
Received March 12, 2020, accepted April 1, 2020, date of publication April 14, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987820

Actor-Critic Deep Reinforcement Learning for
Solving Job Shop Scheduling Problems

CHIEN-LIANG LIU , (Member, IEEE), CHUAN-CHIN CHANG , AND CHUN-JAN TSENG
Department of Industrial Engineering and Management, National Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Chien-Liang Liu (clliu@mail.nctu.edu.tw)

This work was supported in part by Ministry of Science and Technology, Taiwan, under Grant no. MOST 107-2221-E-009-109-MY2.

ABSTRACT In the past decades, many optimization methods have been devised and applied to job shop
scheduling problem (JSSP) to find the optimal solution. Many methods assumed that the scheduling results
were applied to static environments, but the whole environments in the real world are always dynamic.
Moreover, many unexpected events such as machine breakdowns and material problems may be present to
adversely affect the initial job scheduling. This work views JSSP as a sequential decision making problem
and proposes to use deep reinforcement learning to cope with this problem. The combination of deep
learning and reinforcement learning avoids handcraft features as used in traditional reinforcement learning,
and it is expected that the combination will make the whole learning phase more efficient. Our proposed
model comprises actor network and critic network, both including convolution layers and fully connected
layer. Actor network agent learns how to behave in different situations, while critic network helps agent
evaluate the value of statement then return to actor network. This work proposes a parallel training method,
combining asynchronous update as well as deep deterministic policy gradient (DDPG), to train the model.
The whole network is trained with parallel training on a multi-agent environment and different simple
dispatching rules are considered as actions. We evaluate our proposed model on more than ten instances
that are present in a famous benchmark problem library – OR library. The evaluation results indicate that our
method is comparative in static JSSP benchmark problems, and achieves a good balance between makespan
and execution time in dynamic environments. Scheduling score of our method is 91.12% in static JSSP
benchmark problems, and 80.78% in dynamic environments.

INDEX TERMS Job shop scheduling problem (JSSP), deep reinforcement learning, actor-critic network,
parallel training.

I. INTRODUCTION

Scheduling can be viewed as a decision making pro-
cess, in which the scheduling arranges the tasks that we
should process sequentially. Moreover, scheduling is also
an essential task in many application domains, including
manufacturing [13], [43], [44], network [40] and supply
chains [12], [36]. For example, Wang et al. [36] considered
production and distribution in supply chain management, and
focused on the permutation flow shop scheduling problem,
which addressed the problem of batch delivery to multi-
ple customers. Zheng and Wang [44] focused on a resource
constrained unrelated parallel machine green manufacturing
scheduling problem, which aimed to minimize the makespan
and the total carbon emission. A typical scheduling comprises
one or more objectives with several constraints, resulting

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .

in a complicated computational problem. Mathematical pro-
gramming is a popular approach to deal with the scheduling
problem by formulating it as an optimization problem with
constraints, and using optimization techniques to seek the
optimal solution.

A practical scheduling problem normally involves hun-
dreds or thousands variables and enormous constraints, and
the optimization is a NP-hard problem [15]. Consequently,
meta-heuristic approach has become a popular method to
obtain sub-optimal solutions of scheduling problem in recent
years. However, real-world production systems always have
many uncertainties, such as variation in process time and
machine breaking down, so the optimal solution in the past
may be unsuitable in current situation, and requiring a lot of
time to reconstruct a new solution.

Reinforcement learning (RL) is a type of machine learning
concerned with how agents should take actions in an environ-
ment so as to maximize the future reward. More specifically,

71752 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-2724-7199
https://orcid.org/0000-0001-5180-5181
https://orcid.org/0000-0003-1611-4259
https://orcid.org/0000-0001-5464-3288

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

the main idea of RL is to let agents learn by trial and error
throughout the execution of the actions [34]. Once the agent
learns how to behave, it may generalize the model it has
learned to other unseen problems. Although the training of
RLmight take a lot of time, a well-trained agent could give an
immediate reaction for the problem encountered. It has been
applied successfully to various problems, including robot
control [9], manufacturing [33], and games [31]. Therefore,
RL can be an alternative method for dealing with dynamic
and complicated scheduling problems.
In the past, RL has several successful applications on job

shop scheduling problem (JSSP), and could find competi-
tive solutions for JSSP benchmark problems. However tra-
ditional RL needs to handcraft the features in the complex
systems and requires domain knowledge to obtain useful
information from raw statement. Nowadays, the progress of
deep learning (RL) has accelerated the development of RL.
Cunha et al. [10] presented a literature review on job shop
scheduling, evolutionary algorithms, and deep reinforcement
learning (DRL). Nazari et al. [25] developed an end-to-end
framework for solving the Vehicle Routing Problem (VRP)
using DRL, and their proposed method outperformed clas-
sical heuristics and Google’s optimization tools (OR-Tools).
More importantly, DRL has achieved remarkable success in
many areas. AlphaGO [31] is one of the most successful
DRL algorithms now. The success of AlphaGO inspires us to
apply DRL to JSSP by using deep architecture to learn from
low-level features of the statement and combine them to gen-
erate high-level features. The feature learning phase avoids
the prior knowledge to be involved in the whole statement,
making it more flexible when facing immediate events.

This work proposes to use actor-critic model to develop
DRL model for scheduling problems, in which DRL agent
is divided into two parts, critic network and actor network,
to analyze JSSP from two aspects. In critic network, the agent
evaluates the value of the statement and gives an approxima-
tion that allows the agent to know the state it faced is good or
not. In contrast, actor network relies on the approximation
given by critic network to have a corresponding behavior
with respect to this statement. The whole process is just like
a teaching scenario, in which critic network is the teacher
and actor network is the student. When facing the problem,
the student gives an answer, then the teacher checks student’s
work and gives the reward for the student to fix the answer
according to the reward.

