

First, the bad news: we cannot generally hope for universal activizers for VC classes in the agnostic
case. In fact, there even exist passive algorithms thatcannot be activized, even by any specialized
active learning algorithm.

Specifically, consider again Example 1, whereX = [0,1] andC is the class of threshold clas-
sifiers, and letǍp be a passive learning algorithm that behaves as follows. Givenn pointsZn =

{(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)}, Ǎp(Zn) returns the classifierhẑ ∈ C, where ˆz = 1−2η̂0
1−η̂0

and η̂0 =
(

|{i∈{1,...,n}:Xi=0,Yi=+1}|
|{i∈{1,...,n}:Xi=0}| ∨ 1

8

)

∧ 3
8, taking η̂0 = 1/8 if {i ∈ {1, . . . ,n} : Xi = 0} = ∅. For most distri-

butionsPXY, this algorithm clearly would not behave “reasonably,” in that its error rate would be
quite large; in particular, in the realizable case, the algorithm’s worst-case expected error rate does
not converge to zero asn→∞. However, for certain distributionsPXY engineered specifically for
this algorithm, it has near-optimal behavior in a strong sense. Specifically, we have the following
result, the proof of which is included in Appendix E.1.

Theorem 22 There is no activizer forǍp with respect to the space of threshold classifiers in the
agnostic case.

Recall that threshold classifiers were, in some sense, one of the simplest scenarios for activized
learning in the realizable case. Also, since threshold-like problems are embedded in most “geo-
metric” concept spaces, this indicates we should generally not expect there to exist activizers for
arbitrary passive algorithms in the agnostic case. However, this leaves open the question of whether
certain families of passive learning algorithms can be activized in the agnosticcase, a topic we turn
to next.

6.3 A Conjecture: Activized Empirical Risk Minimization

The counterexample above is interesting, in that it exposes the limits on generality in the agnostic
setting. However, the passive algorithm that cannot be activized there isin many ways not very rea-
sonable, in that it has suboptimal worst-case expected excess error rate (among other deficiencies).
It may therefore be more interesting to ask whether some family of “reasonable” passive learning
algorithms can be activized in the agnostic case. It seems that, unlikeǍp above, certain passive
learning algorithms should not have too peculiar a dependence on the labelnoise, so that they use
Yi to help determinef (Xi) and that is all. In such cases, anyYi value for which we can already infer
the valuef (Xi) should simply be ignored as redundant information, so that we needn’t request such
values. While this discussion is admittedly vague, consider the following formalconjecture.

Recall that anempirical risk minimizationalgorithm forC is a type of passive learning algorithm
A, characterized by the fact that for any setL ∈⋃m(X ×{−1,+1})m,A(L) ∈ argmin

h∈C
erL(h).

Conjecture 23 For any VC class, there exists an active meta-algorithmAa and an empirical risk
minimization algorithmAp for C such thatAa activizesAp for C in the agnostic case.

Resolution of this conjecture would be interesting for a variety of reasons.If the conjecture
is correct, it means that the vast (and growing) literature on the label complexity of empirical risk

1513



HANNEKE

minimization has direct implications for the potential performance of active learning under the same
conditions. We might also expect activized empirical risk minimization to be quite effective in
practical applications.

While this conjecture remains open at this time, the remainder of this section might beviewed
as partial evidence in its favor, as we show that active learning is able to achieve improvements over
the known bounds on the label complexity of passive learning in many cases.

6.4 Low Noise Conditions

In the subsections below, we will be interested in stating bounds on the label complexity of active
learning, analogous to those of Theorem 10 and Theorem 16, but for learning with label noise.
As in the realizable case, we should expect such bounds to have some explicit dependence on
the distributionPXY. Initially, one might hope that we could state interesting label complexity
bounds purely in terms of a simple quantity such asν(C;PXY). However, it is known that any
label complexity bound for a nontrivialC (for either passive or active) depending onPXY only via
ν(C;PXY) will be Ω

(

ε−2
)

whenν(C;PXY) > 0 (Kääriäinen, 2006). Since passive learning can
achieve aPXY-independentO

(

ε−2
)

label complexity bound for any VC class (Alexander, 1984),
we will need to discuss label complexity bounds that depend onPXY via more detailed quantities
than merelyν(C;PXY) if we are to characterize the improvements of active learning over passive.

In this subsection, we review an index commonly used to describe certain properties ofPXY

relative toC: namely, the Mammen-Tsybakov margin conditions (Mammen and Tsybakov, 1999;
Tsybakov, 2004; Koltchinskii, 2006). Specifically, we have the followingformal condition from
Koltchinskii (2006).

Condition 1 There exist constantsµ ,κ ∈ [1,∞) such that∀ε > 0, diam(C(ε;PXY);P)≤ µ · ε 1
κ .

This condition has recently been studied in depth in the passive learning literature, as it can be
used to characterize scenarios where the label complexity of passive learning is between the worst-
caseΘ(1/ε2) and the realizable caseΘ(1/ε) (e.g., Mammen and Tsybakov, 1999; Tsybakov, 2004;
Massart and Ńed́elec, 2006; Koltchinskii, 2006). The condition can equivalently be stated as

∃µ ′ ∈ (0,1],κ ∈ [1,∞) s.t.∀h∈ C,er(h)−ν(C;PXY)≥ µ ′ ·P(x : h(x) 6= f (x))κ .

The condition is implied by a variety of interesting special cases. For instance, it is satisfied when
ν(C;PXY) = ν∗(PXY) and

∃µ ′′,α ∈ (0,∞) s.t.∀ε > 0,P(x : |η(x;PXY)−1/2| ≤ ε)≤ µ ′′ · εα ,

whereκ and µ are functions ofα and µ ′′ (Mammen and Tsybakov, 1999; Tsybakov, 2004); in
particular,κ = (1+ α)/α . This can intuitively be interpreted as saying that very noisy points
are relatively rare. Special cases of this condition have also been studied in depth; for instance,
bounded noiseconditions, whereinν(C;PXY) = ν∗(PXY) and∀x, |η(x;PXY)−1/2| > c for some
constantc> 0 (e.g., Gińe and Koltchinskii, 2006; Massart and Néd́elec, 2006), are a special case of
Condition 1 withκ = 1.

Condition 1 can be interpreted in a variety of ways, depending on the context. For instance, in
certain concept spaces with a geometric interpretation, it can often be realized as a kind oflarge

1514



ACTIVIZED LEARNING

margincondition, under some condition relating the noisiness of a point’s label to its distance from
the optimal decision surface. That is, if the magnitude of noise (1/2− |η(x;PXY)− 1/2|) for a
given point depends inversely on its distance from the optimal decision surface, so that points closer
to the decision surface have noisier labels, a small value ofκ in Condition 1 will occur if the
distributionP haslow densitynear the optimal decision surface (assumingν(C;PXY) = ν∗(PXY))
(e.g., Dekel, Gentile, and Sridharan, 2010). On the other hand, when there ishigh density near the
optimal decision surface, the value ofκ may be determined by how quicklyη(x;PXY) changes as
x approaches the decision boundary (Castro and Nowak, 2008). See the works of Mammen and
Tsybakov (1999), Tsybakov (2004), Koltchinskii (2006), Massart and Ńed́elec (2006), Castro and
Nowak (2008), Dekel, Gentile, and Sridharan (2010) and Bartlett, Jordan, and McAuliffe (2006) for
further interpretations of Condition 1.

In the context of passive learning, one natural method to study is that ofempirical risk minimiza-
tion. Recall that a passive learning algorithmA is called an empirical risk minimization algorithm
for C if it returns a classifier fromC making the minimum number of mistakes on the labeled sam-
ple it is given as input. It is known that for any VC classC, for anyPXY satisfying Condition 1 for
finite µ andκ, every empirical risk minimization algorithm forC achieves a label complexity

Λ(ν + ε ,PXY) = O

(

ε
1
κ−2 · log

1
ε

)

. (5)

This follows from the works of Koltchinskii (2006) and Massart and Néd́elec (2006). Furthermore,

for nontrivial concept spaces, one can show that infΛ supPXY
Λ(ν +ε;PXY) = Ω

(

ε 1
κ−2
)

, where the

supremum ranges over allPXY satisfying Condition 1 for the givenµ andκ values, and the infimum
ranges over all label complexities achievable by passive learning algorithms (Castro and Nowak,
2008; Hanneke, 2011); that is, the bound (5) cannot be significantly improved by any passive al-
gorithm, without allowing the label complexity to have a more refined dependence onPXY than
afforded by Condition 1.

In the context of active learning, a variety of results are presently known, which in some cases
show improvements over (5). Specifically, for any VC classC and anyPXY satisfying Condition 1,
a certain noise-robust disagreement-based active learning algorithm achieves label complexity

Λ(ν + ε ,PXY) = O

(

θ f

(

ε
1
κ

)

· ε 2
κ−2 · log2 1

ε

)

.

This general result was established by Hanneke (2011) (analyzing thealgorithm of Dasgupta,
Hsu, and Monteleoni, 2007), generalizing earlierC-specific results by Castro and Nowak (2008)
and Balcan, Broder, and Zhang (2007), and was later simplified and refined in some cases by
Koltchinskii (2010). Comparing this to (5), whenθ f <∞ this is an improvement over passive

learning by a factor ofε 1
κ · log(1/ε). Note that this generalizes the label complexity bound of

Corollary 11 above, since the realizable case entails Condition 1 withκ = µ/2 = 1. It is also
known that this type of improvement is essentially the best we can hope for when we describePXY

purely in terms of the parameters of Condition 1. Specifically, for any nontrivial concept spaceC,

infΛ supPXY
Λ(ν+ε ,PXY) = Ω

(

max
{

ε 2
κ−2, log 1

ε

})

, where the supremum ranges over allPXY sat-

isfying Condition 1 for the givenµ andκ values, and the infimum ranges over all label complexities
achievable by active learning algorithms (Hanneke, 2011; Castro and Nowak, 2008).

In the following subsection, we review the established techniques and results for disagreement-
based agnostic active learning; the algorithm presented here is slightly different from that originally
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analyzed by Hanneke (2011), but the label complexity bounds of Hanneke (2011) hold for this
new algorithm as well. We follow this in Section 6.7 with a new agnostic active learning method
that goes beyond disagreement-based learning, again generalizing the notion of disagreement to the
notion of shatterability; this can be viewed as analogous to the generalization of Meta-Algorithm
2 represented by Meta-Algorithm 3, and as in that case the resulting label complexity bound replaces
θ f (·) with θ̃ f (·).

For both passive and active learning, results under Condition 1 are alsoknown for more general
scenarios than VC classes: namely, under entropy conditions (Mammen andTsybakov, 1999; Tsy-
bakov, 2004; Koltchinskii, 2006, 2011; Massart and Néd́elec, 2006; Castro and Nowak, 2008; Han-
neke, 2011; Koltchinskii, 2010). For a nonparametric class known asboundary fragments, Castro
and Nowak (2008) find that active learning sometimes offers advantagesover passive learning, un-
der a special case of Condition 1. Furthermore, Hanneke (2011) shows a general result on the label
complexity achievable by disagreement-based agnostic active learning, which sometimes exhibits
an improved dependence on the parameters of Condition 1 under conditionson the disagreement
coefficient and certain entropy conditions for(C,P) (see also Koltchinskii, 2010). These results
will not play a role in the discussion below, as in the present work we restrict ourselves strictly to
VC classes, leaving more general results for future investigations.

6.5 Disagreement-Based Agnostic Active Learning

Unlike the realizable case, here in the agnostic case we cannot eliminate a classifier from the version
space after making merely a single mistake, since even the best classifier is potentially imperfect.
Rather, we take a collection of samples with labels, and eliminate those classifiersmaking signifi-
cantly more mistakes relative to some others in the version space. This is the basic idea underlying
most of the known agnostic active learning algorithms, including those discussed in the present
work. The precise meaning of “significantly more,” sufficient to guarantee the version space always
contains some good classifier, is typically determined by established bounds on the deviation of
excess empirical error rates from excess true error rates, taken from the passive learning literature.

The following disagreement-based algorithm is slightly different from any inthe existing lit-
erature, but is similar in style to a method of Beygelzimer, Dasgupta, and Langford (2009); it also
bares resemblance to the algorithms of Koltchinskii (2010); Dasgupta, Hsu, and Monteleoni (2007);
Balcan, Beygelzimer, and Langford (2006a, 2009). It should be considered as representative of the
family of disagreement-based agnostic active learning algorithms, and all results below concerning
it have analogous results for variants of these other disagreement-based methods.
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Algorithm 4
Input: label budgetn, confidence parameterδ
Output: classifier̂h

0. m← 0, i← 0,V0← C, L1←{}
1. While t < n andm≤ 2n

2. m←m+1
3. If Xm∈ DIS(Vi)
4. Request the labelYm of Xm, and letLi+1←Li+1∪{(Xm,Ym)} andt← t +1
5. Else let ˆy be the label agreed upon by classifiers inVi , andLi+1←Li+1∪{(Xm, ŷ)}
6. If m= 2i+1

7. Vi+1←
{

h∈Vi : erLi+1(h)−min
h′∈Vi

erLi+1(h
′)≤ Ûi+1(Vi ,δ )

}

8. i← i+1, and thenLi+1←{}
9. Return anŷh∈Vi

The algorithm is specified in terms of an estimator,Ûi . The definition ofÛi should typically be
based on generalization bounds known for passive learning. Inspired by the work of Koltchinskii
(2006) and applications thereof in active learning (Hanneke, 2011; Koltchinskii, 2010), we will take
a definition ofÛi based on a data-dependent Rademacher complexity, as follows. Letξ1,ξ2, . . .
denote a sequence of independent Rademacher random variables (i.e.,uniform in {−1,+1}), also
independent from all other random variables in the algorithm (i.e.,Z). Then for any setH ⊆ C,
define

R̂i(H) = sup
h1,h2∈H

2−i
2i
∑

m=2i−1+1

ξm · (h1(Xm)−h2(Xm)),

D̂i(H) = sup
h1,h2∈H

2−i
2i
∑

m=2i−1+1

|h1(Xm)−h2(Xm)|,

Ûi(H,δ ) = 12R̂i(H)+34

√

D̂i(H)
ln(32i2/δ )

2i−1 +
752ln(32i2/δ )

2i−1 . (6)

Algorithm 4 operates by repeatedly doubling the sample size|Li+1|, while only requesting the
labels of the points in the region of disagreement of the version space. Each time it doubles the size
of the sampleLi+1, it updates the version space by eliminating any classifiers that make significantly
more mistakes onLi+1 relative to others in the version space. Since the labels of the examples we
infer in Step 5 are agreed upon by all elements of the version space, thedifferenceof empirical error
rates in Step 7 is identical to the difference of empirical error rates under the true labels. This allows
us to use established results on deviations of excess empirical error ratesfrom excess true error rates
to judge suboptimality of some of the classifiers in the version space in Step 7, thus reducing the
version space.

As with Meta-Algorithm 2, for computational feasibility, the setsVi and DIS(Vi) in Algorithm
4 can be represented implicitly by a set of constraints imposed by previous rounds of the loop. Also,
the update toLi+1 in Step 5 is included only to make Step 7 somewhat simpler or more intuitive;
it can be be removed without altering the behavior of the algorithm, as long as we compensate by
multiplying erLi+1 by an appropriate renormalization constant in Step 7: namely, 2−i |Li+1|.
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We have the following result about the label complexity of Algorithm 4; it is representative of
the type of theorem one can prove about disagreement-based active learning under Condition 1.

Lemma 24 LetC be a VC class and suppose the joint distributionPXY onX ×{−1,+1} satisfies
Condition 1 for finite parametersµ andκ. There is a(C,PXY)-dependent constant c∈ (0,∞) such
that, for anyε ,δ ∈ (0,e−3), and any integer

n≥ c·θ f

(

ε
1
κ

)

· ε 2
κ−2 · log2 1

εδ
,

if ĥn is the output of Algorithm 4 when run with label budget n and confidence parameterδ , then on
an event of probability at least1−δ ,

er
(

ĥn
)

≤ ν + ε .

The proof of this result is essentially similar to the proof by Hanneke (2011), combined with
some simplifying ideas from Koltchinskii (2010). It is also implicit in the proof ofLemma 26 below
(by replacing “d̃f ” with “1” in the proof). The details are omitted. This result leads immediately to
the following implication concerning the label complexity.

Theorem 25 LetC be a VC class and suppose the joint distributionPXY onX ×{−1,+1} satisfies
Condition 1 for finite parametersµ ,κ ∈ (1,∞). With an appropriate(n,κ)-dependent setting ofδ ,
Algorithm 4 achieves a label complexityΛa with

Λa(ν + ε ,PXY) = O

(

θ f

(

ε
1
κ

)

· ε 2
κ−2 · log2 1

ε

)

.

Proof Takingδ = n−
κ

2κ−2 , the result follows by simple algebra.

We should note that it is possible to design a kind of wrapper to adaptively determine an appro-
priateδ value, so that the algorithm achieves the label complexity guarantee of Theorem 25 without
requiring any explicit dependence on the noise parameterκ. Specifically, one can use an idea simi-
lar to the model selection procedure of Hanneke (2011) for this purpose. However, as our focus in
this work is on moving beyond disagreement-based active learning, we do not include the details of
such a procedure here.

Note that Theorem 25 represents an improvement over the known results for passive learning
(namely, (5)) wheneverθ f (ε) is small, and in particular this gap can be large whenθ f <∞. The
results of Lemma 24 and Theorem 25 represent the state-of-the-art (upto logarithmic factors) in our
understanding of the label complexity of agnostic active learning for VC classes. Thus, any signif-
icant improvement over these would advance our understanding of the fundamental capabilities of
active learning in the presence of label noise. Next, we provide such animprovement.

6.6 A New Type of Agnostic Active Learning Algorithm Based on Shatterable Sets

Algorithm 4 and Theorem 25 represent natural extensions of Meta-Algorithm 2 and Theorem 10 to
the agnostic setting. As such, they not only benefit from the advantages of those methods (small
θ f (ε) implies improved label complexity), but also suffer the same disadvantages (P(∂ f ) > 0 im-
plies no strong improvements over passive). It is therefore natural to investigate whether the im-
provements offered by Meta-Algorithm 3 and the corresponding Theorem 16 can be extended to the
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agnostic setting in a similar way. In particular, as was possible for Theorem 16 with respect to The-

orem 10, we might wonder whether it is possible to replaceθ f

(

ε 1
κ

)

in Theorem 25 withθ̃ f

(

ε 1
κ

)

by a modification of Algorithm 4 analogous to the modification of Meta-Algorithm 2 embodied in

Meta-Algorithm 3. As we have seen,θ̃ f

(

ε 1
κ

)

is often significantly smaller in its asymptotic depen-

dence onε, compared toθ f

(

ε 1
κ

)

, in many cases even bounded by a finite constant whenθ f

(

ε 1
κ

)

is not. This would therefore represent a significant improvement over theknown results for active
learning under Condition 1. Toward this end, consider the following algorithm.

Algorithm 5
Input: label budgetn, confidence parameterδ
Output: classifier̂h

0. m← 0, i0← 0,V0← C

1. Fork= 1,2, . . . ,d+1
2. t← 0, ik← ik−1, m← 2ik, Vik+1←Vik, Lik+1←{}
3. While t <

⌊

2−kn
⌋

andm≤ k ·2n

4. m←m+1
5. If P̂4m

(

S∈ X k−1 : Vik+1 shattersS∪{Xm}|Vik+1 shattersS
)

≥ 1/2
6. Request the labelYm of Xm, and letLik+1←Lik+1∪{(Xm,Ym)} andt← t +1
7. Else ˆy← argmax

y∈{−1,+1}
P̂4m
(

S∈ X k−1 :Vik+1[(Xm,−y)] does not shatterS|Vik+1 shattersS
)

8. Lik+1←Lik+1∪{(Xm, ŷ)} andVik+1←Vik+1[(Xm, ŷ)]
9. If m= 2ik+1

10. Vik+1←
{

h∈Vik+1 : erLik+1(h)− min
h′∈Vik+1

erLik+1(h
′)≤ Ûik+1(Vik,δ )

}

11. ik← ik+1, thenVik+1←Vik, andLik+1←{}
12. Return anŷh∈Vid+1+1

For the argmax in Step 7, we break ties in favor of a ˆy value withVik+1[(Xm, ŷ)] 6= ∅ to maintain
the invariant thatVik+1 6= ∅ (see the proof of Lemma 59); when bothy values satisfy this, we may
break ties arbitrarily. The procedure is specified in terms of several estimators. TheP̂4m estimators,
as usual, are defined in Appendix B.1. ForÛi , we again use the definition (6) above, based on a
data-dependent Rademacher complexity.

Algorithm 5 is largely based on the same principles as Algorithm 4, combined with Meta-
Algorithm 3. As in Algorithm 4, the algorithm proceeds by repeatedly doublingthe size of a labeled
sampleLi+1, while only requesting a subset of the labels inLi+1, inferring the others. As before, it
updates the version space every time it doubles the size of the sampleLi+1, and the update eliminates
classifiers from the version space that make significantly more mistakes onLi+1 compared to others
in the version space. In Algorithm 4, this is guaranteed to be effective, since the classifiers in the
version space agree on all of the inferred labels, so that the differences of empirical error rates
remain equal to thetrue differences of empirical error rates (i.e., under the trueYm labels for all
elements ofLi+1); thus, the established results from the passive learning literature bounding the
deviations of excess empirical error rates from excess true error rates can be applied, showing that
this does not eliminate the best classifiers. In Algorithm 5, the situation is somewhat more subtle,
but the principle remains the same. In this case, weenforcethat the classifiers in the version space
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agree on the inferred labels inLi+1 by explicitly removing the disagreeing classifiers in Step 8.
Thus, as long as Step 8 does not eliminate all of the good classifiers, then neither will Step 10. To
argue that Step 8 does not eliminate all good classifiers, we appeal to the same reasoning as for
Meta-Algorithm 1 and Meta-Algorithm 3. That is, fork≤ d̃f and sufficiently largen, as long as
there exist good classifiers in the version space, the labels ˆy inferred in Step 7 will agree with some
good classifiers, and thus Step 8 will not eliminate all good classifiers. However, for k > d̃f , the
labelsŷ in Step 7 have no such guarantees, so that we are only guaranteed thatsomeclassifier in
the version space is not eliminated. Thus, determining guarantees on the error rate of this algorithm
hinges on bounding the worst excess error rate among all classifiers in the version space at the
conclusion of thek= d̃f round. This is essentially determined by the size ofLik at the conclusion of
that round, which itself is largely determined by how frequently the algorithm requests labels during
this k = d̃f round. Thus, once again the analysis rests on bounding the rate at whichthe frequency
of label requests shrinks in thek= d̃f round, which determines the rate of growth of|Lik|, and thus
the final guarantee on the excess error rate.

As before, for computational feasibility, we can maintain the setsVi implicitly as a set of con-
straints imposed by the previous updates, so that we may perform the various calculations required
for the estimatorŝP as constrained optimizations. Also, the update toLik+1 in Step 8 is merely
included to make the algorithm statement and the proofs somewhat more elegant;it can be omit-
ted, as long as we compensate with an appropriate renormalization of the erLik+1 values in Step 10
(i.e., multiplying by 2−ik|Lik+1|). Additionally, the same potential improvements we proposed in
Section 5.5 for Meta-Algorithm 3 can be made to Algorithm 5 as well, again with onlyminor mod-
ifications to the proofs. We should note that Algorithm 5 is certainly not the onlyreasonable way to
extend Meta-Algorithm 3 to the agnostic setting. For instance, another natural extension of Meta-
Algorithm 1 to the agnostic setting, based on a completely different idea, appears in the author’s
doctoral dissertation (Hanneke, 2009b); that method can be improved in anatural way to take advan-
tage of the sequential aspect of active learning, yielding an agnostic extension of Meta-Algorithm
3 differing from Algorithm 5 in several interesting ways (see the discussionin Section 6.8 below).

In the next subsection, we will see that the label complexities achieved by Algorithm 5 are often
significantly better than the known results for passive learning. In fact, they are often significantly
better than the presently-known results for anyactivelearning algorithms in the published literature.

6.7 Improved Label Complexity Bounds for Active Learning with Noise

Under Condition 1, we can extend Lemma 24 and Theorem 25 in an analogousway to how The-
orem 16 extends Theorem 10. Specifically, we have the following result, the proof of which is
included in Appendix E.2.

Lemma 26 LetC be a VC class and suppose the joint distributionPXY onX ×{−1,+1} satisfies
Condition 1 for finite parametersµ andκ. There is a(C,PXY)-dependent constant c∈ (0,∞) such
that, for anyε ,δ ∈

(

0,e−3
)

, and any integer

n≥ c· θ̃ f

(

ε
1
κ

)

· ε 2
κ−2 · log2 1

εδ
,

if ĥn is the output of Algorithm 5 when run with label budget n and confidence parameterδ , then on
an event of probability at least1−δ ,

er
(

ĥn
)

≤ ν + ε .
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This has the following implication for the label complexity of Algorithm 5.

Theorem 27 LetC be a VC class and suppose the joint distributionPXY onX ×{−1,+1} satisfies
Condition 1 for finite parametersµ ,κ ∈ (1,∞). With an appropriate(n,κ)-dependent setting ofδ ,
Algorithm 5 achieves a label complexityΛa with

Λa(ν + ε ,PXY) = O

(

θ̃ f

(

ε
1
κ

)

· ε 2
κ−2 · log2 1

ε

)

.

Proof Takingδ = n−
κ

2κ−2 , the result follows by simple algebra.

Theorem 27 represents an interesting generalization beyond the realizable case, and beyond the
disagreement coefficient analysis. Note that ifθ̃ f (ε) = o

(

ε−1 log−2(1/ε)
)

, Theorem 27 represents
an improvement over the known results for passive learning (Massart and Néd́elec, 2006). As we
always haveθ̃ f (ε) = o(1/ε), we should typically expect such improvements for all but the most
extreme learning problems. Recall thatθ f (ε) is oftennot o(1/ε), so that Theorem 27 is often a
much stronger statement than Theorem 25. In particular, this is a significantimprovement over the
known results for passive learning wheneverθ̃ f <∞, and an equally significant improvement over
Theorem 25 whenever̃θ f <∞ but θ f (ε) = Ω(1/ε) (see above for examples of this). However,
note that unlike Meta-Algorithm 3, Algorithm 5 isnot an activizer. Indeed, it is not clear (to the
author) how to modify the algorithm to make it a universal activizer forC (even for the realizable
case), while maintaining the guarantees of Theorem 27.

As with Theorem 16 and Corollary 17, Algorithm 5 and Theorem 27 can potentially be improved
in a variety of ways, as outlined in Section 5.5. In particular, Theorem 27 can be made slightly

sharper in some cases by replacingθ̃ f

(

ε 1
κ

)

with the sometimes-smaller (though more complicated)

quantity (4) (withr0 = ε 1
κ ).

6.8 Beyond Condition 1

While Theorem 27 represents an improvement over the known results for agnostic active learn-
ing, Condition 1 is not fully general, and disallows many important and interesting scenarios. In
particular, one key property of Condition 1, heavily exploited in the label complexity proofs for
both passive learning and disagreement-based active learning, is that itimplies diam(C(ε)) →
0 asε → 0. In scenarios where this shrinking diameter condition is not satisfied, the existing
proofs of (5) for passive learning break down, and furthermore, the disagreement-based algo-
rithms themselves cease to give significant improvements over passive learning, for essentially
the same reasons leading to the “only if” part of Theorem 5 (i.e., the sampling region never fo-
cuses beyond some nonzero-probability region). Even more alarming (atfirst glance) is the fact
that this same problem can sometimes be observed for thek = d̃f round of Algorithm 5; that is,

P
(

x : P d̃f−1(S∈ X d̃f−1 : Vid̃ f
+1 shattersS∪{x}|Vid̃ f

+1 shattersS)≥ 1/2
)

is no longer guaranteed

to approach 0 as the budgetn increases (as itdoeswhen diam(C(ε))→ 0). Thus, if we wish to ap-
proach an understanding of improvements achievable by active learning ingeneral, we must come
to terms with scenarios where diam(C(ε)) does not shrink to zero.

Interestingly, it seems that diam(C(ε))9 0 might not be a problem for some algorithms based
on shatterable sets, such as Algorithm 5. In particular, Algorithm 5 appears to continue exhibiting
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reasonable behavior in such scenarios. That is, even if there is a nonshrinking probability that the
query condition in Step 5 is satisfied fork = d̃f , on any given sequenceZ there must besome
smallest value ofk for which this probabilitydoesshrink asn→∞. For this value ofk, we should
expect to observe good behavior from the algorithm, in that (for sufficiently largen) the inferred
labels in Step 7 will tend to agree withsomeclassifierf ∈ cl(C) with er( f ) = ν(C;PXY). Thus, the
algorithm addresses the problem of multiple optimal classifiers by effectivelyselectingone of the
optimal classifiers.

