
JMLR: Workshop and Conference Proceedings 24:43–57, 2012 10th European Workshop on Reinforcement Learning

Actor-Critic Reinforcement Learning with Energy-Based Policies

Nicolas Heess nheess@gatsby.ucl.ac.uk

David Silver d.silver@cs.ucl.ac.uk

Yee Whye Teh y.w.teh@stats.ox.ac.uk

Editor: Marc Peter Deisenroth, Csaba Szepesvári, Jan Peters

Abstract

We consider reinforcement learning in Markov decision processes with high dimensional
state and action spaces. We parametrize policies using energy-based models (particularly
restricted Boltzmann machines), and train them using policy gradient learning. Our ap-
proach builds upon Sallans and Hinton (2004), who parameterized value functions using
energy-based models, trained using a non-linear variant of temporal-difference (TD) learn-
ing. Unfortunately, non-linear TD is known to diverge in theory and practice. We introduce
the first sound and efficient algorithm for training energy-based policies, based on an actor-
critic architecture. Our algorithm is computationally efficient, converges close to a local
optimum, and outperforms Sallans and Hinton (2004) in several high dimensional domains.

1. Introduction

A major challenge in reinforcement learning is to find successful policies in problems with
high-dimensional state or action spaces. In order to solve these problems effectively, it is
advantageous to learn representations of the state and action spaces that enable a policy to
achieve high performance. In this paper, we develop a framework for parameterizing richly
structured policies, and for finding those with (locally) optimal performance.

We consider a class of policies based on energy-based models [LeCun et al., 2006], where
the (negative) log probability of selecting an action is proportional to an energy function.
Energy-based models have been widely studied in both supervised and unsupervised learn-
ing. They can learn deep, distributed representations of high-dimensional data (such as im-
ages) and model high-order dependencies, and here we will use them to directly parametrize
representations over states and actions. We explore in detail a class of energy-based mod-
els called restricted Boltzmann machines (RBMs; Freund and Haussler, 1994; Welling et al.,
2004). RBMs and conditional RBMs have been applied to a range of challenging tasks includ-
ing multi-class classification [Larochelle and Bengio, 2008], collaborative filtering [Salakhut-
dinov et al., 2007], motion capture modeling [Taylor and Hinton, 2009], modeling of transfor-
mations in natural images [Memisevic and Hinton, 2010], and structured output prediction
[Mnih et al., 2011].

To successfully use energy-based policies for reinforcement learning, it is necessary to
address several challenges. First, the parameterized representations can be highly non-
linear, leading to non-convex objectives with multiple optima. Second, it is often intractable
to compute the partition function that normalizes the energy function into a probability

c© 2012 N. Heess, D. Silver & Y.W. Teh.

Heess Silver Teh

distribution. Third, evaluating a policy typically has high variance, since the performance
depends on the rewards accumulated over a complete trajectory. Prior work [Sallans, 2002;
Sallans and Hinton, 2004; Otsuka et al., 2010; Elfwing et al., 2010] partially addressed these
issues using value-based reinforcement learning. The idea was to approximate the action-
value function by the free energy of an energy-based model, and to train it by temporal-
difference (TD) learning. However, this approach has a serious drawback: TD learning is
known to diverge, both in theory and in practice, when using non-linear value functions
[Tsitsiklis and Van Roy, 1997]. In addition, the policy is based on an arbitrary temperature
which makes the algorithm hard to tune in practice.

We introduce a new approach to reinforcement learning with energy-based policies. The
basic idea is to adjust the policy parameters to follow the gradient of the policy performance,
using sample trajectories to obtain estimates of the gradient [Williams, 1992; Sutton et al.,
1999; Baxter and Bartlett, 2001]. One major advantage of this approach is that it converges
to a local optimum, even for non-linear policies. Simple policy gradient methods are sensitive
to the parameterization of the policy, and also suffer from high variance in the gradient
estimates. We address these shortcomings by following the natural gradient, which reduces
the dependence of the performance of the policy gradient on the parameterization [Kakade,
2001]; and by using an actor-critic architecture, which uses an approximate value function
to reduce the variance in the gradient estimates [Peters and Schaal, 2008; Bhatnagar et al.,
2009]. We introduce two novel natural actor-critic algorithms for efficiently following the
gradient of energy-based policies without resorting to explicit computation of the partition
function. We apply our algorithms to learn RBM policies in a number of tasks, finding
that they converge quickly to reasonable solutions in all tasks and consistently outperform
Sallans and Hinton [2004], which sometimes even fails to converge.