To evaluate the proposed model, we train the DRL agent
on several JSSP benchmarks from the OR library and for-
mulate JSSP as a decision making problem. This work pur-
poses a parallel training method, combining asynchronous
update [23] as well as deep deterministic policy gradient
(DDPG) [20], to train the model. Moreover, we compare
our proposed method with several alternatives, including
commonly used dispatching rules, meta-heuristic approach,
optimum solution obtained frommathematical programming,
and traditional Q-learning. The experimental results indicate
that the proposed model could achieve promising results and

FIGURE 1. JSSP instance (ft06) in the OR-Library.

complete the scheduling task quickly. Furthermore, testing
in dynamic environment is conducted in the experiments,
in which randomness factors are injected into the original
state. The results show that the proposed DRL agent can
obtain a competitive solution of JSSP. To the best of our
knowledge, this is the first work usingDRL to copewith JSSP
problems in a dynamic environment.

The rest of this paper is organized as follows. Section II
presents related surveys and techniques. Section III intro-
duces the proposed algorithm. Section IV shows the
experimental results and Section V presents detailed
discussion. The conclusions and future work are presented
in Section VI.

II. RELATED WORK

This work focuses on JSSP, and proposes to use DRL to cope
with this problem. Thus, this section briefly introduces JSSP,
RL and DRL.

A. JOB SHOP SCHEDULING PROBLEM

Job shop scheduling problem has been a popular research
issue for decades, and the main purpose of JSSP is to find an
optimal solution of scheduling. This work focuses on simple
JSSP, indicating that one machine can only do one job at
a time and each operation of a job is only assigned to one
machine. Setup time and due date are also ignored in this
work.

OR-library [5] is a collection of test data sets for a variety
of operations research (OR) problems, and it also includes
many benchmark problems for scheduling. It has been used
to evaluate the performance of scheduling algorithms inmany
research studies [22], [26]. Fig. 1 shows the JSSP representa-
tion in OR-Library, in which each row represents one job and
each column is correspondent to the operation. Take job5 for
example, job5must first be processed onmachine 1 for 3 units
of processing time, then go to machine 3 for next opera-
tion. Traditional operation research (OR) has several methods
dealing with JSSP, such as integer programming (IP) [21]
and branch-and-bound [27]. Although OR methods can
guarantee the solution to be optimal, they can only deal
with small-scale problems. Thus, meta-heuristic methods,
including tabu search (TS) [26], beam search (BS) [7], [29],
simulated annealing (SA), genetic algorithms (GA) [4],
have become an alternative choice to solve JSSP as they
could efficiently find near optimal solutions on large-scale
problems.

VOLUME 8, 2020 71753

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

FIGURE 2. Agent and environment in the reinforcement learning.

B. REINFORCEMENT LEARNING

As compared with mathematical programming and meta-
heuristic methods, RL-based approaches for JSSP will not
give a static solution and react to the problem instantly with-
out long computation time. In RL scenario as shown in Fig. 2,
an agent takes an action in an environment, and then the
environment transforms the action taken in the current state
into the next state and a reward, which are fed back into the
agent. Next, the agent transforms the new state and reward
into the next action.
Typically, JSSPs can be modeled as a kind of decision

making process called Markov decision process (MDP) [6].
In MDP, state s(t) describes the situation of the agent encoun-
ters at time t . Then, agent takes action a(t) based on s(t)
and receives the reward r(t) from environment. The main
goal of RL is to learn from a series of decisions, so that
the agent could make actions to maximize the accumulation
of future rewards. RL comprises two categories, model-free
and model-based. Model-based RL makes the prediction to
the next state and learns the whole MDP transition model.
However the number of states in JSSPs is always enormous
and even infinite, making it infeasible to learn the whole
transition situations. Consequently, this work proposes to use
model-free RL, which only evaluates the value of state instead
of modeling the whole environment.
In RL algorithm, Q-learning [38] is a good choice to learn

the value function when you take an action in a state by policy
control to optimize the value function in an unknown MDP.
The Q-value in Q-learning is a pair Q(s, a) and the update
of Q-value is required once taking an action and receiving a
reward. The update equation is listed in Equation (1).

Q(s, a)← Q(s, a)+ α[r + γ max
a′

Q(s′, a′)− Q(s, a)], (1)

where r denotes immediate reward after taking action a,
α is the learning rate of the algorithm, maxa′ Q(s

′, a′) rep-
resents maximum action value of next state s′, Q(s, a) is
the estimate value conditional on state s and action a, and
0 ≤ γ < 1 denotes a discount factor, indicating that the
reward is diminished over time.

At each iteration, Q-value updates after choosing a policy
derived fromQ, and traditionally one could use ǫ-greedy pol-
icy to provide a chance for the agent to perform exploration,
so that the agent has a probability of ǫ to randomly choose an
action in the next step.
To apply RL to JSSPs, Aydin and Öztemel [3] combined

dispatching rules and RL in their proposed method. The
action list used in their proposedmethod involved SPT (short-
est processing time), COVERT (C over T), and CR (critical
ratio). They proposed an algorithm called Q-III algorithm,
which was an improved version of Q-learning, to solve the
local optimum problem. Zeng and Sycara [42] applied RL
to JSSP to find the solution of repair-based optimization
when criteria were changing. They used case-based reason-
ing method to learn how to revise the schedule from past
experience without observing the new statement. Instead
of formulating JSSP as MDP, Gabel and Riedmiller [14]
used multi-agent production scheduling (MAPS) to solve
JSSP. They used neural value approximation to improve
data efficiency and evaluated MAPS on many established
JSSP benchmark problems. Similarily, Jiménez [22] used
Multi-Agent Markov Decision Process (MMDP) to model
JSSP, in which they simply used multi-agent Q-learning to
adapt to different schedules. They tested their agent on not
only JSSP, but also parallel machines job shop scheduling
problem (JSSP-PM) and flexible job shop scheduling prob-
lem (FJSSP).