To illustrate this phenomenon, consider learning with respect to the space ofthreshold classifiers
(Example 1) withP uniform in [0,1], and let(X,Y) ∼ PXY satisfyP(Y = +1|X) = 0 for X <
1/3, P(Y = +1|X) = 1/2 for 1/3≤ X < 2/3, andP(Y = +1|X) = 1 for 2/3≤ X. As we know
from above,d̃f = 1 here. However, in this scenario we have DIS(C(ε))→ [1/3,2/3] asε → 0.
Thus, Algorithm 4 never focuses its queries beyond a constant fractionof X , and therefore cannot
improve over certain passive learning algorithms in terms of the asymptotic dependence of its label
complexity onε (assuming a worst-case choice ofĥ in Step 9). However, fork= 2 in Algorithm 5,
everyXm will be assigned a label ˆy in Step 7 (since no two points are shattered); furthermore, for
sufficiently largen we have (with high probability) DIS(Vi1) not too much larger than[1/3,2/3],
so that most points in DIS(Vi1) can be labeled either+1 or−1 by some optimal classifier. For us,
this has two implications. First, one can show that with very high probability, theS∈ [1/3,2/3]1

will dominate the votes for ˆy in Step 7 (for allm processed whilek = 2), so that the ˆy inferred
for any Xm /∈ [1/3,2/3] will agree with all of the optimal classifiers. Second, the inferred labels
ŷ for Xm ∈ [1/3,2/3] will definitely agree withsomeoptimal classifier. Since we also impose the
h(Xm) = ŷ constraint forVi2+1 in Step 8, the inferred ˆy labels must all be consistent with thesame
optimal classifier, so thatVi2+1 will quickly converge to within a small neighborhood around that
classifier, without any further label requests. Note, however, that theparticular optimal classifier
the algorithm converges to will be a random variable, determined by the particular sequence of
data points processed by the algorithm; thus, it cannot be determined a priori, which significantly
complicates any general attempt to analyze the label complexity achieved by thealgorithm for
arbitraryC andPXY. In particular, for someC andPXY, even this minimalk for which convergence
occurs may be a nondeterministic random variable. At this time, it is not entirely clear how general
this phenomenon is (i.e., Algorithm 5 providing improvements over certain passive algorithms even
for distributions with diam(C(ε))9 0), nor how to characterize the label complexity achieved by
Algorithm 5 in general settings where diam(C(ε))9 0.

However, as mentioned earlier, there are other natural ways to generalize Meta-Algorithm 3 to
handle noise, some of which have more predictable behavior. In particular, the original thesis work
of Hanneke (2009b) explores a technique for active learning, which unlike Algorithm 5, only uses
the requestedlabels, not the inferred labels, and as a consequence never eliminates any optimal
classifier fromV. Because of this fact, the sampling region for eachk converges to a predictable
limiting region, so that we have an accuratea priori characterization of the algorithm’s behavior.
However, it is not immediately clear (to the author) whether this alternative technique might lead to
a method achieving results similar to Theorem 27.

To get a better understanding of the scenario where diam(C(ε))9 0, it will be helpful to par-
tition the distributions into two distinct categories, which we will refer to as thebenign noisecase
and themisspecified modelcase. ThePXY in the benign noise case are characterized by the property
thatν(C;PXY) = ν∗(PXY); this is in some ways similar to the realizable case, in thatC can approx-
imate an optimal classifier, except that the labels are stochastic. In the benignnoise case, the only
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reason diam(C(ε)) would not shrink to zero is if there is a nonzero probability set of pointsx with
η(x) = 1/2; that is, there are at least two classifiers achieving the Bayes error rate, and they are at
nonzero distance from each other, which must mean they disagree on somepoints that have equal
probability of either label occurring. In contrast, the misspecified model case is characterized by
ν(C;PXY)> ν∗(PXY). In this case, if the diameter does not shrink, it is because of the existenceof
two classifiersh1,h2 ∈ cl(C) achieving error rateν(C;PXY), with P(x : h1(x) 6= h2(x))> 0. How-
ever, unlike above, since they do not achieve the Bayes error rate, it ispossible that a significant
fraction of the set of points they disagree on may haveη(x) 6= 1/2.

Intuitively, the benign noise case is relatively easier for active learning,since the noisy points
that prevent diam(C(ε)) from shrinking can essentially be assigned arbitrary labels, as in the thresh-
olds example above. For instance, as in Algorithm 5, we could assign a labelto points in this region
and discard any classifiers inconsistent with the label, confident that we have kept at least one opti-
mal classifier. Another possibility is simply to ignore the points in this region, sincein the end they
are inconsequential for the excess error rate of the classifier we return; in some sense, this is the
strategy taken by the method of Hanneke (2009b).

In contrast, the misspecified model case intuitively makes the active learning problem more
difficult. For instance, ifh1 andh2 in cl(C) both have error rateν(C;PXY), the original method of
Hanneke (2009b) has the possibility of inferring the labelh2(x) for some pointx when in facth1(x)
is better for that particularx, and vice versa for the pointsx whereh2(x) would be better, thus getting
the worst of both and potentially doubling the error rate in the process. Algorithm 5 may fare better
in this case, since imposing the inferred label ˆy as a constraint in Step 8 effectivelyselectsone of
h1 or h2, and discards the other one. As before, whether Algorithm 5 selectsh1 or h2 will generally
depend on the particular data sequenceZ, which therefore makes any a priori analysis of the label
complexity more challenging.

Interestingly, it turns out that, for the purpose of exploring Conjecture 23, we can circumvent all
of these issues by noting that there is a trivial solution to the misspecified modelcase. Specifically,
since in our present context we are only interested in the label complexity for achieving error rate
better thanν + ε, we can simply turn to any algorithm that asymptotically achieves an error rate
strictly better thanν (e.g., Devroye et al., 1996), in which case the algorithm should require only
a finite constant number of labels to achieve an expected error rate better than ν . To make the
algorithm effective for the general case, we simply split our budget in three: one part for an active
learning algorithm, such as Algorithm 5, for the benign noise case, one part for the method above
handling the misspecified model case, and one part to select among their outputs. The full details of
such a procedure are specified in Appendix E.3, along with a proof of its performance guarantees,
which are summarized as follows.

Theorem 28 Fix any concept spaceC. Suppose there exists an active learning algorithmAa

achieving a label complexityΛa. Then there exists an active learning algorithmA′a achieving a
label complexityΛ′a such that, for any distributionPXY onX ×{−1,+1}, there exists a function
λ (ε) ∈ Polylog(1/ε) such that

Λ′a(ν + ε ,PXY)≤
{

max{2Λa(ν + ε/2,PXY),λ (ε)} , in the benign noise case

λ (ε), in the misspecified model case
.
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The main point of Theorem 28 is that, for our purposes, we can safely ignore the misspecified
model case (as its solution is a trivial extension), and focus entirely on the performance of algorithms
for the benign noise case. In particular, for any label complexityΛp, everyPXY ∈Nontrivial(Λp;C)
in the misspecified model case hasΛ′a(ν + ε ,PXY) = o(Λp(ν + ε ,PXY)), for Λ′a as in Theorem 28.
Thus, if there exists an active meta-algorithm achieving the strong improvement guarantees of an
activizer for some passive learning algorithmAp (Definition 21) for all distributionsPXY in the
benign noise case, then there exists an activizer forAp with respect toC in the agnostic case.

7. Open Problems

In some sense, this work raises more questions than it answers. Here, welist several problems that
remain open at this time. Resolving any of these problems would make a significant contribution to
our understanding of the fundamental capabilities of active learning.

• We have established the existence of universal activizers for VC classes in the realizable case.
However, we have not made any serious attempt to characterize the properties that such ac-
tivizers can possess. In particular, as mentioned, it would be interesting toknow whether
activizers exist thatpreservecertain favorable properties of the given passive learning algo-
rithm. For instance, we know that some passive learning algorithms (say, for linear separators)
achieve a label complexity that is independent of the dimensionality of the spaceX , under
a large margin condition onf andP (Balcan, Blum, and Vempala, 2006b). Is there an ac-
tivizer for such algorithms that preserves this large-margin-based dimension-independence in
the label complexity? Similarly, there are passive algorithms whose label complexity has a
weak dependence on dimensionality, due to sparsity considerations (Bunea, Tsybakov, and
Wegkamp, 2009; Wang and Shen, 2007). Is there an activizer for these algorithms that pre-
serves this sparsity-based weak dependence on dimension? Is there anactivizer that preserves
adaptiveness to the dimension of the manifold to whichP is restricted? What about an ac-
tivizer that issparsistent(Rocha, Wang, and Yu, 2009), given any sparsistent passive learning
algorithm as input? Is there an activizer that preserves admissibility, in that given any ad-
missible passive learning algorithm, the activized algorithm is an admissible active learning
algorithm? Is there an activizer that, given any minimax optimal passive learning algorithm
as input, produces a minimax optimal active learning algorithm? What about preserving other
notions of optimality, or other properties?

• There may be some waste in the above activizers, since the label requests used in their ini-
tial phase (reducing the version space) are not used by the passive algorithm to produce the
final classifier. This guarantees the examples fed into the passive algorithm are conditionally
independent given the number of examples. Intuitively, this seems necessary for the gen-
eral results, since any dependence among the examples fed to the passive algorithm could
influence its label complexity. However, it is not clear (to the author) how dramatic this effect
can be, nor whether a simpler strategy (e.g., slightly randomizing the budget of label requests)
might yield a similar effect while allowing a single-stage approach where all labels are used in
the passive algorithm. It seems intuitively clear that some special types of passive algorithms
should be able to use the full set of examples, from both phases, while still maintaining the
strict improvements guaranteed in the main theorems above. What general properties must
such passive algorithms possess?
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• As previously mentioned, the vast majority of empirically-testedheuristicactive learning al-
gorithms in the published literature are designed in a reduction style, using a well-known
passive learning algorithm as a subroutine, constructing sets of labeled examples and feed-
ing them into the passive learning algorithm at various points in the execution of the active
learning algorithm (e.g., Abe and Mamitsuka, 1998; McCallum and Nigam, 1998; Schohn and
Cohn, 2000; Campbell, Cristianini, and Smola, 2000; Tong and Koller, 2001; Roy and McCal-
lum, 2001; Muslea, Minton, and Knoblock, 2002; Lindenbaum, Markovitch, and Rusakov,
2004; Mitra, Murthy, and Pal, 2004; Roth and Small, 2006; Schein and Ungar, 2007; Har-
Peled, Roth, and Zimak, 2007; Beygelzimer, Dasgupta, and Langford, 2009). However, rather
than including some examples whose labels are requested and other exampleswhose labels
areinferred in the sets of labeled examples given to the passive learning algorithm (as in our
rigorous methods above), these heuristic methods typically only input to the passive algo-
rithm the examples whose labels wererequested. We should expect that meta-algorithms of
this type could not beuniversalactivizers forC, but perhaps there do exist meta-algorithms
of this type that are activizers for every passive learning algorithm of some special type. What
are some general conditions on the passive learning algorithm so that somemeta-algorithm
of this type (i.e., feeding in only therequestedlabels) can activize every passive learning
algorithm satisfying those conditions?

• As discussed earlier, the definition of “activizer” is based on a trade-off between the strength
of claimed improvements for nontrivial scenarios, and ease of analysis within the framework.
There are two natural questions regarding the possibility of stronger notions of “activizer.” In
Definition 3 we allow a constant factorc loss in theε argument of the label complexity. In
most scenarios, this loss is inconsequential (e.g., typicallyΛp(ε/c, f ,P) = O(Λp(ε , f ,P))),
but one can construct scenarios where it does make a difference. Inour proofs, we see that
it is possible to achievec= 3; in fact, a careful inspection of the proofs reveals we can even
getc= (1+o(1)), a function ofε, converging to 1. However, whether there exist universal
activizers for every VC class that havec= 1 remains an open question.

A second question regards our notion of “nontrivial problems.” In Definition 3, we have
chosen to think of any target and distribution with label complexity growing faster than
Polylog(1/ε) asnontrivial, and do not require the activized algorithm to improve over the
underlying passive algorithm for scenarios that are trivial for the passive algorithm. As men-
tioned, Definition 3 does have implications for the label complexities of these problems,
as the label complexity of the activized algorithm will improve over every nontrivial up-
per bound on the label complexity of the passive algorithm. However, in order to allow for
various operations in the meta-algorithm that may introduce additive Polylog(1/ε) terms due
to exponentially small failure probabilities, such as the test that selects among hypotheses in
ActiveSelect, we do not require the activized algorithm to achieve the sameorder of label
complexity in trivial scenarios. For instance, there may be cases in which a passive algo-
rithm achievesO(1) label complexity for a particular( f ,P), but its activized counterpart has
Θ(log(1/ε)) label complexity. The intention is to define a framework that focuses on non-
trivial scenarios, where passive learning uses prohibitively many labels, rather than one that
requires us to obsess over extra additive logarithmic terms. Nonetheless, there is a question of
whether these losses in the label complexities of trivial problems are necessary to gain these
improvements in the label complexities of nontrivial problems.
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There is also the question of how much the definition of “nontrivial” can be relaxed. Specifi-
cally, we have the following question: to what extent can we relax the notion of “nontrivial” in
Definition 3, while still maintaining the existence of universal activizers for VC classes? We
see from our proofs that we can at least replace Polylog(1/ε) with O(log(1/ε)). However, it
is not clear whether we can go further than this in the realizable case (e.g., tosay “nontrivial”
meansω(1)). When there is noise, it is clear that we cannot relax the notion of “nontriv-
ial” beyond replacing Polylog(1/ε) with O(log(1/ε)). Specifically, whenever DIS(C) 6= ∅,
for any label complexityΛa achieved by an active learning algorithm, there must be some
PXY with Λa(ν + ε ,PXY) = Ω(log(1/ε)), even with the support ofP restricted to asingle
point x∈ DIS(C); the proof of this is via a reduction from sequential hypothesis testing for
whether a coin has biasα or 1−α , for someα ∈ (0,1/2). Since passive learning via empiri-
cal risk minimization can achieve label complexityΛp(ν + ε ,PXY) = O(log(1/ε)) whenever
the support ofP is restricted to a single point, we cannot further relax the notion of “nontriv-
ial,” while preserving the possibility of a positive outcome for Conjecture 23.It is interesting
to note that this entire issue vanishes if we are only interested in methods that achieve er-
ror at mostε with probability at least 1− δ , whereδ ∈ (0,1) is some acceptable constant
failure probability, as in the work of Balcan, Hanneke, and Vaughan (2010); in this case,
we can simply take “nontrivial” to meanω(1) label complexity, and both Meta-Algorithm
1 and Meta-Algorithm 3 remain universal activizers forC under this alternative definition,
and achieveO(1) label complexity in trivial scenarios.

• Another interesting question concerns efficiency. Suppose there existsan algorithm to find
an element ofC consistent with any labeled sequenceL in time polynomial in|L| andd,
and thatAp(L) has running time polynomial in|L| andd. Under these conditions, is there
an activizer forAp capable of achieving an error rate smaller than anyε in running time
polynomial in 1/ε andd, given some appropriately large budgetn? Recall that if we knew
the value ofd̃f andd̃f ≤ clogd, then Meta-Algorithm 1 could be made efficient, as discussed
above. Therefore, this question is largely focused on the issue of adapting to the value ofd̃f .
Another related question is whether there is an efficient active learning algorithm achieving
the label complexity bound of Corollary 7 or Corollary 17.

• One question that comes up in the results above is the minimum number ofbatchesof label
requests necessary for a universal activizer forC. In Meta-Algorithm 0 and Theorem 5, we
saw that sometimes two batches are sufficient: one to reduce the version space, and another
to construct the labeled sample by requesting only those points in the region ofdisagreement.
We certainly cannot use fewer than two batches in a universal activizerfor any nontrivial
concept space, so that this represents the minimum. However, to get a universal activizer
for everyconcept space, we increased the number of batches tothree in Meta-Algorithm 1.
The question is whether this increase is really necessary. Is there always a universal activizer
using onlytwo batches of label requests, for every VC classC?

• For someC, the learning process in the above methods might be viewed in two components:
one component that performs active learning as usual (say, disagreement-based) under the
assumption that the target function is very simple, and another component that searches for
signs that the target function is in fact more complex. Thus, for some natural classes such
as linear separators, it would be interesting to find simpler, more specialized methods, which
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explicitly execute these two components. For instance, for the first component, we might con-
sider the usual margin-based active learning methods, which query neara current guess of the
separator (Dasgupta, Kalai, and Monteleoni, 2005, 2009; Balcan, Broder, and Zhang, 2007),
except that we bias toward simple hypotheses via a regularization penalty in the optimization
that defines how we update the separator in response to a query. The second component might
then be a simple random search for points whose correct classification requires larger values
of the regularization term.

• Can we construct universal activizers for some concept spaces withinfinite VC dimension?
What about under some constraints on the distributionP or PXY (e.g., the usual entropy
conditions)? It seems we can still run Meta-Algorithm 1, Meta-Algorithm 3, and Algorithm
5 in this case, except we should increase the number of rounds (values of k) as a function
of n; this may continue to have reasonable behavior even in some cases whered̃f =∞, es-
pecially whenPk(∂k f )→ 0 ask→∞. However, it is not clear whether they will continue
to guarantee the strict improvements over passive learning in the realizable case, nor what
label complexity guarantees they will achieve. One specific question is whether there is a

method always achieving label complexityo
(

ε
1−ρ

κ −2
)

, whereρ is from the entropy condi-

tions (van der Vaart and Wellner, 1996) andκ is from Condition 1. This would be an improve-
ment over the known results for passive learning (Mammen and Tsybakov, 1999; Tsybakov,
2004; Koltchinskii, 2006). Another related question is whether we can improve over the
known results for active learning in these scenarios. Specifically, Hanneke (2011) proved a

bound ofÕ
(

θ f

(

ε 1
κ

)

ε
2−ρ

κ −2
)

on the label complexity of a certain disagreement-based active

learning method, under entropy conditions and Condition 1. Do there exist active learning
methods achieving asymptotically smaller label complexities than this, in particular improv-

ing theθ f

(

ε 1
κ

)

factor? The quantitỹθ f

(

ε 1
κ

)

is no longer defined wheñdf =∞, so this

might not be a direct extension of Theorem 27, but we could perhaps use the sequence of

θ (k)
f

(

ε 1
κ

)

values in some other way to replaceθ f

(

ε 1
κ

)

in this case.

• Generalizing the previous question, we might even be so bold as to ask whether there exists a
universal activizer for the space ofall classifiers. Let us refer to such a method as auniversal
activizer (in general). The present work shows that there is a universal activizer for every
VC class. Furthermore, Lemma 34 implies that, for any sequenceC1,C2, . . . of concept
spaces for which there exist universal activizers, there also exists auniversal activizer for
⋃∞

i=1Ci : namely, the method that runs each of the activizers forCi with respective budgets
⌊3n/(π i)2⌋, for i = 1,2, . . . ,⌊

√
3n/π⌋, producing hypothesesh1, . . . ,h⌊

√
3n/π⌋, then returns

the value of ActiveSelect({h1, . . . ,h⌊
√

3n/π⌋},⌈n/2⌉,{XM,XM+1, . . .}), whereM is larger than

any index accessed by these⌊
√

3n/π⌋ activizers. In fact, the proof of Theorem 6 entails that
theo(Λp(ε , f ,P)) guarantee holds forf in theclosurecl(C) of any VC classC. Combined
with the above trick, it follows that we can achieve theo(Λp(ε , f ,P)) strong improvement
guarantee over passive learning for allf in

⋃∞
i=1cl(Ci), where theCi sets are VC classes.

We can always construct a sequence of VC classesC1,C2, . . . such that cl(
⋃∞

i=1Ci) is the
set of all classifiers. However,

⋃∞
i=1cl(Ci) is generally not the same as cl(

⋃∞
i=1Ci), so that

achievingΛa(cε , f ,P)= o(Λp(ε , f ,P)) for all f ∈⋃∞
i=1cl(Ci) does not necessarily guarantee

the same for allf ∈ cl(
⋃∞

i=1Ci). Thus, constructing a general universal activizer would be
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a nontrivial extension of the present work, and the fundamental question of the existence (or
nonexistence) of such meta-algorithms remains a fascinating open question.

• There is also a question about generalizing this approach to label spacesother than{−1,+1},
and possibly other loss functions. It should be straightforward to extendthese results to the
setting of multiclass classification. However, it is not clear what the implications would be
for general structured prediction problems, where the label space may be quite large (even
infinite), and the loss function involves a notion ofdistancebetween labels. From a practical
perspective, this question is particularly interesting, since problems with morecomplicated
label spaces are often the scenarios where active learning is most needed, as it takes substan-
tial time or effort to label each example. At this time, there are no published theoretical results
on the label complexity improvements achievable for general structured prediction problems.

• All of the claims in this work also hold whenAp is a semi-supervisedpassive learning al-
gorithm, simply by withholding a set of unlabeled data points in a preprocessingstep, and
feeding them into the passive algorithm along with the labeled set generated by the activizer.
However, it is not clear whether further claims are possible when activizing a semi-supervised
algorithm, for instance by taking into account specific details of the learning bias used by the
particular semi-supervised algorithm (e.g., a cluster assumption).

• The splitting index analysis of Dasgupta (2005) has the interesting feature of characterizing a
trade-off between the number of label requests and the number of unlabeled examplesused
by the active learning algorithm. In the present work, we do not characterize any such trade-
off. Indeed, the algorithms do not really have any parameter to adjust the number of unlabeled
examples they use (aside from the precision of theP̂ estimators), so that they simply use as
many as they need and then halt. This is true in both the realizable case and in theagnostic
case. It would be interesting to try to modify these algorithms and their analysis so that,
when there are more unlabeled examples available than would be used by the above methods,
the algorithms can take advantage of this in a way that can be reflected in improved label
complexity bounds, and when there are fewer unlabeled examples available, the algorithms
can alter their behavior to compensate for this, at the cost of an increasedlabel complexity.
This would be interesting both for the realizable and agnostic cases. In fact, in the agnostic
case, there are no known methods that exhibit this type of trade-off.

• Finally, as mentioned in the previous section, there is a serious question concerning what
types of algorithms can be activized in the agnostic case, and how large the improvements in
label complexity will be. In particular, Conjecture 23 hypothesizes that forany VC class, we
can activize some empirical risk minimization algorithm in the agnostic case. Resolving this
conjecture (either positively or negatively) should significantly advanceour understanding of
the capabilities of active learning compared to passive learning.
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Appendix A. Proofs Related to Section 3: Disagreement-BasedLearning

The following result follows from a theorem of Anthony and Bartlett (1999), based on the clas-
sic results of Vapnik (1982) (with slightly better constant factors); see also the work of Blumer,
Ehrenfeucht, Haussler, and Warmuth (1989).

Lemma 29 For any VC classC, m∈ N, and classifier f such that∀r > 0,B( f , r) 6= ∅, let V⋆
m =

{h∈C : ∀i ≤m,h(Xi) = f (Xi)}; for anyδ ∈ (0,1), there is an event Hm(δ ) withP(Hm(δ ))≥ 1−δ
such that, on Hm(δ ), V⋆

m⊆ B( f ,φ(m;δ )), where

φ(m;δ ) = 2
d ln 2emax{m,d}

d + ln(2/δ )
m

.

A fact we will use repeatedly is that, for anyN(ε) = ω(log(1/ε)), we haveφ(N(ε);ε) = o(1).

Lemma 30 For P̂n(DIS(V)) from (1), on an event Jn with P(Jn)≥ 1−2·exp{−n/4},
max{P(DIS(V)),4/n} ≤ P̂n(DIS(V))≤max{4P(DIS(V)),8/n} .

Proof Note that the sequenceUn from (1) is independent from bothV andL. By a Chernoff bound,
on an eventJn with P(Jn)≥ 1−2·exp{−n/4},

P(DIS(V))> 2/n =⇒ P(DIS(V))
1
n2

∑

x∈Un
1DIS(V)(x)

∈ [1/2,2],

andP(DIS(V))≤ 2/n =⇒ 1
n2

∑

x∈Un

1DIS(V)(x)≤ 4/n.

This immediately implies the stated result.

Lemma 31 Letλ : (0,1)→ (0,∞) and L:N×(0,1)→ [0,∞) be s.t.λ (ε) = ω(1), L(1,ε) = 0 and
L(n,ε)→∞ as n→∞ for everyε ∈ (0,1), and for anyN-valued N(ε) = ω(λ (ε)), L(N(ε),ε) =
ω(N(ε)). Let L−1(m;ε) = max{n∈ N : L(n,ε)< m} for every m∈ (0,∞). Then for anyΛ :
(0,1)→ (0,∞) with Λ(ε) = ω(λ (ε)), we have L−1(Λ(ε);ε) = o(Λ(ε)).

Proof First note thatL−1 is well-defined and finite, due to the facts thatL(n,ε) can be 0 and is
diverging inn. Let Λ(ε) = ω(λ (ε)). It is fairly straightforward to showL−1(Λ(ε);ε) 6= Ω(Λ(ε)),
but the strongero(Λ(ε)) result takes slightly more work. Let̄L(n,ε) = min

{

L(n,ε),n2/λ (ε)
}

for
everyn∈ N andε ∈ (0,1), and letL̄−1(m;ε) = max{n∈ N : L̄(n,ε)< m}. We will first prove the
result forL̄.

Note that by definition of̄L−1, we know
(

L̄−1(Λ(ε);ε)+1
)2
/λ (ε)≥ L̄

(

L̄−1(Λ(ε);ε)+1,ε
)

≥ Λ(ε) = ω(λ (ε)),

which impliesL̄−1(Λ(ε);ε) = ω(λ (ε)). But, by definition ofL̄−1 and the condition onL,

Λ(ε)> L̄
(

L̄−1(Λ(ε);ε) ,ε
)

= ω
(

L̄−1(Λ(ε);ε)
)

.

SinceL̄−1(m;ε) ≥ L−1(m;ε) for all m> 0, this impliesΛ(ε) = ω
(

L−1(Λ(ε);ε)
)

, or equivalently
L−1(Λ(ε);ε) = o(Λ(ε)).
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Lemma 32 For any VC classC and passive algorithmAp, if Ap achieves label complexityΛp,
then Meta-Algorithm 0, withAp as its argument, achieves a label complexityΛa such that, for
every f∈C and distributionP overX , if P(∂C,P f ) = 0 and∞> Λp(ε , f ,P) = ω(log(1/ε)), then
Λa(2ε , f ,P) = o(Λp(ε , f ,P)).

Proof This proof follows similar lines to a proof of a related result of Balcan, Hanneke, and
Vaughan (2010). SupposeAp achieves a label complexityΛp, and that f ∈ C and distribution
P satisfy∞ > Λp(ε , f ,P) = ω(log(1/ε)) andP(∂C,P f ) = 0. Let ε ∈ (0,1). For n ∈ N, let
∆n(ε) = P(DIS(B( f ,φ(⌊n/2⌋;ε/2)))), L(n;ε) = ⌊n/max{32/n,16∆n(ε)}⌋, and form∈ (0,∞)
let L−1(m;ε) = max{n∈ N : L(n;ε)< m}. Suppose

n≥max
{

12ln(6/ε),1+L−1(Λp(ε , f ,P);ε)
}

.

Consider running Meta-Algorithm 0 withAp andn as arguments, whilef is the target function and
P is the data distribution. LetV andL be as in Meta-Algorithm 0, and letĥn =Ap(L) denote the
classifier returned at the end.

By Lemma 29, on the eventH⌊n/2⌋(ε/2), V ⊆B( f ,φ(⌊n/2⌋;ε/2)), so thatP(DIS(V))≤ ∆n(ε).
LettingU = {X⌊n/2⌋+1, . . . ,X⌊n/2⌋+⌊n/(4∆̂)⌋}, by Lemma 30, onH⌊n/2⌋(ε/2)∩Jn we have

⌊n/max{32/n,16∆n(ε)}⌋ ≤ |U| ≤ ⌊n/max{4P(DIS(V)),16/n}⌋ . (7)

By a Chernoff bound, for an eventKn with P(Kn) ≥ 1− exp{−n/12}, on H⌊n/2⌋(ε/2)∩ Jn∩Kn,
|U ∩DIS(V)| ≤ 2P(DIS(V)) · ⌊n/max{4P(DIS(V)),16/n}⌋ ≤ ⌈n/2⌉. Defining the eventGn(ε) =
H⌊n/2⌋(ε/2)∩Jn∩Kn, we see that onGn(ε), every timeXm∈ DIS(V) in Step 5 of Meta-Algorithm
0, we havet < n; therefore, sincef ∈V implies that the inferred labels in Step 6 are correct as well,
we have that onGn(ε),

∀(x, ŷ) ∈ L, ŷ= f (x). (8)

Noting that

P(Gn(ε)c)≤ P
(

H⌊n/2⌋(ε/2)c)+P(Jc
n)+P(Kc

n)≤ ε/2+2·exp{−n/4}+exp{−n/12} ≤ ε ,

we have

E
[

er
(

ĥn
)]

≤ E
[

1Gn(ε)1 [|L| ≥ Λp(ε , f ,P)]er
(

ĥn
)]

+P(Gn(ε)∩{|L|< Λp(ε , f ,P)})+P(Gn(ε)c)

≤ E
[

1Gn(ε)1 [|L| ≥ Λp(ε , f ,P)]er(Ap(L))
]

+P(Gn(ε)∩{|L|< Λp(ε , f ,P)})+ ε . (9)

On Gn(ε), (7) implies |L| ≥ L(n;ε), and we chosen large enough so thatL(n;ε) ≥ Λp(ε , f ,P).
Thus, the second term in (9) is zero, and we have

E
[

er
(

ĥn
)]

≤ E
[

1Gn(ε)1 [|L| ≥ Λp(ε , f ,P)]er(Ap(L))
]

+ ε

= E

[

E

[

1Gn(ε)er(Ap(L))
∣

∣

∣
|L|
]

1 [|L| ≥ Λp(ε , f ,P)]
]

+ ε . (10)

For anyℓ∈Nwith P(|L|= ℓ)> 0, the conditional ofU|{|U|= ℓ} is a product distributionPℓ; that is,
the samples inU are conditionally independent and identically distributed with distributionP, which
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is the same as the distribution of{X1,X2, . . . ,Xℓ}. Therefore, for any suchℓ with ℓ ≥ Λp(ε , f ,P),
by (8) we have

E

[

1Gn(ε)er(Ap(L))
∣

∣

∣
{|L|= ℓ}

]

≤ E [er(Ap (Zℓ))]≤ ε .