2. Energy-based policies

We consider stationary Markov decision processes (MDPs) with bounded rewards and high
dimensional state and action spaces denoted S and A respectively. Denote the state, action
and reward at time t by st, at and rt respectively, and the state transition probabilities and
expected reward function by P (st+1|st, at) and R(st, at). We will consider stochastic and
stationary polices described by conditional distributions over actions πθ(a; s) parameterized
by θ. We assume that given policy πθ the MDP is ergodic with stationary distribution dθ.

In this paper we consider energy-based policies which can be expressed as conditional
joint distributions over actions a and a set of latent variables h:

πθ(a, h; s) = 1
Z(s)e

φ(s,a,h)⊤θ (1)

where φ(s, a, h) are a pre-defined set of features and Z(s) =
∑

a,h exp(φ(s, a, h)
⊤θ) is the

normalizing partition function. The policy itself is then obtained by marginalizing out
h. The latent variables allow energy-based policies to parametrize complex non-linear and
non-factorial relationships between actions and states, even though the underlying parame-
terization (1) is log linear in the features φ(s, a, h). For example, in a conditional restricted
Boltzmann machine (RBM), the states s, actions a and latent variables h are all high-

44

Actor critic learning for energy-based policies

dimensional binary vectors, and (1) is parameterized as:

πθ(a, h; s) = 1
Z(s)e

s⊤Wsh+a⊤Wah+b⊤s s+b
⊤
h
h+b⊤a a (2)

where the parameters are matrices Ws,Wa and vectors bs, ba, bh of appropriate dimension-
alities. Marginalizing out h, we get a non-linearly parameterized policy:

F θ(s, a) = −b⊤s s− b⊤a a−
∑

i log(1+e
s⊤Wsi+a

⊤Wai+bhi), πθ(a; s) = 1
Z(s)e

−F (s,a;θ) (3)

where i indices the latent variables, and Wsi,Wai, bhi are parameters associated with latent
variable hi. The quantity F (s, a; θ) is called the free energy.

2.1. Free-energy Sarsa

Sallans and Hinton [2004] use the RBM free energy as a non-linear function approximator.
Specifically, they approximate the action-value function Qθ(s, a) of a discounted MDP using
−F θ(s, a), and select actions according to a Boltzmann exploration policy,

πθ(a; s, T) = 1
Z(s,T)e

−F (s,a;θ)/T (4)

where the temperature T scales units of reward into units of probability: as T → ∞ the
policy becomes uniform; as T → 0 it becomes greedy. The parameters of the RBM are
updated using a non-linear version of the Sarsa algorithm, with time-varying step size βt,

δt = rt+1 − γF θt(st+1, at+1) + F θt(st, at)

θt+1 = θt − βtδt∇θF θt(st, at), (5)

where δt is the TD error and γ is the discount factor of the MDP. We refer to this algo-
rithm as energy-based Sarsa (ESARSA). Since Sarsa is a control algorithm based on TD
learning, it may diverge with non-linear function approximations [Tsitsiklis and Van Roy,
1997]. Recently, convergent non-linear prediction algorithms based on gradient TD have
been developed, however even these may still diverge when used for control [Maei et al.,
2009].

2.2. Policy gradient

In this paper we consider an average reward formulation of MDPs. Our objective is to find
parameters θ that (locally) maximize the average reward per time-step J(θ),

J(θ) = lim
T→∞

1
T Eθ

[∑T
t=1 rt

]
= Eθsa [R(s, a)] (6)

where Eθ denotes expectation under πθ and Eθsa denotes expectation under the stationary
distribution (where s ∼ dθ and a|s ∼ πθ(·; s)). The state-value function V θ(s) and action-
value function Qθ(s, a) for policy πθ are given by the differential reward from s (and a),

Qθ(s, a) =

∞∑

t=1

Eθ [rt − J(θ)|s0 = s, a0 = a] (7)

V θ(s) =
∞∑

t=1

Eθ [rt − J(θ)|s0 = s] =
∑

a∈A
πθ(s; a)Qθ(s, a) = Eθa[Q

θ(s, a)] (8)

45

Heess Silver Teh

where Eθa denotes expectation under a|s ∼ πθ(·; s). The advantage function is the differential
value for action a in state s:

