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Abstract

Reinforcement learning in multi-agent scenar-

ios is important for real-world applications but

presents challenges beyond those seen in single-

agent settings. We present an actor-critic algo-

rithm that trains decentralized policies in multi-

agent settings, using centrally computed crit-

ics that share an attention mechanism which se-

lects relevant information for each agent at every

timestep. This attention mechanism enables more

effective and scalable learning in complex multi-

agent environments, when compared to recent

approaches. Our approach is applicable not only

to cooperative settings with shared rewards, but

also individualized reward settings, including ad-

versarial settings, as well as settings that do not

provide global states, and it makes no assump-

tions about the action spaces of the agents. As

such, it is flexible enough to be applied to most

multi-agent learning problems.

1. Introduction

Reinforcement learning has recently made exciting progress

in many domains, including Atari games (Mnih et al., 2015),

the ancient Chinese board game, Go (Silver et al., 2016),

and complex continuous control tasks involving locomo-

tion (Lillicrap et al., 2016; Schulman et al., 2015; 2017;

Heess et al., 2017). While most reinforcement learning

paradigms focus on single agents acting in a static environ-

ment (or against themselves in the case of Go), real-world

agents often compete or cooperate with other agents in a dy-

namically shifting environment. In order to learn effectively

in multi-agent environments, agents must not only learn the

dynamics of their environment, but also those of the other

learning agents present.

To this end, several approaches for multi-agent reinforce-
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ment learning have been developed. The simplest approach

is to train each agent independently to maximize their in-

dividual reward, while treating other agents as part of the

environment. However, this approach violates the basic

assumption underlying reinforcement learning, that the en-

vironment should be stationary and Markovian. Any single

agent’s environment is dynamic and nonstationary due to

other agents’ changing policies. As such, standard algo-

rithms developed for stationary Markov decision processes

fail.

At the other end of the spectrum, all agents can be collec-

tively modeled as a single-agent whose action space is the

joint action space of all agents (Buşoniu et al., 2010). While

allowing coordinated behaviors across agents, this approach

is not scalable as the size of action space increases exponen-

tially with respect to the number of agents. It also demands

a high degree of communication during execution, as the

central policy must collect observations from and distribute

actions to the individual agents. In real-world settings, this

demand can be problematic.

Recent work (Lowe et al., 2017; Foerster et al., 2018) at-

tempts to combine the strengths of these two approaches.

In particular, a critic (or a number of critics) is centrally

learned with information from all agents. The actors, how-

ever, receive information only from their corresponding

agents. Thus, during testing, executing the policies does

not require the knowledge of other agents’ actions. This

paradigm circumvents the challenge of non-Markovian and

non-stationary environments during learning. Despite these

progresses, however, algorithms for multi-agent reinforce-

ment learning are still far from being scalable (to larger

numbers of agents) and being generically applicable to en-

vironments and tasks that are cooperative (sharing a global

reward), competitive, or mixed.

Our approach 1 extends these prior works in several direc-

tions. The main idea is to learn a centralized critic with an

attention mechanism. The intuition behind our idea comes

from the fact that, in many real-world environments, it is

beneficial for agents to know what other agents it should pay

attention to. For example, a soccer defender needs to pay

attention to attackers in their vicinity as well as the player

with the ball, while she/he rarely needs to pay attention to

1Code available at: https://github.com/shariqiqbal2810/MAAC

https://github.com/shariqiqbal2810/MAAC
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the opposing team’s goalie. The specific attackers that the

defender is paying attention to can change at different parts

of the game, depending on the formation and strategy of

the opponent. A typical centralized approach to multi-agent

reinforcement learning does not take these dynamics into

account, instead simply considering all agents at all time-

points. Our attention critic is able to dynamically select

which agents to attend to at each time point during train-

ing, improving performance in multi-agent domains with

complex interactions.