In particular, this means (10) is at most 2ε. This implies Meta-Algorithm 0, withAp as its argument,
achieves a label complexityΛa such that

Λa(2ε , f ,P)≤max
{

12ln(6/ε),1+L−1(Λp(ε , f ,P);ε)
}

.

SinceΛp(ε , f ,P) = ω(log(1/ε))⇒ 12ln(6/ε) = o(Λp(ε , f ,P)), it remains only to show that
L−1(Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)). Note that∀ε ∈ (0,1), L(1;ε) = 0 andL(n;ε) is diverging in
n. Furthermore, by the assumptionP(∂C,P f ) = 0, we know that for anyN(ε) = ω(log(1/ε)), we
have∆N(ε)(ε) = o(1) (by continuity of probability measures), which impliesL(N(ε);ε) =ω(N(ε)).
Thus, sinceΛp(ε , f ,P) = ω(log(1/ε)), Lemma 31 impliesL−1(Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)),
as desired.

Lemma 33 For any VC classC, target function f∈ C, and distributionP, if P(∂C,P f ) > 0, then
there exists a passive learning algorithmAp achieving a label complexityΛp such that( f ,P) ∈
Nontrivial(Λp), and for any label complexityΛa achieved by running Meta-Algorithm 0 withAp as
its argument, and any constant c∈ (0,∞),

Λa(cε , f ,P) 6= o(Λp(ε , f ,P)).

Proof The proof can be broken down into three essential claims. First, it follows from Lemma 35
below that, on an eventH ′ of probability one,P(∂V f )≥P(∂C f ); sinceP(DIS(V))≥P(∂V f ), we
haveP(DIS(V))≥ P(∂C f ) onH ′.

The second claim is that onH ′ ∩ Jn, |L| = O(n). This follows from Lemma 30 and our first
claim by noting that, onH ′∩Jn, |L|=

⌊

n/(4∆̂)
⌋

≤ n/(4P(DIS(V)))≤ n/(4P(∂C f )).
Finally, we construct a passive algorithmAp whose label complexity is not significantly im-

proved when|L| = O(n). There is a fairly obvious randomizedAp with this property (simply
returning− f with probability 1/|L|, and otherwisef ); however, we can even satisfy the property
with a deterministicAp, as follows. LetH f = {hi}∞i=1 be any sequence of classifiers (not necessarily
in C) with 0 < P(x : hi(x) 6= f (x)) strictly decreasing to 0, (say withh1 = − f ). We know such a
sequence must exist sinceP(∂C f )> 0. Now define, for nonemptyS,

Ap(S) = argmin
hi∈H f

P(x : hi(x) 6= f (x))+21[0,1/|S|)(P(x : hi(x) 6= f (x))).

Ap is constructed so that, in the special case that this particularf is the target function and this
particularP is the data distribution,Ap(S) returns thehi ∈H f with minimal er(hi) such that er(hi)≥
1/|S|. For completeness, letAp(∅) = h1. Defineεi = er(hi) = P(x : hi(x) 6= f (x)).

Now let ĥn be the returned classifier from running Meta-Algorithm 0 withAp andn as inputs, let
Λp be the (minimal) label complexity achieved byAp, and letΛa be the (minimal) label complexity
achieved by Meta-Algorithm 0 withAp as input. Take anyc ∈ (0,∞), andi sufficiently large so
that εi−1 < 1/2. Then we know that for anyε ∈ [εi ,εi−1), Λp(ε , f ,P) = ⌈1/εi⌉. In particular,
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Λp(ε , f ,P) ≥ 1/ε, so that( f ,P) ∈ Nontrivial(Λp). Also, by Markov’s inequality and the above
results on|L|,

E[er(ĥn)]≥ E

[

1
|L|

]

≥ 4P(∂C f )
n

P

(

1
|L| >

4P(∂C f )
n

)

≥ 4P(∂C f )
n

P(H ′∩Jn)≥
4P(∂C f )

n
(1−2·exp{−n/4}) .

This implies that for 4 ln(4)< n< 2P(∂C f )
cεi

, we haveE
[

er(ĥn)
]

> cεi , so that for all sufficiently large
i,

Λa(cεi , f ,P)≥ 2P(∂C f )
cεi

≥ P(∂C f )
c

⌈

1
εi

⌉

=
P(∂C f )

c
Λp(εi , f ,P).

Since this happens for all sufficiently largei, and thus for arbitrarily smallεi values, we have

Λa(cε , f ,P) 6= o(Λp(ε , f ,P)) .

Proof [Theorem 5] Theorem 5 now follows directly from Lemmas 32 and 33, corresponding to the
“if” and “only if” parts of the claim, respectively.

Appendix B. Proofs Related to Section 4: Basic Activizer

In this section, we provide detailed definitions, lemmas and proofs related to Meta-Algorithm 1.
In fact, we will develop slightly more general results here. Specifically, wefix an arbitrary

constantγ ∈ (0,1), and will prove the result for a family of meta-algorithms parameterized by the
valueγ, used as the threshold in Steps 3 and 6 of Meta-Algorithm 1, which were setto 1/2 above to
simplify the algorithm. Thus, settingγ = 1/2 in the statements below will give the stated theorem.

Throughout this section, we will assumeC is a VC class with VC dimensiond, and letP denote
the (arbitrary) marginal distribution ofXi (∀i). We also fix an arbitrary classifierf ∈ cl(C), where
(as in Section 6) cl(C) = {h : ∀r > 0,B(h, r) 6= ∅} denotes the closure ofC. In the present context,
f corresponds to the target function when running Meta-Algorithm 1. Thus, we will study the
behavior of Meta-Algorithm 1 for this fixedf andP; since they are chosen arbitrarily, to establish
Theorem 6 it will suffice to prove that for any passiveAp, Meta-Algorithm 1 withAp as input
achieves superior label complexity compared toAp for this f andP. In fact, because here we only
assumef ∈ cl(C) (rather thanf ∈ C), we actually end up proving a slightly more general version
of Theorem 6. But more importantly, this relaxation to cl(C) will also make the lemmas developed
below more useful for subsequent proofs: namely, those in Appendix E.2. For this same reason,
many of the lemmas of this section are substantially more general than is necessary for the proof of
Theorem 6; the more general versions will be used in the proofs of results in later sections.

For anym∈ N, we defineV⋆
m = {h∈ C : ∀i ≤m,h(Xi) = f (Xi)}. Additionally, forH ⊆ C, and

an integerk≥ 0, we will adopt the notation

Sk(H) =
{

S∈ X k :H shattersS
}

,

S̄k(H) = X k \Sk(H),
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and as in Section 5, we define thek-dimensional shatter core off with respect toH (andP) as

∂k
H f = lim

r→0
Sk (BH( f , r)) ,

and further define

∂̄k
H f = X k \∂k

H f .

Also as in Section 5, define

d̃f = min
{

k∈ N : Pk
(

∂k
C f
)

= 0
}

.

For convenience, we also define the abbreviation

δ̃ f = P d̃f−1
(

∂
d̃f−1
C

f
)

.

Also, recall that we are using the convention thatX 0 = {∅}, P0(X 0) = 1, and we say a set of
classifiersH shatters∅ iff H 6= {}. In particular,S0(H) 6= {} iff H 6= {}, and∂0

H f 6= {} iff
infh∈HP(x : h(x) 6= f (x)) = 0. For any measurable setsS1,S2 ⊆ X k with Pk(S2) > 0, as usual we
definePk(S1|S2) = Pk(S1∩S2)/Pk(S2); in the situation wherePk(S2) = 0, it will be convenient
to definePk(S1|S2) = 0. We use the definition of er(h) from above, and additionally define the
conditionalerror rate er(h|S) =P({x : h(x) 6= f (x)}|S) for any measurableS⊆X . We also adopt the
usual short-hand for equalities and inequalities involving conditional expectations and probabilities
given random variables, wherein for instance, we writeE[X|Y] = Z to mean that there is a version
of E[X|Y] that is everywhere equal toZ, so that in particular, any version ofE[X|Y] equalsZ almost
everywhere (see, e.g., Ash and Doléans-Dade, 2000).

B.1 Definition of Estimators for Meta-Algorithm 1

While the estimated probabilities used in Meta-Algorithm 1 can be defined in a varietyof ways to
make it a universal activizer forC, in the statement of Theorem 6 above and proof thereof below,
we take the following specific definitions. After the definition, we discuss alternative possibilities.

Though it is a slight twist on the formal model, it will greatly simplify our discussion be-
low to suppose we have access to two independent sequences of i.i.d. unlabeled examplesW1 =
{w1,w2, . . .} andW2 = {w′1,w′2, . . .}, also independent from the main sequence{X1,X2, . . .}, with
wi ,w′i ∼ P. Since the data sequence{X1,X2, . . .} is i.i.d., this is distributionally equivalent to sup-
posing we partition the data sequence in a preprocessing step, into three subsequences, alternatingly
assigning each data point to eitherZ ′X, W1, or W2. Then, if we supposeZ ′X = {X′1,X′2, . . .}, and we
replace all references toXi with X′i in the algorithms and results, we obtain the equivalent statements
holding for the model as originally stated. Thus, supposing the existence oftheseWi sequences sim-
ply serves to simplify notation, and does not represent a further assumption on top of the previously
stated framework.

For eachk≥ 2, we partitionW2 into subsets of sizek−1, as follows. Fori ∈ N, let

S(k)i = {w′1+(i−1)(k−1), . . . ,w
′
i(k−1)}.
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We define thêPm estimators in terms of three types of functions, defined below. For anyH⊆C,
x∈ X , y∈ {−1,+1}, m∈ N, we define

P̂m

(

S∈ X k−1 :H shattersS∪{x}|H shattersS
)

= ∆̂(k)
m (x,W2,H), (11)

P̂m

(

S∈ X k−1 :H[(x,−y)] does not shatterS|H shattersS
)

= Γ̂(k)
m (x,y,W2,H), (12)

P̂m

(

x : P̂
(

S∈ X k−1 :H shattersS∪{x}|H shattersS
)

≥ γ
)

= ∆̂(k)
m (W1,W2,H). (13)

The quantitieŝ∆(k)
m (x,W2,H), Γ̂(k)

m (x,y,W2,H), and∆̂(k)
m (W1,W2,H) are specified as follows.

For k = 1, Γ̂(1)
m (x,y,W2,H) is simply an indicator for whether everyh∈ H hash(x) = y, while

∆̂(1)
m (x,W2,H) is an indicator for whetherx∈ DIS(H). Formally, they are defined as follows.

Γ̂(1)
m (x,y,W2,H) = 1 ⋂

h∈H
{h(x)}(y).

∆̂(1)
m (x,W2,H) = 1DIS(H)(x).

Fork≥ 2, we first define

M(k)
m (H) = max







1,
m3
∑

i=1

1Sk−1(H)

(

S(k)i

)







.

Then we take the following definitions forΓ̂(k) and∆̂(k).

Γ̂(k)
m (x,y,W2,H) =

1

M(k)
m (H)

m3
∑

i=1

1S̄k−1(H[(x,−y)])

(

S(k)i

)

1Sk−1(H)

(

S(k)i

)

. (14)

∆̂(k)
m (x,W2,H) =

1

M(k)
m (H)

m3
∑

i=1

1Sk(H)

(

S(k)i ∪{x}
)

. (15)

For the remaining estimator, for anyk we generally define

∆̂(k)
m (W1,W2,H) =

2
m
+

1
m3

m3
∑

i=1

1[γ/4,∞)

(

∆̂(k)
m (wi ,W2,H)

)

.

The above definitions will be used in the proofs below. However, there are certainly viable al-
ternative definitions one can consider, some of which may have interesting theoretical properties. In
general, one has the same sorts of trade-offs present whenever estimating a conditional probability.

For instance, we could replace “m3” in (14) and (15) by min
{

ℓ ∈ N : M(k)
ℓ (H) = m3

}

, and then nor-

malize bym3 instead ofM(k)
m (H); this would give usm3 samples from the conditional distribution

with which to estimate the conditional probability. The advantages of this approach would be its
simplicity or elegance, and possibly some improvement in the constant factors inthe label complex-
ity bounds below. On the other hand, the drawback of this alternative definition would be that we
do not know a priori how many unlabeled samples we will need to process in order to calculate it;
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indeed, for some values ofk andH, we expectPk−1
(

Sk−1(H)
)

= 0, so thatM(k)
ℓ (H) is bounded,

and we might technically need to examine the entire sequence to distinguish this case from the case
of very smallPk−1

(

Sk−1(H)
)

. Of course, these practical issues can be addressed with small mod-
ifications, but only at the expense of complicating the analysis, thus losing the elegance factor. For
these reasons, we have opted for the slightly looser and less elegant, butmore practical, definitions
above in (14) and (15).

B.2 Proof of Theorem 6

At a high level, the structure of the proof is the following. The primary components of the proof
are three lemmas: 34, 37, and 38. Setting aside, for a moment, the fact that weare using theP̂m

estimators rather than the actual probability values they estimate, Lemma 38 indicates that the num-
ber of data points inLd̃f

grows superlinearly inn (the number of label requests), while Lemma 37
guarantees that the labels of these points are correct, and Lemma 34 tells us that the classifier re-
turned in the end is never much worse thanAp(Ld̃f

). These three factors combine to prove the

result. The rest of the proof is composed of supporting lemmas and details regarding theP̂m esti-
mators. Specifically, Lemmas 35 and 36 serve a supporting role, with the purpose of showing that
the set ofV-shatterablek-tuples converges to thek-dimensional shatter core (up to probability-zero
differences). The other lemmas below (39–45) are needed primarily to extend the above basic idea
to the actual scenario where theP̂m estimators are used as surrogates for the probability values. Ad-
ditionally, a sub-case of Lemma 45 is needed in order to guarantee the label request budget will not
be reached prematurely. Again, in many cases we prove a more general lemma than is required for
its use in the proof of Theorem 6; these more general results will be needed in subsequent proofs:
namely, in the proofs of Theorem 16 and Lemma 26.

We begin with a lemma concerning the ActiveSelect subroutine.

Lemma 34 For any k∗,M,N ∈ N with k∗ ≤ N, and N classifiers{h1,h2, . . . ,hN} (themselves pos-
sibly random variables independent from{XM,XM+1, . . .}), a call to ActiveSelect({h1,h2, . . . ,hN},
m, {XM,XM+1, . . .}) makes at most m label requests, and if hk̂ is the classifier it returns, then with
probability at least1−eN·exp{−m/(72k∗N ln(eN))}, we haveer(hk̂)≤ 2er(hk∗).

Proof This proof is essentially identical to a similar result of Balcan, Hanneke, andVaughan (2010),
but is included here for completeness.

Let Mk =
⌊

m
k(N−k) ln(eN)

⌋

. First note that the total number of label requests in ActiveSelect is at

mostm, since summing up the sizes of the batches of label requests made in all executions of Step
2 yields

N−1
∑

j=1

N
∑

k= j+1

⌊

m
j(N− j) ln(eN)

⌋

≤
N−1
∑

j=1

m
j ln(eN)

≤m.

Let k∗∗ = argmink∈{1,...,k∗}er(hk). For anyj ∈ {1,2, . . . ,k∗∗−1} with P(x : h j(x) 6= hk∗∗(x))> 0,
the law of large numbers implies that with probability one|{XM,XM+1, . . .}∩{x : h j(x) 6= hk∗∗(x)}|≥
M j , and since er(hk∗∗ |{x : h j(x) 6= hk∗∗(x)})≤ 1/2, Hoeffding’s inequality implies that

P
(

mk∗∗ j > 7/12
)

≤ exp
{

−M j/72
}

≤ exp{1−m/(72k∗N ln(eN))} .
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A union bound implies

P

(

max
j<k∗∗

mk∗∗ j > 7/12

)

≤ k∗∗ ·exp{1−m/(72k∗N ln(eN))} .

In particular, note that when maxj<k∗∗mk∗∗ j ≤ 7/12, we must havêk≥ k∗∗.
Now supposej ∈ {k∗∗+1, . . . ,N} has er(h j) > 2er(hk∗∗). In particular, this implies er(h j |{x :

hk∗∗(x) 6= h j(x)}) > 2/3 andP(x : h j(x) 6= hk∗∗(x)) > 0, which again means (with probability one)
|{XM,XM+1, . . .}∩{x : h j(x) 6= hk∗∗(x)}| ≥Mk∗∗ . By Hoeffding’s inequality, we have that

P
(

mjk∗∗ ≤ 7/12
)

≤ exp{−Mk∗∗/72} ≤ exp{1−m/(72k∗N ln(eN))} .

By a union bound, we have that

P
(

∃ j > k∗∗ : er(h j)> 2er(hk∗∗) andmjk∗∗ ≤ 7/12
)

≤ (N−k∗∗) ·exp{1−m/(72k∗N ln(eN))} .

In particular, when̂k≥ k∗∗, andmjk∗∗ > 7/12 for all j > k∗∗ with er(h j)> 2er(hk∗∗), it must be true
that er(hk̂)≤ 2er(hk∗∗)≤ 2er(hk∗).

So, by a union bound, with probability≥ 1−eN·exp{−m/(72k∗N ln(eN))}, the k̂ chosen by
ActiveSelect has er(hk̂)≤ 2er(hk∗).

The next two lemmas describe the limiting behavior ofSk(V⋆
m). In particular, we see that its

limiting value is precisely∂k
C

f (up to zero-probability differences). Lemma 35 establishes that
Sk(V⋆

m) does not decrease below∂k
C

f (except for a zero-probability set), and Lemma 36 establishes
that its limit is not larger than∂k

C
f (again, except for a zero-probability set).

Lemma 35 There is an event H′ with P(H ′) = 1 such that on H′, ∀m∈N, ∀k∈ {0, . . . , d̃f −1}, for
anyH with V⋆

m⊆H⊆ C,

Pk
(

Sk(H)
∣

∣

∣
∂k
C f
)

= Pk
(

∂k
H f
∣

∣

∣
∂k
C f
)

= 1,

and
∀i ∈ N,1

∂k
H

f

(

S(k+1)
i

)

= 1
∂k
C

f

(

S(k+1)
i

)

.

Also, on H′, every suchH hasPk
(

∂k
H f
)

= Pk
(

∂k
C

f
)

, and M(k)
ℓ (H)→∞ asℓ→∞.

Proof We will show the first claim for the setV⋆
m, and the result will then hold forH by mono-

tonicity. In particular, we will show this for any fixedk ∈ {0, . . . , d̃f − 1} and m∈ N, and the
existence ofH ′ then holds by a union bound. Fix any setS∈ ∂k

C
f . Suppose BV⋆

m
( f , r) does not

shatterS for somer > 0. There is an infinite sequence of sets{{h(i)1 ,h(i)2 , . . . ,h(i)2k }}i with ∀ j ≤ 2k,

P(x : h(i)j (x) 6= f (x)) ↓ 0, such that each{h(i)1 , . . . ,h(i)2k } ⊆ B( f , r) and shattersS. Since BV⋆
m
( f , r)

does not shatterS,

1= inf
i
1

[

∃ j : h(i)j /∈ BV⋆
m
( f , r)

]

= inf
i
1

[

∃ j ≤ 2k, ℓ≤m : h(i)j (Xℓ) 6= f (Xℓ)
]

.
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But

P

(

inf
i
1

[

∃ j ≤ 2k, ℓ≤m : h(i)j (Xℓ) 6= f (Xℓ)
]

= 1

)

≤ inf
i
P

(

∃ j ≤ 2k, ℓ≤m : h(i)j (Xℓ) 6= f (Xℓ)
)

≤ lim
i→∞

∑

j≤2k

mP
(

x : h(i)j (x) 6= f (x)
)

=
∑

j≤2k

m lim
i→∞
P
(

x : h(i)j (x) 6= f (x)
)

= 0,

where the second inequality follows by a union bound. Therefore,∀r > 0,P
(

S /∈ Sk
(

BV⋆
m
( f , r)

))

=
0. Furthermore, sincēSk

(

BV⋆
m
( f , r)

)

is monotonic inr, the dominated convergence theorem gives
us that

P

(

S /∈ ∂k
V⋆

m
f
)

= E

[

lim
r→0

1S̄k(BV⋆
m
( f ,r))(S)

]

= lim
r→0

P

(

S /∈ Sk(BV⋆
m
( f , r)

)

)

= 0.

This implies that (lettingS∼ Pk be independent fromV⋆
m)

P

(

Pk
(

∂̄k
V⋆

m
f
∣

∣

∣∂k
C f
)

> 0
)

= P

(

Pk
(

∂̄k
V⋆

m
f ∩∂k

C f
)

> 0
)

= lim
ξ→0

P

(

Pk
(

∂̄k
V⋆

m
f ∩∂k

C f
)

> ξ
)

≤ lim
ξ→0

1
ξ
E

[

Pk
(

∂̄k
V⋆

m
f ∩∂k

C f
)]

(Markov)

= lim
ξ→0

1
ξ
E

[

1
∂k
C

f (S)P
(

S /∈ ∂k
V⋆

m
f
∣

∣

∣S
)]

(Fubini)

= lim
ξ→0

0= 0.

This establishes the first claim forV⋆
m, on an event of probability 1, and monotonicity extends the

claim to anyH⊇V⋆
m. Also note that, on this event,

Pk
(

∂k
H f
)

≥ Pk
(

∂k
H f ∩∂k

C f
)

= Pk
(

∂k
H f
∣

∣

∣∂k
C f
)

Pk
(

∂k
C f
)

= Pk
(

∂k
C f
)

,

where the last equality follows from the first claim. Noting that forH ⊆ C, ∂k
H f ⊆ ∂k

C
f , we must

have
Pk
(

∂k
H f
)

= Pk
(

∂k
C f
)

.

This establishes the third claim. From the first claim, for any given value ofi ∈ N the second claim
holds forS(k+1)

i (with H = V⋆
m) on an additional event of probability 1; taking a union bound over

all i ∈ N extends this claim to everyS(k)i on an event of probability 1. Monotonicity then implies

1
∂k
C

f

(

S(k+1)
i

)

= 1
∂k

V⋆
m

f

(

S(k+1)
i

)

≤ 1
∂k
H

f

(

S(k+1)
i

)

≤ 1
∂k
C

f

(

S(k+1)
i

)

,

extending the result to generalH. Also, ask< d̃f , we knowPk
(

∂k
C

f
)

> 0, and since we also know
V⋆

m is independent fromW2, the strong law of large numbers implies the final claim (forV⋆
m) on an

additional event of probability 1; again, monotonicity extends this claim to anyH⊇V⋆
m. Intersecting

the above events over valuesm∈ N andk< d̃f gives the eventH ′, and as each of the above events
has probability 1 and there are countably many such events, a union bound impliesP(H ′) = 1.
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Note that one specific implication of Lemma 35, obtained by takingk= 0, is that onH ′, V⋆
m 6= ∅

(even if f ∈ cl(C) \C). This is because, forf ∈ cl(C), we have∂0
C

f = X 0 so thatP0
(

∂0
C

f
)

= 1,

which meansP0
(

∂0
V⋆

m
f
)

= 1 (onH ′), so that we must have∂0
V⋆

m
f = X 0, which impliesV⋆

m 6= ∅. In

particular, this also meansf ∈ cl(V⋆
m).

Lemma 36 There is a monotonic function q(r) = o(1) (as r→ 0) such that, on event H′, for any
k∈
{

0, . . . , d̃f −1
}

, m∈ N, r > 0, and setH such that V⋆m⊆H⊆ B( f , r),

Pk
(

∂̄k
C f
∣

∣

∣Sk (H)
)

≤ q(r).

In particular, for τ ∈ N andδ > 0, on Hτ(δ )∩H ′ (where Hτ(δ ) is from Lemma 29), every m≥ τ
and k∈

{

0, . . . , d̃f −1
}

hasPk
(

∂̄k
C

f
∣

∣

∣
Sk (V⋆

m)
)

≤ q(φ(τ;δ )).

Proof Fix anyk∈
{

0, . . . , d̃f −1
}

. By Lemma 35, we know that on eventH ′,

Pk
(

∂̄k
C f
∣

∣

∣Sk (H)
)

=
Pk
(

∂̄k
C

f ∩Sk (H)
)

Pk (Sk (H)) ≤ P
k
(

∂̄k
C

f ∩Sk (H)
)

Pk
(

∂k
H

f
)

=
Pk
(

∂̄k
C

f ∩Sk (H)
)

Pk
(

∂k
C

f
) ≤ P

k
(

∂̄k
C

f ∩Sk (B( f , r))
)

Pk
(

∂k
C

f
) .

Defineqk(r) as this latter quantity. SincePk
(

∂̄k
C

f ∩Sk (B( f , r))
)

is monotonic inr,

lim
r→0

Pk
(

∂̄k
C

f ∩Sk (B( f , r))
)

Pk
(

∂k
C

f
) =

Pk

(

∂̄k
C

f ∩ lim
r→0
Sk (B( f , r))

)

Pk
(

∂k
C

f
) =

Pk
(

∂̄k
C

f ∩∂k
C

f
)

Pk
(

∂k
C

f
) = 0.

This provesqk(r) = o(1). Defining

q(r) = max
{

qk(r) : k∈
{

0,1, . . . , d̃f −1
}}

= o(1)

completes the proof of the first claim.
For the final claim, simply recall that by Lemma 29, onHτ(δ ), everym≥ τ hasV⋆

m ⊆ V⋆
τ ⊆

B( f ,φ(τ;δ )).

Lemma 37 For ζ ∈ (0,1), define

rζ = sup{r ∈ (0,1) : q(r)< ζ}/2.

On H′, ∀k∈
{

0, . . . , d̃f −1
}

, ∀ζ ∈ (0,1), ∀m∈ N, for any setH such that V⋆m⊆H⊆ B( f , rζ ),

P
(

x : Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣
Sk (H)

)

> ζ
)

= P
(

x : Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣∂k
H f
)

> ζ
)

= 0. (16)

In particular, for δ ∈ (0,1), definingτ(ζ ;δ ) = min

{

τ ∈ N : sup
m≥τ

φ(m;δ )≤ rζ

}

, ∀τ ≥ τ(ζ ;δ ), and

∀m≥ τ, on Hτ(δ )∩H ′, (16)holds forH=V⋆
m.
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Proof Fix k,m,H as described above, and supposeq= Pk
(

∂̄k
C

f |Sk(H)
)

< ζ ; by Lemma 36, this
happens onH ′. Since,∂k

H f ⊆ Sk(H), we have that∀x∈ X ,

Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣
Sk(H)

)

= Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣
∂k
H f
)

Pk
(

∂k
H f
∣

∣

∣
Sk(H)

)

+Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣Sk(H)∩ ∂̄k
H f
)

Pk
(

∂̄k
H f
∣

∣

∣Sk(H)
)

.

Since all probability values are bounded by 1, we have

Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣
Sk(H)

)

≤ Pk
(

S̄k (H[(x, f (x))])
∣

∣

∣
∂k
H f
)

+Pk
(

∂̄k
H f
∣

∣

∣
Sk(H)

)

. (17)

Isolating the right-most term in (17), by basic properties of probabilities we have

Pk
(

∂̄k
H f
∣

∣

∣
Sk(H)

)

= Pk
(

∂̄k
H f
∣

∣

∣
Sk(H)∩ ∂̄k

C f
)

Pk
(

∂̄k
C f
∣

∣

∣
Sk(H)

)

+Pk
(

∂̄k
H f
∣

∣

∣
Sk(H)∩∂k

C f
)

Pk
(

∂k
C f
∣

∣

∣
Sk(H)

)

≤ Pk
(

∂̄k
C f
∣

∣

∣Sk(H)
)

+Pk
(

∂̄k
H f
∣

∣

∣Sk(H)∩∂k
C f
)

. (18)

By assumption, the left term in (18) equalsq. Examining the right term in (18), we see that

Pk
(

∂̄k
H f
∣

∣

∣
Sk(H)∩∂k

C f
)

= Pk
(

Sk(H)∩ ∂̄k
H f
∣

∣

∣
∂k
C f
)

/Pk
(

Sk(H)
∣

∣

∣
∂k
C f
)

≤ Pk
(

∂̄k
H f
∣

∣

∣
∂k
C f
)

/Pk
(

∂k
H f
∣

∣

∣
∂k
C f
)

. (19)

By Lemma 35, onH ′ the denominator in (19) is 1 and the numerator is 0. Thus, combining this fact
with (17) and (18), we have that onH ′,

P
(

x:Pk
(

S̄k(H[(x, f (x))])
∣

∣

∣Sk(H)
)

> ζ
)

≤ P
(

x:Pk
(

S̄k(H[(x, f (x))])
∣

∣

∣∂k
H f
)

> ζ −q
)

. (20)

Note that proving the right side of (20) equals zero will suffice to establishthe result, since it upper
boundsboth the first expression of (16) (as just established)and the second expression of (16)
(by monotonicity of measures). LettingX ∼ P be independent from the other random variables
(Z,W1,W2), by Markov’s inequality, the right side of (20) is at most

1
ζ −q

E

[

Pk
(

S̄k (H[(X, f (X))])
∣

∣

∣∂k
H f
)∣

∣

∣H
]

=
E

[

Pk
(

S̄k (H[(X, f (X))])∩∂k
H f
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂k
H

f
) ,

and by Fubini’s theorem, this is (lettingS∼ Pk be independent from the other random variables)

E

[

1
∂k
H

f (S)P
(

x : S /∈ Sk (H[(x, f (x))])
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂k
H

f
) .

Lemma 35 implies this equals

E

[

1
∂k
H

f (S)P
(

x : S /∈ Sk (H[(x, f (x))])
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂k
C

f
) . (21)
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For any fixedS∈ ∂k
H f , there is an infinite sequence of sets

{{

h(i)1 ,h(i)2 , . . . ,h(i)2k

}}

i∈N
with ∀ j ≤

2k,P
(

x : h(i)j (x) 6= f (x)
)

↓ 0, such that each
{

h(i)1 , . . . ,h(i)2k

}

⊆H and shattersS. If H[(x, f (x))] does

not shatterS, then

1= inf
i
1

[

∃ j : h(i)j /∈H[(x, f (x))]
]

= inf
i
1

[

∃ j : h(i)j (x) 6= f (x)
]

.