Aθ(s, a) = Qθ(s, a)− V θ(s) (9)

Policy gradient methods update the policy parameters θ to follow the gradient of the
average reward. The policy gradient theorem [Baxter and Bartlett, 2001; Sutton et al., 1999;
Bhatnagar et al., 2009] provides the gradient of J(θ) with respect to θ,

∇θJ(θ) = Eθsa

[
Aθ(s, a)∇θ log πθ(a; s)

]
(10)

In practice, the advantage function Aθ is unknown and must be approximated. Actor-
critic policy gradient algorithms estimate the advantage function, Âw ≈ Aθ, and update this
estimate (the critic) in parallel with the policy parameters (the actor). If the parameteri-
zation of the approximation Âw is compatible with the parameterization of the policy, then
this approximation does not introduce any bias into the gradient direction [Sutton et al.,
1999]. A parameterization is compatible if it satisfies

∇wÂ
w(s, a) = ∇θ log πθ(a; s) (11)

That is, Âw(s, a) = ψθ(s, a)⊤w where ψθ(s, a) = ∇θ log πθ(a; s). Furthermore, the parame-
ters w should minimize the mean-squared-error (MSE),

w=argmin
w

′

Eθsa

[(
Aθ(s, a)−ψθ(s, a)⊤w′)2

]
(12)

This can be obtained by stochastic gradient updates:

wt+1 = wt + αt(δt − ψθt(st, at)⊤wt)ψ
θt(st, at) (13)

where θt is the current policy parameter, αt is a step size and δt is an unbiased estimate of
Aθ(st, at) (later).

The direction of the vanilla policy gradient is sensitive to reparameterizations of the pol-
icy that don’t affect the action probabilities. Natural policy gradient algorithms [Kakade,
2001; Peters and Schaal, 2008] remove this dependence, by finding the direction that im-
proves J(θ) the most for a fixed small amount of change in distribution (e.g. measured by
KL divergence). The natural policy gradient ∇nat

θ J(θ) is defined by

∇nat
θ J(θ) = G−1

θ ∇J(θ), Gθ = Eθsa
[
∇ log π(s, a)∇ log π(s, a)T

]
(14)

where Gθ is the Fisher information matrix. When using compatible function approximation,
we find that,

∇θJ(θ) = Eθsa

[
∇θ log πθ(a; s)Aθ(s, a)

]

= Eθsa

[
∇θ log πθ(a; s)(∇θ log πθ(a; s))Tw

]
= Gθw (15)

and the natural gradient simplifies to ∇nat
θ J(θ) = w. Policy parameters updates are then:

θt+1 = θt + βtwt+1, (16)

46

Actor critic learning for energy-based policies

The final ingredient is estimating the advantage function Aθ(s, a). One unbiased estimate
is the TD error:

δt = rt+1 − J(θ) + V θ(st+1)− V θ(st) (17)

which is used by Bhatnagar et al. [2009] to motivate their natural TD actor-critic (NATDAC)
algorithm: They approximate the state-value function, and hence the TD error, using a linear
function approximator V̂θ(s) ≈ f(s)Tv, where f(s) is a state-dependent feature vector and
v are updated by TD learning:

Ĵt+1 = (1− ζt)Ĵt + ζtrt+1

δt = rt+1 − Ĵt+1 + f(st+1)
T
vt − f(st)Tvt

vt+1 = vt + αtδtf(st) (18)

Provided that the average reward, TD error and critic are updated on a slower time scale
than for the actor, and step sizes are reduced at appropriate rates, NATDAC converges to
a policy achieving near-local maximum average reward [Bhatnagar et al., 2009, Section 5].

3. NATDAC for energy-based policies

Energy-based policies pose a challenge to policy gradient methods. Both vanilla policy
gradient updates and natural actor-critic updates require the computation of compatible
features ψθ(s, a) = ∇θ log πθ(s, a). For an energy-based policy, this requires the computation
of two expectations:

ψθ(s, a) = ∇θ log πθ(a; s) = ∇θ log
∑

h e
φ(s,a,h)⊤θ −∇θ logZ(s)

= Eθh [φ(s, a, h)]− Eθa′h
[
φ(s, a′, h)

] def
= φθ(s, a)− Eθa′

[
φθ(s, a′)

]
. (19)

where Eθh is the expectation wrt the conditional of h given a and s while Eθah is wrt both a
and h. The first expectation, which we denote by φθ(s, a), can be computed efficiently in a
wide class of energy-based models, including RBMs. The second expectation involves a sum
over all actions, and is intractable to compute in high-dimensional action spaces.