Our proposed approach has an input space linearly increas-

ing with respect to the number of agents, as opposed to

the quadratic increase in a previous approach (Lowe et al.,

2017). It is also applicable to cooperative, competitive,

and mixed environments, exceeding the capability of prior

work that focuses only on cooperative environments (Foer-

ster et al., 2018). We have validated our approach on three

simulated environments and tasks.

The rest of the paper is organized as follows. In section 2,

we discuss related work, followed by a detailed description

of our approach in section 3. We report experimental studies

in section 4 and conclude in section 5.

2. Related Work

Multi-Agent Reinforcement Learning (MARL) is a long

studied problem (Buşoniu et al., 2010). Topics within

MARL are diverse, ranging from learning communica-

tion between cooperative agents (Tan, 1993; Fischer et al.,

2004) to algorithms for optimal play in competitive set-

tings (Littman, 1994), though, until recently, they have

been focused on simple gridworld environments with tabular

learning methods.

As deep learning based approaches to reinforcement learn-

ing have grown more popular, they have, naturally, been

applied to the MARL setting (Tampuu et al., 2017;

Gupta et al., 2017), allowing multi-agent learning in high-

dimensional/continuous state spaces; however, naive appli-

cations of Deep RL methods to MARL naturally encounter

some limitations, such as nonstationarity of the environment

from the perspective of individual agents (Foerster et al.,

2017; Lowe et al., 2017; Foerster et al., 2018), lack of coor-

dination/communication in cooperative settings (Sukhbaatar

et al., 2016; Mordatch & Abbeel, 2018; Lowe et al., 2017;

Foerster et al., 2016), credit assignment in cooperative set-

tings with global rewards (Rashid et al., 2018; Sunehag

et al., 2018; Foerster et al., 2018), and the failure to take op-

ponent strategies into account when learning agent policies

(He et al., 2016).

Most relevant to this work are recent, non-attention ap-

proaches that propose an actor-critic framework consisting

of centralized training with decentralized execution (Lowe

et al., 2017; Foerster et al., 2018), as well as some ap-

proaches that utilize attention in a fully centralized multi-

agent setting (Choi et al., 2017; Jiang & Lu, 2018). Lowe

et al. (2017) investigate the challenges of multi-agent learn-

ing in mixed reward environments (Buşoniu et al., 2010).

They propose an actor-critic method that uses separate cen-

tralized critics for each agent which take in all other agents’

actions and observations as input, while training policies

that are conditioned only on local information. This practice

reduces the non-stationarity of multi-agent environments, as

considering the actions of other agents to be part of the envi-

ronment makes the state transition dynamics stable from the

perspective of one agent. In practice, these ideas greatly sta-

bilize learning, due to reduced variance in the value function

estimates.

Similarly Foerster et al. (2018) introduce a centralized critic

for cooperative settings with shared rewards. Their method

incorporates a ”counterfactual baseline” for calculating the

advantage function which is able to marginalize a single

agent’s actions while keeping others fixed. This method

allows for complex multi-agent credit assignment, as the

advantage function only encourages actions that directly

influence an agent’s rewards.

Attention models have recently emerged as a successful

approach to intelligently selecting contextual information,

with applications in computer vision (Ba et al., 2015; Mnih

et al., 2014), natural language processing(Vaswani et al.,

2017; Bahdanau et al., 2015; Lin et al., 2017), and reinforce-

ment learning (Oh et al., 2016).

In a similar vein, Jiang & Lu (2018) proposed an attention-

based actor-critic algorithm for MARL. This work follows

the alternative paradigm of centralizing policies while keep-

ing the critics decentralized. Their focus is on learning an

attention model for sharing information between the poli-

cies. As such, this approach is complementary to ours, and

a combination of both approaches could yield further per-

formance benefits in cases where centralized policies are

desirable.