In particular,

P
(

x : S /∈ Sk (H[(x, f (x))])
)

≤ P
(

x : inf
i
1

[

∃ j : h(i)j (x) 6= f (x)
]

= 1

)

= P
(

⋂

i

{

x : ∃ j : h(i)j (x) 6= f (x)
}

)

≤ inf
i
P
(

x : ∃ j s.t. h(i)j (x) 6= f (x)
)

≤ lim
i→∞

∑

j≤2k

P
(

x : h(i)j (x) 6= f (x)
)

=
∑

j≤2k

lim
i→∞
P
(

x : h(i)j (x) 6= f (x)
)

= 0.

Thus (21) is zero, which establishes the result.
The final claim is then implied by Lemma 29 and monotonicity ofV⋆

m in m: that is, onHτ(δ ),
V⋆

m⊆V⋆
τ ⊆ B( f ,φ(τ;δ ))⊆ B( f , rζ ).

Lemma 38 For any ζ ∈ (0,1), there are values
{

∆(ζ )
n (ε) : n∈ N,ε ∈ (0,1)

}

such that, for any

n∈ N andε > 0, on event H⌊n/3⌋(ε/2)∩H ′, letting V=V⋆
⌊n/3⌋,

P
(

x : P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
S d̃f−1(V)

)

≥ ζ
)

≤ ∆(ζ )
n (ε),

and for anyN-valued N(ε) = ω(log(1/ε)), ∆(ζ )
N(ε)(ε) = o(1).

Proof Throughout, we suppose the eventH⌊n/3⌋(ε/2)∩H ′, and fix someζ ∈ (0,1). We have∀x,

P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣S d̃f−1(V)
)

= P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
S d̃f−1(V)∩∂d̃f−1

C
f
)

P d̃f−1
(

∂
d̃f−1
C

f
∣

∣

∣
S d̃f−1(V)

)

+P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
S d̃f−1(V)∩ ∂̄d̃f−1

C
f
)

P d̃f−1
(

∂̄
d̃f−1
C

f
∣

∣

∣
S d̃f−1(V)

)

≤ P d̃f−1
(

S∈X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣S d̃f−1(V)∩∂d̃f−1
C

f
)

+P d̃f−1
(

∂̄
d̃f−1
C

f
∣

∣

∣S d̃f−1(V)
)

. (22)

By Lemma 35, the left term in (22) equals

P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
S d̃f−1(V)∩∂d̃f−1

C
f
)

P d̃f−1
(

S d̃f−1(V)
∣

∣

∣
∂

d̃f−1
C

f
)

= P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣∂
d̃f−1
C

f
)

,
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and by Lemma 36, the right term in (22) is at mostq(φ(⌊n/3⌋;ε/2)). Thus, we have

P
(

x : P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
S d̃f−1(V)

)

≥ ζ
)

≤ P
(

x : P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣
∂

d̃f−1
C

f
)

≥ ζ −q(φ(⌊n/3⌋;ε/2))
)

. (23)

Forn< 3τ(ζ/2;ε/2) (for τ(·; ·) defined in Lemma 37), we define∆(ζ )
n (ε) = 1. Otherwise, suppose

n≥ 3τ(ζ/2;ε/2), so thatq(φ(⌊n/3⌋;ε/2))< ζ/2, and thus (23) is at most

P
(

x : P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (V)
∣

∣

∣∂
d̃f−1
C

f
)

≥ ζ/2
)

.

By Lemma 29, this is at most

P
(

x : P d̃f−1
(

S∈ X d̃f−1 : S∪{x} ∈ S d̃f (B( f ,φ(⌊n/3⌋;ε/2)))
∣

∣

∣∂
d̃f−1
C

f
)

≥ ζ/2
)

.

LettingX ∼ P, by Markov’s inequality this is at most

2
ζ
E

[

P d̃f−1
(

S∈ X d̃f−1 : S∪{X} ∈ S d̃f (B( f ,φ(⌊n/3⌋;ε/2)))
∣

∣

∣∂
d̃f−1
C

f
)]

=
2

ζ δ̃ f
P d̃f

(

S∪{x} ∈ X d̃f : S∪{x} ∈ S d̃f (B( f ,φ(⌊n/3⌋;ε/2))) andS∈ ∂
d̃f−1
C

f
)

≤ 2

ζ δ̃ f
P d̃f

(

S d̃f (B( f ,φ(⌊n/3⌋;ε/2)))
)

. (24)

Thus, defining∆(ζ )
n (ε) as (24) forn≥ 3τ(ζ/2;ε/2) establishes the first claim.

It remains only to prove the second claim. LetN(ε) = ω(log(1/ε)). Sinceτ(ζ/2;ε/2) ≤
⌈

4
rζ/2

(

d ln
(

4e
rζ/2

)

+ ln
(

4
ε
)

)⌉

= O(log(1/ε)), we have that for all sufficiently smallε > 0, N(ε) ≥
3τ(ζ/2;ε/2), so that∆(ζ )

N(ε)(ε) equals (24) (withn = N(ε)). Furthermore, sincẽδ f > 0, while

P d̃f

(

∂
d̃f

C
f
)

= 0, andφ(⌊N(ε)/3⌋;ε/2) = o(1), by continuity of probability measures we know

(24) iso(1) whenn= N(ε), so that we generally have∆(ζ )
N(ε)(ε) = o(1).

For anym∈ N, define
M̃(m) = m3δ̃ f /2.

Lemma 39 There is a(C,P, f )-dependent constant c(i) ∈ (0,∞) such that, for anyτ ∈ N there is

an event H(i)τ ⊆ H ′ with

P

(

H(i)
τ

)

≥ 1−c(i) ·exp
{

−M̃(τ)/4
}

such that on H(i)τ , if d̃f ≥ 2, then∀k ∈
{

2, . . . , d̃f
}

, ∀m≥ τ, ∀ℓ ∈ N, for any setH such that V⋆ℓ ⊆
H⊆ C,

M(k)
m (H)≥ M̃(m).
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Proof On H ′, Lemma 35 implies every1Sk−1(H)

(

S(k)i

)

≥ 1
∂

k−1
H

f

(

S(k)i

)

= 1
∂

k−1
C

f

(

S(k)i

)

, so we

focus on showing
∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣
≥ M̃(m) on an appropriate event. We know

P

(

∀k∈
{

2, . . . , d̃f
}

,∀m≥ τ ,
∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣≥ M̃(m)
)

= 1−P

(

∃k∈
{

2, . . . , d̃f
}

,m≥ τ :
∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

≥ 1−
∑

m≥τ

d̃f
∑

k=2

P

(∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣< M̃(m)
)

,

where the last line follows by a union bound. Thus, we will focus on bounding

∑

m≥τ

d̃f
∑

k=2

P

(∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

. (25)

Fix anyk∈
{

2, . . . , d̃f
}

, and integerm≥ τ. Since

E

[∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣

]

= Pk−1
(

∂k−1
C

f
)

m3≥ δ̃ f m
3,

a Chernoff bound implies that

P

(∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣< M̃(m)
)

≤ exp
{

−m3Pk−1
(

∂k−1
C

f
)

/8
}

≤ exp
{

−m3δ̃ f /8
}

.

Thus, we have that (25) is at most

∑

m≥τ

d̃f
∑

k=2

exp
{

−m3δ̃ f /8
}

≤
∑

m≥τ
d̃f ·exp

{

−m3δ̃ f /8
}

≤
∑

m≥τ3

d̃f ·exp
{

−mδ̃ f /8
}

≤ d̃f ·exp
{

−M̃(τ)/4
}

+ d̃f ·
∫ ∞

τ3
exp
{

−xδ̃ f /8
}

dx

= d̃f ·
(

1+8/δ̃ f

)

·exp
{

−M̃(τ)/4
}

≤
(

9d̃f /δ̃ f

)

·exp
{

−M̃(τ)/4
}

.

Note that sinceP(H ′) = 1, defining

H(i)
τ =

{

∀k∈
{

2, . . . , d̃f
}

,∀m≥ τ ,
∣

∣

∣

{

S(k)i : i ≤m3
}

∩∂k−1
C

f
∣

∣

∣≥ M̃(m)
}

∩H ′

has the required properties.
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Lemma 40 For anyτ ∈ N, there is an event G(i)τ with

P

(

H(i)
τ \G(i)

τ

)

≤
(

121d̃f /δ̃ f

)

·exp
{

−M̃(τ)/60
}

such that, on G(i)τ , if d̃f ≥ 2, then for every integer s≥ τ and k∈
{

2, . . . , d̃f
}

, ∀r ∈
(

0, r1/6
]

,

M(k)
s (B( f , r))≤ (3/2)

∣

∣

∣

{

S(k)i : i ≤ s3
}

∩∂k−1
C

f
∣

∣

∣ .

Proof Fix integerss≥ τ andk∈
{

2, . . . , d̃f
}

, and letr = r1/6. Define the set̂Sk−1=
{

S(k)i : i ≤ s3
}

∩
Sk−1(B( f , r)). Note

∣

∣Ŝk−1
∣

∣= M(k)
s (B( f , r)) and the elements of̂Sk−1 are conditionally i.i.d. given

M(k)
s (B( f , r)), each with conditional distribution equivalent to the conditional distribution ofS(k)1

given
{

S(k)1 ∈ Sk−1(B( f , r))
}

. In particular,

E

[

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣

∣

∣

∣M
(k)
s (B( f , r))

]

= Pk−1
(

∂k−1
C

f
∣

∣

∣Sk−1(B( f , r))
)

M(k)
s (B( f , r)) .

Define the event

G(i)
τ (k,s) =

{

∣

∣Ŝk−1
∣

∣≤ (3/2)
∣

∣Ŝk−1∩∂k−1
C

f
∣

∣

}

.

By Lemma 36 (indeed by definition ofq(r) andr1/6) we have

1−P

(

G(i)
τ (k,s)

∣

∣

∣M
(k)
s (B( f , r))

)

= P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (2/3)M(k)
s (B( f , r))

∣

∣

∣
M(k)

s (B( f , r))
)

≤ P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (4/5)(1−q(r))M(k)
s (B( f , r))

∣

∣

∣M
(k)
s (B( f , r))

)

≤ P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (4/5)Pk−1
(

∂k−1
C

f
∣

∣

∣
Sk−1(B( f , r))

)

M(k)
s (B( f , r))

∣

∣

∣
M(k)

s (B( f , r))
)

. (26)

By a Chernoff bound, (26) is at most

exp
{

−M(k)
s (B( f , r))Pk−1

(

∂k−1
C

f
∣

∣

∣Sk−1(B( f , r))
)

/50
}

≤ exp
{

−M(k)
s (B( f , r))(1−q(r))/50

}

≤ exp
{

−M(k)
s (B( f , r))/60

}

.

Thus, by Lemma 39,

P

(

H(i)
τ \G(i)

τ (k,s)
)

≤ P

({

M(k)
s (B( f , r))≥ M̃(s)

}

\G(i)
τ (k,s)

)

= E

[(

1−P

(

G(i)
τ (k,s)

∣

∣

∣
M(k)

s (B( f , r))
))

1[M̃(s),∞)

(

M(k)
s (B( f , r))

)]

≤ E

[

exp
{

−M(k)
s (B( f , r))/60

}

1[M̃(s),∞)

(

M(k)
s (B( f , r))

)]

≤ exp
{

−M̃(s)/60
}

.
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Now definingG(i)
τ =

⋂

s≥τ
⋂d̃f

k=2G(i)
τ (k,s), a union bound implies

P

(

H(i)
τ \G(i)

τ

)

≤
∑

s≥τ
d̃f ·exp

{

−M̃(s)/60
}

≤ d̃f

(

exp
{

−M̃(τ)/60
}

+
∫ ∞

τ3
exp
{

−xδ̃ f /120
}

dx

)

= d̃f

(

1+120/δ̃ f

)

·exp
{

−M̃(τ)/60
}

≤
(

121d̃f /δ̃ f

)

·exp
{

−M̃(τ)/60
}

.

This completes the proof forr = r1/6. Monotonicity extends the result to anyr ∈
(

0, r1/6
]

.

Lemma 41 There exist(C,P, f ,γ)-dependent constantsτ∗ ∈N and c(ii) ∈ (0,∞) such that, for any

integerτ ≥ τ∗, there is an event H(ii)τ ⊆G(i)
τ with

P

(

H(i)
τ \H(ii)

τ

)

≤ c(ii) ·exp
{

−M̃(τ)1/3/60
}

(27)

such that, on H(i)τ ∩H(ii)
τ , ∀s,m, ℓ,k ∈ N with ℓ < m and k≤ d̃f , for any set of classifiersH with

V⋆
ℓ ⊆H, if either k= 1, or s≥ τ andH⊆ B( f , r(1−γ)/6), then

∆̂(k)
s (Xm,W2,H)< γ =⇒ Γ̂(k)

s (Xm,− f (Xm),W2,H)< Γ̂(k)
s (Xm, f (Xm),W2,H) .

In particular, for δ ∈ (0,1) andτ ≥max{τ((1− γ)/6;δ ),τ∗}, on Hτ(δ )∩H(i)
τ ∩H(ii)

τ , this is true
forH=V⋆

ℓ for every k, ℓ,m,s∈ N satisfyingτ ≤ ℓ < m,τ ≤ s, and k≤ d̃f .

Proof Let τ∗=(6/(1−γ)) ·
(

2/δ̃ f

)1/3
, and consider anyτ ,k, ℓ,m,s,H as described above. Ifk= 1,

the result clearly holds. In particular, Lemma 35 implies that onH(i)
τ ,H[(Xm, f (Xm))]⊇V⋆

m 6= ∅, so
that someh∈H hash(Xm) = f (Xm), and therefore

Γ̂(1)
s (Xm,− f (Xm),W2,H) = 1 ⋂

h∈H
{h(Xm)}(− f (Xm)) = 0,

and since∆̂(1)
s (Xm,W2,H) = 1DIS(H)(Xm), if ∆̂(1)

s (Xm,W2,H) < γ, then sinceγ < 1 we haveXm /∈
DIS(H), so that

Γ̂(1)
s (Xm, f (Xm),W2,H) = 1 ⋂

h∈H
{h(Xm)}( f (Xm)) = 1.
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Otherwise, suppose 2≤ k≤ d̃f . Note that onH(i)
τ ∩G(i)

τ , ∀m∈ N, and anyH with V⋆
ℓ ⊆ H ⊆

B( f , r(1−γ)/6) for someℓ ∈ N,

Γ̂(k)
s (Xm,− f (Xm),W2,H)

=
1

M(k)
s (H)

s3
∑

i=1

1S̄k−1(H[(Xm, f (Xm))])

(

S(k)i

)

1Sk−1(H)

(

S(k)i

)

≤ 1
∣

∣

∣

{

S(k)i : i ≤ s3
}

∩∂k−1
H

f
∣

∣

∣

s3
∑

i=1

1S̄k−1(V⋆
m)

(

S(k)i

)

1
Sk−1(B( f ,r(1−γ)/6))

(

S(k)i

)

(monotonicity)

≤ 1
∣

∣

∣

{

S(k)i : i ≤ s3
}

∩∂k−1
H

f
∣

∣

∣

s3
∑

i=1

1
∂̄

k−1
V⋆

m
f

(

S(k)i

)

1
Sk−1(B( f ,r(1−γ)/6))

(

S(k)i

)

(monotonicity)

=
1

∣

∣

∣

{

S(k)i : i ≤ s3
}

∩∂k−1
C

f
∣

∣

∣

s3
∑

i=1

1
∂̄

k−1
C

f

(

S(k)i

)

1
Sk−1(B( f ,r(1−γ)/6))

(

S(k)i

)

(Lemma 35)

≤ 3

2M(k)
s (B( f , r(1−γ)/6))

s3
∑

i=1

1
∂̄

k−1
C

f

(

S(k)i

)

1
Sk−1(B( f ,r(1−γ)/6))

(

S(k)i

)

. (Lemma 40)

For brevity, letΓ̂ denote this last quantity, and letMks = M(k)
s
(

B
(

f , r(1−γ)/6
))

. By Hoeffding’s
inequality, we have

P

(

(2/3)Γ̂ > Pk−1
(

∂̄k−1
C

f
∣

∣

∣
Sk−1(B

(

f , r(1−γ)/6
))

)

+M−1/3
ks

∣

∣

∣

∣

∣

Mks

)

≤ exp
{

−2M1/3
ks

}

.

Thus, by Lemmas 36, 39, and 40,

P

({

(2/3)Γ̂(k)
s (Xm,− f (Xm),W2,H)> q

(

r(1−γ)/6
)

+ M̃(s)−1/3
}

∩H(i)
τ ∩G(i)

τ

)

≤ P

({

(2/3)Γ̂ > Pk−1
(

∂̄k−1
C

f
∣

∣

∣
Sk−1(B

(

f , r(1−γ)/6
))

)

+ M̃(s)−1/3
}

∩H(i)
τ

)

≤ P

({

(2/3)Γ̂ > Pk−1
(

∂̄k−1
C

f
∣

∣

∣Sk−1(B
(

f , r(1−γ)/6
))

)

+M−1/3
ks

}

∩{Mks≥ M̃(s)}
)

= E

[

P

(

(2/3)Γ̂ > Pk−1
(

∂̄k−1
C

f
∣

∣

∣Sk−1(B
(

f , r(1−γ)/6
))

)

+M−1/3
ks

∣

∣

∣

∣

∣

Mks

)

1[M̃(s),∞) (Mks)

]

≤ E

[

exp
{

−2M1/3
ks

}

1[M̃(s),∞) (Mks)
]

≤ exp
{

−2M̃(s)1/3
}

.

Thus, there is an eventH(ii)
τ (k,s) with P

(

H(i)
τ ∩G(ii)

τ \H(ii)
τ (k,s)

)

≤ exp
{

−2M̃(s)1/3
}

such that

Γ̂(k)
s (Xm,− f (Xm),W2,H)≤ (3/2)

(

q
(

r(1−γ)/6
)

+ M̃(s)−1/3
)

holds for these particular values ofk ands.
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To extend to the full range of values, we simply takeH(ii)
τ = G(i)

τ ∩
⋂

s≥τ
⋂

k≤d̃f
H(ii)

τ (k,s). Since

τ ≥ (2/δ̃ f )
1/3, we haveM̃(τ)≥ 1, so a union bound implies

P

(

H(i)
τ ∩G(i)

τ \H(ii)
τ

)

≤
∑

s≥τ
d̃f ·exp

{

−2M̃(s)1/3
}

≤ d̃f ·
(

exp
{

−2M̃(τ)1/3
}

+
∫ ∞

τ
exp
{

−2M̃(x)1/3
}

dx

)

= d̃f

(

1+2−2/3δ̃−1/3
f

)

·exp
{

−2M̃(τ)1/3
}

≤ 2d̃f δ̃
−1/3
f ·exp

{

−2M̃(τ)1/3
}

.

Then Lemma 40 and a union bound imply

P

(

H(i)
τ \H(ii)

τ

)

≤ 2d̃f δ̃
−1/3
f ·exp

{

−2M̃(τ)1/3
}

+121d̃f δ̃−1
f ·exp

{

−M̃(τ)/60
}

≤ 123d̃f δ̃−1
f ·exp

{

−M̃(τ)1/3/60
}

.

OnH(i)
τ ∩H(ii)

τ , every suchs,m, ℓ,k andH satisfy

Γ̂(k)
s (Xm,− f (Xm),W2,H)≤ (3/2)

(

q(r(1−γ)/6)+ M̃(s)−1/3
)

< (3/2)((1− γ)/6+(1− γ)/6) = (1− γ)/2, (28)

where the second inequality follows by definition ofr(1−γ)/6 ands≥ τ ≥ τ∗.
If ∆̂(k)

s (Xm,W2,H)< γ, then

1− γ < 1− ∆̂(k)
s (Xm,W2,H) =

1

M(k)
s (H)

s3
∑

i=1

1Sk−1(H)

(

S(k)i

)

1S̄k(H)

(

S(k)i ∪{Xm}
)

. (29)

Finally, noting that we always have

1S̄k(H)

(

S(k)i ∪{Xm}
)

≤ 1S̄k−1(H[(Xm, f (Xm))])

(

S(k)i

)

+1S̄k−1(H[(Xm,− f (Xm))])

(

S(k)i

)

,

we have that, on the eventH(i)
τ ∩H(ii)

τ , if ∆̂(k)
s (Xm,W2,H)< γ, then

Γ̂(k)
s (Xm,− f (Xm),W2,H)
< (1− γ)/2=−(1− γ)/2+(1− γ) by (28)

<−(1− γ)/2+
1

M(k)
s (H)

s3
∑

i=1

1Sk−1(H)

(

S(k)i

)

1S̄k(H)

(

S(k)i ∪{Xm}
)

by (29)

≤−(1− γ)/2+
1

M(k)
s (H)

s3
∑

i=1

1Sk−1(H)

(

S(k)i

)

1S̄k−1(H[(Xm, f (Xm))])

(

S(k)i

)

+
1

M(k)
s (H)

s3
∑

i=1

1Sk−1(H)

(

S(k)i

)

1S̄k−1(H[(Xm,− f (Xm))])

(

S(k)i

)

=−(1− γ)/2+ Γ̂(k)
s (Xm,− f (Xm),W2,H)+ Γ̂(k)

s (Xm, f (Xm),W2,H)
< Γ̂(k)

s (Xm, f (Xm),W2,H) . by (28)
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The final claim in the lemma statement is then implied by Lemma 29, since we haveV⋆
ℓ ⊆V⋆

τ ⊆
B( f ,φ(τ;δ ))⊆ B

(

f , r(1−γ)/6
)

onHτ(δ ).

For anyk, ℓ,m∈ N, and anyx∈ X , define

p̂x(k, ℓ,m) = ∆̂(k)
m (x,W2,V

⋆
ℓ )

px(k, ℓ) = Pk−1
(

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ )
∣

∣

∣
Sk−1(V⋆

ℓ )
)

.

Lemma 42 For any ζ ∈ (0,1), there is a(C,P, f ,ζ )-dependent constant c(iii )(ζ ) ∈ (0,∞) such

that, for anyτ ∈ N, there is an event H(iii )τ (ζ ) with

P

(

H(i)
τ \H(iii )

τ (ζ )
)

≤ c(iii )(ζ ) ·exp
{

−ζ 2M̃(τ)
}

such that on H(i)τ ∩H(iii )
τ (ζ ), ∀k, ℓ,m∈ N with τ ≤ ℓ≤m and k≤ d̃f , for any x∈ X ,

P (x : |px(k, ℓ)− p̂x(k, ℓ,m)|> ζ )≤ exp
{

−ζ 2M̃(m)
}

.

Proof Fix anyk, ℓ,m∈ N with τ ≤ ℓ ≤m andk≤ d̃f . Recall our convention thatX 0 = {∅} and
P0
(

X 0
)

= 1; thus, ifk= 1, p̂x(k, ℓ,m) = 1DIS(V⋆
ℓ )
(x) = 1

S1(V⋆
ℓ )
(x) = px(k, ℓ), so the result clearly

holds fork= 1.
For the remaining case, suppose 2≤ k≤ d̃f . To simplify notation, letm̃= M(k)

m (V⋆
ℓ ), X = Xℓ+1,

px = px(k, ℓ) and p̂x = p̂x(k, ℓ,m). Consider the event

H(iii )(k, ℓ,m,ζ ) =
{

P (x : |px− p̂x|> ζ )≤ exp
{

−ζ 2M̃(m)
}}

.

We have

P

(

H(i)
τ \H(iii )(k, ℓ,m,ζ )

∣

∣

∣V⋆
ℓ

)

(30)

≤ P

(

{

m̃≥ M̃(m)
}

\H(iii )(k, ℓ,m,ζ )
∣

∣

∣
V⋆
ℓ

)

(by Lemma 39)

= P

(

{

m̃≥ M̃(m)
}

∩
{

P

(

esm̃|pX−p̂X | > esm̃ζ
∣

∣

∣W2,V
⋆
ℓ

)

> e−ζ 2M̃(m)
}∣

∣

∣V⋆
ℓ

)

, (31)

for any values> 0. Proceeding as in Chernoff’s bounding technique, by Markov’s inequality (31)
is at most

P

(

{

m̃≥ M̃(m)
}

∩
{

e−sm̃ζ
E

[

esm̃|pX−p̂X |
∣

∣

∣
W2,V

⋆
ℓ

]

> e−ζ 2M̃(m)
}∣

∣

∣
V⋆
ℓ

)

≤ P

(

{

m̃≥ M̃(m)
}

∩
{

e−sm̃ζ
E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣W2,V
⋆
ℓ

]

> e−ζ 2M̃(m)
}∣

∣

∣V⋆
ℓ

)

= E

[

1[M̃(m),∞) (m̃)P
(

e−sm̃ζ
E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣W2,V
⋆
ℓ

]

> e−ζ 2M̃(m)
∣

∣

∣m̃,V⋆
ℓ

)

∣

∣

∣

∣

∣

V⋆
ℓ

]
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By Markov’s inequality, this is at most

E

[

1[M̃(m),∞) (m̃)eζ 2M̃(m)
E

[

e−sm̃ζ
E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣
W2,V

⋆
ℓ

]∣

∣

∣
m̃,V⋆

ℓ

]

∣

∣

∣

∣

∣

V⋆
ℓ

]

= E

[

1[M̃(m),∞) (m̃)eζ 2M̃(m)e−sm̃ζ
E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣
m̃,V⋆

ℓ

]

∣

∣

∣

∣

∣

V⋆
ℓ

]

= E

[

1[M̃(m),∞) (m̃)eζ 2M̃(m)e−sm̃ζ
E

[

E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣
X,m̃,V⋆

ℓ

]∣

∣

∣
m̃,V⋆

ℓ

]

∣

∣

∣

∣

∣

V⋆
ℓ

]

. (32)

The conditional distribution of ˜mp̂X given (X,m̃,V⋆
ℓ ) is Binomial(m̃, pX), so letting

{

B j(pX)
}∞

j=1
denote a sequence of random variables, conditionally independent given(X,m̃,V⋆

ℓ ), with the condi-
tional distribution of eachB j(pX) being Bernoulli(pX) given(X,m̃,V⋆

ℓ ), we have

E

[

esm̃(pX−p̂X)+esm̃(p̂X−pX)
∣

∣

∣
X,m̃,V⋆

ℓ

]

= E

[

esm̃(pX−p̂X)
∣

∣

∣X,m̃,V⋆
ℓ

]

+E

[

esm̃(p̂X−pX)
∣

∣

∣X,m̃,V⋆
ℓ

]

= E

[

m̃

∏
i=1

es(pX−Bi(pX))
∣

∣

∣X,m̃,V⋆
ℓ

]

+E

[

m̃

∏
i=1

es(Bi(pX)−pX)
∣

∣

∣X,m̃,V⋆
ℓ

]

= E

[

es(pX−B1(pX))
∣

∣

∣X,m̃,V⋆
ℓ

]m̃
+E

[

es(B1(pX)−pX)
∣

∣

∣X,m̃,V⋆
ℓ

]m̃
. (33)

It is known that forB∼Bernoulli(p),E
[

es(B−p)
]

andE
[

es(p−B)
]

are at mostes2/8 (see, e.g., Lemma

8.1 of Devroye, Gÿorfi, and Lugosi, 1996). Thus, takings= 4ζ , (33) is at most 2e2m̃ζ 2
, and (32) is

at most

E

[

1[M̃(m),∞) (m̃)2eζ 2M̃(m)e−4m̃ζ 2
e2m̃ζ 2

∣

∣

∣V⋆
ℓ

]

= E

[

1[M̃(m),∞) (m̃)2eζ 2M̃(m)e−2m̃ζ 2
∣

∣

∣V⋆
ℓ

]

≤ 2exp
{

−ζ 2M̃(m)
}

.

Since this bound holds for (30), the law of total probability implies

P

(

H(i)
τ \H(iii )(k, ℓ,m,ζ )

)

= E

[

P

(

H(i)
τ \H(iii )(k, ℓ,m,ζ )

∣

∣

∣V⋆
ℓ

)]

≤ 2·exp
{

−ζ 2M̃(m)
}

.
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DefiningH(iii )
τ (ζ ) =

⋂

ℓ≥τ
⋂

m≥ℓ
⋂d̃f

k=2H(iii )(k, ℓ,m,ζ ), we have the required property for the claimed
ranges ofk, ℓ andm, and a union bound implies

P

(

H(i)
τ \H(iii )

τ (ζ )
)

≤
∑

ℓ≥τ

∑

m≥ℓ
2d̃f ·exp

{

−ζ 2M̃(m)
}

≤ 2d̃f ·
∑

ℓ≥τ

(

exp
{

−ζ 2M̃(ℓ)
}

+
∫ ∞

ℓ3
exp
{

−xζ 2δ̃ f /2
}

dx

)

= 2d̃f ·
∑

ℓ≥τ

(

1+2ζ−2δ̃−1
f

)

·exp
{

−ζ 2M̃(ℓ)
}

≤ 2d̃f ·
(

1+2ζ−2δ̃−1
f

)

·
(

exp
{

−ζ 2M̃(τ)
}

+
∫ ∞

τ3
exp
{

−xζ 2δ̃ f /2
}

dx

)

= 2d̃f ·
(

1+2ζ−2δ̃−1
f

)2
·exp

{

−ζ 2M̃(τ)
}

≤ 18d̃f ζ−4δ̃−2
f ·exp

{

−ζ 2M̃(τ)
}

.