C. DEEP REINFORCEMENT LEARNING

Progress has been made over the years in DL, so the incorpo-
ration of DL and RL, also called DRL, has witnessed the great
success in recent years [2], [39]. Mnih et al. [24] proposed a
classical DRL architecture called deepQ-network (DQN) that
successfully handles high dimensional input states like raw
pictures and complicated action spaces. DQN can work on
raw input video game picture and take an action by using con-
volutional neural network (CNN) to extract image features.
The experimental results on various video games have shown
that it is possible for DQN to achieve the human level when
playing video games.
AlphaGO, proposed by Silver et al. [31], is probably

one of the most famous DRL applications. The main idea
behind AlphaGO is to combine rollout ability of Monte
Carlo tree search (MCTS) and the learning ability of DRL.
AlphaGO could normally find the best placement of GO
by DRL network, while MCTS expanses the game from
current place to find long-term inference. AlphaGO has to
learn from the experience of past games and some self-
play. The advanced version of AlphaGO Zero [32] can
defeat AlphaGO without any human data and domain knowl-
edge. Several training techniques have been devised to
improve performance of DRL, such as training DRL in
asynchronous scenario [23], combing KL-divergence into
loss function [20] and replacing backpropagation to evo-
lution strategy [30]. The success of DRL inspires many
researchers to apply DRL to cope with complicated problems

71754 VOLUME 8, 2020

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

that involve uncertainties and disturbances. For example,
Waschneck et al. [37] employed DQN for RL and adopted
a multi-agent method that considered a production stage and
a job allocation stage in the semiconductor manufacturing
scheduling. In addition, they applied a two-phase training
approach for DQN agents to separately enhance scalabil-
ity and stability. Vinyals et al. [35] proposed a multi-agent
RL that used data from both human and agent games that
were obtained from various leagues of continually adapting
strategies and counter-strategies, each represented by deep
neural networks. Their developed model, AlphaStar, was
rated over 99.8% of ranked human players in StarCraft II.
Ye et al. [41] devised a multi-agent deep reinforcement
learning method to optimize the offering strategies of mul-
tiple self-interested generation companies. The aforemen-
tioned works indicated that multi-agent deep reinforcement
learning has been applied to different application problems.
Cui et al. [8] proposed a RL technique to achieve opti-
mal trajectory tracking for autonomous underwater vehicles,
in which the problem involves external disturbances, con-
trol input non-linearities and model uncertainties. Their pro-
posed model comprised critic and action neural networks;
the former is used to evaluate the long-time performance of
the control, while the latter is used to compensate for the
unknown dynamics. The JSSP problems comprise factorial
explosion of possible solutions, and many unexpected events
may be introduced to change the constraints, explaining why
this work proposes to apply DRL to JSSP problems.

III. PROPOSED METHOD

This work proposes to use DRL with actor-critic architecture
to let the agent interact with job shop scheduling environment.
As mentioned above, JSSPs can be normally modeled as a
MDP problem. We formulate the situation of the agent at
time t as s(t) and the action that agent takes at this situation
as a(t). Once the agent takes an action, it will receive an
immediate reward r(t), which could be viewed as a produc-
tion cost. Therefore, our goal is to optimize the expected
future reward over time.
The proposed model comprises two networks, actor net-

work and critic network [18]. For the actor network, we pro-
pose to use CNN to learn the continuous behavior of the agent
that can obtain maximum expected reward in the future as
CNN is famous in learning discriminative features from data.
On the other hand, critic network shares similar structure with
actor network, but gives a value expectation of the statement
depending on the action made by actor network.

A. ENVIRONMENT

The basic idea is to formulate the JSSPs with MDP, but when
the number of machines becomes larger, the action space will
be too large when using only one agent in the model, so it is
expected that training of DRLwill become a challenging task.
As a result, this work proposes to model JSSP as an extension
of MDP called Multi-Agent Markov decision (MMDP) [28]
to model JSSPs.

The main difference between MDP and MMDP is that
MDP has only one agent to deal with all machines, so the
agent is allowed to view the whole picture of schedul-
ing. In MMDP, m agents are available to associate with m
machines, so that MMDP modeling is more flexible, and
avoids to re-plan the schedule when machine breakdown
occurs. Moreover, the central control of one agent will limit
the computation. We briefly describe JSSP with MMDP as
follows.

1) Agent: Each agent is associated with a specific
machine.

2) State: The states in this work comprises process time
matrix, Boolean matrix of the assigned job to each
agent (machine) and Boolean matrix of completed job.
The three Boolean matrices represent three different
channels of a state that will become the input of a CNN.
This representation is similar to the RGB channels of an
image.

3) Action: The action in this work is corresponding to
a dispatching rule, such as shortest processing time
(SPT) and first in first out (FIFO).

4) Reward: This work uses process time of the selected
job, remaining process time of the job and the compar-
ison of the smallest makespan as our rewards.When the
smallest makespan is unavailable, we replace it with a
small number.