Our proposed approach is more flexible than the aformen-

tioned approaches for MARL. Our algorithm is able to train

policies in environments with any reward setup, different ac-

tion spaces for each agent, a variance-reducing baseline that

only marginalizes the relevant agent’s actions, and with a set

of centralized critics that dynamically attend to the relevant

information for each agent at each time point. As such, our

approach is more scalable to the number of agents, and is

more broadly applicable to different types of environments.

3. Our Approach

We start by introducing the necessary notation and basic

building blocks for our approach. We then describe our
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ideas in detail.

3.1. Notation and Background

We consider the framework of Markov Games (Littman,

1994), which is a multi-agent extension of Markov Decision

Processes. They are defined by a set of states, S, action

sets for each of N agents, A1, ..., AN , a state transition

function, T : S × A1 × ... × AN → P (S), which defines

the probability distribution over possible next states, given

the current state and actions for each agent, and a reward

function for each agent that also depends on the global state

and actions of all agents, Ri : S × A1 × ... × AN → R.

We will specifically be considering a partially observable

variant in which an agent, i receives an observation, oi,
which contains partial information from the global state,

s ∈ S. Each agent learns a policy, πi : Oi → P (Ai)
which maps each agent’s observation to a distribution over

it’s set of actions. The agents aim to learn a policy that

maximizes their expected discounted returns, Ji(πi) =
Ea1∼π1,...,aN∼πN ,s∼T [

∑∞
t=0 γ

trit(st, a1t, .., aNt)], where

γ ∈ [0, 1] is the discount factor that determines how much

the policy favors immediate reward over long-term gain.

Policy Gradients Policy gradient techniques (Sutton

et al., 2000; Williams, 1992) aim to estimate the gradient of

an agent’s expected returns with respect to the parameters of

its policy. This gradient estimate takes the following form:

∇θJ(πθ) = ∇θ log(πθ(at|st))

∞
∑

t′=t

γt
′−trt′(st′ , at′) (1)

Actor-Critic and Soft Actor-Critic The term
∑∞
t′=t γ

t′−trt′(st′ , at′) in the policy gradient estima-

tor leads to high variance, as these returns can vary

drastically between episodes. Actor-critic methods (Konda

& Tsitsiklis, 2000) aim to ameliorate this issue by using

a function approximation of the expected returns, and

replacing the original return term in the policy gradient

estimator with this function. One specific instance

of actor-critic methods learns a function to estimate

expected discounted returns, given a state and action,

Qψ(st, at) = E[
∑∞
t′=t γ

t′−trt′(st′ , at′)], learned through

off-policy temporal-difference learning by minimizing the

regression loss:

LQ(ψ) = E(s,a,r,s′)∼D

[

(Qψ(s, a)− y)2
]

where y = r(s, a) + γEa′∼π(s′)
[

Qψ̄(s
′, a′)

] (2)

where Qψ̄ is the target Q-value function, which is simply an

exponential moving average of the past Q-functions and D
is a replay buffer that stores past experiences.

To encourage exploration and avoid converging to non-

optimal deterministic policies, recent approaches of max-

imum entropy reinforcement learning learn a soft value

function by modifying the policy gradient to incorporate an

entropy term (Haarnoja et al., 2018):

∇θJ(πθ) =

Es∼D,a∼π[∇θ log(πθ(a|s))(− α log(πθ(a|s)) +

Qψ(s, a)− b(s))]

(3)

where b(s) is a state-dependent baseline (for the Q-value

function). The loss function for temporal-difference learn-

ing of the value function is also revised accordingly with a

new target:

y = r(s, a) + γEa′∼π(s′)[Qψ̄(s
′, a′)−

α log(πθ̄(a
′|s′))]

(4)

While an estimate of the value function Vφ(s) can be used

a baseline, we provide an alternative that further reduces

variance and addresses credit assignment in the multi-agent

setting in section 3.2.

3.2. Multi-Actor-Attention-Critic (MAAC)

The main idea behind our multi-agent learning approach

is to learn the critic for each agent by selectively paying

attention to information from other agents. This is the same

paradigm of training critics centrally (to overcome the chal-

lenge of non-stationary non-Markovian environments) and

executing learned policies distributedly. Figure 1 illustrates

the main components of our approach.