We now propose two incremental actor critic algorithms that avoid evaluating either this
expectation or the partition function. The first algorithm energy-based NATDAC (ENAT-
DAC) uses independent samples from the energy-based policy to approximate the intractable
expectations. The second algorithm, energy-based Q-value natural actor critic (EQNAC)
uses a deterministic approximation and has a lower computational requirement.

3.1. Energy-based NATDAC

For our first algorithm, we note that energy-based policies such as RBMs may be efficiently
sampled, for example by blocked Gibbs sampling, without explicitly computing the partition
function. Unbiased estimates of the update (13) can then be formed using two independent

47

Heess Silver Teh

unbiased estimates of the compatible features ψθ(s, a),

ψ̂′
t = φθt(st, at)−

1

K

K∑

k=1

φθt(st, a
′
k), ψ̂′′

t = φθt(st, at)−
1

L

L∑

l=1

φθt(st, a
′′
l)

wt+1 = wt + αt

(
δt − ψ̂′

t

⊤
wt

)
ψ̂′′
t (20)

where a′k, a
′′
l ∼ πθt(·; s) iid. Because (20) is equal in expectation to the critic update (13),

the two time scale convergence proof for NATDAC [Bhatnagar et al., 2009, section 5.3] can
be applied. Specifically, under our assumption that the critic is updated on a much slower
time-scale than the actor, the policy θt and therefore φθt is effectively stationary during critic
updates. As a result, the TD learning updates (20) are based on a function approximator
that is linear in φθt , and do not suffer from the divergence issues faced by energy-based
Sarsa.

Algorithm 4.1: ENATDAC

1: Input: Ĵ0,v0,w0, θ0, s0
2: for t = 0, 1, . . . do
3: at, a

′
1...K , a

′′
1...L ∼ πθt(·; st)

4: st+1 ∼ P (·|st, at)
5: rt+1 = R(st, at)
6: ψ̂′

t = φθt(st, at)− 1
K

∑K
k=1 φ

θt(st, a
′
k)

7: ψ̂′′
t = φθt(st, at)− 1

L

∑L
l=1 φ

θt(st, a
′′
l)

8: ˆJt+1 = (1− ζt)Ĵt + ζtrt+1

9: δt = rt+1 − Ĵt+1 + v
⊤f̂t+1 − v

⊤f̂t
10: vt+1 = vt + αtδtf(st)
11: wt+1 = wt + αt(δt − ψ̂′T

t wt)ψ̂
′′
t

12: θt+1 = θt + βtwt+1

13: end for

One drawback of the NATDAC algo-
rithm is that the quality of the state-value
function approximator depends on the fea-
ture vector f(s). Although the algorithm
converges, the quality of the final policy may
be significantly affected by the choice of fea-
tures. In an energy-based framework, it is
possible to marginalize over φθ(s, a) to de-
fine an energy-based feature vector f(s) =
Eθa[φ

θ(s, a)]. Again, this expectation is in-
tractable to compute, but can be approxi-
mated by a third set of samples from the
policy, a′′′m ∼ πθ(s, ·)

f̂t =
1

M

M∑

m=1

φθt(st, a
′′′
m) (21)

Pseudocode for energy-based NATDAC is given in Algorithm 4.1. In summary, it uses
an advantage actor-critic, based on TD learning with an energy-based feature vector, and
using the sample approximation to the intractable expectations, and updates the policy by
following the natural gradient.

3.2. Energy-based Q-value natural actor-critic

We now introduce our second algorithm, EQNAC, which is also based on a natural actor-
critic approach. The key new idea is to note that, when using the compatible function
approximator ψθ(s, a), the approximate advantage function Âw(s, a) can be represented in
terms of an approximate action-value Q̂w(s, a),

Âw(s, a) = ψθ(s, a)⊤w =
(
φθ(s, a)− Eθa′

[
φθ(s, a′)

])⊤
w = φθ(s, a)⊤w − Eθa′

[
φθ(s, a′)

]⊤
w

def
= Q̂w(s, a)− Eθa′ [Q̂

w(s, a′)]. (22)

48

Actor critic learning for energy-based policies

This suggests that it is sufficient to estimate the action-value function Qθ(s, a) by a linear
approximator Q̂w = φθ(s, a)⊤w. This representation does not involve any intractable ex-
pectations. The EQNAC algorithm updates the critic parameters w by TD learning, and
updates the policy parameters θ by following the natural gradient in the direction of w.
Pseudocode for EQNAC is shown in Algorithm 4.2. Again, for an effectively stationary
policy the TD learning procedure is linear in φθ and therefore avoids the divergence issues
encountered by energy-based Sarsa. Unlike ENATDAC, this algorithm does not require
repeated sampling of actions to estimate the expectations. Furthermore, it only maintains
two sets of parameters θ and w, and does not require a state feature vector to be defined.