B. LEARNING ALGORITHM

In Q-learning, Q-value is the main element of the learning
algorithm. For small-scale problems, theQ-value pairQ(s, a)
could be kept in computer memory. However, the num-
ber of Q-value pairs will be enormous or even infinite for
large-scale problems. Thus, it is infeasible to keep all possible
pairs in the memory, and estimation of Q-value is important
when applying Q-learning. Besides, our goal is to learn the
behavior instead of only using greedy policy, as used in
ǫ-greedy [4], [21], explaining why we propose to use the
Actor–Critic network to obtain both value estimation and
behavior estimation.

Critic network is in charge of value estimation. When
agents select an action and encounter a new state, critic
network estimates possible action values conditional on cur-
rent state to help agent make the action in the next step.
We use CNN architecture to estimate Q-value pairs, Q(s, a),
and a typical CNN architecture comprises convolution layer,
nonlinear activation layer and fully connected layer. The
convolution layer we use is partial convolution filter (1 × n)
rather than the original convolution filter (n × n) as the goal
is to find the relation among operations rather than machines.

The actor network is similar to critic network, but actor
network estimates the behavior distribution when the agent
arrives at a new state and takes an appropriate action based
on the critic that given by critic network in the previous step.
Instead of using greedy policy, learning how to behave or

VOLUME 8, 2020 71755

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

FIGURE 3. JSSPs on actor-critic DRL.

select actions in different environments can make the explo-
ration of agents more efficiently.

C. DRL ON JSSP

Learning of DRL is to via continuous interaction with JSSP
environment. Fig. 3 shows the complete JSSP training flow
of DRL. This work proposes to use three matrices in the
environment to represent the states of JSSPs, including pro-
cess time matrix, assignment matrix, and activation matrix,
respectively. Resource or each machine is assigned to one
agent, so that the environment involves multiple agents. In the
implementation, the action can be simple dispatching rules,
such as SPT/LPT. Fig. 3 is an example that the agent selects
SPT as the action and dispatches the shortest processing time
job that the machine can process.
In the beginning, state and the weights of the two networks

are initialized; meanwhile, initial state is sent to the actor
network to let agent take an action, namely, dispatching the
first job. Once dispatching the first job is completed, the state
transits to next state, and the environment gives a reward to
critic network depending on process time or remaining time
of job at the same time. Then, critic network gives a critic of
the action about whether this job dispatching performs well in
this schedule. Critic is the most important part in the learning
phase, since actor network modifies the dispatching policy
based on critic. Once all jobs are completed, the environment
gives a reward of maximum makespan in the end and resets
the state to initial state. Subsequently the agent will restart
from initial state. The training will not be terminated until
the number of iterations exceeds the specified threshold.
Update rule in the Deep Learning is based on loss function.

In DRL, the loss function involves two parts, actor loss and

critic loss. Critic loss function is listed in Equation (2).

Lc(θc) = (r + γ max
a′

Q(s′, a′, θc)− Q(s, a, θc))
2, (2)

where θc is the parameters for critic network. Just like
Q-learning, the goal is to make our estimation of state-action
Q(s, a, θc) to be more close to the target value, r +

γ maxa′ Q(s
′, a′, θc), which includes immediate reward and

the maximum value estimation of next state. On the other
hand, the actor loss function is defined in Equation (3).

La(θa) =
∑

logπ (a|s, θa)Lc(θc), (3)

where θa is the parameters for actor network. In Equation (3),
the value of La(θa) could be viewed as the degree of sur-
prising when the agent takes an action a. If an action a

is less likely taken, but obtained a high reward, the value
of La(θa) will increase, meaning that the reward is out of
our expectation. It is obvious that the loss function of actor∑

logπ (a|s, θa)Lc(θc) is correlated to critic loss function
Lc(θc), so the update of critic network will be important in
DRL.

D. PARALLEL TRAINING

When training RL agent in a dynamic environment, the strong
correlation between state s(t) and s(t + 1) makes the imme-
diate update of agent less efficient. Agent needs to execute
more iterations in the environment to find more samples
of states. Therefore training DRL for JSSPs will encounter
the same problem. The DQN algorithm tackles this prob-
lem with a huge experience data pool known as experi-
ence replay. The experiences of agent at each step will be
stored in a large dataset and agent will update by sampling
from experience pool rather than using immediate situation.

71756 VOLUME 8, 2020

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

Experience replay has been proven successfully to reduce
the variance of the update of agents, but JSSPs involves
more than one agent, namely machine in this work, making
the experience of agent become enormous and hard to be
stored. In this work, we propose a parallel training method,
combining asynchronous update [23] and deep deterministic
policy gradient(DDPG) [20]. Notably, DDPG is an extension
of DQN on actor-critic [20], [23] and asynchronous update
has empirically shown that it could efficiently and stably train
the model in multi-agent DRL model, explaining why this
work proposes to use asynchronous update mechanism.
When updating the network in DQN, we use a separate net-

work, namely target network, to generate targetQ-value from
the parameters of previous network. Fixing target network
in n-step can improve the stability of network. Therefore,
avoiding to have a divergence policy, we can add a target
actor network in actor-critic network. The parameter of target
network is copied from the earlier version of online network,
thus our critic loss function of online network will slightly
modify to become Equation (4).

Lc(θconline) = (r + γ max
a′target

Q(s′, a′, θctarget)− Q(s, a, θconline))
2

(4)

Note that in maxa′target Q(s
′, a′, θctarget), the agent will eval-

uate the action in state s′ deriving from target network. Just
like critic loss function, the actor loss function will modify
to:

La(θaonline) =
∑

logπ (a|s, θaonline)Lc(θconline) (5)

In every n-step we will set that:

θatarget = θaonline (6)

θctarget = θconline (7)

The idea to delay the update of target network is similar
to continuous training on a label in supervised learning.
Although changing target may immediately accelerate learn-
ing, a stable target can avoid divergence and help train the
DDPG more stationary.