Attention The attention mechanism functions in a manner

similar to a differentiable key-value memory model (Graves

et al., 2014; Oh et al., 2016). Intuitively, each agent queries

the other agents for information about their observations

and actions and incorporates that information into the esti-

mate of its value function. This paradigm was chosen, in

contrast to other attention-based approaches, as it doesn’t

make any assumptions about the temporal or spatial locality

of the inputs, as opposed to approaches taken in the natural

language processing and computer vision fields.

To calculate the Q-value function Qψi (o, a) for the agent

i, the critic receives the observations, o = (o1, ..., oN ),
and actions, a = (a1, ..., aN ), for all agents indexed by

i ∈ {1 . . . N}. We represent the set of all agents except i

as \i and we index this set with j. Qψi (o, a) is a function

of agent i’s observation and action, as well as other agents’

contributions:

Qψi (o, a) = fi(gi(oi, ai), xi) (5)

where fi is a two-layer multi-layer perceptron (MLP), while

gi is a one-layer MLP embedding function. The contribution

from other agents, xi, is a weighted sum of each agent’s

value:

xi =
∑

j 6=i

αjvj =
∑

j 6=i

αjh(V gj(oj , aj))
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where the value, vj is a function of agent j’s embedding,

encoded with an embedding function and then linearly trans-

formed by a shared matrix V . h is an element-wise nonlin-

earity (we have used leaky ReLU).

The attention weight αj compares the embedding ej with

ei = gi(oi, ai), using a bilinear mapping (ie, the query-key

system) and passes the similarity value between these two

embeddings into a softmax

αj ∝ exp(eT
jW

T
kWqei) (6)

where Wq transforms ei into a “query” and Wk transforms

ej into a “key”. The matching is then scaled by the di-

mensionality of these two matrices to prevent vanishing

gradients (Vaswani et al., 2017).

In our experiments, we have used multiple attention

heads (Vaswani et al., 2017). In this case, each head, using a

separate set of parameters (Wk,Wq, V ), gives rise to an ag-

gregated contribution from all other agents to the agent i and

we simply concatenate the contributions from all heads as a

single vector. Crucially, each head can focus on a different

weighted mixture of agents.

Note that the weights for extracting selectors, keys, and

values are shared across all agents, which encourages a

common embedding space. The sharing of critic parame-

ters between agents is possible, even in adversarial settings,

because multi-agent value-function approximation is, es-

sentially, a multi-task regression problem. This parameter

sharing allows our method to learn effectively in environ-

ments where rewards for individual agents are different but

share common features. This method can easily be extended

to include additional information, beyond local observations

and actions, at training time, including the global state if it

is available, simply by adding additional encoders, e. (We

do not consider this case in our experiments, however, as

our approach is effective in combining local observations to

predict expected returns in environments where the global

state may not be available).

Learning with Attentive Critics All critics are updated

together to minimize a joint regression loss function, due to

the parameter sharing:

LQ(ψ) =

N
∑

i=1

E(o,a,r,o′)∼D

[

(Qψi (o, a)− yi)
2
]

, where

yi = ri + γEa′∼π
θ̄
(o′)[Q

ψ̄
i (o

′, a′)−

α log(πθ̄i(a
′

i|o
′

i))]

(7)

where ψ̄ and θ̄ are the parameters of the target critics and

target policies respectively. Note that Qψi , the action-value

estimate for agent i, receives observations and actions for

Figure 1. Calculating Q
ψ
i (o, a) with attention for agent i. Each

agent encodes its observations and actions, sends it to the central

attention mechanism, and receives a weighted sum of other agents

encodings (each tranformed by the matrix V )

all agents. α is the temperature parameter determining the

balance between maximizing entropy and rewards. The

individual policies are updated by ascent with the following

gradient:

∇θiJ(πθ) =

Eo∼D,a∼π[∇θi log(πθi(ai|oi))(− α log(πθi(ai|oi)) +

Qψi (o, a)− b(o, a\i))]

(8)

where b(o, a\i) is the multi-agent baseline used to calculate

the advantage function decribed in the following section.