Fork, ℓ,m∈ N andζ ∈ (0,1), define

p̄ζ (k, ℓ,m) = P (x : p̂x (k, ℓ,m)≥ ζ ) . (34)

Lemma 43 For anyα ,ζ ,δ ∈ (0,1), β ∈
(

0,1−√α
]

, and integerτ ≥ τ(β ;δ ), on Hτ(δ )∩H(i)
τ ∩

H(iii )
τ (βζ ), for any k, ℓ, ℓ′,m∈ N with τ ≤ ℓ≤ ℓ′ ≤m and k≤ d̃f ,

p̄ζ (k, ℓ
′,m)≤ P (x : px(k, ℓ)≥ αζ )+exp

{

−β 2ζ 2M̃(m)
}

. (35)

Proof Fix anyα ,ζ ,δ ∈ (0,1), β ∈
(

0,1−√α
]

, τ ,k, ℓ, ℓ′,m∈N with τ(β ;δ )≤ τ ≤ ℓ≤ ℓ′ ≤mand
k≤ d̃f .

If k= 1, the result clearly holds. In particular, we have

p̄ζ (1, ℓ
′,m) = P (DIS(V⋆

ℓ′ ))≤ P (DIS(V⋆
ℓ )) = P (x : px(1, ℓ)≥ αζ ) .

Otherwise, suppose 2≤ k≤ d̃f . By a union bound,

p̄ζ (k, ℓ
′,m) = P

(

x : p̂x(k, ℓ
′,m)≥ ζ

)

≤ P
(

x : px(k, ℓ
′)≥
√

αζ
)

+P
(

x :
∣

∣px(k, ℓ
′)− p̂x(k, ℓ

′,m)
∣

∣> (1−
√

α)ζ
)

. (36)

Since

P
(

x :
∣

∣px(k, ℓ
′)− p̂x(k, ℓ

′,m)
∣

∣> (1−
√

α)ζ
)

≤ P
(

x :
∣

∣px(k, ℓ
′)− p̂x(k, ℓ

′,m)
∣

∣> βζ
)

,

Lemma 42 implies that, onH(i)
τ ∩H(iii )

τ (βζ ),

P
(

x :
∣

∣px(k, ℓ
′)− p̂x(k, ℓ

′,m)
∣

∣> (1−
√

α)ζ
)

≤ exp
{

−β 2ζ 2M̃(m)
}

. (37)
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It remains only to examine the first term on the right side of (36). For this, ifPk−1
(

Sk−1
(

V⋆
ℓ′
))

= 0,
then the first term is 0 by our aforementioned convention, and thus (35) holds; otherwise, since

∀x∈ X ,
{

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ′ )
}

⊆ Sk−1(V⋆
ℓ′ ) ,

we have

P
(

x : px(k, ℓ
′)≥
√

αζ
)

= P
(

x : Pk−1
(

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ′ )
∣

∣

∣
Sk−1(V⋆

ℓ′ )
)

≥
√

αζ
)

= P
(

x : Pk−1
(

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ′ )
)

≥
√

αζPk−1
(

Sk−1(V⋆
ℓ′ )
))

. (38)

By Lemma 35 and monotonicity, onH(i)
τ ⊆ H ′, (38) is at most

P
(

x : Pk−1
(

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ′ )
)

≥
√

αζPk−1
(

∂k−1
C

f
))

,

and monotonicity implies this is at most

P
(

x : Pk−1
(

S∈ X k−1 : S∪{x} ∈ Sk (V⋆
ℓ )
)

≥
√

αζPk−1
(

∂k−1
C

f
))

. (39)

By Lemma 36, forτ ≥ τ(β ;δ ), onHτ(δ )∩H(i)
τ ,

Pk−1
(

∂̄k−1
C

f
∣

∣Sk−1(V⋆
ℓ )
)

≤ q(φ(τ;δ ))< β ≤ 1−
√

α ,

which implies

Pk−1
(

∂k−1
C

f
)

≥ Pk−1
(

∂k−1
C

f ∩Sk−1(V⋆
ℓ )
)

=
(

1−Pk−1
(

∂̄k−1
C

f
∣

∣

∣
Sk−1(V⋆

ℓ )
))

Pk−1
(

Sk−1(V⋆
ℓ )
)

≥
√

αPk−1
(

Sk−1(V⋆
ℓ )
)

.

Altogether, forτ ≥ τ(β ;δ ), onHτ(δ )∩H(i)
τ , (39) is at most

P
(

x : Pk−1
(

S∈X k−1 : S∪{x}∈Sk (V⋆
ℓ )
)

≥ αζPk−1
(

Sk−1(V⋆
ℓ )
))

= P (x : px(k, ℓ)≥ αζ ),

which, combined with (36) and (37), establishes (35).

Lemma 44 There are events
{

H(iv)
τ : τ ∈ N

}

with

P

(

H(iv)
τ

)

≥ 1−3d̃f ·exp{−2τ}

s.t. for anyξ ∈ (0,γ/16], δ ∈ (0,1), letting τ(iv)(ξ ;δ ) = max

{

τ(4ξ/γ;δ ),
(

4
δ̃ f ξ 2 ln

(

4
δ̃ f ξ 2

))1/3
}

,

for any integerτ ≥ τ(iv)(ξ ;δ ), on Hτ(δ )∩H(i)
τ ∩H(iii )

τ (ξ )∩H(iv)
τ , ∀k ∈

{

1, . . . , d̃f
}

, ∀ℓ ∈ N with
ℓ≥ τ,

P
(

x : px(k, ℓ)≥ γ/2
)

+exp
{

−γ2M̃(ℓ)/256
}

≤ ∆̂(k)
ℓ (W1,W2,V

⋆
ℓ ) (40)

≤ P (x : px(k, ℓ)≥ γ/8)+4ℓ−1. (41)
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Proof For anyk, ℓ ∈ N, by Hoeffding’s inequality and the law of total probability, on an event
G(iv)(k, ℓ) with P

(

G(iv)(k, ℓ)
)

≥ 1−2exp{−2ℓ}, we have

∣

∣

∣

∣

∣

∣

p̄γ/4(k, ℓ, ℓ)− ℓ−3
ℓ3
∑

i=1

1[γ/4,∞)

(

∆̂(k)
ℓ (wi ,W2,V

⋆
ℓ )
)

∣

∣

∣

∣

∣

∣

≤ ℓ−1. (42)

Define the eventH(iv)
τ =

⋂

ℓ≥τ
⋂d̃f

k=1G(iv)(k, ℓ). By a union bound, we have

1−P

(

H(iv)
τ

)

≤ 2d̃f ·
∑

ℓ≥τ

exp{−2ℓ}

≤ 2d̃f ·
(

exp{−2τ}+
∫ ∞

τ
exp{−2x}dx

)

= 3d̃f ·exp{−2τ} .

Now fix anyℓ≥ τ andk∈
{

1, . . . , d̃f
}

. By a union bound,

P (x : px(k, ℓ)≥ γ/2)≤ P (x : p̂x(k, ℓ, ℓ)≥ γ/4)+P (x : |px(k, ℓ)− p̂x(k, ℓ, ℓ)|> γ/4) . (43)

By Lemma 42, onH(i)
τ ∩H(iii )

τ (ξ ),

P (x : |px(k, ℓ)− p̂x(k, ℓ, ℓ)|> γ/4)≤ P (x : |px(k, ℓ)− p̂x(k, ℓ, ℓ)|> ξ )≤ exp
{

−ξ 2M̃(ℓ)
}

. (44)

Also, onH(iv)
τ , (42) implies

P (x : p̂x(k, ℓ, ℓ)≥ γ/4) = p̄γ/4(k, ℓ, ℓ)

≤ ℓ−1+ ℓ−3
ℓ3
∑

i=1

1[γ/4,∞)

(

∆̂(k)
ℓ (wi ,W2,V

⋆
ℓ )
)

= ∆̂(k)
ℓ (W1,W2,V

⋆
ℓ )− ℓ−1. (45)

Combining (43) with (44) and (45) yields

P (x : px(k, ℓ)≥ γ/2)≤ ∆̂(k)
ℓ (W1,W2,V

⋆
ℓ )− ℓ−1+exp

{

−ξ 2M̃(ℓ)
}

. (46)

For τ ≥ τ(iv)(ξ ;δ ), exp
{

−ξ 2M̃(ℓ)
}

− ℓ−1 ≤ −exp
{

−γ2M̃(ℓ)/256
}

, so that (46) implies the first
inequality of the lemma: namely (40).

For the second inequality (i.e., (41)), onH(iv)
τ , (42) implies we have

∆̂(k)
ℓ (W1,W2,V

⋆
ℓ )≤ p̄γ/4(k, ℓ, ℓ)+3ℓ−1. (47)

Also, by Lemma 43 (withα = 1/2, ζ = γ/4, β = ξ/ζ < 1−√α), for τ ≥ τ(iv)(ξ ;δ ), onHτ(δ )∩
H(i)

τ ∩H(iii )
τ (ξ ),

p̄γ/4(k, ℓ, ℓ)≤ P (x : px(k, ℓ)≥ γ/8)+exp
{

−ξ 2M̃(ℓ)
}

. (48)

Thus, combining (47) with (48) yields

∆̂(k)
ℓ (W1,W2,V

⋆
ℓ )≤ P (x : px(k, ℓ)≥ γ/8)+3ℓ−1+exp

{

−ξ 2M̃(ℓ)
}

.
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For τ ≥ τ(iv)(ξ ;δ ), we have exp
{

−ξ 2M̃(ℓ)
}

≤ ℓ−1, which establishes (41).

Forn∈ N andk∈ {1, . . . ,d+1}, define the set

U (k)
n =

{

mn+1, . . . ,mn+
⌊

n/
(

6·2k∆̂(k)
mn (W1,W2,V)

)⌋}

,

wheremn = ⌊n/3⌋; U (k)
n represents the set of indices processed in the inner loop of Meta-Algorithm

1 for the specified value ofk.

Lemma 45 There are( f ,C,P,γ)-dependent constantŝc1, ĉ2 ∈ (0,∞) such that, for anyε ∈ (0,1)
and integer n≥ ĉ1 ln(ĉ2/ε), on an eventĤn(ε) with

P(Ĥn(ε))≥ 1− (3/4)ε , (49)

we have, for V=V⋆
mn

,

∀k∈
{

1, . . . , d̃f
}

,
∣

∣

∣

{

m∈ U (k)
n : ∆̂(k)

m (Xm,W2,V)≥ γ
}∣

∣

∣
≤
⌊

n/
(

3·2k
)⌋

, (50)

∆̂(d̃f )
mn (W1,W2,V)≤ ∆(γ/8)

n (ε)+4m−1
n , (51)

and∀m∈ U (d̃f )
n ,

∆̂(d̃f )
m (Xm,W2,V)< γ ⇒ Γ̂(d̃f )

m (Xm,− f (Xm),W2,V)< Γ̂(d̃f )
m (Xm, f (Xm),W2,V). (52)

Proof Supposen≥ ĉ1 ln(ĉ2/ε), where

ĉ1 = max

{

2d̃f+12

δ̃ f γ2
,

24
r(1/16)

,
24

r(1−γ)/6
,3τ∗

}

andĉ2 = max

{

4
(

c(i)+c(ii)+c(iii )(γ/16)+6d̃f

)

,4

(

4e
r(1/16)

)d

,4

(

4e
r(1−γ)/6

)d
}

.

In particular, we have chosen ˆc1 andĉ2 large enough so that

mn≥max
{

τ(1/16;ε/2),τ(iv)(γ/16;ε/2),τ((1− γ)/6;ε/2),τ∗
}

.

We begin with (50). By Lemmas 43 and 44, on the event

Ĥ(1)
n (ε) = Hmn(ε/2)∩H(i)

mn ∩H(iii )
mn (γ/16)∩H(iv)

mn ,

∀m∈ U (k)
n ,∀k∈

{

1, . . . , d̃f
}

,

p̄γ (k,mn,m)≤ P (x : px(k,mn)≥ γ/2)+exp
{

−γ2M̃(m)/256
}

≤ P (x : px(k,mn)≥ γ/2)+exp
{

−γ2M̃(mn)/256
}

≤ ∆̂(k)
mn (W1,W2,V) . (53)
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Recall that
{

Xm : m∈ U (k)
n

}

is a sample of size
⌊

n/(6·2k∆̂(k)
mn (W1,W2,V))

⌋

, conditionally i.i.d.

(given(W1,W2,V)) with conditional distributionsP. Thus,∀k∈
{

1, . . . , d̃f
}

, on Ĥ(1)
n (ε),

P

(

∣

∣

∣

{

m∈ U (k)
n : ∆̂(k)

m (Xm,W2,V)≥ γ
}∣

∣

∣
> n/

(

3·2k
)

∣

∣

∣

∣

∣

W1,W2,V

)

≤ P

(

∣

∣

∣

{

m∈ U (k)
n : ∆̂(k)

m (Xm,W2,V)≥ γ
}∣

∣

∣
> 2

∣

∣

∣
U (k)

n

∣

∣

∣
∆̂(k)

mn (W1,W2,V)

∣

∣

∣

∣

∣

W1,W2,V

)

≤ P

(

B
(

|U (k)
n |, ∆̂(k)

mn(W1,W2,V)
)

> 2
∣

∣

∣
U (k)

n

∣

∣

∣
∆̂(k)

mn (W1,W2,V)

∣

∣

∣

∣

∣

W1,W2,V

)

, (54)

where this last inequality follows from (53), andB(u, p) ∼ Binomial(u, p) is independent from
W1,W2,V (for any fixedu andp). By a Chernoff bound, (54) is at most

exp
{

−
⌊

n/
(

6·2k∆̂(k)
mn (W1,W2,V)

)⌋

∆̂(k)
mn (W1,W2,V)/3

}

≤ exp
{

1−n/
(

18·2k
)}

.

By the law of total probability and a union bound, there exists an eventĤ(2)
n with

P

(

Ĥ(1)
n (ε)\ Ĥ(2)

n

)

≤ d̃f ·exp
{

1−n/
(

18·2d̃f

)}

such that, onĤ(1)
n (ε)∩ Ĥ(2)

n , (50) holds.

Next, by Lemma 44, on̂H(1)
n (ε),

∆̂(d̃f )
mn (W1,W2,V)≤ P

(

x : px
(

d̃f ,mn
)

≥ γ/8
)

+4m−1
n ,

and by Lemma 38, on̂H(1)
n (ε), this is at most∆(γ/8)

n (ε)+4m−1
n , which establishes (51).

Finally, Lemma 41 implies that on̂H(1)
n (ε)∩H(ii)

mn , ∀m∈ U (d̃f )
n , (52) holds.

Thus, defining
Ĥn(ε) = Ĥ(1)

n (ε)∩ Ĥ(2)
n ∩H(ii)

mn ,

it remains only to establish (49). By a union bound, we have

1−P
(

Ĥn
)

≤ (1−P(Hmn(ε/2)))+
(

1−P

(

H(i)
mn

))

+P

(

H(i)
mn \H(ii)

mn

)

+P

(

H(i)
mn \H(iii )

mn (γ/16)
)

+
(

1−P

(

H(iv)
mn

))

+P

(

Ĥ(1)
n (ε)\ Ĥ(2)

n

)

.

≤ ε/2+c(i) ·exp
{

−M̃(mn)/4
}

+c(ii) ·exp
{

−M̃(mn)
1/3/60

}

+c(iii )(γ/16) ·exp
{

−M̃(mn)γ2/256
}

+3d̃f ·exp{−2mn}
+ d̃f ·exp

{

1−n/
(

18·2d̃f

)}

≤ ε/2+
(

c(i)+c(ii)+c(iii )(γ/16)+6d̃f

)

·exp
{

−nδ̃ f γ22−d̃f−12
}

. (55)

We have chosenn large enough so that (55) is at most(3/4)ε, which establishes (49).

The following result is a slightly stronger version of Theorem 6.
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Lemma 46 For any passive learning algorithmAp, if Ap achieves a label complexityΛp with
∞> Λp(ε , f ,P) = ω(log(1/ε)), then Meta-Algorithm 1, withAp as its argument, achieves a label
complexityΛa such thatΛa(3ε , f ,P) = o(Λp(ε , f ,P)).

Proof SupposeAp achieves label complexityΛp with ∞ > Λp(ε , f ,P) = ω(log(1/ε)). Let ε ∈
(0,1), defineL(n;ε) =

⌊

n/
(

6·2d̃f

(

∆(γ/8)
n (ε)+4m−1

n

))⌋

(for any n ∈ N), and letL−1(m;ε) =
max{n∈ N : L(n;ε)< m} (for anym∈ (0,∞)). Define

c1 = max
{

ĉ1,2·63(d+1)d̃f ln(e(d+1))
}

and c2 = max{ĉ2,4e(d+1)} ,

and suppose

n≥max
{

c1 ln(c2/ε),1+L−1(Λp(ε , f ,P);ε)
}

.

Consider running Meta-Algorithm 1 withAp andn as inputs, whilef is the target function andP
is the data distribution.

Letting ĥn denote the classifier returned from Meta-Algorithm 1, Lemma 34 implies that on an
eventÊn with P(Ên)≥ 1−e(d+1) ·exp

{

−⌊n/3⌋/(72d̃f (d+1) ln(e(d+1)))
}

≥ 1−ε/4, we have

er(ĥn)≤ 2er
(

Ap

(

Ld̃f

))

.

By a union bound, the event̂Gn(ε) = Ên∩ Ĥn(ε) hasP
(

Ĝn(ε)
)

≥ 1− ε. Thus,

E
[

er
(

ĥn
)]

≤ E

[

1Ĝn(ε)1
[

|Ld̃f
| ≥ Λp(ε , f ,P)

]

er
(

ĥn
)

]

+P

(

Ĝn(ε)∩
{

|Ld̃f
|< Λp(ε , f ,P)

})

+P
(

Ĝn(ε)c)

≤ E

[

1Ĝn(ε)1
[

|Ld̃f
| ≥ Λp(ε , f ,P)

]

2er
(

Ap

(

Ld̃f

))]

+P

(

Ĝn(ε)∩
{

|Ld̃f
|< Λp(ε , f ,P)

})

+ ε . (56)

OnĜn(ε), (51) of Lemma 45 implies|Ld̃f
| ≥ L(n;ε), and we chosen large enough so thatL(n;ε)≥

Λp(ε , f ,P). Thus, the second term in (56) is zero, and we have

E
[

er
(

ĥn
)]

≤ 2·E
[

1Ĝn(ε)1
[

|Ld̃f
| ≥ Λp(ε , f ,P)

]

er
(

Ap

(

Ld̃f

))]

+ ε

= 2·E
[

E

[

1Ĝn(ε)er
(

Ap

(

Ld̃f

))∣

∣

∣|Ld̃f
|
]

1

[

|Ld̃f
| ≥ Λp(ε , f ,P)

]]

+ ε . (57)

Note that for anyℓ with P(|Ld̃f
|= ℓ)> 0, the conditional distribution of

{

Xm : m∈ U (d̃f )
n

}

given
{

|Ld̃f
|= ℓ

}

is simply the productPℓ (i.e., conditionally i.i.d.), which is the same as the distribution

of {X1,X2, . . . ,Xℓ}. Furthermore, onĜn(ε), (50) implies that thet < ⌊2n/3⌋ condition is always
satisfied in Step 6 of Meta-Algorithm 1 whilek≤ d̃f , and (52) implies that the inferred labels from
Step 8 fork= d̃f are all correct. Therefore, for any suchℓ with ℓ≥ Λp(ε , f ,P), we have

E

[

1Ĝn(ε)er
(

Ap

(

Ld̃f

))∣

∣

∣

{

|Ld̃f
|= ℓ

}]

≤ E [er(Ap(Zℓ))]≤ ε .
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In particular, this means (57) is at most 3ε. This implies that Meta-Algorithm 1, withAp as its
argument, achieves a label complexityΛa such that

Λa(3ε , f ,P)≤max
{

c1 ln(c2/ε),1+L−1(Λp(ε , f ,P);ε)
}

.

SinceΛp(ε , f ,P) = ω(log(1/ε))⇒ c1 ln(c2/ε) = o(Λp(ε , f ,P)), it remains only to show that
L−1(Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)). Note that∀ε ∈ (0,1), L(1;ε) = 0 andL(n;ε) is diverging
in n. Furthermore, by Lemma 38, we know that for anyN-valuedN(ε) = ω(log(1/ε)), we have

∆(γ/8)
N(ε) (ε) = o(1), which impliesL(N(ε);ε) = ω(N(ε)). Thus, sinceΛp(ε , f ,P) = ω(log(1/ε)),

Lemma 31 impliesL−1(Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)), as desired.
This establishes the result for an arbitraryγ ∈ (0,1). To specialize to the specific procedure

stated as Meta-Algorithm 1, we simply takeγ = 1/2.

Proof [Theorem 6] Theorem 6 now follows immediately from Lemma 46. Specifically, we have
proven Lemma 46 for an arbitrary distributionP on X , an arbitraryf ∈ cl(C), and an arbitrary
passive algorithmAp. Therefore, it will certainly hold for everyP and f ∈ C, and since every
( f ,P) ∈Nontrivial(Λp) has∞> Λp(ε , f ,P) = ω(log(1/ε)), the implication that Meta-Algorithm
1 activizes every passive algorithmAp for C follows.

Careful examination of the proofs above reveals that the “3” in Lemma 46 can be set to any
arbitrary constant strictly larger than 1, by an appropriate modification of the “7/12” threshold
in ActiveSelect. In fact, if we were to replace Step 4 of ActiveSelect by instead selectinĝk =
argmink maxj 6=k mk j (wheremk j = erQk j(hk) whenk < j), then we could even make this a certain
(1+o(1)) function ofε, at the expense of larger constant factors inΛa.

Appendix C. The Label Complexity of Meta-Algorithm 2

As mentioned, Theorem 10 is essentially implied by the details of the proof of Theorem 16 in Ap-
pendix D below. Here we present a proof of Theorem 13, along with two useful related lemmas.
The first, Lemma 47, lower bounds the expected number of label requests Meta-Algorithm 2 would
make while processing a given number of random unlabeled examples. Thesecond, Lemma 48,
bounds the amount by which each label request is expected to reduce theprobability mass in the re-
gion of disagreement. Although we will only use Lemma 48 in our proof of Theorem 13, Lemma 47
may be of independent interest, as it provides additional insights into the behavior of disagreement
based methods, as related to the disagreement coefficient, and is included for this reason.

Throughout, we fix an arbitrary classC, a target functionf ∈ C, and a distributionP, and we
continue using the notational conventions of the proofs above, such asV⋆

m= {h∈C : ∀i ≤m,h(Xi) =
f (Xi)} (with V⋆

0 = C). Additionally, for t ∈ N, define the random variable

M(t) = min

{

m∈ N :
m
∑

ℓ=1

1DIS(V⋆
ℓ−1)

(Xℓ) = t

}

,

which represents the index of thet th unlabeled example Meta-Algorithm 2 would request the label
of (assuming it has not yet halted).

The two aforementioned lemmas are formally stated as follows.
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Lemma 47 For any r∈ (0,1) andℓ ∈ N,

E [P (DIS(V⋆
ℓ ∩B( f , r)))]≥ (1− r)ℓP (DIS(B( f , r))) ,

and E





⌈1/r⌉
∑

m=1

1DIS(V⋆
m−1∩B( f ,r)) (Xm)



≥ P (DIS(B( f , r)))
2r

.

Lemma 48 For any r∈ (0,1) and n∈ N,

E

[

P
(

DIS
(

V⋆
M(n)∩B( f , r)

))]

≥ P (DIS(B( f , r)))−nr.

Note these results immediately imply that

E





⌈1/r⌉
∑

m=1

1DIS(V⋆
m−1)

(Xm)



≥ P (DIS(B( f , r)))
2r

and
E

[

P
(

DIS
(

V⋆
M(n)

))]

≥ P (DIS(B( f , r)))−nr,

which are then directly relevant to the expected number of label requests made by Meta-Algorithm
2 among the firstmdata points, and the probability Meta-Algorithm 2 requests the label of the next
point, after already makingn label requests, respectively.

Before proving these lemmas, let us first mention their relevance to the disagreement coefficient
analysis. Specifically, for anyε ∈ (0, r], we have

E





⌈1/ε⌉
∑

m=1

1DIS(V⋆
m−1)

(Xm)



≥ E





⌈1/r⌉
∑

m=1

1DIS(V⋆
m−1)

(Xm)



≥ P (DIS(B( f , r)))
2r

.

In particular, maximizing overr > ε, we have

E





⌈1/ε⌉
∑

m=1

1DIS(V⋆
m−1)

(Xm)



≥ θ f (ε)/2.

Thus, the expected number of label requests among the first⌈1/ε⌉ unlabeled examples processed by
Meta-Algorithm 2 is at leastθ f (ε)/2 (assuming it does not halt first). Similarly, for anyε ∈ (0, r],
for anyn≤ P(DIS(B( f , r)))/(2r), Lemma 48 implies

E

[

P
(

DIS
(

V⋆
M(n)

))]

≥ P (DIS(B( f , r)))/2≥ P (DIS(B( f ,ε)))/2.

Maximizing overr > ε, we see that

n≤ θ f (ε)/2 =⇒ E

[

P
(

DIS
(

V⋆
M(n)

))]

≥ P (DIS(B( f ,ε)))/2.

In other words, for Meta-Algorithm 2 to arrive at a region of disagreement with expected probability
mass less thanP(DIS(B( f ,ε)))/2 requires a budgetn of at leastθ f (ε)/2.
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We now present proofs of Lemmas 47 and 48.
Proof [Lemma 47] LetDm = DIS(V⋆

m∩B( f , r)). Since

E





⌈1/r⌉
∑

m=1

1Dm−1 (Xm)



=

⌈1/r⌉
∑

m=1

E

[

P

(

Xm∈ Dm−1

∣

∣

∣
V⋆

m−1

)]

=

⌈1/r⌉
∑

m=1

E [P (Dm−1)] , (58)

we focus on lower boundingE [P (Dm)] for m∈ N∪{0}. Note that for anyx∈ DIS(B( f , r)), there
exists somehx ∈ B( f , r) with hx(x) 6= f (x), and if thishx ∈ V⋆

m, thenx ∈ Dm as well. This means
∀x,1Dm(x)≥ 1DIS(B( f ,r))(x) ·1V⋆

m
(hx) = 1DIS(B( f ,r))(x) ·∏m

ℓ=11DIS({hx, f})c(Xℓ). Therefore,

E [P (Dm)] = P(Xm+1 ∈ Dm) = E

[

E

[

1Dm (Xm+1)
∣

∣

∣
Xm+1

]]

≥ E

[

E

[

1DIS(B( f ,r))(Xm+1) ·
m

∏
ℓ=1

1DIS({hXm+1, f})c(Xℓ)

∣

∣

∣

∣

∣

Xm+1

]]

= E

[

m

∏
ℓ=1

P

(

hXm+1(Xℓ) = f (Xℓ)
∣

∣

∣
Xm+1

)

1DIS(B( f ,r))(Xm+1)

]

(59)

≥ E
[

(1− r)m
1DIS(B( f ,r))(Xm+1)

]

= (1− r)mP(DIS(B( f , r))), (60)

where the equality in (59) is by conditional independence of the1DIS({hXm+1, f})c(Xℓ) indicators, given
Xm+1, and the inequality in (60) is due tohXm+1 ∈ B( f , r). This indicates (58) is at least

⌈1/r⌉
∑

m=1

(1− r)m−1P (DIS(B( f , r))) =
(

1− (1− r)⌈1/r⌉
) P (DIS(B( f , r)))

r

≥
(

1− 1
e

) P (DIS(B( f , r)))
r

≥ P (DIS(B( f , r)))
2r

.

Proof [Lemma 48] For eachm ∈ N ∪ {0}, let Dm = DIS(B( f , r)∩V⋆
m). For convenience, let

M(0) = 0. We prove the result by induction. We clearly haveE
[

P
(

DM(0)
)]

= E [P (D0)] =
P(DIS(B( f , r))), which serves as our base case. Now fix anyn ∈ N and take as the inductive
hypothesis that

E
[

P
(

DM(n−1)
)]

≥ P(DIS(B( f , r)))− (n−1)r.

As in the proof of Lemma 47, for anyx∈ DM(n−1), there existshx ∈ B( f , r)∩V⋆
M(n−1) with hx(x) 6=

f (x); unlike the proof of Lemma 47, herehx is a random variable, determined byV⋆
M(n−1). If hx is

also inV⋆
M(n), thenx ∈ DM(n) as well. Thus,∀x,1DM(n)

(x) ≥ 1DM(n−1)
(x) ·1V⋆

M(n)
(hx) = 1DM(n−1)

(x) ·
1DIS({hx, f})c(XM(n)), where this last equality is due to the fact that everym∈ {M(n− 1) + 1, . . . ,
M(n)−1} hasXm /∈ DIS

(

V⋆
m−1

)

, so that in particularhx(Xm) = f (Xm). Therefore, lettingX ∼P be
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independent of the dataZ,

E
[

P
(

DM(n)

)]

= E

[

1DM(n)
(X)
]

≥ E

[

1DM(n−1)
(X) ·1DIS({hX , f})c(XM(n))

]

= E

[

1DM(n−1)
(X) ·P

(

hX(XM(n)) = f (XM(n))
∣

∣

∣X,V⋆
M(n−1)

)]

. (61)

The conditional distribution ofXM(n) given V⋆
M(n−1) is merelyP but with support restricted to

DIS
(

V⋆
M(n−1)

)

and renormalized to a probability measure: that isP
(

·
∣

∣

∣
DIS

(

V⋆
M(n−1)

))

. Thus,

since anyx∈ DM(n−1) has DIS({hx, f})⊆ DIS
(

V⋆
M(n−1)

)

, we have

P

(

hx(XM(n)) 6= f (XM(n))
∣

∣

∣V⋆
M(n−1)

)

=
P (DIS({hx, f}))
P
(

DIS
(

V⋆
M(n−1)

)) ≤ r

P
(

DM(n−1)
) ,

where the inequality follows fromhx ∈ B( f , r) andDM(n−1) ⊆ DIS
(

V⋆
M(n−1)

)

. Therefore, (61) is at

least

E

[

1DM(n−1)
(X)·

(

1− r
P(DM(n−1))

)]

= E

[

P

(

X ∈ DM(n−1)

∣

∣

∣
DM(n−1)

)

·
(

1− r
P(DM(n−1))

)]

= E

[

P
(

DM(n−1)
)

·
(

1− r
P(DM(n−1))

)]

= E
[

P
(

DM(n−1)
)]

− r.