In MMDP, multiple agents are involved in the model,
so when an agent takes an action, its state will change,
which will influence other agents. Thus, how to update each
agent and coordinate them will be the main challenge. Fig. 4
shows the concept of Asynchronous DDPG for theMMDP on
JSSP [23], which indicates that each agent of machines will
copy the parameter from global network and train their net-
work in their own statement. The global network will update
the parameters based on the accumulate gradients from all
the agents. Notably, the agents explore different parts of the
environment and this can avoid each agent being affected
by other agents as each agent explores its own environment
simultaneously. Algorithm 1 shows the entire update algo-
rithm of Asynchronous DDPG.

FIGURE 4. Asynchronous DDPG for the MMDP on JSSP.

Algorithm 1 Update Algorithm of Asynchronous DDPG

Input: θconline and θaonline
Output: θ ′conline and θ ′aonline

1 At time t
2 Step 1. Copy global network parameter θ to each agent.
3 Step 2. Let agents interact with their environments and
dispatch a job.

4 Step 3. Once the job is finished, and a reward rt is
obtained, update their network.

5 Step 4. Accumulate gradients:

dθ ′conline ← dθ ′conline +∇θ ′conline
(Lconline (θ

′
conline

)) (8)

dθ ′aonline ← dθ ′aonline +∇θ ′conline
(Lconline (θ

′
conline

)) (9)

6 Step 5: Perform asynchronous update of θ using dθ ′conline
and dθ ′aonline

IV. EXPERIMENTS

In the experiments, we evaluate our proposed DRL model on
some benchmark problems of operations research. Tradition-
ally we could dispatch all the jobs by optimization method or
meta-heuristic approaches to obtain a complete scheduling,
which are called dispatching rules of global view. However,
many unexpected events or requirements may influence the
jobs that have been scheduled, and these approaches that con-
sider whole production line require to re-schedule to obtain
new scheduling. In contrast, we view job shop problem as a
decision problem that we can dispatch job at every moment
and easily deal with any stochastic event happened.

A. ENVIRONMENT AND MODEL SETTING

The testing environments are initialized by the instances pro-
vided byOR-library. Table 1 shows the instances that are used
in the experiments. Moreover, to simulate a dynamic envi-
ronment, we include randomness factors in the environment.
Once initialization is completed, randomness is injected to the
environment, such as shuffling the order of jobs that assigned

VOLUME 8, 2020 71757

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

TABLE 1. Test instance.

to machines and increasing or decreasing the process time of
job. The purpose is to evaluate whether the proposed model
could deal with static instances that have seen as well as
unexpected instances.
The deep architecture we use in the experiments is

actor-critic neural network with one convolution layer and
one fully connected layer. In 10 × 10 and 20 × 5 instances,
16 filters with kernel size (1, 2) are used in convolution layer
and 100 neurons are used in a hidden layer of fully connected
part. As for the 6 × 6 instance, we use 8 filters with kernel
size (1, 1) in convolution layer and 100 neurons in the hidden
layer of fully connected part. Normalization and zero padding
are both applied to all instances. The optimizer of the neural
network is Kingma and Adam [17] and the hyperparameters
beta is 0.9, epsilon is 1e-8 and the learning rate is 1e-4 to
1e-6 according to the size of instance. The number of epochs
is 50 to 100 epochs based on the size of instances. In the
model design, the model explores other solutions to avoid to
converge to local optimum in the middle of training process.

B. COMPARISON WITH DISPATCHING RULES

Our proposed DRL model uses simple dispatching rules of
local view as our actions, so the experiments compare our
model with local dispatching rules of local view and global
optimum, which is obtained by python library, OR-Tools.1

The evaluation criteria in the experiments is the makespan
and the goal is to minimize makespan. Two rewards that
we design for DRL training on JSSPs will be tested in our
reinforcement environment. The first reward is called fixed
reward as shown in Equation (10).

ri = 1− λ× tp

rf =
γ

|y∗ − yf |
, (10)

where tp is process time, λ is a constant, y∗ is the optimal
result, yf is the final makespan obtained from DRL. Immedi-
ate reward returns once DRLmakes actions, and fixed reward
will return when all jobs are finished. The second reward is
called combined reward as listed in Equation (11).

rc = 1− λ× tp +
γ

|y∗ − ŷ|
, (11)

where ŷ is the predicted makespan. Combined reward fixes
reward every time when DRL makes actions. The learning
curve for DRL is presented in Fig. 5, in which instance la11 is

1Google Optimization Tools: https://github.com/google/or-tools

FIGURE 5. Learning phase of DRL.

used in the experiments. Our DRL model smoothly advances
the solution and achieves the global optimum after 80
episodes. Besides, we compare the proposed model with
several typical algorithms of JSSPs. The comparison algo-
rithms are listed as follows. To the best of our knowledge,
the proposed work is the first study attempting to apply DRL
to a dynamic environment on JSSPs problem, explaining why
we only compare with traditional RL method.

1) Simple dispatching rules: SPT/LPT (Shortest/Longest
process rule) and FIFO(First in first out) [14]

2) Meta-heuristic: GA: Combining ant colony optimiza-
tion algorithm with the taboo search algorithm [16]

3) Traditional RL: Generic Multi-Agent Q-learning
(QL) [22]

4) Optimal solution (OPT)

Table 2 shows the experimental results, which point out
that our proposed model with two different rewards are
competitive to optimum solution of static benchmark and
outperforms dispatching rules of local view, in which ‘‘Pro-
posed 1’’ uses combined reward, while ‘‘Proposed 2’’ uses
fixed reward. It is noted that optimum solution is the best
one, so it could be viewed as the upper bound of any
approach.We conclude that the proposed DRLmodel is train-
ing on a stochastic environment, giving the base to improve
the generalization ability of our proposed model.