Note that we are sampling all actions, a, from all agents’

current policies in order to calculate the gradient estimate

for agent i, unlike in the MADDPG algorithm Lowe et al.

(2017), where the other agents’ actions are sampled from the

replay buffer, potentially causing overgeneralization where

agents fail to coordinate based on their current policies (Wei

et al., 2018). Full training details and hyperparameters can

be found in the supplementary material.

Multi-Agent Advantage Function As shown in Foerster

et al. (2018), an advantage function using a baseline that

only marginalizes out the actions of the given agent from

Qψi (o, a), can help solve the multi-agent credit assignment

problem. In other words, by comparing the value of a spe-

cific action to the value of the average action for the agent,

with all other agents fixed, we can learn whether said action

will cause an increase in expected return or whether any

increase in reward is attributed to the actions of other agents.

The form of this advantage function is shown below:

Ai(o, a) = Qψi (o, a)− b(o, a\i)), where

b(o, a\i)) = Eai∼πi(oi)

[

Qψi (o, (ai, a\i))
] (9)
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Using our attention mechanism, we can implement a more

general and flexible form of a multi-agent baseline that,

unlike the advantage function proposed in Foerster et al.

(2018), doesn’t assume the same action space for each agent,

doesn’t require a global reward, and attends dynamically to

other agents, as in our Q-function. This is made simple by

the natural decomposition of an agents encoding, ei, and

the weighted sum of encodings of other agents, xi, in our

attention model.

Concretely, in the case of discrete policies, we can calcu-

late our baseline in a single forward pass by outputting the

expected return Qi(o, (ai, a\i)) for every possible action,

ai ∈ Ai, that agent i can take. We can then calculate the

expectation exactly:

Eai∼πi(oi)

[

Qψi (o, (ai, a\i))
]

=
∑

a′
i
∈Ai

π(a′i|oi)Qi(o, (a
′
i, a\i))

(10)

In order to do so, we must remove ai from the input of Qi,
and output a value for every action. We add an observation-

encoder, ei = goi (oi), for each agent, using these encodings

in place of the ei = gi(oi, ai) described above, and mod-

ify fi such that it outputs a value for each possible action,

rather than the single input action. In the case of continuous

policies, we can either estimate the above expectation by

sampling from agent i’s policy, or by learning a separate

value head that only takes other agents’ actions as input.

4. Experiments

4.1. Setup

We construct two environments that test various capabilities

of our approach (MAAC) and baselines. We investigate in

two main directions. First, we study the scalability of differ-

ent methods as the number of agents grows. We hypothesize

that the current approach of concatenating all agents’ ob-

servations (often used as a global state to be shared among

agents) and actions in order to centralize critics does not

scale well. To this end, we implement a cooperative en-

vironment, Cooperative Treasure Collection, with partially

shared rewards where we can vary the total number of agents

without significantly changing the difficulty of the task. As

such, we can evaluate our approach’s ability to scale. The

experimental results in sec 4.3 validate our claim.

Secondly, we want to evaluate each method’s ability to at-

tend to information relevant to rewards, especially when the

relevance (to rewards) can dynamically change during an

episode. This scneario is analogous to real-life tasks such

as the soccer example presented earlier. To this end, we im-

plement a Rover-Tower task environment where randomly

paired agents communicate information and coordinate.

(a) Cooperative Treasure Collection. The
small grey agents are “hunters” who collect
the colored treasure, and deposit them with
the correctly colored large “bank” agents.

(b) Rover-Tower. Each grey “Tower” is paired
with a “Rover” and a destination (color of
rover corresponds to its destination). Their
goal is to communicate with the ”Rover” such
that it moves toward the destination.