4. Experiments Algorithm 4.2: EQNAC

1: Input: Ĵ0,w0, θ0, s0
2: a0 ∼ πθ0(·; s0)
3: for t = 0, 1, 2, . . . do
4: rt+1 = R(st, at)
5: st+1 ∼ P (·|st, at)
6: at+1 ∼ πθt(·; st)
7: Ĵt+1 = (1− ζt)Ĵt + ζtrt+1

8: δt = rt+1 − Ĵt+1+
φθt(st+1, at+1)

⊤
wt − φθt(st, at)⊤wt

9: wt+1 = wt + αtδtφ
θt(st, at)

10: θt+1 = θt + βtwt+1

11: end for

We evaluate our two algorithms, comparing
them against ESARSA on three tasks below.
As an additional comparison, we also con-
sidered a neural network (NN) with stochas-
tic output units and the same structure as
the RBM except that the hidden units were
deterministic instead of stochastic. The
NN was trained with NATDAC (details in
supplemental material). The learning algo-
rithms are sensitive to the choice of learning
parameters. For all tasks and algorithms we
therefore perform a grid search over differ-
ent settings of the relevant parameters, and report results for the best setting.1 In a cross-
validation style setup, we first choose the parameters based on a preliminary parameter
sweep, then fix the parameters and perform a final run for which we report the results. In
all cases, we learn several policies with the same parameter settings but different random
initializations. We obtain learning curves by evaluating each policy at regular intervals dur-
ing learning, performing several hundred repeats of each task.2 We use exact sampling for
all algorithms in the stochastic policy and blocker tasks, and block Gibbs sampling for the
octopus arm task. Note that our algorithms use an average reward formulation; whereas
ESARSA uses a discounted reward formulation. For ESARSA on the blocker and octopus
arm tasks γ is set to 1; for the stochastic policy task γ = 0.

The stochastic policy task [Sallans, 2002] is an example where a stochastic policy
is required to deal with state aliasing, and serves to demonstrate that RBMs can model
stochastic policies with high-dimensional action spaces. The action space consists of N
binary variables and there are K unobserved states. Each of the unobserved states is associ-
ated with one particular configuration of the action variables. If the environment is in state
k and the associated action is performed a reward of 10 is received and the environment

1. For ESARSA we consider initial learning rate, speed of decay of the learning rate, decay of the exploration
temperature T (starting at 1), and variance of the Gaussian distribution used to randomly initialize the
policy parameters at the beginning of learning. For the policy gradient algorithms we consider α0, β0,
rate of decay for α, β, and scale of random initialization. We use ζ = α in all experiments.

2. 500 actions for stochastic policy; 1000 epochs for blocker task; 100 epochs for octopus arm.

49

Heess Silver Teh

N K prototypical actions

task 1 5 2 (0 0 1 0 1)
(0 1 0 1 1)

task 2 6 3 (1 1 0 0 0 0)
(0 0 1 1 0 0)
(0 0 0 0 1 1)

task 3 8 3 (0 0 1 0 1 0 1 1)
(0 1 0 1 1 1 0 0)
(1 1 1 0 1 0 0 0)

0 10000 20000
0

2

4

6
Task 1

a
v
.

re
w

.
/

s
te

p

0 10000 20000
0

2

4
Task 2

actions
0 10000 20000

0

2

4
Task 3

Figure 4.1: Stochastic policy task: The table shows the task-parameters for the three ver-
sions of the task. Results are shown for ENATDAC (green circles), EQNAC
(blue squares), SARSA (red crosses), and NN (magenta). Black lines show av-
erage reward for optimal policy; light gray lines show rewards with independent
actions.