We further investigate the impact of different rewards on
our proposed method, and we summarize the performances
for these two rewards on all the tasks in Fig. 6, which indicates
that using combined reward in our DRLmodel normally leads
to better results on makespan as compared with using fixed
reward in the end of training episode. The combined reward
uses the expectation of future makespan that scheduled by
the current parameters of our model. Continuously making
a comparison to optimal solution can ensure that our model
takes the action that affects future performance. Nevertheless,
in dynamic environment the optimal solution is difficult to
be found, so we replace the optimal solution by the smallest
makespan that our model has met in the environment. It is
apparent that the design of reward is the key to the suc-
cess of DRL, and this work considers makespan as it is the
most important part in manufacturing scheduling. Different
requirements would lead to different rewards, and the design
of other rewards is considered as one of our future works.

71758 VOLUME 8, 2020

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

TABLE 2. Experimental results.

Exploration is an important technique in RL. A commonly
used approach is ǫ-greedy strategy. Given a threshold value
for exploration, say ρ, we draw a random number x from a
uniform distribution, and check whether the condition x > ρ

holds. If the condition is true, we determine the action at
time t , namely at , using the following equation to perform
exploration.

at ← uniform(0, n),

where n is the size of action space. It is worth mentioning that
when at = 0, the agents do noting, indicating that no job is
available for them. Otherwise, we use the following equation

to determine at based on exploitation strategy.

at ← argmax
a

b(.|st),

where b(.|st) is the behavior policy (e.g., output of the actor
network), ∀a ∈ A, s ∈ S.
We conduct experiments to investigate the effectiveness of

ǫ-greedy algorithm in the proposed method. Fig. 7 shows
the experimental results. The results indicate that discard-
ing exploration in training time of DRL model will lead
DRL model to find a local optimal solution. In RL, explo-
ration means trying the action that agent does not select
before, whereas exploitation is to make the best decision

VOLUME 8, 2020 71759

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

FIGURE 6. Combined reward vs. fixed reward.

FIGURE 7. With exploration vs. without exploration.

given current information. The experimental results show that
applying exploration strategy to JSSP to find more different
scheduling solutions can avoid our model to fall into a local
optimal solution.

C. FLEXIBILITY

In a real-world environment, many unexpected conditions
such as machine breakdown or accident events may occur,
making it possible to change processing time or permuta-
tion of machine ordering. Mathematical programming and
meta-heuristic approaches have to re-schedule to deal with
these problems, and it is expected that re-scheduling is a
computation-intensive task. In contrast, the proposed DRL
model can train on stochastic environments and act rapidly
when accident events occur.
It is noted that a RL model designed for a dynamic envi-

ronment is unavailable in the previous works. Moreover,
the algorithmic operation for existing studies that focused on
static environment is not really designed for dynamic environ-
ments. To cope with a dynamic environment, these methods

TABLE 3. Comparison of execution time.

FIGURE 8. Performance comparison under stochastic events.

have to decompose the dynamic environment into different
static environments; therefore the designed algorithms have
to be retrained once the new environment is observed. There-
fore, these methods are not listed as the comparison method,
explaining why the experiments compare the proposed
DRL model with simple dispatching rules and the optimal
solution.

To evaluate the flexibility of our proposed DRL, we set
some random breakdowns and changing some process time
of job during dispatching. Each size (6× 6, 10× 10, 5× 20)
of instance will repeat 100 times from different initial param-
eters. The execution times and experimental results are pre-
sented in Table 3 and Fig. 8, respectively.

Table 3 and Fig. 8 show that small-size instance (6×6) can
get the optimal solution in short run, but when the number
of machines or the jobs increases, the optimal solution will
be hard to be found. The re-schedule times for 10 × 10 and
5× 20 instances are both more than 5 hours. It is impossible
to take more than 5 hours to fix the immediate changing, not
to mention that the size of job shop problems in real world is
much bigger than this.
In contrast, our proposed DRL model achieves smaller

makespan and tightness variation than simple dispatching
rules. Furthermore, the time for the proposed DRL model to
dispatch all the jobs is also competitive as compared with
simple dispatching rules. The proposed DRL learns how to
combine these simple dispatching rules together based on
different situations. Although one needs to train a DRLmodel
on an instance of fixed size for a while, a trained model
can easily finish scheduling in a few seconds or minutes and
execute on similar instances.

71760 VOLUME 8, 2020

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

TABLE 4. DRL on 20 × 15 instance.

We also evaluate our model on the largest instance in
OR–library (20 × 15) and the experimental results are pre-
sented in Table 4. The proposedDRL still yields better perfor-
mances than dispatching rules even though the search space
becomes huge.

V. CONCLUSION

In this work we propose an actor–critic architecture with
DRL to cope with classic job shop problems. The action
space we chose is a combination of simple dispatching rules
which can easily be executed in any complex environment.
We also propose a parallel training technique to ensure the
convergence of the model. The testing environment is set-
ting on OR library instances and many random elements are
included in the evaluation. The final results demonstrate that
our DRL model could deal with unexpected incidents, such
as machine breakdown and sudden additional order. Besides,
the quality of the solutions that are found by our model is also
comparative. Our model outperforms traditional dispatching
rules and executes almost as fast as simple dispatching rules.
Therefore the complexity of our model is also insured.
Several future works are possible. First, the design of

reward in this work is based on handcraft. We need to adjust
the reward when facing different environments. Thus learn-
ing of reward might be another interesting issue. Second,
we only focus on JSSP in this work, and transferring our DRL
model to other scheduling problems is a possible research
direction. Finally, the input of the neural network has to
be fixed size in our proposed model. When facing larger
instances, our method needs to increase parameters in the
network and re-train the network to fit the new instances. It is
a challenging task in deep learning that could accept variable
sizes of the inputs, and this is another future work. Third,
it is a valuable research to consider the factors or patterns
of scheduling problems to generate the simulation. Just like
Atari learning environment that has been widely used by
researchers to develop DRL algorithms on games, this can
be a fundamental environment for the training and evaluation
of DRL algorithms on scheduling problems.