Figure 2. Our environments

Finally, we test on the Cooperative Navigation task proposed

by Lowe et al. (2017) in order to demonstrate the general

effectiveness of our method on a benchmark multi-agent

task.

All environments are implemented in the multi-agent par-

ticle environment framework2 introduced by Mordatch &

Abbeel (2018), and extended by Lowe et al. (2017). We

found this framework useful for creating environments in-

volving complex interaction between agents, while keeping

the control and perception problems simple, as we are pri-

marily interested in addressing agent interaction. To further

simplify the control problem, we use discrete action spaces,

allowing agents to move up, down, left, right, or stay; how-

2https://github.com/openai/multiagent-particle-envs

https://github.com/openai/multiagent-particle-envs
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Table 1. Comparison of various methods for multi-agent RL

Base Algorithm
How to incorporate Number Multi-task Multi-Agent

other agents of Critics Learning of Critics Advantage

MAAC (ours) SAC‡ Attention N X X

MAAC (Uniform) (ours) SAC Uniform Atttention N X X

COMA∗ Actor-Critic (On-Policy)
Global State +

1 X
Action Concatenation

MADDPG† DDPG∗∗ Observation and
N

Action Concatenation

COMA+SAC SAC
Global State +

1 X
Action Concatenation

MADDPG+SAC SAC
Observation and

N X
Action Concatenation

Heading Explanation How to incorporate other agents: method by which the centralized critic(s) incorporates observations and/or
actions from other agents (MADDPG: concatenating all information together. COMA: a global state instead of concatenating
observations; however, when the global state is not available, all observations must be included.) Number of Critics: number of separate
networks used for predicting Qi for all N agents. Multi-task Learning of Critics: all agents’ estimates of Qi share information in
intermediate layers, benefiting from multi-task learning. Multi-Agent Advantage: cf. Sec 3.2 for details.
Citations: ∗(Foerster et al., 2018), †(Lowe et al., 2017), ‡(Haarnoja et al., 2018), ∗∗(Lillicrap et al., 2016)

ever, the agents may not immediately move exactly in the

specified direction, as the task framework incorporates a

basic physics engine where agents’ momentums are taken

into account. Fig. 2 illustrates the two environments we

introduce.

Cooperative Treasure Collection The cooperative envi-

ronment in Figure 2a) involves 8 total agents, 6 of which

are ”treasure hunters” and 2 of which are “treasure banks”,

which each correspond to a different color of treasure. The

role of the hunters is to collect the treasure of any color,

which re-spawn randomly upon being collected (with a total

of 6), and then “deposit” the treasure into the correctly col-

ored “bank”. The role of each bank is to simply gather as

much treasure as possible from the hunters. All agents are

able to see each others’ positions with respect to their own.

Hunters receive a global reward for the successful collection

of treasure and all agents receive a global reward for the

depositing of treasure. Hunters are additionally penalized

for colliding with each other. As such, the task contains

a mixture of shared and individual rewards and requires

different “modes of attention” which depend on the agent’s

state and other agents’ potential for affecting its rewards.

Rover-Tower The environment in Figure 2b involves 8

total agents, 4 of which are “rovers” and another 4 which are

“towers”. At each episode, rovers and towers are randomly

paired. The pair is negatively rewarded by the distance of

the rover to its goal. The task can be thought of as a nav-

igation task on an alien planet with limited infrastructure

and low visibility. The rovers are unable to see in their sur-

roundings and must rely on communication from the towers,

which are able to locate the rovers as well as their desti-

nations and can send one of five discrete communication

messages to their paired rover. Note that communication is

highly restricted and different from centralized policy ap-

proaches (Jiang & Lu, 2018), which allow for free transfer

of continuous information among policies. In our setup,

the communication is integrated into the environment (in

the tower’s action space and the rover’s observation space),

rather than being explicitly part of the model, and is limited

to a few discrete signals.