By the inductive hypothesis, this is at leastP(DIS(B( f , r)))−nr.

With Lemma 48 in hand, we are ready for the proof of Theorem 13.
Proof [Theorem 13] LetC, f , P, andλ be as in the theorem statement. Form∈ N, let λ−1(m) =
inf{ε > 0 : λ (ε)≤m}, or 1 if this is not defined. We defineAp as a randomized algorithm such that,
for m∈N andL∈ (X ×{−1,+1})m,Ap(L) returnsf with probability 1−λ−1(|L|) and returns− f
with probabilityλ−1(|L|) (independent of the contents ofL). Note that, for any integerm≥ λ (ε),
E [er(Ap(Zm))] = λ−1(m) ≤ λ−1(λ (ε)) ≤ ε. Therefore,Ap achieves some label complexityΛp

with Λp(ε , f ,P) = λ (ε) for all ε > 0.
If θ f

(

λ (ε)−1
)

6= ω(1), then monotonicity impliesθ f
(

λ (ε)−1
)

= O(1), and since every label
complexityΛa is Ω(1), the result clearly holds. Otherwise, supposeθ f

(

λ (ε)−1
)

= ω(1); in partic-
ular, this means∃ε0 ∈ (0,1/2) such thatθ f

(

λ (2ε0)
−1
)

≥ 12. Fix anyε ∈ (0,ε0), let r > λ (2ε)−1

be such thatP(DIS(B( f ,r)))
r ≥ θ f

(

λ (2ε)−1
)

/2, and letn∈ N satisfyn≤ θ f
(

λ (2ε)−1
)

/4.
Consider running Meta-Algorithm 2 with argumentsAp andn, and letL̂ denote the final value

of the setL, and letm̌ denote the value ofm upon reaching Step 6. Note that anym< λ (2ε) and
L ∈ (X ×{−1,+1})m has er(Ap(L)) = λ−1(m) ≥ inf{ε ′ > 0 : λ (ε ′) < λ (2ε)} ≥ 2ε. Therefore,
we have

E
[

er
(

Ap
(

L̂
))]

≥ 2εP
(

|L̂|< λ (2ε)
)

= 2εP
(⌊

n/
(

6∆̂
)⌋

< λ (2ε)
)

= 2εP
(

∆̂ >
n

6λ (2ε)

)

= 2ε
(

1−P

(

∆̂≤ n
6λ (2ε)

))

. (62)
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Sincen≤ θ f
(

λ (2ε)−1
)

/4≤ P(DIS(B( f , r)))/(2r)< λ (2ε)P(DIS(B( f , r)))/2, we have

P

(

∆̂≤ n
6λ (2ε)

)

≤ P
(

∆̂ < P(DIS(B( f , r)))/12
)

≤ P

({

P (DIS(V⋆
m̌))< P(DIS(B( f , r)))/12

}

∪
{

∆̂ < P (DIS(V⋆
m̌))
}

)

. (63)

Sincem̌≤M(⌈n/2⌉), monotonicity and a union bound imply this is at most

P

(

P
(

DIS
(

V⋆
M(⌈n/2⌉)

))

< P(DIS(B( f , r)))/12
)

+P
(

∆̂ < P (DIS(V⋆
m̌))
)

. (64)

Markov’s inequality implies

P

(

P
(

DIS
(

V⋆
M(⌈n/2⌉)

))

< P(DIS(B( f , r)))/12
)

= P

(

P(DIS(B( f , r)))−P
(

DIS
(

V⋆
M(⌈n/2⌉)

))

>
11
12
P(DIS(B( f , r)))

)

≤ P

(

P(DIS(B( f , r)))−P
(

DIS
(

V⋆
M(⌈n/2⌉)∩B( f , r)

))

>
11
12
P(DIS(B( f , r)))

)

≤
E

[

P(DIS(B( f , r)))−P
(

DIS
(

V⋆
M(⌈n/2⌉)∩B( f , r)

))]

11
12P(DIS(B( f , r)))

=
12
11



1−
E

[

P
(

DIS
(

V⋆
M(⌈n/2⌉)∩B( f , r)

))]

P(DIS(B( f , r)))



 .

Lemma 48 implies this is at most12
11

⌈n/2⌉r
P(DIS(B( f ,r))) ≤ 12

11

⌈

P(DIS(B( f ,r)))
4r

⌉

r
P(DIS(B( f ,r))) . Since anya≥

3/2 has⌈a⌉ ≤ (3/2)a, andθ f
(

λ (2ε)−1
)

≥ 12 impliesP(DIS(B( f ,r)))
4r ≥ 3/2, we have

⌈

P(DIS(B( f ,r)))
4r

⌉

≤ 3
8
P(DIS(B( f ,r)))

r , so that12
11

⌈

P(DIS(B( f ,r)))
4r

⌉

r
P(DIS(B( f ,r))) ≤ 9

22. Combining the above, we have

P

(

P
(

DIS
(

V⋆
M(⌈n/2⌉)

))

< P(DIS(B( f , r)))/12
)

≤ 9
22

. (65)

Examining the second term in (64), Hoeffding’s inequality and the definition of ∆̂ from (13) imply

P
(

∆̂ < P (DIS(V⋆
m̌))
)

= E

[

P

(

∆̂ < P (DIS(V⋆
m̌))
∣

∣

∣V⋆
m̌,m̌

)]

≤ E
[

e−8m̌]≤ e−8 < 1/11. (66)

Combining (62), (63), (64), (65), and (66) implies

E
[

er
(

Ap
(

L̂
))]

> 2ε
(

1− 9
22
− 1

11

)

= ε .

Thus, for any label complexityΛa achieved by running Meta-Algorithm 2 withAp as its argument,
we must haveΛa(ε , f ,P) > θ f

(

λ (2ε)−1
)

/4. Since this is true for allε ∈ (0,ε0), this establishes
the result.
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Appendix D. The Label Complexity of Meta-Algorithm 3

As in Appendix B, we will assumeC is a fixed VC class,P is some arbitrary distribution, and
f ∈ cl(C) is an arbitrary fixed function. We continue using the notation introduced above: in
particular,Sk(H) =

{

S∈ X k :H shattersS
}

, S̄k(H) = X k \ Sk(H), ∂̄k
H f = X k \ ∂k

H f , and δ̃ f =

P d̃f−1
(

∂
d̃f−1
C

f
)

. Also, as above, we will prove a more general result replacing the “1/2” in Steps

5, 9, and 12 of Meta-Algorithm 3 with an arbitrary valueγ ∈ (0,1); thus, the specific result for the
stated algorithm will be obtained by takingγ = 1/2.

For the estimatorŝPm in Meta-Algorithm 3, we take precisely the same definitions as given in
Appendix B.1 for the estimators in Meta-Algorithm 1. In particular, the quantities∆̂(k)

m (x,W2,H),
∆̂(k)

m (W1,W2,H), Γ̂(k)
m (x,y,W2,H), andM(k)

m (H) are all defined as in Appendix B.1, and theP̂m esti-
mators are again defined as in (11), (12) and (13).

Also, we sometimes refer to quantities defined above, such as ¯pζ (k, ℓ,m) (defined in (34)), as

well as the various events from the lemmas of the previous appendix, such asHτ(δ ), H ′, H(i)
τ , H(ii)

τ ,

H(iii )
τ (ζ ), H(iv)

τ , andG(i)
τ .

D.1 Proof of Theorem 16

Throughout the proof, we will make reference to the setsVm defined in Meta-Algorithm 3. Also
let V(k) denote the final value ofV obtained for the specified value ofk in Meta-Algorithm 3. Both
Vm andV(k) are implicitly functions of the budget,n, given to Meta-Algorithm 3. As above, we
continue to denote byV⋆

m = {h ∈ C : ∀i ≤ m,h(Xm) = f (Xm)}. One important fact we will use
repeatedly below is that ifVm = V⋆

m for somem, then since Lemma 35 implies thatV⋆
m 6= ∅ on H ′,

we must have that all of the previous ˆy values were consistent withf , which means that∀ℓ ≤ m,
Vℓ =V⋆

ℓ . In particular, ifV(k′) =V⋆
m for the largestmvalue obtained whilek= k′ in Meta-Algorithm

3, thenVℓ =V⋆
ℓ for all ℓ obtained whilek≤ k′ in Meta-Algorithm 3.

Additionally, definem̃n = ⌊n/24⌋, and note that the valuem= ⌈n/6⌉ is obtained whilek= 1 in
Meta-Algorithm 3. We also define the following quantities, which we will show are typically equal
to related quantities in Meta-Algorithm 3. Define ˆm0 = 0, T⋆

0 = ⌈2n/3⌉, andt̂0 = 0, and for each
k∈ {1, . . . ,d+1}, inductively define
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T⋆
k = T⋆

k−1− t̂k−1,

I⋆mk= 1[γ,∞)

(

∆̂(k)
m
(

Xm,W2,V
⋆
m−1

)

)

,∀m∈ N,

m̌k = min







m≥ m̂k−1 :
m
∑

ℓ=m̂k−1+1

I⋆ℓk = ⌈T⋆
k /4⌉







∪{max{k ·2n+1,m̂k−1}} ,

m̂k = m̌k+
⌊

T⋆
k /
(

3∆̂(k)
m̌k

(

W1,W2,V
⋆
m̌k

)

)⌋

,

Ǔk = (m̂k−1,m̌k]∩N,
Ûk = (m̌k,m̂k]∩N,

C⋆
mk= 1[0,⌊3T⋆

k /4⌋)





m−1
∑

ℓ=m̂k−1+1

I⋆ℓk





Q⋆
k =

∑

m∈Ûk

I⋆mk·C⋆
mk,

andt̂k = Q⋆
k +

∑

m∈Ǔk

I⋆mk.

The meaning of these values can be understood in the context of Meta-Algorithm 3, under the
condition thatVm = V⋆

m for values ofm obtained for the respective value ofk. Specifically, under
this condition,T⋆

k corresponds toTk, t̂k represents the final valuet for roundk, m̌k represents the
value ofmupon reaching Step 9 in roundk, while m̂k represents the value ofmat the end of roundk,
Ǔk corresponds to the set of indices arrived at in Step 4 during roundk, while Ûk corresponds to the
set of indices arrived at in Step 11 during roundk, for m∈ Ǔk, I⋆mk indicates whether the label ofXm

is requested, while form∈ Ûk, I⋆mk ·C⋆
mk indicates whether the label ofXm is requested. FinallyQ⋆

k
corresponds to the number of label requests in Step 13 during roundk. In particular, note ˇm1≥ m̃n.

Lemma 49 For anyτ ∈ N, on the event H′∩G(i)
τ , ∀k, ℓ,m∈ N with k≤ d̃f , ∀x∈ X , for any setsH

andH′ with V⋆
ℓ ⊆H⊆H′ ⊆ B( f , r1/6), if either k= 1 or m≥ τ, then

∆̂(k)
m (x,W2,H)≤ (3/2)∆̂(k)

m
(

x,W2,H′
)

.

In particular, for anyδ ∈ (0,1) andτ ≥ τ(1/6;δ ), on H′∩Hτ(δ )∩G(i)
τ , ∀k, ℓ, ℓ′,m∈N with m≥ τ,

ℓ≥ ℓ′ ≥ τ, and k≤ d̃f , ∀x∈ X , ∆̂(k)
m (x,W2,V⋆

ℓ )≤ (3/2)∆̂(k)
m
(

x,W2,V⋆
ℓ′
)

.

Proof First note that∀m∈ N, ∀x∈ X ,

∆̂(1)
m (x,W2,H) = 1DIS(H)(x)≤ 1DIS(H′)(x) = ∆̂(1)

m
(

x,W2,H′
)

,

so the result holds fork = 1. Lemma 35, Lemma 40, and monotonicity ofM(k)
m (·) imply that on

H ′∩G(i)
τ , for anym≥ τ andk∈

{

2, . . . , d̃f
}

,

M(k)
m (H)≥

m3
∑

i=1

1
∂

k−1
C

f

(

S(k)i

)

≥ (2/3)M(k)
m
(

B( f , r1/6)
)

≥ (2/3)M(k)
m
(

H′
)

,

1561



HANNEKE

so that∀x∈ X ,

∆̂(k)
m (x,W2,H) = M(k)

m (H)−1
m3
∑

i=1

1Sk(H)

(

S(k)i ∪{x}
)

≤M(k)
m (H)−1

m3
∑

i=1

1Sk(H′)

(

S(k)i ∪{x}
)

≤ (3/2)M(k)
m
(

H′
)−1

m3
∑

i=1

1Sk(H′)

(

S(k)i ∪{x}
)

= (3/2)∆̂(k)
m
(

x,W2,H′
)

.

The final claim follows from Lemma 29.

Lemma 50 For any k∈ {1, . . . ,d+1}, if n≥ 3·4k−1, then T⋆k ≥ 41−k(2n/3) andt̂k≤
⌊

3T⋆
k /4

⌋

.

Proof RecallT⋆
1 = ⌈2n/3⌉ ≥ 2n/3. If n≥ 2, we also have⌊3T⋆

1 /4⌋ ≥ ⌈T⋆
1 /4⌉, so that (due to the

C⋆
m1 factors)t̂1 ≤ ⌊3T⋆

1 /4⌋. For the purpose of induction, suppose somek∈ {2, . . . ,d+1} hasn≥
3·4k−1, T⋆

k−1≥ 42−k(2n/3), andt̂k−1≤ ⌊3T⋆
k−1/4⌋. ThenT⋆

k = T⋆
k−1− t̂k−1≥ T⋆

k−1/4≥ 41−k(2n/3),
and sincen≥ 3·4k−1, we also have⌊3T⋆

k /4⌋ ≥ ⌈T⋆
k /4⌉, so that̂tk≤ ⌊3T⋆

k /4⌋ (again, due to theC⋆
mk

factors). Thus, by induction, this holds for allk∈ {1, . . . ,d+1} with n≥ 3·4k−1.

The next lemma indicates that the “t < ⌊3Tk/4⌋” constraint in Step 12 is redundant fork≤ d̃f . It
is similar to (50) in Lemma 45, but is made only slightly more complicated by the fact thatthe∆̂(k)

estimate is calculated in Step 9 based on a setVm different from the ones used to decide whether or
not to request a label in Step 12.

Lemma 51 There exist(C,P, f ,γ)-dependent constants̃c(i)1 , c̃(i)2 ∈ [1,∞) such that, for anyδ ∈
(0,1), and any integer n≥ c̃(i)1 ln

(

c̃(i)2 /δ
)

, on an event

H̃(i)
n (δ )⊆G(i)

m̃n
∩Hm̃n(δ )∩H(i)

m̃n
∩H(iii )

m̃n
(γ/16)∩H(iv)

m̃n

with P

(

H̃(i)
n (δ )

)

≥ 1−2δ , ∀k∈
{

1, . . . , d̃f
}

, t̂k =
m̂k
∑

m=m̂k−1+1
I⋆mk≤ 3T⋆

k /4.

Proof Define the constants

c̃(i)1 = max
{

192d
r(3/32)

, 3·4d̃ f +6

δ̃ f γ2

}

, c̃(i)2 = max

{

8e
r(3/32)

,
(

c(i)+c(iii )(γ/16)+125d̃f δ̃−1
f

)

}

,

and letn(i)(δ ) = c̃(i)1 ln
(

c̃(i)2 /δ
)

. Fix any integern≥ n(i)(δ ) and consider the event

H̃(1)
n (δ ) = G(i)

m̃n
∩Hm̃n(δ )∩H(i)

m̃n
∩H(iii )

m̃n
(γ/16)∩H(iv)

m̃n
.
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By Lemma 49 and the fact that ˇmk ≥ m̃n for all k≥ 1, sincen≥ n(i)(δ )≥ 24τ (1/6;δ ), onH̃(1)
n (δ ),

∀k∈
{

1, . . . , d̃f
}

, ∀m∈ Ûk,

∆̂(k)
m
(

Xm,W2,V
⋆
m−1

)

≤ (3/2)∆̂(k)
m
(

Xm,W2,V
⋆
m̌k

)

. (67)

Now fix anyk∈
{

1, . . . , d̃f
}

. Sincen≥ n(i)(δ )≥ 27·4k−1, Lemma 50 impliesT⋆
k ≥ 18, which means

3T⋆
k /4−⌈T⋆

k /4⌉ ≥ 4T⋆
k /9. Also note

∑

m∈Ǔk
I⋆mk≤

⌈

T⋆
k /4

⌉

. Let Nk = (4/3)∆̂(k)
m̌k

(

W1,W2,V⋆
m̌k

)

∣

∣Ûk

∣

∣,

and note that
∣

∣Ûk

∣

∣=
⌊

T⋆
k /
(

3∆̂(k)
m̌k

(

W1,W2,V⋆
m̌k

))⌋

, so thatNk ≤ (4/9)T⋆
k . Thus, we have

P



H̃(1)
n (δ )∩







m̂k
∑

m=m̂k−1+1

I⋆mk> 3T⋆
k /4











≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

I⋆mk> 4T⋆
k /9









≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

I⋆mk> Nk











≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

1[2γ/3,∞)

(

∆̂(k)
m
(

Xm,W2,V
⋆
m̌k

)

)

> Nk









 , (68)

where this last inequality is by (67). To simplify notation, defineZ̃k =
(

T⋆
k ,m̌k,W1,W2,V⋆

m̌k

)

. By

Lemmas 43 and 44 (withβ = 3/32, ζ = 2γ/3, α = 3/4, andξ = γ/16), sincen ≥ n(i)(δ ) ≥
24·max

{

τ(iv)(γ/16;δ ),τ(3/32;δ )
}

, on H̃(1)
n (δ ), ∀m∈ Ûk,

p̄2γ/3(k,m̌k,m)≤ P (x : px (k,m̌k)≥ γ/2)+exp
{

−γ2M̃(m)/256
}

≤ P (x : px (k,m̌k)≥ γ/2)+exp
{

−γ2M̃(m̌k)/256
}

≤ ∆̂(k)
m̌k

(

W1,W2,V
⋆
m̌k

)

.

Letting G̃′n(k) denote the event ¯p2γ/3(k,m̌k,m) ≤ ∆̂(k)
m̌k

(

W1,W2,V⋆
m̌k

)

, we see that̃G′n(k) ⊇ H̃(1)
n (δ ).

Thus, since the1[2γ/3,∞)

(

∆̂(k)
m

(

Xm,W2,V⋆
m̌k

))

variables are conditionally independent givenZ̃k for

m∈ Ûk, each with respective conditional distribution Bernoulli
(

p̄2γ/3(k,m̌k,m)
)

, the law of total
probability and a Chernoff bound imply that (68) is at most

P



G̃′n(k)∩







∑

m∈Ûk

1[2γ/3,∞)

(

∆̂(k)
m
(

Xm,W2,V
⋆
m̌k

)

)

> Nk











= E



P





∑

m∈Ûk

1[2γ/3,∞)

(

∆̂(k)
m
(

Xm,W2,V
⋆
m̌k

)

)

> Nk

∣

∣

∣

∣

∣

Z̃k



 ·1G̃′n(k)





≤ E

[

exp
{

−∆̂(k)
m̌k

(

W1,W2,V
⋆
m̌k

)∣

∣Ûk

∣

∣/27
}]

≤ E [exp{−T⋆
k /162}]≤ exp

{

−n/
(

243·4k−1
)}

,
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where the last inequality is by Lemma 50. Thus, there existsG̃n(k) with P

(

H̃(1)
n (δ )\ G̃n(k)

)

≤
exp
{

−n/
(

243·4k−1
)}

such that, onH̃(1)
n (δ )∩ G̃n(k), we have

∑m̂k
m=m̂k−1+1 I⋆mk≤ 3T⋆

k /4. Defining

H̃(i)
n (δ ) = H̃(1)

n (δ )∩⋂d̃f

k=1G̃n(k), a union bound implies

P

(

H̃(1)
n (δ )\ H̃(i)

n (δ )
)

≤ d̃f ·exp
{

−n/
(

243·4d̃f−1
)}

, (69)

and onH̃(i)
n (δ ), everyk∈

{

1, . . . , d̃f
}

has
∑m̂k

m=m̂k−1+1 I⋆mk≤ 3T⋆
k /4. In particular, this means theC⋆

mk

factors are redundant inQ⋆
k, so that̂tk =

∑m̂k
m=m̂k−1+1 I⋆mk.

To get the stated probability bound, a union bound implies that

1−P

(

H̃(1)
n (δ )

)

≤ (1−P(Hm̃n(δ )))+
(

1−P

(

H(i)
m̃n

))

+P

(

H(i)
m̃n
\H(iii )

m̃n
(γ/16)

)

+
(

1−P

(

H(iv)
m̃n

))

+P

(

H(i)
m̃n
\G(i)

m̃n

)

≤ δ +c(i) ·exp
{

−M̃ (m̃n)/4
}

+c(iii )(γ/16) ·exp
{

−M̃ (m̃n)γ2/256
}

+3d̃f ·exp{−2m̃n}
+121d̃f δ̃−1

f ·exp
{

−M̃ (m̃n)/60
}

≤ δ +
(

c(i)+c(iii )(γ/16)+124d̃f δ̃−1
f

)

·exp
{

−m̃nδ̃ f γ2/512
}

. (70)

Sincen≥ n(i)(δ )≥ 24, we have ˜mn≥ n/48, so that summing (69) and (70) gives us

1−P

(

H̃(i)
n (δ )

)

≤ δ +
(

c(i)+c(iii )(γ/16)+125d̃f δ̃−1
f

)

·exp
{

−nδ̃ f γ2/
(

512·48·4d̃f−1
)}

. (71)

Finally, note that we have chosenn(i)(δ ) sufficiently large so that (71) is at most 2δ .

The next lemma indicates that the redundancy of the “t < ⌊3Tk/4⌋” constraint, just established
in Lemma 51, implies that all ˆy labels obtained whilek≤ d̃f are consistent with the target function.

Lemma 52 Consider running Meta-Algorithm 3 with a budget n∈ N, while f is the target func-

tion andP is the data distribution. There is an eventH̃(ii)
n and (C,P, f ,γ)-dependent constants

c̃(ii)1 , c̃(ii)2 ∈ [1,∞) such that, for anyδ ∈ (0,1), if n≥ c̃(ii)1 ln
(

c̃(ii)2 /δ
)

, thenP
(

H̃(i)
n (δ )\ H̃(ii)

n

)

≤ δ ,

and onH̃(i)
n (δ )∩ H̃(ii)

n , we have V(d̃f ) =Vm̂d̃ f
=V⋆

m̂d̃ f
.

Proof Definec̃(ii)1 = max

{

c̃(i)1 , 192d
r(1−γ)/6

, 211

δ̃ 1/3
f

}

, c̃(ii)2 = max
{

c̃(i)2 , 8e
r(1−γ)/6

,c(ii),exp{τ∗}
}

, let n(ii)(δ ) =

c̃(ii)1 ln
(

c̃(ii)2 /δ
)

, supposen≥ n(ii)(δ ), and define the event̃H(ii)
n = H(ii)

m̃n
.

By Lemma 41, sincen≥ n(ii)(δ ) ≥ 24·max{τ((1− γ)/6;δ ),τ∗}, on H̃(i)
n (δ )∩ H̃(ii)

n , ∀m∈ N

andk∈
{

1, . . . , d̃f
}

with eitherk= 1 orm> m̃n,

∆̂(k)
m
(

Xm,W2,V
⋆
m−1

)

< γ ⇒ Γ̂(k)
m
(

Xm,− f (Xm),W2,V
⋆
m−1

)

< Γ̂(k)
m
(

Xm, f (Xm),W2,V
⋆
m−1

)

. (72)
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Recall thatm̃n ≤ min{⌈T1/4⌉ ,2n} = ⌈⌈2n/3⌉/4⌉. Therefore,Vm̃n is obtained purely by ˜mn exe-
cutions of Step 8 whilek = 1. Thus, for everym obtained in Meta-Algorithm 3, eitherk = 1 or
m> m̃n. We now proceed by induction onm. We already knowV0 = C = V⋆

0 , so this serves as
our base case. Now consider some valuem∈ N obtained in Meta-Algorithm 3 whilek≤ d̃f , and
suppose everym′ < mhasVm′ =V⋆

m′ . But this means thatTk = T⋆
k and the value oft upon obtaining

this particularm hast ≤∑m−1
ℓ=m̂k−1+1 I⋆ℓk. In particular, if ∆̂(k)

m (Xm,W2,Vm−1) ≥ γ, thenI⋆mk = 1, so

thatt <
∑m

ℓ=m̂k−1+1 I⋆mk; by Lemma 51, onH̃(i)
n (δ )∩ H̃(ii)

n ,
∑m

ℓ=m̂k−1+1 I⋆mk≤
∑m̂k

ℓ=m̂k−1+1 I⋆mk≤ 3T⋆
k /4,

so thatt < 3T⋆
k /4, and therefore ˆy = Ym = f (Xm); this impliesVm = V⋆

m. On the other hand, on

H̃(i)
n (δ )∩ H̃(ii)

n , if ∆̂(k)
m (Xm,W2,Vm−1)< γ, then (72) implies

ŷ= argmax
y∈{−1,+1}

Γ̂(k)
m (Xm,y,W2,Vm−1) = f (Xm),

so that againVm = V⋆
m. Thus, by the principle of induction, oñH(i)

n (δ )∩ H̃(ii)
n , for everym∈ N

obtained whilek≤ d̃f , we haveVm=V⋆
m; in particular, this impliesV(d̃f ) =Vm̂d̃ f

=V⋆
m̂d̃ f

. The bound

onP
(

H̃(i)
n (δ )\ H̃(ii)

n

)

then follows from Lemma 41, as we have chosenn(ii)(δ ) sufficiently large so

that (27) (withτ = m̃n) is at mostδ .

Lemma 53 Consider running Meta-Algorithm 3 with a budget n∈ N, while f is the target func-

tion andP is the data distribution. There exist(C,P, f ,γ)-dependent constants̃c(iii )1 , c̃(iii )2 ∈ [1,∞)

such that, for anyδ ∈ (0,e−3), λ ∈ [1,∞), and n∈ N, there exists an event̃H(iii )
n (δ ,λ ) having

P

(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii )
n (δ ,λ )

)

≤ δ with the property that, if

n≥ c̃(iii )1 θ̃ f (d/λ ) ln2

(

c̃(iii )2 λ
δ

)

,

then onH̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii )
n (δ ,λ ), at the conclusion of Meta-Algorithm 3,

∣

∣

∣Ld̃f

∣

∣

∣≥ λ .

Proof Let c̃(iii )1 = max

{

c̃(i)1 , c̃(ii)1 ,
d·d̃f ·410+2d̃ f

γ3δ̃ 3
f

, 192d
r(3/32)

}

, c̃(iii )2 = max
{

c̃(i)2 , c̃(ii)2 , 8e
r(3/32)

}

, fix any δ ∈

(0,e−3), λ ∈ [1,∞), let n(iii )(δ ,λ ) = c̃(iii )1 θ̃ f (d/λ ) ln2(c̃(iii )2 λ/δ ), and supposen≥ n(iii )(δ ,λ ).
Define a sequenceℓi = 2i for integersi ≥ 0, and letι̂ =

⌈

log2

(

42+d̃f λ/γδ̃ f

)⌉

. Also define

φ̃(m,δ ,λ ) = max{φ (m;δ/2ι̂) ,d/λ}, whereφ is defined in Lemma 29. Then define the events

H̃(3)(δ ,λ ) =
ι̂
⋂

i=1

Hℓi (δ/2ι̂) , H̃(iii )
n (δ ,λ ) = H̃(3)(δ ,λ )∩

{

m̌d̃f
≥ ℓι̂

}

.

Note that̂ι ≤ n, so thatℓι̂ ≤ 2n, and therefore the truncation in the definition of ˇmd̃f
, which enforces

m̌d̃f
≤max

{

d̃f ·2n+1,m̂k−1
}

, will never be a factor in whether or not ˇmd̃f
≥ ℓι̂ is satisfied.

Sincen≥ n(iii )(λ ,δ )≥ c̃(ii)1 ln
(

c̃(ii)2 /δ
)

, Lemma 52 implies that oñH(i)
n (δ )∩ H̃(ii)

n , Vm̂d̃ f
=V⋆

m̂d̃ f
.

Recall that this implies that all ˆy values obtained whilem≤ m̂d̃f
are consistent with their respective
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f (Xm) values, so that every suchm hasVm =V⋆
m as well. In particular,Vm̌d̃ f

=V⋆
m̌d̃ f

. Also note that

n(iii )(δ ,λ ) ≥ 24· τ(iv)(γ/16;δ ), so thatτ(iv)(γ/16;δ ) ≤ m̃n, and recall we always have ˜mn ≤ m̌d̃f
.