REFERENCES

[1] D. Applegate and W. Cook, ‘‘A computational study of the job-shop
scheduling instance,’’ ORSA J. Comput., vol. 3, no. 2, pp. 149–156, 1991,
doi: 10.1287/ijoc.3.2.149.

[2] F. Abdullah Asuhaimi, S. Bu, P. Valente Klaine, and M. A. Imran, ‘‘Chan-
nel access and power control for energy-efficient delay-aware heteroge-
neous cellular networks for smart grid communications using deep rein-
forcement learning,’’ IEEE Access, vol. 7, pp. 133474–133484, 2019.

[3] M. E. Aydin and E. Öztemel, ‘‘Dynamic job-shop scheduling using
reinforcement learning agents,’’ Robot. Auto. Syst., vol. 33, nos. 2–3,
pp. 169–178, Nov. 2000.

[4] J. C. Bean, ‘‘Genetic algorithms and random keys for sequencing and
optimization,’’ ORSA J. Comput., vol. 6, no. 2, pp. 154–160, 1994.

[5] J. E. Beasley, ‘‘OR-library: Distributing test problems by electronic mail,’’
J. Oper. Res. Soc., vol. 41, no. 11, p. 1069, Nov. 1990.

[6] C. Boutilier, ‘‘Sequential optimality and coordination in multiagent sys-
tems,’’ in Proc. IJCAI, vol. 99, 1999, pp. 478–485.

[7] Y.-L. Chang, H. Matsuo, and R. S. Sullivan, ‘‘A bottleneck-based beam
search for job scheduling in a flexible manufacturing system,’’ Int. J. Prod.
Res., vol. 27, no. 11, pp. 1949–1961, 1989.

[8] R. Cui, C. Yang, Y. Li, and S. Sharma, ‘‘Adaptive neural network control
of AUVs with control input nonlinearities using reinforcement learning,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 6, pp. 1019–1029,
Jun. 2017.

[9] Y. Cui, T. Matsubara, and K. Sugimoto, ‘‘Pneumatic artificial muscle-
driven robot control using local update reinforcement learning,’’ Adv.
Robot., vol. 31, no. 8, pp. 397–412, Apr. 2017.

[10] B. Cunha, A. M. Madureira, B. Fonseca, and D. Coelho, ‘‘Deep reinforce-
ment learning as a job shop scheduling solver: A literature review,’’ inProc.
Int. Conf. Hybrid Intell. Syst., A. M. Madureira, A. Abraham, N. Gandhi,
and M. L. Varela, Eds. Cham, Switzerland: Springer, 2020, pp. 350–359.

[11] H. Fisher and G. L. Thompson, ‘‘Probabilistic learning combinations of
local job-shop scheduling rules,’’ in Industrial Scheduling, J. F. Muth and
G. L. Thompson, Eds. Upper Saddle River, NJ, USA: Prentice-Hall, 1963,
pp. 225–251.

[12] E. M. Frazzon, A. Albrecht, M. Pires, E. Israel, M. Kück, and
M. Freitag, ‘‘Hybrid approach for the integrated scheduling of production
and transport processes along supply chains,’’ Int. J. Prod. Res., vol. 56,
no. 5, pp. 2019–2035, Mar. 2018.

[13] Y. Fu, J. Ding, H. Wang, and J. Wang, ‘‘Two-objective stochastic flow-
shop scheduling with deteriorating and learning effect in industry 4.0-
based manufacturing system,’’ Appl. Soft Comput., vol. 68, pp. 847–855,
Jul. 2018.

[14] T. Gabel and M. Riedmiller, ‘‘On a successful application of multi-
agent reinforcement learning to operations research benchmarks,’’ in Proc.
IEEE Int. Symp. Approx. Dyn. Program. Reinforcement Learn., Apr. 2007,
pp. 68–75.

[15] M. R. Garey, D. S. Johnson, and R. Sethi, ‘‘The complexity of flowshop
and jobshop scheduling,’’ Math. Oper. Res., vol. 1, no. 2, pp. 117–129,
May 1976.

[16] K.-L. Huang and C.-J. Liao, ‘‘Ant colony optimization combined with
taboo search for the job shop scheduling problem,’’ Comput. Oper. Res.,
vol. 35, no. 4, pp. 1030–1046, Apr. 2008.

[17] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[18] V. R. Konda and J. N. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[19] S. Lawrence, ‘‘Resouce constrained project scheduling: An experimental
investigation of heuristic scheduling techniques (supplement),’’ Gradu-
ate School Ind. Admin., Carnegie-Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep., 1984.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, ‘‘Continuous control with deep rein-
forcement learning,’’ 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

[21] A. S. Manne, ‘‘On the job-shop scheduling problem,’’ Oper. Res., vol. 8,
no. 2, pp. 219–223, 1960.

[22] Y. M. Jimenez, ‘‘A generic multi-agent reinforcement learning approach
for scheduling problems,’’ Ph.D. dissertation, Vrije Univ. Brussel, Brus-
sels, Belgium, 2012, p. 128.

[23] V.Mnih, A. P. Badia,M.Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, ‘‘Asynchronous methods for deep reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H.
King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level
control through deep reinforcement learning,’’ Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015.