4.2. Baselines

We compare to two recently proposed approaches for cen-

tralized training of decentralized policies: MADDPG (Lowe

et al., 2017) and COMA (Foerster et al., 2018), as well as

a single-agent RL approach, DDPG, trained separately for

each agent.

As both DDPG and MADDPG require differentiable poli-

cies, and the standard parametrization of discrete poli-

cies is not differentiable, we use the Gumbel-Softmax

reparametrization trick (Jang et al., 2017). We will refer to

these modified versions as MADDPG (Discrete) and DDPG

(Discrete). For a detailed description of this reparametriza-

tion, please refer to the supplementary material. Our method

uses Soft Actor-Critic to optimize. Thus, we additionally

implement MADDPG and COMA with Soft Actor-Critic for

the sake of fair comparison, referred to as MADDPG+SAC

and COMA+SAC.

We also consider an ablated version of our model as a variant

of our approach. In this model, we use uniform attention by

fixing the attention weight αj (Eq. 6) to be 1/(N − 1). This

restriction prevents the model from focusing its attention on

specific agents.

All methods are implemented such that their approximate

total number of parameters (across agents) are equal to our

method, and each model is trained with 6 random seeds
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Figure 3. (Left) Average Rewards on Cooperative Treasure Collection. (Right) Average Rewards on Rover-Tower. Our model (MAAC) is

competitive in both environments. Error bars are a 95% confidence interval across 6 runs.

Table 2. Average rewards per episode on Cooperative Navigation

MAAC MAAC (Uniform) MADDPG+SAC COMA+SAC

-1.74 ± 0.05 -1.76 ± 0.05 -2.09 ± 0.12 -1.89 ± 0.07

each. Hyperparameters for each underlying algorithm are

tuned based on performance and kept constant across all

variants of critic architectures for that algorithm. A thorough

comparison of all baselines is summarized in Table 1.

4.3. Results and Analysis

Fig. 3 illustrates the average rewards per episode attained

by various methods on our two environments, and Table 2

displays the results on Cooperative Navigation (Lowe et al.,

2017). Our proposed approach (MAAC) is competitive

when compared to other methods. We analyze in detail in

below.

Impact of Rewards and Required Attention Uniform

attention is competitive with our approach in the Coopera-

tive Treasure Collection (CTC) and Cooperative Navigation

(CN) environments, but not in Rover-Tower. On the other

hand, both MADDPG (Discrete) and MADDPG+SAC per-

form well on Rover-Tower, though they do not on CTC.

Both variants of COMA do not fare well in CTC and Rover-

Tower, though COMA+SAC does reasonably well in CN.

DDPG, arguably a weaker baseline, performs surprisingly

well in CTC, but does poorly in Rover-Tower.

In CTC and CN, the rewards are shared across agents thus

an agent’s critic does not need to focus on information from

specific agents in order to calculate its expected rewards.

Moreover, each agent’s local observation provides enough

information to make a decent prediction of its expected

rewards. This might explain why MAAC (Uniform) which

attends to other agents equally, and DDPG (unaware of other

agents) perform above expectations.

On the other hand, rewards in the Rover-Tower environment

for a specific agent are tied to another single agent’s obser-

vations. This environment exemplifies a class of scenarios

where dynamic attention can be beneficial: when subgroups

of agents are interacting and performing coordinated tasks

with separate rewards, but the groups do not remain static.

This explains why MAAC (Uniform) performs poorly and

DDPG completely breaks down, as knowing information

from another specific agent is crucial in predicting expected

rewards.

COMA uses a single centralized network for predicting Q-

values for all agents with separate forward passes. Thus, this

approach may perform best in environments with global re-

wards and agents with similar action spaces such as Cooper-

ative Navigation, where we see that COMA+SAC performs

well. On the other hand, the environments we introduce

contain agents with differing roles (and non-global rewards

in the case of Rover-Tower). Thus both variants of COMA

do not fare well.