Thus, onH̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii )
n (δ ,λ ), (taking∆̂(k) as in Meta-Algorithm 3)

∆̂(d̃f ) = ∆̂(d̃f )
m̌d̃ f

(

W1,W2,V
⋆
m̌d̃ f

)

(Lemma 52)

≤ P
(

x : px

(

d̃f ,m̌d̃f

)

≥ γ/8
)

+4m̌−1
d̃f

(Lemma 44)

≤
8P d̃f

(

S d̃f

(

V⋆
m̌d̃ f

))

γP d̃f−1

(

S d̃f−1

(

V⋆
m̌d̃ f

)) +4m̌−1
d̃f

(Markov’s ineq.)

≤
(

8/γδ̃ f

)

P d̃f

(

S d̃f

(

V⋆
m̌d̃ f

))

+4m̌−1
d̃f

(Lemma 35)

≤
(

8/γδ̃ f

)

P d̃f

(

S d̃f
(

V⋆
ℓι̂

)

)

+4ℓ−1
ι̂ (defn ofH̃(iii )

n (δ ,λ ))

≤
(

8/γδ̃ f

)

P d̃f

(

S d̃f
(

B
(

f , φ̃ (ℓι̂ ,δ ,λ )
))

)

+4ℓ−1
ι̂ (Lemma 29)

≤
(

8/γδ̃ f

)

θ̃ f (d/λ )φ̃ (ℓι̂ ,δ ,λ )+4ℓ−1
ι̂ (defn of θ̃ f (d/λ ))

≤
(

12/γδ̃ f

)

θ̃ f (d/λ )φ̃ (ℓι̂ ,δ ,λ ) (φ̃ (ℓι̂ ,δ ,λ )≥ ℓ−1
ι̂ )

=
12θ̃ f (d/λ )

γδ̃ f
max

{

2
d ln(2emax{ℓι̂ ,d}/d)+ ln(4ι̂/δ )

ℓι̂
,d/λ

}

. (73)

Plugging in the definition of̂ι andℓι̂ ,

d ln(2emax{ℓι̂ ,d}/d)+ ln(4ι̂/δ )
ℓι̂

≤ (d/λ )γδ̃ f 4
−1−d̃f ln

(

41+d̃f λ/δγδ̃ f

)

≤ (d/λ ) ln(λ/δ ) .

Therefore, (73) is at most 24θ̃ f (d/λ )(d/λ ) ln(λ/δ )/γδ̃ f . Thus, since

n(iii )(δ ,λ )≥max
{

c̃(i)1 ln
(

c̃(i)2 /δ
)

, c̃(ii)1 ln
(

c̃(ii)2 /δ
)}

,

Lemmas 51 and 52 imply that oñH(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii )
n (δ ,λ ),

∣

∣

∣
Ld̃f

∣

∣

∣
=
⌊

T⋆
d̃f
/
(

3∆̂(d̃f )
)⌋

≥
⌊

41−d̃f 2n/
(

9∆̂(d̃f )
)⌋

≥ 41−d̃f γδ̃ f n

9·24· θ̃ f (d/λ )(d/λ ) ln(λ/δ )
≥ λ ln(λ/δ )≥ λ .

Now we turn to boundingP
(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii )
n (δ ,λ )

)

. By a union bound, we have

1−P

(

H̃(3)(δ ,λ )
)

≤
ι̂
∑

i=1

(1−P(Hℓi (δ/2ι̂)))≤ δ/2. (74)

1566



ACTIVIZED LEARNING

Thus, it remains only to boundP
(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

m̌d̃f
< ℓι̂

})

.

For eachi ∈ {0,1, . . . , ι̂−1}, let Q̌i =
∣

∣

∣

{

m∈ (ℓi , ℓi+1]∩Ǔd̃f
: I⋆

md̃f
= 1
}∣

∣

∣. Now consider the set

I of all i ∈ {0,1, . . . , ι̂−1} with ℓi ≥ m̃n and(ℓi , ℓi+1]∩Ǔd̃f
6= ∅. Note thatn(iii )(δ ,λ )≥ 48, so that

ℓ0< m̃n. Fix anyi ∈I. Sincen(iii )(λ ,δ )≥ 24·τ(1/6;δ ), we havem̃n≥ τ(1/6;δ ), so that Lemma 49

implies that onH̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ ), lettingQ̄= 2·46+d̃f

(

d/γ2δ̃ 2
f

)

θ̃ f (d/λ ) ln(λ/δ ),

P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

Q̌i > Q̄
}

∣

∣

∣
W2,V

⋆
ℓi

)

≤ P

(

∣

∣

∣

{

m∈ (ℓi , ℓi+1]∩N : ∆̂(d̃f )
m
(

Xm,W2,V
⋆
ℓi

)

≥ 2γ/3
}∣

∣

∣> Q̄

∣

∣

∣

∣

∣

W2,V
⋆
ℓi

)

. (75)

For m> ℓi , the variables1[2γ/3,∞)

(

∆̂(d̃f )
m

(

Xm,W2,V⋆
ℓi

))

are conditionally (givenW2,V⋆
ℓi

) indepen-

dent, each with respective conditional distribution Bernoulli with mean ¯p2γ/3
(

d̃f , ℓi ,m
)

. Since
n(iii )(δ ,λ )≥ 24·τ(3/32;δ ), we havem̃n≥ τ(3/32;δ ), so that Lemma 43 (withζ = 2γ/3, α = 3/4,

andβ = 3/32) implies that onH̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ ), each of thesemvalues has

p̄2γ/3
(

d̃f , ℓi ,m
)

≤ P
(

x : px
(

d̃f , ℓi
)

≥ γ/2
)

+exp
{

−M̃(m)γ2/256
}

≤
2P d̃f

(

S d̃f

(

V⋆
ℓi

))

γP d̃f−1
(

S d̃f−1
(

V⋆
ℓi

)) +exp
{

−M̃(ℓi)γ2/256
}

(Markov’s ineq.)

≤
(

2/γδ̃ f

)

P d̃f

(

S d̃f
(

V⋆
ℓi

)

)

+exp
{

−M̃(ℓi)γ2/256
}

(Lemma 35)

≤
(

2/γδ̃ f

)

P d̃f

(

S d̃f
(

B
(

f , φ̃(ℓi ,δ ,λ )
))

)

+exp
{

−M̃(ℓi)γ2/256
}

(Lemma 29)

≤
(

2/γδ̃ f

)

θ̃ f (d/λ )φ̃(ℓi ,δ ,λ )+exp
{

−M̃(ℓi)γ2/256
}

(defn of θ̃ f (d/λ )).

Denote the expression in this last line bypi , and letB(ℓi , pi) be a Binomial(ℓi , pi) random vari-

able. Noting thatℓi+1− ℓi = ℓi , we have that onH̃(i)
n (δ ) ∩ H̃(ii)

n ∩ H̃(3)(δ ,λ ), (75) is at most
P
(

B(ℓi , pi)> Q̄
)

. Next, note that

ℓi pi = (2/γδ̃ f )θ̃ f (d/λ )ℓi φ̃(ℓi ,δ ,λ )+ ℓi ·exp
{

−ℓ3
i δ̃ f γ2/512

}

.

Sinceu·exp
{

−u3
}

≤ (3e)−1/3 for anyu, lettingu= ℓi δ̃ f γ/8 we have

ℓi ·exp
{

−ℓ3
i δ̃ f γ2/512

}

≤
(

8/γδ̃ f

)

u·exp
{

−u3}≤ 8/
(

γδ̃ f (3e)1/3
)

≤ 4/γδ̃ f .
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Therefore, sincẽφ(ℓi ,δ ,λ )≥ ℓ−1
i , we have thatℓi pi is at most

6

γδ̃ f
θ̃ f (d/λ )ℓi φ̃(ℓi ,δ ,λ )≤

6

γδ̃ f
θ̃ f (d/λ )max

{

2d ln(2eℓι̂)+2ln

(

4ι̂
δ

)

, ℓι̂d/λ
}

≤ 6

γδ̃ f
θ̃ f (d/λ )max

{

2d ln

(

43+d̃f eλ
γδ̃ f

)

+2ln

(

43+d̃f 2λ
γδ̃ f δ

)

,
d43+d̃f

γδ̃ f

}

≤ 6

γδ̃ f
θ̃ f (d/λ )max

{

4d ln

(

43+d̃f λ
γδ̃ f δ

)

,
d43+d̃f

γδ̃ f

}

≤ 6

γδ̃ f
θ̃ f (d/λ ) · d44+d̃f

γδ̃ f
ln

(

λ
δ

)

≤ 46+d̃f d

γ2δ̃ 2
f

θ̃ f (d/λ ) ln

(

λ
δ

)

= Q̄/2.

Therefore, a Chernoff bound impliesP
(

B(ℓi , pi)> Q̄
)

≤ exp
{

−Q̄/6
}

≤ δ/2ι̂ , so that onH̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ ), (75) is at mostδ/2ι̂ . The law of total probability implies there exists an event

H̃(4)
n (i,δ ,λ ) with P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\ H̃(4)
n (i,δ ,λ )

)

≤ δ/2ι̂ such that, onH̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ )∩ H̃(4)

n (i,δ ,λ ), Q̌i ≤ Q̄.
Note that

ι̂Q̄≤ log2

(

42+d̃f λ/γδ̃ f

)

·47+d̃f

(

d/γ2δ̃ 2
f

)

θ̃ f (d/λ ) ln(λ/δ )

≤
(

d̃f 4
9+d̃f /γ3δ̃ 3

f

)

dθ̃ f (d/λ ) ln2(λ/δ )≤ 41−d̃f n/12. (76)

Since
∑

m≤2m̃n
I⋆
md̃f
≤ n/12, if d̃f = 1 then (76) implies that on the eventH̃(i)

n (δ )∩H̃(ii)
n ∩H̃(3)(δ ,λ )∩

⋂

i∈I H̃(4)
n (i,δ ,λ ),

∑

m≤ℓι̂
I⋆m1 ≤ n/12+

∑

i∈I Q̌i ≤ n/12+ ι̂Q̄≤ n/6≤ ⌈T⋆
1 /4⌉, so thatm̌1 ≥ ℓι̂ .

Otherwise, ifd̃f > 1, then everym∈ Ǔd̃f
hasm> 2m̃n, so that

∑

i≤ι̂ Q̌i =
∑

i∈I Q̌i ; thus, onH̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ )∩⋂i∈I H̃(4)

n (i,δ ,λ ),
∑

i∈I Q̌i ≤ ι̂Q̄≤ 41−d̃f n/12; Lemma 50 implies 41−d̃f n/12≤
⌈

T⋆
d̃f
/4
⌉

, so that again we have ˇmd̃f
≥ ℓι̂ . Combined with a union bound, this implies

P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

m̌d̃f
< ℓι̂

})

≤ P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\
⋂

i∈I
H̃(4)

n (i,δ ,λ )

)

≤
∑

i∈I
P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\ H̃(4)
n (i,δ ,λ )

)

≤ δ/2. (77)

Therefore,P
(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii )
n (δ ,λ )

)

≤ δ , obtained by summing (77) and (74).

Proof [Theorem 16] If Λp(ε/4, f ,P) = ∞ then the result trivially holds. Otherwise, suppose

ε ∈ (0,10e−3), let δ = ε/10, λ = Λp(ε/4, f ,P), c̃2 = max
{

10c̃(i)2 ,10c̃(ii)2 ,10c̃(iii )2 ,10e(d+1)
}

,

and c̃1 = max
{

c̃(i)1 , c̃(ii)1 , c̃(iii )1 ,2·63(d+1)d̃ ln(e(d+1))
}

, and consider running Meta-Algorithm
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3 with passive algorithmAp and budgetn ≥ c̃1θ̃ f (d/λ ) ln2(c̃2λ/ε), while f is the target func-

tion andP is the data distribution. On the eventH̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii )
n (δ ,λ ), Lemma 53 im-

plies
∣

∣

∣
Ld̃f

∣

∣

∣
≥ λ , while Lemma 52 impliesV(d̃f ) = V⋆

m̂d̃ f
; recalling that Lemma 35 implies that

V⋆
m̂d̃ f
6= ∅ on this event, we must have erLd̃ f

( f ) = 0. Furthermore, if̂h is the classifier returned

by Meta-Algorithm 3, then Lemma 34 implies that er(ĥ) is at most 2er(Ap(Ld̃f
)), on a high

probability event (call itÊ2 in this context). LettingÊ3(δ ) = Ê2∩ H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii )
n (δ ,λ ),

a union bound implies the total failure probability 1− P(Ê3(δ )) from all of these events is at
most 4δ +e(d+1) ·exp

{

−⌊n/3⌋/
(

72d̃f (d+1) ln(e(d+1))
)}

≤ 5δ = ε/2. Since, forℓ ∈ N with

P

(∣

∣

∣
Ld̃f

∣

∣

∣
= ℓ
)

> 0, the sequence ofXm values appearing inLd̃f
are conditionally distributed asPℓ

given|Ld̃f
|= ℓ, and this is the same as the (unconditional) distribution of{X1,X2, . . . ,Xℓ}, we have

that

E
[

er
(

ĥ
)]

≤ E

[

2er
(

Ap

(

Ld̃f

))

1Ê3(δ )

]

+ ε/2= E

[

E

[

2er
(

Ap

(

Ld̃f

))

1Ê3(δ )

∣

∣

∣|Ld̃f
|
]]

+ ε/2

≤ 2 sup
ℓ≥Λp(ε/4, f ,P)

E [er(Ap(Zℓ))]+ ε/2≤ ε .

To specialize to the specific variant of Meta-Algorithm 3 stated in Section 5.2, take γ = 1/2.

Appendix E. Proofs Related to Section 6: Agnostic Learning

This appendix contains the proofs of our results on learning with noise. Specifically, Appendix E.1
provides the proof of the counterexample from Theorem 22, demonstratingthat there is no activizer
for theǍp passive learning algorithm described in Section 6.2 in the agnostic case. Appendix E.2
presents the proof of Lemma 26 from Section 6.7, bounding the label complexity of Algorithm
5 under Condition 1. Finally, Appendix E.3 presents a proof of Theorem 28, demonstrating that any
active learning algorithm can be modified to trivialize the misspecified model case. The notation
used throughout Appendix E is taken from Section 6.

E.1 Proof of Theorem 22: Negative Result for Agnostic Activized Learning

It suffices to show thatǍp achieves a label complexityΛp such that, for any label complexity
Λa achieved by any active learning algorithmAa, there exists a distributionPXY onX ×{−1,+1}
such thatPXY ∈Nontrivial(Λp;C) and yetΛa(ν +cε ,PXY) 6= o(Λp(ν + ε ,PXY)) for every constant
c∈ (0,∞). Specifically, we will show that there is a distributionPXY for which Λp(ν + ε ,PXY) =
Θ(1/ε) andΛa(ν + ε ,PXY) 6= o(1/ε).

Let P({0}) = 1/2, and for any measurableA⊆ (0,1], P(A) = λ (A)/2, whereλ is Lebesgue
measure. LetD be the family of distributionsPXY onX ×{−1,+1} characterized by the properties
that the marginal distribution onX isP, η(0;PXY) ∈ (1/8,3/8), and∀x∈ (0,1],

η(x;PXY) = η(0;PXY)+(x/2) · (1−η(0;PXY)) .

Thus, η(x;PXY) is a linear function. For anyPXY ∈ D, since the pointz∗ = 1−2η(0;PXY)
1−η(0;PXY)

has
η(z∗;PXY) = 1/2, we see thatf = hz∗ is a Bayes optimal classifier. Furthermore, for anyη0 ∈
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[1/8,3/8],
∣

∣

∣

∣

1−2η0

1−η0
− 1−2η(0;PXY)

1−η(0;PXY)

∣

∣

∣

∣

=
|η(0;PXY)−η0|

(1−η0)(1−η(0;PXY))
,

and since(1−η0)(1−η(0;PXY)) ∈ (25/64,49/64)⊂ (1/3,1), the valuez = 1−2η0
1−η0

satisfies

|η0−η(0;PXY)| ≤ |z− z∗| ≤ 3|η0−η(0;PXY)|. (78)

Also note that underPXY, since(1−2η(0;PXY)) = (1−η(0;PXY))z
∗, anyz ∈ (0,1) has

er(hz)−er(hz∗) =
∫

z∗

z

(

1−2η(x;PXY)
)

dx=
∫

z∗

z

(

1−2η(0;PXY)−x(1−η(0;PXY))
)

dx

= (1−η(0;PXY))
∫

z∗

z

(z∗−x)dx=
(1−η(0;PXY))

2
(z∗− z)2 ,

so that
5
16

(z− z∗)2≤ er(hz)−er(hz∗)≤
7
16

(z− z∗)2. (79)

Finally, note that anyx,x′ ∈ (0,1] with |x− z∗|< |x′− z∗| has

|1−2η(x;PXY)|= |x− z∗|(1−η(0;PXY))< |x′− z∗|(1−η(0;PXY)) = |1−2η(x′;PXY)|.

Thus, for anyq∈ (0,1/2], there existsz′q ∈ [0,1] such thatz∗ ∈ [z′q, z
′
q+2q] ⊆ [0,1], and the clas-

sifier h′q(x) = hz∗(x) ·
(

1−21(z′q,z′q+2q](x)
)

has er(h) ≥ er(h′q) for every classifierh with h(0) =

−1 andP(x : h(x) 6= hz∗(x)) = q. Noting that er(h′q)− er(hz∗) =
(

limz↓z′q er(hz)−er(hz∗)
)

+
(

er(hz′q+2q)−er(hz∗)
)

, (79) implies that er(h′q)−er(hz∗)≥ 5
16

(

(

z′q− z∗
)2

+
(

z′q+2q− z∗
)2
)

, and

since max{z∗− z′q, z
′
q+2q− z∗} ≥ q, this is at least516q2. In general, anyh with h(0) = +1 has

er(h)−er(hz∗)≥ 1/2−η(0;PXY)> 1/8≥ (1/8)P(x : h(x) 6= hz∗(x))2. Combining these facts, we
see that any classifierh has

er(h)−er(hz∗)≥ (1/8)P (x : h(x) 6= hz∗(x))
2 . (80)

Lemma 54 The passive learning algorithm̌Ap achieves a label complexityΛp such that, for every
PXY ∈ D, Λp(ν + ε ,PXY) = Θ(1/ε).

Proof Consider the valueŝη0 and ẑ from Ǎp(Zn) for somen ∈ N. Combining (78) and (79),
we have er(hẑ)− er(hz∗) ≤ 7

16(ẑ− z∗)2 ≤ 63
16(η̂0−η(0;PXY))

2 ≤ 4(η̂0−η(0;PXY))
2. Let Nn =

|{i ∈ {1, . . . ,n} : Xi = 0}|, andη̄0 = N−1
n |{i ∈ {1, . . . ,n} : Xi = 0,Yi = +1}| if Nn > 0, or η̄0 = 0 if

Nn = 0. Note thatη̂0 =
(

η̄0∨ 1
8

)

∧ 3
8, and sinceη(0;PXY)∈ (1/8,3/8), we have|η̂0−η(0;PXY)| ≤

|η̄0−η(0;PXY)|. Therefore, for anyPXY ∈ D,

E [er(hẑ)−er(hz∗)]≤ 4E
[

(η̂0−η(0;PXY))
2]≤ 4E

[

(η̄0−η(0;PXY))
2]

≤ 4E
[

E

[

(η̄0−η(0;PXY))
2
∣

∣

∣Nn

]

1[n/4,n](Nn)
]

+4P(Nn < n/4). (81)

By a Chernoff bound,P(Nn < n/4) ≤ exp{−n/16}, and since the conditional distribution ofNnη̄0

givenNn is Binomial(Nn,η(0;PXY)), (81) is at most

4E

[

1
Nn∨n/4

η(0;PXY)(1−η(0;PXY))

]

+4·exp{−n/16} ≤ 4· 4
n
· 15
64

+4· 16
n

<
68
n
.
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For anyn≥ ⌈68/ε⌉, this is at mostε. Therefore,Ǎp achieves a label complexityΛp such that, for
anyPXY ∈ D, Λp(ν + ε ,PXY) = ⌈68/ε⌉= Θ(1/ε).

Next we establish a corresponding lower bound for any active learningalgorithm. Note that this
requires more than a simple minimax lower bound, since we must have an asymptoticlower bound
for a fixedPXY, rather than selecting a differentPXY for eachε value; this is akin to thestrong
minimax lower bounds proven by Antos and Lugosi (1998) for passive learning in the realizable
case. For this, we proceed by reduction from the task of estimating a binomialmean; toward this
end, the following lemma will be useful.

Lemma 55 For any nonempty(a,b) ⊂ [0,1], and any sequence of estimatorsp̂n : {0,1}n→ [0,1],
there exists p∈ (a,b) such that, if B1,B2, . . . are independentBernoulli(p) random variables, also

independent from everŷpn, thenE
[

(p̂n(B1, . . . ,Bn)− p)2
]

6= o(1/n).

Proof We first establish the claim whena = 0 andb = 1. For anyp∈ [0,1], let B1(p),B2(p), . . .
be i.i.d. Bernoulli(p) random variables, independent from any internal randomness of the ˆpn esti-
mators. We proceed by reduction from hypothesis testing, for which thereare known lower bounds.
Specifically, it is known (e.g., Wald, 1945; Bar-Yossef, 2003) that foranyp,q∈ (0,1), δ ∈ (0,e−1),
any (possibly randomized) ˆq : {0,1}n→{p,q}, and anyn∈ N,

n<
(1−8δ ) ln(1/8δ )

8KL(p‖q) =⇒ max
p∗∈{p,q}

P(q̂(B1(p
∗), . . . ,Bn(p

∗)) 6= p∗)> δ ,

where KL(p‖q) = pln(p/q)+(1− p) ln((1− p)/(1−q)). It is also known (e.g., Poland and Hutter,
2006) that forp,q∈ [1/4,3/4], KL(p‖q)≤ (8/3)(p−q)2. Combining this with the above fact, we
have that forp,q∈ [1/4,3/4],

max
p∗∈{p,q}

P(q̂(B1(p
∗), . . . ,Bn(p

∗)) 6= p∗)≥ (1/16) ·exp
{

−128(p−q)2n/3
}

. (82)

Given the estimator ˆpn from the lemma statement, we construct a sequence of hypothesis tests as
follows. For i ∈ N, let αi = exp

{

−2i
}

andni =
⌊

1/α2
i

⌋

. Definep∗0 = 1/4, and fori ∈ N, induc-
tively defineq̂i(b1, . . . ,bni ) = argminp∈{p∗i−1,p

∗
i−1+αi} |p̂ni (b1, . . . ,bni )− p| for b1, . . . ,bni ∈ {0,1}, and

p∗i = argmaxp∈{p∗i−1,p
∗
i−1+αi}P(q̂i(B1(p), . . . ,Bni (p)) 6= p). Finally, definep∗= lim i→∞ p∗i . Note that

∀i ∈ N, p∗i < 1/2, p∗i−1, p
∗
i−1+αi ∈ [1/4,3/4], and 0≤ p∗− p∗i ≤

∑∞
j=i+1 α j < 2αi+1 = 2α2

i . We
generally have

E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗)2
]

≥ 1
3
E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗i )
2
]

− (p∗− p∗i )
2

≥ 1
3
E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗i )
2
]

−4α4
i .

Furthermore, note that for anym∈ {0, . . . ,ni},

(p∗)m(1− p∗)ni−m

(p∗i )
m(1− p∗i )

ni−m ≥
(

1− p∗

1− p∗i

)ni

≥
(

1− p∗i −2α2
i

1− p∗i

)ni

≥
(

1−4α2
i

)ni ≥ exp
{

−8α2
i ni
}

≥ e−8,
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so that the probability mass function of(B1(p∗), . . . ,Bni (p
∗)) is never smaller thane−8 times that of

(B1(p∗i ), . . . ,Bni (p
∗
i )), which implies (by the law of the unconscious statistician)

E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗i )
2
]

≥ e−8
E

[

(p̂ni (B1(p
∗
i ), . . . ,Bni (p

∗
i ))− p∗i )

2
]

.

By a triangle inequality, we have

E

[

(p̂ni (B1(p
∗
i ), . . . ,Bni (p

∗
i ))− p∗i )

2
]

≥ α2
i

4
P(q̂i(B1(p

∗
i ), . . . ,Bni (p

∗
i )) 6= p∗i ) .

By (82), this is at least

α2
i

4
(1/16) ·exp

{

−128α2
i ni/3

}

≥ 2−6e−43α2
i .

Combining the above, we have

E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗)2
]

≥ 3−12−6e−51α2
i −4α4

i ≥ 2−9e−51n−1
i −4n−2

i .

For i ≥ 5, this is larger than 2−11e−51n−1
i . Sinceni diverges asi→∞, we have that

E

[

(p̂ni (B1(p
∗), . . . ,Bni (p

∗))− p∗)2
]

6= o(1/n),

which establishes the result fora= 0 andb= 1.
To extend this result to general nonempty ranges(a,b), we proceed by reduction from the

above problem. Specifically, supposep′ ∈ (0,1), and consider the following independent random
variables (also independent from theBi(p′) variables and ˆpn estimators). For eachi ∈ N, Ci1 ∼
Bernoulli(a), Ci2∼ Bernoulli((b−a)/(1−a)). Then forbi ∈ {0,1}, defineB′i(bi) = max{Ci1,Ci2 ·
bi}. For any givenp′ ∈ (0,1), the random variablesB′i(Bi(p′)) are i.i.d. Bernoulli(p), with p =
a+(b−a)p′ ∈ (a,b) (which forms a bijection between(0,1) and(a,b)). Defining p̂′n(b1, . . . ,bn) =
(p̂n(B′1(b1), . . . ,B′n(bn))−a)/(b−a), we have

E

[

(p̂n(B1(p), . . . ,Bn(p))− p)2
]

= (b−a)2 ·E
[

(

p̂′n(B1(p
′), . . . ,Bn(p

′))− p′
)2
]

. (83)

We have already shown there exists a value ofp′ ∈ (0,1) such that the right side of (83) is not
o(1/n). Therefore, the corresponding value ofp= a+(b−a)p′ ∈ (a,b) has the left side of (83) not
o(1/n), which establishes the result.

We are now ready for the lower bound result for our setting.

Lemma 56 For any label complexityΛa achieved by any active learning algorithmAa, there exists
aPXY ∈ D such thatΛa(ν + ε ,PXY) 6= o(1/ε).

Proof The idea here is to reduce from the task of estimating the mean of iid Bernoulli trials,
corresponding to theYi values. Specifically, consider any active learning algorithmAa; we useAa to
construct an estimator for the mean of iid Bernoulli trials as follows. Supposewe haveB1,B2, . . . ,Bn

i.i.d. Bernoulli(p), for somep∈ (1/8,3/8) andn∈ N. We take the sequence ofX1,X2, . . . random
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variables i.i.d. with distributionP defined above (independent from theB j variables). For each
i, we additionally have a random variableCi with conditional distribution Bernoulli(Xi/2) given
Xi , where theCi are conditionally independent given theXi sequence, and independent from theBi

sequence as well.
We runAa with this sequence ofXi values. For thet th label request made by the algorithm,

say for theYi value corresponding to someXi , if it has previously requested thisYi already, then
we simply repeat the same answer forYi again, and otherwise we return to the algorithm the value
2max{Bt ,Ci}−1 for Yi . Note that in the latter case, the conditional distribution of max{Bt ,Ci} is
Bernoulli(p+(1− p)Xi/2), given theXi thatAa requests the label of; thus, theYi response has the
same conditional distribution givenXi as it would have for thePXY ∈ D with η(0;PXY) = p (i.e.,
η(Xi ;PXY) = p+(1− p)Xi/2). Since thisYi value is conditionally (givenXi) independent from the
previously returned labels andXj sequence, this is distributionally equivalent to runningAa under
thePXY ∈ D with η(0;PXY) = p.

Let ĥn be the classifier returned byAa(n) in the above context, and let ˆzn denote the value
of z ∈ [2/5,6/7] with minimum P(x : hz(x) 6= ĥn(x)). Then define ˆpn = 1−ẑn

2−ẑn
∈ [1/8,3/8] and

z∗ = 1−2p
1−p ∈ (2/5,6/7). By a triangle inequality, we have|ẑn− z∗| = 2P(x : hẑn(x) 6= hz∗(x)) ≤

4P(x : ĥn(x) 6= hz∗(x)). Combining this with (80) and (78) implies that

er(ĥn)−er(hz∗)≥
1
8
P
(

x : ĥn(x) 6= hz∗(x)
)2≥ 1

128
(ẑn− z∗)2≥ 1

128
(p̂n− p)2 . (84)

In particular, by Lemma 55, we can choosep∈ (1/8,3/8) so thatE
[

(p̂n− p)2
]

6= o(1/n), which, by

(84), impliesE
[

er(ĥn)
]

−ν 6= o(1/n). This means there is an increasing infinite sequence of values
nk ∈N, and a constantc∈ (0,∞) such that∀k∈N, E

[

er(ĥnk)
]

−ν ≥ c/nk. SupposingAa achieves
label complexityΛa, and taking the valuesεk = c/(2nk), we haveΛa(ν + εk,PXY)> nk = c/(2εk).
Sinceεk > 0 and approaches 0 ask→∞, we haveΛa(ν + ε ,PXY) 6= o(1/ε).

Proof [of Theorem 22] The result follows from Lemmas 54 and 56.

E.2 Proof of Lemma 26: Label Complexity of Algorithm 5

The proof of Lemma 26 essentially runs parallel to that of Theorem 16, with variants of each lemma
from that proof adapted to the noise-robust Algorithm 5.

As before, in this section we will fix a particular joint distributionPXY onX ×{−1,+1} with
marginalP onX , and then analyze the label complexity achieved by Algorithm 5 for that particular
distribution. For our purposes, we will supposePXY satisfies Condition 1 for some finite parameters
µ andκ. We also fix anyf ∈ ⋂

ε>0
cl(C(ε)). Furthermore, we will continue using the notation of

Appendix B, such asSk(H), etc., and in particular we continue to denoteV⋆
m = {h ∈ C : ∀ℓ ≤

m,h(Xℓ) = f (Xℓ)} (though note that in this case, we may sometimes havef (Xℓ) 6=Yℓ, so thatV⋆
m 6=

C[Zm]). As in the above proofs, we will prove a slightly more general result in which the “1/2”
threshold in Step 5 can be replaced by an arbitrary constantγ ∈ (0,1).