Figure 4.2: Blocker task: The top plot illustrates several
steps in a blocker game (adapted from Sallans
and Hinton 2004). To win, the agents need to
cooperate. Here, agents 1,2 force the block-
ers to split so that agent 3 can enter the end
zone in the middle. The bottom plot shows, for
each algorithm, mean and standard deviation
of the average reward per step of the learned
policies for 20 restarts with different random
initialziations (see Fig. B.3 in the supplemen-
tal material for individual traces).

123

A B

C D

80000 240000 400000
−1

−0.9

−0.8

−0.7

actions

a
v
g

.
re

w
a

rd
 p

e
r

a
c
ti
o

n

SARSA

NN

EQNAC

ENATDAC

transitions into state k + 1 (or into state 1 from K). Otherwise the state is unchanged and
no reward is provided. Since the agent does not observe the environment state the optimal
policy is to choose the K “good” action configurations with equal probability, achieving an
average reward of 10

K . A deterministic policy will get zero reward since it will get stuck in one
of the states. Further, it is necessary to model dependencies between action variables: for
independently drawn action variables the probability of generating a “good” configuration
is very low. We consider three versions of the task with N = 5, 6, 8, and K = 2, 3, 3 (cf.
Fig. 4.1). The first version was considered in Sallans [2002]. We used an RBM with 1 hidden
unit for task 1 and 2 hidden units for tasks 2 and 3. Training was performed for 20000 ac-
tions. Results are shown in Fig. 4.1. The NN models each action dimension independently
and therefore performs very poorly (see supplemental material for further discussion). In
contrast, the RBM learns to represent these correlations via stochastic latent variables and
performs very effectively. When training the RBM, ESARSA is only able to find the optimal
policy for task 1, whereas EQNAC and ENATDAC find optimal policies in all cases.3

The blocker task (Sallans 2002; Sallans and Hinton 2004) is a multi-agent task in which
agents have to reach the end zone at the top of a playing field while blockers try to stop

3. Although only the first 20000 actions are shown we allowed 50000 actions for ESARSA training. For
task 2 additional training leads to a small improvement relative to the performance after 20000 actions
but not for task 3 (see also Fig. B.1 in supplemental material).

50

Actor critic learning for energy-based policies

Figure 4.3: Octopus arm: Average number of steps re-
quired to hit the target. For each algorithm
mean and std.-dev. for 10 restarts with
different random initializations are shown.
Figs. B.5,B.6 in the suppl. material show
individual traces. 30000 90000 150000

0

100

200

300

400

actions

a
v
e
ra

g
e
 e

p
is

o
d
e
 l
e
n
g
th

SARSA

NN

EQNAC

ENATDAC

them. In each iteration of the game, each agent moves by one step in one of four directions,
while the blockers behave in a deterministic manner, moving left or right to block the agents.
We used a 7× 4 board with 3 agents and 2 blockers as illustrated in Fig. 4.2. Blockers have
a limited range of responsibility, with blocker 1 responsible for columns 1-4 and blocker 2
for columns 4-7. The state space consists of locations for each agent and for blocker (using
1-of-N encoding for each). A game is started by randomly placing agents at the bottom
and the blockers at the top. It is played for 40 steps or until one of the agents reaches
the end zone. A reward of -1 is given for each step prior to reaching the end zone, and a
reward of 1 when one of the agents succeeds and the game is ended. We used RBMs with 16
hidden units, and learning was performed for 400000 actions. Results are shown in Fig. 4.2.
EQNAC and ENATDAC consistently achieved good results. ESARSA and NN generally
converged more slowly and found lower quality policies.

In this task we also experimented with several different state feature vectors f(s), as
required by ENATDAC (but not the other algorithms). We tested: randomly generated
binary features (as e.g. Bhatnagar et al., 2009), choosing the dimensionality D of f(s) to be
lower than the number of states (which is 87808; we experimented with D = 400, 1000); raw
feature encoding based on the state vector s directly; and the “energy based” feature vector
described in section 3.1. We found that a poor choice of f(s) can significantly reduce the
asymptotic performance. The energy-based features performed very well, only equalled by
large sets of carefully scaled random features.