MADDPG (and its Soft Actor-Critic variant) perform well

on RT; however, we suspect their low performance in CTC

is due to this environment’s relatively large observation

spaces for all agents, as the MADDPG critic concatenates

observations for all agents into a single input vector for

each agent’s critic. Our next experiments confirms this

hypothesis.

Scalability In Table 3 we compare the average rewards

attained by our approach and the next best performing base-

line (MADDPG+SAC) on the CTC task (normalized by

the range of rewards attained in the environment, as dif-

fering the number of agents changes the nature of rewards
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Table 3. MAAC improvement over MADDPG+SAC in CTC

# Agents 4 8 12

% Improvement 17 98 208

Figure 4. Scalability in the Rover-Tower task. Note that the perfor-

mance of MAAC does not deteriorate as agents are added.

in this environment). We show that the improvement of

our approach over MADDPG+SAC grows with respect to

the number of agents. As suspected, MADDPG-like crit-

ics use all information non-selectively, while our approach

can learn which agents to pay more attention through the

attention mechanism and compress that information into

a constant-sized vector. Thus, our approach scales better

when the number of agents increases. In future research we

will continue to improve the scalability when the number of

agents further increases by sharing policies among agents,

and performing attention on sub-groups (of agents).

In Figure 4 we compare the average rewards per episode

on the Rover-Tower task. We can compare rewards directly

on this task since each rover-tower pair can attain the same

scale of rewards regardless of how many other agents are

present. Even though MADDPG performed well on the 8

agent version of the task (shown in Figure 3), we find that

this performance does not scale. Meanwhile, the perfor-

mance of MAAC does not deteriorate as agents are added.

As a future direction, we are creating more complicated

environments where each agent needs to cope with a large

group of agents where selective attention is needed. This

naturally models real-life scenarios that multiple agents are

organized in clusters/sub-societies (school, work, family,

etc) where the agent needs to interact with a small number

of agents from many groups. We anticipate that in such

complicated scenarios, our approach, combined with some

advantages exhibited by other approaches will perform well.

Visualizing Attention In order to inspect how the atten-

tion mechanism is working on a more fine-grained level,

Figure 5. Attention weights over all Towers for a Rover in Rover-

Tower task. As expected, the Rover learns to attend to the correct

tower, despite receiving no explicit signal to do so.

we visualize the attention weights for one of the rovers in

Rover-Tower (Figure 5), while fixing the tower that said

rover is paired to. In this plot, we ignore the weights over

other rovers for simplicity since these are always near zero.

We find that the rover learns to strongly attend to the tower

that it is paired with, without any explicit supervision signal

to do so. The model implicitly learns which agent is most

relevant to estimating the rover’s expected future returns,

and said agent can change dynamically without affecting

the performance of the algorithm.

5. Conclusion

We propose an algorithm for training decentralized policies

in multi-agent settings. The key idea is to utilize attention

in order to select relevant information for estimating critics.

We analyze the performance of the proposed approach with

respect to the number of agents, different configurations of

rewards, and the span of relevant observational information.

Empirical results are promising and we intend to extend to

highly complicated and dynamic environments.

Acknowledgments We thank the reviewers for their helpful

feedback. This work is partially supported by NSF IIS-1065243,

1451412, 1513966/ 1632803/1833137, 1208500, CCF-1139148,

DARPA Award#: FA8750-18-2-0117, DARPA-D3M - Award

UCB-00009528, Google Research Awards, an Alfred P. Sloan

Research Fellowship, gifts from Facebook and Netflix, and ARO#

W911NF-12-1-0241 and W911NF-15-1-0484.

References

Ba, J., Mnih, V., and Kavukcuoglu, K. Multiple object recog-

nition with visual attention. In International Conference



Actor-Attention-Critic for Multi-Agent Reinforcement Learning

on Learning Representations, 2015.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. In

International Conference on Learning Representations,

2015.
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