For the estimatorŝP4m used in the algorithm, we take the same definitions as in Appendix B.1.
To be clear, we assume the sequencesW1 andW2 mentioned there are independent from the entire
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(X1,Y1),(X2,Y2), . . . sequence of data points; this is consistent with the earlier discussion of how
theseW1 andW2 sequences can be constructed in a preprocessing step.

We will consider running Algorithm 5 with label budgetn∈ N and confidence parameterδ ∈
(0,e−3), and analyze properties of the internal setsVi . We will denote byV̂i , L̂i , and îk, thefinal
values ofVi , Li , and ik, respectively, for eachi and k in Algorithm 5. We also denote by ˆm(k)

andV̂(k) the final values ofm andVik+1, respectively, obtained whilek has the specified value in
Algorithm 5; V̂(k) may be smaller than̂Vîk

when m̂(k) is not a power of 2. Additionally, define

L⋆i = {(Xm,Ym)}2
i

m=2i−1+1. After establishing a few results concerning these, we will show that for
n satisfying the condition in Lemma 26, the conclusion of the lemma holds. First, we have a few
auxiliary definitions. ForH⊆ C, and anyi ∈ N, define

φi(H) = E sup
h1,h2∈H

∣

∣

(

er(h1)−erL⋆
i
(h1)

)

−
(

er(h2)−erL⋆
i
(h2)

)∣

∣

and Ũi(H,δ ) = min

{

K̃

(

φi(H)+
√

diam(H) ln(32i2/δ )
2i−1 +

ln(32i2/δ )
2i−1

)

,1

}

,

where for our purposes we can takeK̃ = 8272. It is known (see, e.g., Massart and Néd́elec, 2006;
Giné and Koltchinskii, 2006) that for some universal constantc′ ∈ [2,∞),

φi+1(H)≤ c′max

{√

diam(H)2−id log2
2

diam(H) ,2
−idi

}

. (85)

We also generally haveφi(H) ≤ 2 for every i ∈ N. The next lemma is taken from the work of
Koltchinskii (2006) on data-dependent Rademacher complexity bounds on the excess risk.

Lemma 57 For anyδ ∈ (0,e−3), anyH ⊆ C with f ∈ cl(H), and any i∈ N, on an event Ki with
P(Ki)≥ 1−δ/4i2, ∀h∈H,

erL⋆
i
(h)−min

h′∈H
erL⋆

i
(h′)≤ er(h)−er( f )+Ûi(H,δ )

er(h)−er( f )≤ erL⋆
i
(h)−erL⋆

i
( f )+Ûi(H,δ )

min
{

Ûi(H,δ ),1
}

≤ Ũi(H,δ ).

Lemma 57 essentially follows from a version of Talagrand’s inequality. The details of the proof
may be extracted from the proofs of Koltchinskii (2006), and related derivations have previously
been presented by Hanneke (2011) and Koltchinskii (2010). The onlyminor twist here is thatf
need only be in cl(H), rather than inH itself, which easily follows from Koltchinskii’s original
results, since the Borel-Cantelli lemma implies that with probability one, everyε > 0 has some
g∈H(ε) (very close tof ) with erL⋆

i
(g) = erL⋆

i
( f ).

For our purposes, the important implications of Lemma 57 are summarized by the following
lemma.

Lemma 58 For anyδ ∈ (0,e−3) and any n∈N, when running Algorithm 5 with label budget n and
confidence parameterδ , on an event Jn(δ ) withP(Jn(δ ))≥ 1−δ/2, ∀i ∈ {0,1, . . . , îd+1}, if V⋆

2i ⊆ V̂i
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then∀h∈ V̂i ,

erL⋆
i+1
(h)−min

h′∈V̂i

erL⋆
i+1
(h′)≤ er(h)−er( f )+Ûi+1(V̂i ,δ )

er(h)−er( f )≤ erL⋆
i+1
(h)−erL⋆

i+1
( f )+Ûi+1(V̂i ,δ )

min
{

Ûi+1(V̂i ,δ ),1
}

≤ Ũi+1(V̂i ,δ ).

Proof For eachi, consider applying Lemma 57 under the conditional distribution givenV̂i . The
setL⋆i+1 is independent from̂Vi , as are the Rademacher variables in the definition ofR̂i+1(V̂i). Fur-
thermore, by Lemma 35, onH ′, f ∈ cl

(

V⋆
2i

)

, so that the conditions of Lemma 57 hold. The law of
total probability then implies the existence of an eventJi of probabilityP(Ji)≥ 1−δ/4(i +1)2, on
which the claimed inequalities hold for that value ofi if i ≤ îd+1. A union bound over values ofi then
implies the existence of an eventJn(δ ) =

⋂

i Ji with probabilityP(Jn(δ )) ≥ 1−∑i δ/4(i +1)2 ≥
1−δ/2 on which the claimed inequalities hold for alli ≤ îd+1.

Lemma 59 For some(C,PXY,γ)-dependent constants c,c∗ ∈ [1,∞), for anyδ ∈ (0,e−3) and inte-
ger n≥ c∗ ln(1/δ ), when running Algorithm 5 with label budget n and confidence parameterδ , on

event Jn(δ )∩H(i)
n ∩H(ii)

n , every i∈ {0,1, . . . , îd̃f
} satisfies

V⋆
2i ⊆ V̂i ⊆ C

(

c

(

di+ ln(1/δ )
2i

) κ
2κ−1

)

,

and furthermore V⋆
m̂(d̃ f )
⊆ V̂(d̃f ).

Proof Define c =
(

24K̃c′
√µ
) 2κ

2κ−1 , c∗ = max

{

τ∗,8d
(

µc1/κ

r(1−γ)/6

) 1
2κ−1

log2

(

4µc1/κ

r(1−γ)/6

)

}

, and suppose

n≥ c∗ ln(1/δ ). We now proceed by induction. As the right side equalsC for i = 0, the claimed
inclusions are certainly true for̂V0 = C, which serves as our base case. Now suppose somei ∈
{0,1, . . . , îd̃f

} satisfies

V⋆
2i ⊆ V̂i ⊆ C

(

c

(

di+ ln(1/δ )
2i

) κ
2κ−1

)

. (86)

In particular, Condition 1 implies

diam(V̂i)≤ diam

(

C

(

c

(

di+ ln(1/δ )
2i

) κ
2κ−1

))

≤ µc
1
κ

(

di+ ln(1/δ )
2i

) 1
2κ−1

. (87)

If i < îd̃f
, then letk be the integer for whicĥik−1 ≤ i < îk, and otherwise letk = d̃f . Note that we

certainly havêi1 ≥ ⌊log2(n/2)⌋, sincem= ⌊n/2⌋ ≥ 2⌊log2(n/2)⌋ is obtained whilek= 1. Therefore,
if k> 1,

di+ ln(1/δ )
2i ≤ 4d log2(n)+4ln(1/δ )

n
,
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so that (87) implies

diam
(

V̂i
)

≤ µc
1
κ

(

4d log2(n)+4ln(1/δ )
n

) 1
2κ−1

.

By our choice ofc∗, the right side is at mostr(1−γ)/6. Therefore, since Lemma 35 impliesf ∈ cl
(

V⋆
2i

)

on H(i)
n , we haveV̂i ⊆ B

(

f , r(1−γ)/6
)

whenk > 1. Combined with (86), we have thatV⋆
2i ⊆ V̂i , and

eitherk = 1, orV̂i ⊆ B( f , r(1−γ)/6) and 4m> 4⌊n/2⌋ ≥ n. Now consider anym with 2i +1≤m≤
min

{

2i+1,m̂(d̃f )
}

, and for the purpose of induction supposeV⋆
m−1 ⊆Vi+1 upon reaching Step 5 for

that value ofm in Algorithm 5. SinceVi+1⊆ V̂i andn≥ τ∗, Lemma 41 (withℓ= m−1) implies that
onH(i)

n ∩H(ii)
n ,

∆̂(k)
4m(Xm,W2,Vi+1)< γ =⇒ Γ̂(k)

4m(Xm,− f (Xm),W2,Vi+1)< Γ̂(k)
4m(Xm, f (Xm),W2,Vi+1) ,

so that after Step 8 we haveV⋆
m⊆Vi+1. Since (86) implies that theV⋆

m−1 ⊆Vi+1 condition holds if
Algorithm 5 reaches Step 5 withm= 2i +1 (at which timeVi+1 = V̂i), we have by induction that

on H(i)
n ∩H(ii)

n , V⋆
m ⊆ Vi+1 upon reaching Step 9 withm= min

{

2i+1,m̂(d̃f )
}

. This establishes the

final claim of the lemma, given that the first claim holds. For the remainder of this inductive proof,
supposei < îd̃f

. Since Step 8 enforces that, upon reaching Step 9 withm= 2i+1, everyh1,h2 ∈Vi+1

have er̂
Li+1

(h1)−er
L̂i+1

(h2) = erL⋆
i+1
(h1)−erL⋆

i+1
(h2), onJn(δ )∩H(i)

n ∩H(ii)
n we have

V̂i+1⊆
{

h∈ V̂i : erL⋆
i+1
(h)− min

h′∈V⋆
2i+1

erL⋆
i+1
(h′)≤ Ûi+1

(

V̂i ,δ
)

}

⊆
{

h∈ V̂i : erL⋆
i+1
(h)−erL⋆

i+1
( f )≤ Ûi+1

(

V̂i ,δ
)

}

⊆ V̂i ∩C
(

2Ûi+1
(

V̂i ,δ
))

⊆ C
(

2Ũi+1
(

V̂i ,δ
))

, (88)

where the second line follows from Lemma 35 and the last two inclusions follow from Lemma 58.
Focusing on (88), combining (87) with (85) (and the fact thatφi+1(V̂i)≤ 2), we can bound the value
of Ũi+1

(

V̂i ,δ
)

as follows.

√

diam(V̂i)
ln(32(i+1)2/δ )

2i ≤√µc
1

2κ

(

di+ ln(1/δ )
2i

) 1
4κ−2

(

ln(32(i+1)2/δ )
2i

)
1
2

≤√µc
1

2κ

(

2di+2ln(1/δ )
2i+1

) 1
4κ−2

(

8(i+1)+2ln(1/δ )
2i+1

) 1
2

≤ 4
√

µc
1

2κ

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

,

φi+1(V̂i)≤ c′
√

µc
1

2κ

(

di+ ln(1/δ )
2i

) 1
4κ−2

(

d(i+2)
2i

) 1
2

≤ 4c′
√

µc
1

2κ

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

,

1576



ACTIVIZED LEARNING

and thus

Ũi+1(V̂i ,δ )≤min

{

8K̃c′
√

µc
1

2κ

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

+ K̃
ln(32(i+1)2/δ )

2i ,1

}

≤ 12K̃c′
√

µc
1

2κ

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

= (c/2)

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

.

Combining this with (88) now implies

V̂i+1⊆ C

(

c

(

d(i+1)+ ln(1/δ )
2i+1

) κ
2κ−1

)

.

To complete the inductive proof, it remains only to showV⋆
2i+1 ⊆ V̂i+1. Toward this end, recall

we have shown above that onH(i)
n ∩H(ii)

n , V⋆
2i+1 ⊆Vi+1 upon reaching Step 9 withm= 2i+1, and that

everyh1,h2 ∈Vi+1 at this point have er̂
Li+1

(h1)−er
L̂i+1

(h2) = erL⋆
i+1
(h1)−erL⋆

i+1
(h2). Consider any

h∈V⋆
2i+1, and note that any otherg∈V⋆

2i+1 has erL⋆
i+1
(g) = erL⋆

i+1
(h). Thus, onH(i)

n ∩H(ii)
n ,

er
L̂i+1

(h)− min
h′∈Vi+1

er
L̂i+1

(h′) = erL⋆
i+1
(h)− min

h′∈Vi+1

erL⋆
i+1
(h′)

≤ erL⋆
i+1
(h)−min

h′∈V̂i

erL⋆
i+1
(h′) = inf

g∈V⋆
2i+1

erL⋆
i+1
(g)−min

h′∈V̂i

erL⋆
i+1
(h′). (89)

Lemma 58 and (86) imply that onJn(δ )∩H(i)
n ∩H(ii)

n , the last expression in (89) is not larger

than infg∈V⋆
2i+1

er(g)− er( f ) + Ûi+1(V̂i ,δ ), and Lemma 35 impliesf ∈ cl
(

V⋆
2i+1

)

on H(i)
n , so that

infg∈V⋆
2i+1

er(g) = er( f ). We therefore have

er
L̂i+1

(h)− min
h′∈Vi+1

er
L̂i+1

(h′)≤ Ûi+1(V̂i ,δ ),

so thath∈ V̂i+1 as well. Since this holds for anyh∈V⋆
2i+1, we haveV⋆

2i+1 ⊆ V̂i+1. The lemma now
follows by the principle of induction.

Lemma 60 There exist(C,PXY,γ)-dependent constants c∗1,c
∗
2 ∈ [1,∞) such that, for anyε ,δ ∈

(0,e−3) and integer

n≥ c∗1+c∗2θ̃ f

(

ε
1
κ

)

ε
2
κ−2 log2

2

(

1
εδ

)

,

when running Algorithm 5 with label budget n and confidence parameterδ , on an event J∗n(ε ,δ )
with P(J∗n(ε ,δ ))≥ 1−δ , we haveV̂îd̃ f

⊆ C(ε).

Proof Define

c∗1 = max







2d̃f+5

(

µc1/κ

r(1−γ)/6

)2κ−1

d log2
dµc1/κ

r(1−γ)/6
,

2

δ̃ 1/3
f

ln
(

8c(i)
)

,
120

δ̃ 1/3
f

ln
(

8c(ii)
)
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and

c∗2 = max







c∗,2d̃f+5 ·
(

µc1/κ

r(1−γ)/6

)2κ−1

,2d̃f+15 · µc2d

γδ̃ f
log2

2(4dc)







.

Fix anyε ,δ ∈ (0,e−3) and integern≥ c∗1+c∗2θ̃ f

(

ε 1
κ

)

ε 2
κ−2 log2

2

(

1
εδ
)

.

For eachi ∈ {0,1, . . .}, let r̃ i = µc
1
κ

(

di+ln(1/δ )
2i

) 1
2κ−1

. Also define

ĩ =

⌈(

2− 1
κ

)

log2
c
ε
+ log2

[

8d log2
2dc
εδ

]⌉

.

and letǐ = min
{

i ∈ N : supj≥i r̃ j < r(1−γ)/6
}

. For anyi ∈
{

ǐ, . . . , îd̃f

}

, let

Qi+1 =
{

m∈
{

2i +1, . . . ,2i+1} : ∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))≥ 2γ/3

}

.

Also define

Q̃=
96

γδ̃ f
θ̃ f

(

ε
1
κ

)

·2µc2 ·
(

8d log2
2dc
εδ

)

· ε 2
κ−2.

By Lemma 59 and Condition 1, onJn(δ )∩H(i)
n ∩H(ii)

n , if i ≤ îd̃f
,

V̂i ⊆ C

(

c

(

di+ ln(1/δ )
2i

) κ
2κ−1

)

⊆ B( f , r̃ i) . (90)

Lemma 59 also implies that, onJn(δ )∩H(i)
n ∩H(ii)

n , for i with îd̃f−1 ≤ i ≤ îd̃f
, all of the setsVi+1

obtained in Algorithm 5 whilek= d̃f andm∈
{

2i +1, . . . ,2i+1
}

satisfyV⋆
2i+1⊆Vi+1⊆ V̂i . Recall that

î1≥⌊log2(n/2)⌋, so that we have either̃df = 1 or else everym∈
{

2i +1, . . . ,2i+1
}

has 4m> n. Also

recall that Lemma 49 implies that when the above conditions are satisfied, andi ≥ ǐ, on H ′ ∩G(i)
n ,

∆̂(d̃f )
4m (Xm,W2,Vi+1)≤ (3/2)∆̂(d̃f )

4m (Xm,W2,B( f , r̃ i)), so that|Qi+1| upper bounds the number ofm∈
{

2i +1, . . . ,2i+1
}

for which Algorithm 5 requests the labelYm in Step 6 of thek= d̃f round. Thus,

on Jn(δ )∩H(i)
n ∩H(ii)

n , 2ǐ +
∑

îd̃ f

i=max
{

ǐ,îd̃ f−1

} |Qi+1| upper bounds the total number of label requests

by Algorithm 5 whilek= d̃f ; therefore, by the constraint in Step 3, we know that either this quantity

is at least as big as
⌊

2−d̃f n
⌋

, or else we have 2
îd̃ f

+1
> d̃f ·2n. In particular, on this event, if we can

show that

2ǐ +

min
{

îd̃ f
,ĩ
}

∑

i=max
{

ǐ,îd̃ f−1

}

|Qi+1|<
⌊

2−d̃f n
⌋

and 2ĩ+1≤ d̃f ·2n, (91)

then it must be true thatĩ < îd̃f
. Next, we will focus on establishing this fact.

Consider anyi ∈
{

max
{

ǐ, îd̃f−1

}

, . . . ,min
{

îd̃f
, ĩ
}}

and anym∈
{

2i +1, . . . ,2i+1
}

. If d̃f = 1,

then
P

(

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))≥ 2γ/3

∣

∣

∣W2

)

= P d̃f

(

S d̃f (B( f , r̃ i))
)

.
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Otherwise, ifd̃f > 1, then by Markov’s inequality and the definition of∆̂(d̃f )
4m (·, ·, ·) from (15),

P

(

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))≥ 2γ/3

∣

∣

∣W2

)

≤ 3
2γ

E

[

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))

∣

∣

∣W2

]

=
3
2γ

1

M
(d̃f )
4m (B( f , r̃ i))

(4m)3
∑

s=1

P

(

S
(d̃f )
s ∪{Xm} ∈ S d̃f (B( f , r̃ i))

∣

∣

∣
S
(d̃f )
s

)

.

By Lemma 39, Lemma 59, and (90), onJn(δ )∩H(i)
n ∩H(ii)

n , this is at most

3

δ̃ f γ
1

(4m)3

(4m)3
∑

s=1

P

(

S
(d̃f )
s ∪{Xm} ∈ S d̃f (B( f , r̃ i))

∣

∣

∣S
(d̃f )
s

)

≤ 24

δ̃ f γ
1

4323i+3

4323i+3
∑

s=1

P

(

S
(d̃f )
s ∪{Xm} ∈ S d̃f (B( f , r̃ i))

∣

∣

∣
S
(d̃f )
s

)

.

Note that this value is invariant to the choice ofm∈
{

2i +1, . . . ,2i+1
}

. By Hoeffding’s inequality,
on an eventJ∗n(i) of probabilityP(J∗n(i))≥ 1−δ/(16i2), this is at most

24

δ̃ f γ

(
√

ln(4i/δ )
4323i+3 +P d̃f

(

S d̃f (B( f , r̃ i))
)

)

. (92)

Sincei ≥ î1 > log2(n/4) andn≥ ln(1/δ ), we have
√

ln(4i/δ )
4323i+3 ≤ 2−i

√

ln(4log2(n/4)/δ )
128n

≤ 2−i

√

ln(n/δ )
128n

≤ 2−i .

Thus, (92) is at most
24

δ̃ f γ

(

2−i +P d̃f

(

S d̃f (B( f , r̃ i))
))

.

In either case (̃df = 1 or d̃f > 1), by definition ofθ̃ f

(

ε 1
κ

)

, on Jn(δ )∩H(i)
n ∩H(ii)

n ∩ J∗n(i), ∀m∈
{

2i +1, . . . ,2i+1
}

we have

P

(

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))≥ 2γ/3

∣

∣

∣
W2

)

≤ 24

δ̃ f γ

(

2−i + θ̃ f

(

ε
1
κ

)

·max
{

r̃ i ,ε
1
κ

})

. (93)

Furthermore, the1[2γ/3,∞)

(

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))

)

indicators are conditionally independent given

W2, so that we may boundP
(

|Qi+1|> Q̃
∣

∣

∣
W2

)

via a Chernoff bound. Toward this end, note that on

Jn(δ )∩H(i)
n ∩H(ii)

n ∩J∗n(i), (93) implies

E
[

|Qi+1|
∣

∣W2
]

=
2i+1
∑

m=2i+1

P

(

∆̂(d̃f )
4m (Xm,W2,B( f , r̃ i))≥ 2γ/3

∣

∣

∣
W2

)

≤ 2i · 24

δ̃ f γ

(

2−i + θ̃ f

(

ε
1
κ

)

·max
{

r̃ i ,ε
1
κ

})

≤ 24

δ̃ f γ

(

1+ θ̃ f

(

ε
1
κ

)

·max
{

2i r̃ i ,2
ĩε

1
κ

})

. (94)
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Note that

2i r̃ i = µc
1
κ (di+ ln(1/δ ))

1
2κ−1 ·2i(1− 1

2κ−1)

≤ µc
1
κ
(

dĩ+ ln(1/δ )
) 1

2κ−1 ·2ĩ(1− 1
2κ−1) ≤ µc

1
κ

(

8d log2
2dc
εδ

) 1
2κ−1

·2ĩ(1− 1
2κ−1).

Then since 2−ĩ 1
2κ−1 ≤

( ε
c

) 1
κ ·
(

8d log2
2dc
εδ
)− 1

2κ−1 , we have that the rightmost expression in (94) is at
most

24

γδ̃ f

(

1+ θ̃ f

(

ε
1
κ

)

·µ ·2ĩε
1
κ

)

≤ 24

γδ̃ f

(

1+ θ̃ f

(

ε
1
κ

)

·2µc2 ·
(

8d log2
2dc
εδ

)

· ε 2
κ−2
)

≤ Q̃/2.

Therefore, a Chernoff bound implies that onJn(δ )∩H(i)
n ∩H(ii)

n ∩J∗n(i), we have

P

(

|Qi+1|> Q̃
∣

∣

∣
W2

)

≤ exp
{

−Q̃/6
}

≤ exp

{

−8log2

(

2dc
εδ

)}

≤ exp

{

− log2

(

48log2(2dc/εδ )
δ

)}

≤ δ/(8ĩ).

Combined with the law of total probability and a union bound overi values, this implies there exists
an eventJ∗n(ε ,δ )⊆ Jn(δ )∩H(i)

n ∩H(ii)
n with

P

(

Jn(δ )∩H(i)
n ∩H(ii)

n \J∗n(ε ,δ )
)

≤
ĩ
∑

i=ǐ

(

δ/(16i2)+δ/(8ĩ)
)

≤ δ/4,

on which everyi ∈
{

max
{

ǐ, îd̃f−1

}

, . . . ,min
{

îd̃f
, ĩ
}}

has|Qi+1| ≤ Q̃.

We have chosenc∗1 andc∗2 large enough that 2ĩ+1 < d̃f ·2n and 2ǐ < 2−d̃f−2n. In particular, this
means that onJ∗n(ε ,δ ),

2ǐ +

min
{

ĩ,îd̃ f

}

∑

i=max
{

ǐ,îd̃ f−1

}

|Qi+1|< 2−d̃f−2n+ ĩQ̃.

Furthermore, sincẽi ≤ 3log2
4dc
εδ , we have

ĩQ̃ ≤ 213µc2d

γδ̃ f
θ̃ f

(

ε
1
κ

)

· ε 2
κ−2 · log2

2
4dc
εδ

≤ 213µc2d log2
2(4dc)

γδ̃ f
θ̃ f

(

ε
1
κ

)

· ε 2
κ−2 · log2

2
1

εδ
≤ 2−d̃f−2n.

Combining the above, we have that (91) is satisfied onJ∗n(ε ,δ ), so thatîd̃f
> ĩ. Combined with

Lemma 59, this implies that onJ∗n(ε ,δ ),

V̂îd̃ f
⊆ V̂ĩ ⊆ C

(

c

(

dĩ + ln(1/δ )
2ĩ

)
κ

2κ−1
)

,
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and by definition of̃i we have

c

(

dĩ+ ln(1/δ )
2ĩ

)
κ

2κ−1

≤ c

(

8d log2
2dc
εδ

) κ
2κ−1

·2−ĩ κ
2κ−1

≤ c

(

8d log2
2dc
εδ

) κ
2κ−1

· (ε/c) ·
(

8d log2
2dc
εδ

)− κ
2κ−1

= ε ,

so thatV̂îd̃ f
⊆ C(ε).

Finally, to prove the stated bound onP(J∗n(ε ,δ )), by a union bound we have

1−P(J∗n(ε ,δ ))≤ (1−P(Jn(δ )))+
(

1−P

(

H(i)
n

))

+P

(

H(i)
n \H(ii)

n

)

+P

(

Jn(δ )∩H(i)
n ∩H(ii)

n \J∗n(ε ,δ )
)

≤ 3δ/4+c(i) ·exp
{

−n3δ̃ f /8
}

+c(ii) ·exp
{

−nδ̃ 1/3
f /120

}

≤ δ .

We are now ready for the proof of Lemma 26.
Proof [Lemma 26] First, note that because we break ties in the argmax of Step 7 in favor of aŷ value
with Vik+1[(Xm, ŷ)] 6= ∅, if Vik+1 6= ∅ before Step 8, then this remains true after Step 8. Furthermore,
the Ûik+1 estimator is nonnegative, and thus the update in Step 10 never removes fromVik+1 the
minimizer of er

L̂ik+1
(h) amongh ∈ Vik+1. Therefore, by induction we haveVik 6= ∅ at all times in

Algorithm 5. In particular,V̂îd+1+1 6= ∅ so that the return classifierĥ exists. Also, by Lemma 60, for
n as in Lemma 60, onJ∗n(ε ,δ ), running Algorithm 5 with label budgetn and confidence parameter
δ results inV̂îd̃ f

⊆ C(ε). Combining these two facts implies that for such a value ofn, onJ∗n(ε ,δ ),

ĥ∈ V̂îd+1+1⊆ V̂îd̃ f
⊆ C(ε), so that er

(

ĥ
)

≤ ν + ε.

E.3 The Misspecified Model Case

Here we present a proof of Theorem 28, including a specification of themethodA′a from the theorem
statement.
Proof [Theorem 28] Consider a weakly universally consistent passive learning algorithmAu (De-
vroye, Gÿorfi, and Lugosi, 1996). Such a method must exist in our setting; for instance, Hoeffding’s

inequality and a union bound imply that it suffices to takeAu(L) = argmin1±Bi
erL(1

±
Bi
)+
√

ln(4i2|L|)
2|L| ,

where{B1,B2, . . .} is a countable algebra that generatesFX .
ThenAu achieves a label complexityΛu such that for any distributionPXY onX ×{−1,+1},

∀ε ∈ (0,1), Λu(ε + ν∗(PXY),PXY) <∞. In particular, if ν∗(PXY) < ν(C;PXY), then we have
Λu((ν∗(PXY)+ν(C;PXY))/2,PXY)<∞.

Fix any n∈ N and describe the execution ofA′a(n) as follows. In a preprocessing step, with-
hold the firstmun = n− ⌊n/2⌋ − ⌊n/3⌋ ≥ n/6 examples{X1, . . . ,Xmun} and request their labels
{Y1, . . . ,Ymun}. RunAa(⌊n/2⌋) on the remainder of the sequence{Xmun+1,Xmun+2, . . .} (i.e., shift
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any index references in the algorithm bymun), and letha denote the classifier it returns. Also re-
quest the labelsYmun+1, . . .Ymun+⌊n/3⌋, and let

hu =Au
({

(Xmun+1,Ymun+1), . . . ,(Xmun+⌊n/3⌋,Ymun+⌊n/3⌋)
})

.

If ermun(ha)−ermun(hu)> n−1/3, returnĥ= hu; otherwise, return̂h= ha. This method achieves the
stated result, for the following reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequality,with probability
at least 1−2·exp

{

−n1/3/12
}

,

|(ermun(ha)−ermun(hu))− (er(ha)−er(hu))| ≤ n−1/3.

When this is the case, a triangle inequality implies er(ĥ)≤min{er(ha),er(hu)+2n−1/3}.
If PXY satisfies the benign noise case, then for any

n≥ 2Λa(ε/2+ν(C;PXY),PXY),

we haveE[er(ha)]≤ ν(C;PXY)+ ε/2, soE[er(ĥ)]≤ ν(C;PXY)+ ε/2+2 ·exp{−n1/3/12}, which
is at mostν(C;PXY)+ ε if n≥ 123 ln3(4/ε). So in this case, we can takeλ (ε) =

⌈

123 ln3(4/ε)
⌉

.
On the other hand, ifPXY is not in the benign noise case (i.e., the misspecified model case), then

for anyn≥ 3Λu((ν∗(PXY)+ν(C;PXY))/2,PXY), E [er(hu)]≤ (ν∗(PXY)+ν(C;PXY))/2, so that

E[er(ĥ)]≤ E[er(hu)]+2n−1/3+2·exp{−n1/3/12}
≤ (ν∗(PXY)+ν(C;PXY))/2+2n−1/3+2·exp{−n1/3/12}.

Again, this is at mostν(C;PXY)+ε if n≥max
{

123 ln3 2
ε ,64(ν(C;PXY)−ν∗(PXY))

−3
}

. So in this
case, we can take

λ (ε) =
⌈

max

{

123 ln3 2
ε
,3Λu

(

ν∗(PXY)+ν(C;PXY)

2
,PXY

)

,
64

(ν(C;PXY)−ν∗(PXY))3

}⌉

.

In either case, we haveλ (ε) ∈ Polylog(1/ε).
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