Finally, we tested our algorithms on an octopus arm [Engel et al., 2005] task. The
aim is to learn to control a simulated octopus arm to hit a target. The arm consists of
C compartments and is attached to a rotating base. There are 8C + 2 continuous state
variables (x,y position/velocity of the nodes along the upper/lower side of the arm; angular
position/velocity of the base) and 3C+2 action variables that control three muscles (dorsal,
transversal, central) in each compartment as well as the clockwise and counter-clockwise
rotation of the base. Previous work [Engel et al., 2005] simplified the high-dimensional action
space using 6 “macro-actions” corresponding to particular patterns of muscle activations.
Here, we do not make any such simplification; patterns of muscle activations are learnt by
latent variables. Each muscle output was restricted to a binary activation. Below we present
results for an arm with C = 4 compartments. The goal is to strike the target with any part
of the arm. To direct exploration we provide a shaping reward at each time step: if the
minimum distance between arm and target is decreased then a shaping reward of +1 is
provided; if the distance is increased the reward is -1. The final reward for hitting the target
is +50. An episode ends when the target is hit or after 300 steps.

We learned RBM-based policies with 32 stochastic hidden units, and an NN-based policy
with 32 deterministic hidden units. We used energy-based features for (E)NATDAC as
these are directly applicable in continuous-valued state spaces. Results for the octopus arm

51

Heess Silver Teh

are shown in Fig. 4.3. The policy-gradient approaches performed significantly better in
this experiment. In particular, the RBM trained by ENATDAC, and the NN trained by
NATDAC, both learnt good policies that were consistently able to hit the target. Some
ENATDAC runs were trapped in suboptimal maxima where the arm moves only in one
direction, thus taking a longer time to reach the target on some episodes (see Figs. B.5,
B.6 in the supplemental material). The policies learned by EQNAC are slightly worse but
the arm still learns to find and hit the target in the majority of cases. ESARSA performed
relatively poorly. A video demonstration of the learnt octopus arm policies is available at:
http://www.gatsby.ucl.ac.uk/~nheess/papers/ebrl/

5. Discussion

In our most challenging task, an energy-based policy was able to represent and learn, using
ENATDAC, an effective control policy for a high-dimensional octopus arm. Unlike prior
work, the latent variables automatically learnt to represent useful patterns of activations.
In this task, a stochastic NN with deterministic hidden nodes was also able to solve the
problem. This is not entirely unexpected as here a deterministic final policy is likely to be
sufficient, while learning is simpler in the NN as it allows direct sampling of actions and the
exact calculation of ψθ and f(s). However, as demonstrated by the stochastic policy task,
there are many domains in which partial observability, or an adversary, entails the need for
highly structured stochastic policies that cannot be encoded by deterministic hidden nodes.

In our experiments the ESARSA algorithm did not achieve satisfactory results in the
larger stochastic policy tasks, and also performed relatively poorly on the blocker and octo-
pus arm tasks. The poor performance in some runs, and sensitivity to initial values, suggests
that ESARSA is indeed suffering from divergence problems, presumably caused by the use
of non-linear temporal-difference learning. In contrast, ENATDAC and EQNAC converged
more robustly to a satisfactory solution in all tasks, suggesting that policy gradient algo-
rithms may be more appropriate than value-based ones in this setting.

Our first algorithm, ENATDAC, is guaranteed to converge to a policy that achieves
an average-reward that is close to local maximum. The algorithm requires the policy to
be sampled many times: to select an action, to estimate the compatible features, and to
construct the energy-based feature vector f(s). However, we found empirically that a very
small number of samples was sufficient to achieve good results: We used K,L = 1 in our
experiments (cf. line 3 of Algorithm 4.1) except for the octopus arm where K = L =
5. Although the samples should be independent to ensure convergence, in practice the
performance was unaltered by reusing the same samples.

Our second algorithm, EQNAC, uses a simple approximation to the advantage function.
This algorithm does not require additional samples of the policy, beyond selecting the next
action, making it more computationally efficient. It is also simpler than ENATDAC, using
two parameter vectors rather than three. In practice, both algorithms performed well,
achieving very similar performance on the blocker task, but with ENATDAC performing
slightly better on the stochastic policy and more consistently on the octopus arm tasks.

In conclusion, reinforcement learning is particularly challenging in high-dimensional state
and action spaces. Energy-based policies provide a promising architecture for addressing this
challenge. We have demonstrated that prior work on value-based reinforcement learning,

52

http://www.gatsby.ucl.ac.uk/~nheess/papers/ebrl/

Actor critic learning for energy-based policies

using the ESARSA algorithm, is often unsatisfactory when using highly non-linear policies
such as an RBM. We have introduced two novel algorithms, based on energy-based policy
gradient methods, that are more robust and effective than ESARSA. ENATDAC is guar-
anteed to converge to a near-local maximum in average reward; EQNAC is also robust in
practice, and requires less computation. Both algorithms outperformed ESARSA on several
high dimensional tasks.