VOLUME 8, 2020 71761

http://dx.doi.org/10.1287/ijoc.3.2.149

C.-L. Liu et al.: Actor-Critic DRL for Solving JSSPs

[25] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, ‘‘Reinforcement learn-
ing for solving the vehicle routing problem,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 9839–9849.

[26] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. New York,
NY, USA: Springer, 2016.

[27] E. Pinson, ‘‘The job shop scheduling problem: A concise survey and
some recent developments,’’ in Scheduling Theory and Its Applications, P.
Chretienne, E. G. Coffman, Jr., J. K. Lenstra, and Z. Liu, Eds. New York,
NY, USA: Wiley, 1995, pp. 277–294.

[28] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

[29] I. Sabuncuoglu and M. Bayiz, ‘‘Job shop scheduling with beam search,’’
Eur. J. Oper. Res., vol. 118, no. 2, pp. 390–412, Oct. 1999.

[30] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, ‘‘Evolution
strategies as a scalable alternative to reinforcement learning,’’ 2017,
arXiv:1703.03864. [Online]. Available: http://arxiv.org/abs/1703.03864

[31] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S.
Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, ‘‘Mastering the
game of go with deep neural networks and tree search,’’ Nature, vol. 529,
no. 7587, pp. 484–489, Jan. 2016.

[32] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
‘‘Mastering the game of go without human knowledge,’’ Nature, vol. 550,
no. 7676, pp. 354–359, Oct. 2017.

[33] N. Stricker, A. Kuhnle, R. Sturm, and S. Friess, ‘‘Reinforcement learning
for adaptive order dispatching in the semiconductor industry,’’ CIRP Ann.,
vol. 67, no. 1, pp. 511–514, 2018.

[34] R. S. Sutton, A. G. Barto, and F. Bach, Reinforcement Learning: An
Introduction. Cambridge, MA, USA: MIT Press, 1998.

[35] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, ‘‘Grandmaster level in StarCraft II using multi-
agent reinforcement learning,’’ Nature, vol. 575, no. 7782, pp. 350–354,
Nov. 2019.

[36] K. Wang, H. Luo, F. Liu, and X. Yue, ‘‘Permutation flow shop scheduling
with batch delivery to multiple customers in supply chains,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 48, no. 10, pp. 1826–1837, Oct. 2018.

[37] B.Waschneck, A. Reichstaller, L. Belzner, T. Altenmuller, T. Bauernhansl,
A. Knapp, and A. Kyek, ‘‘Deep reinforcement learning for semiconductor
production scheduling,’’ in Proc. 29th Annu. SEMI Adv. Semiconductor
Manuf. Conf. (ASMC), Apr. 2018, pp. 301–306.

[38] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[39] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang, ‘‘UAV
autonomous target search based on deep reinforcement learning in complex
disaster scene,’’ IEEE Access, vol. 7, pp. 117227–117245, 2019.

[40] W. Yang, Y. Zhang, C. Yang, Z. Zuo, and X. Wang, ‘‘Online power
scheduling for distributed filtering over an energy-limited sensor network,’’
IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4216–4226, May 2018.

[41] Y. Ye, D. Qiu, J. Li, and G. Strbac, ‘‘Multi-period and multi-spatial
equilibrium analysis in imperfect electricity markets: A novel multi-
agent deep reinforcement learning approach,’’ IEEE Access, vol. 7,
pp. 130515–130529, 2019.

[42] D. Zeng and K. Sycara, ‘‘Using case-based reasoning as a reinforcement
learning framework for optimisation with changing criteria,’’ in Proc. 7th
IEEE Int. Conf. Tools with Artif. Intell., 1995, pp. 56–62.

[43] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, ‘‘Review of job shop
scheduling research and its new perspectives under industry 4.0,’’ J. Intell.
Manuf., vol. 30, no. 4, pp. 1809–1830, Apr. 2019.

[44] X.-L. Zheng and L. Wang, ‘‘A collaborative multiobjective fruit fly opti-
mization algorithm for the resource constrained unrelated parallel machine
green scheduling problem,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48,
no. 5, pp. 790–800, May 2018.

CHIEN-LIANG LIU (Member, IEEE) received
the M.S. and Ph.D. degrees from the Department
of Computer Science, National Chiao Tung Uni-
versity, Taiwan, in 2000 and 2005, respectively.
He is currently a Full Professor with the Depart-
ment of Industrial Engineering and Management,
National Chiao Tung University. His research
interests include machine learning, data mining,
deep learning, and big data analytics.

CHUAN-CHIN CHANG received the M.S. degree
in computer science from National Chiao Tung
University, Taiwan, in 2018. His research interests
include machine learning and data mining.

CHUN-JAN TSENG received the M.S. degree
from the Graduate Institute of Logistics Man-
agement, National Defense University, Taiwan,
in 2007. He is currently pursuing the Ph.D. degree
with the Department of Industrial Engineering and
Management, National Chiao Tung University,
Taiwan. His research interests include machine
learning, data mining, and logistics management.

71762 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	JOB SHOP SCHEDULING PROBLEM
	REINFORCEMENT LEARNING
	DEEP REINFORCEMENT LEARNING

	PROPOSED METHOD
	ENVIRONMENT
	LEARNING ALGORITHM
	DRL ON JSSP
	PARALLEL TRAINING

	EXPERIMENTS
	ENVIRONMENT AND MODEL SETTING
	COMPARISON WITH DISPATCHING RULES
	FLEXIBILITY

	CONCLUSION
	REFERENCES
	Biographies
	CHIEN-LIANG LIU
	CHUAN-CHIN CHANG
	CHUN-JAN TSENG