Acknowledgments

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 270327, and
from the Gatsby Charitable foundation.

References

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. JAIR, 15, 2001.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms. Automatica, 45:
2471–2482, 2009.

S. Elfwing, M. Otsuka, E. Uchibe, and K. Doya. Free-energy based reinforcement learning for vision-based
navigation with high-dimensional sensory inputs. In ICONIP, 2010.

Y. Engel, P. Szabó, and D. Volkinshtein. Learning to control an octopus arm with gaussian process temporal
difference methods. In NIPS, 2005.

Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using two layer networks.
Technical Report UCSC-CRL-94-25, University of California, Santa Cruz, 1994.

S. Kakade. A natural policy gradient. In NIPS, 2001.

H. Larochelle and Y. Bengio. Classification using discriminative restricted Boltzmann machines. In ICML,
2008.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.-J. Huang. A tutorial on energy-based learning.
Predicting Structured Data. MIT Press, 2006.

H. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. Sutton. Convergent Temporal-Difference
Learning with Arbitrary Smooth Function Approximation. In NIPS, 2009.

R. Memisevic and G. E. Hinton. Learning to represent spatial transformations with factored higher-order
Boltzmann machines. Neural Computation, 22, 2010.

V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted Boltzmann machines for structured output
prediction. In UAI, 2011.

M. Otsuka, J. Yoshimoto, and K. Doya. Free-energy-based reinforcement learning in a partially observable
environment. In ESANN, 2010.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71, 2008.

R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative filtering.
In ICML, 2007.

B. Sallans. Reinforcement Learning for Factored Markov Decision Processes. PhD thesis, Department of
Computer Science, University of Toronto, 2002.

53

Heess Silver Teh

B. Sallans and G. E. Hinton. Reinforcement learning with factored states and actions. JMLR, 5, 2004.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, 1999.

G. Taylor and G. E. Hinton. Factored conditional restricted Boltzmann machines for modeling motion style.
In ICML, 2009.

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42, 1997.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an application to
information retrieval. In NIPS, 2004.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8, 1992.

54

Actor critic learning for energy-based policies

Appendix A. Neural Network

In order to provide a comparison with an alternative structured parameterization of a stochastic policy we
considered a 2-layer neural network (NN). The network’s structure is very similar to the RBM but it has
deterministic hidden units and a feedforward archictecture.

For binary or continuous valued states s and binary action units a the state-conditional action distribu-
tion πθ(a; s) defined by the NN is given as follows:

πθ(a; s) =
∏

i

p(ai|s), (23)

p(ai = 1|s) = σ(Wah(s) + b), (24)

h(s) = σ(Wss+ c), (25)

where h(s) is a vector of (deterministic) hidden units with activation between 0 and 1, and σ(y) = 1/(1 +
exp(−y)) is the sigmoid function that is applied element-wise. Weight matrices Ws, Wa, and bias vectors c,
and b are the parameters of the network. The above architecture is easily generalized to discrete stochastic
output units with more than two states.

This NN has the same number of parameters as the RBM and is able to model nonlinear dependence
of the actions on the states. Unlike in a RBM, however, the stochastic output units are conditionally
independent given the state. The network therefore fails to model correlations between the action variables.
In particular, it is unable to represent multi-modal state-conditional action distributions as required for the
the stochastic policy task.

In our experiments we trained the NN using NATDAC with the “energy-based” state features f(s) =
Eθ

a[φ
θ(s, a)] described in section 3.1 of the main text. Due to the independence of the action units (cf. eq.

23 above) for the NN the gradient of the log-policy ∇θ log π
θ(a; s) = ψθ(s, a) and the energy-based state

features f(s) can be computed analytically and the approximations described in section 3.1 of the main text
are not required.

It is worth noting that it is, in principle, possible to make the hidden units stochastic while maintaining
a feed-forward architecture4. This would introduce correlations between the action variables. At the same
time, however, it would also render the exact computation of e.g. ψ intractable (except in simple cases) due
to the need to integrate – or sum – out the hidden variables.

Appendix B. Additional Experiments and Results

B.1. Stochastic policy task

Note that in the stochastic policy task there is no observed state. In this case the NN reduces to a set
of biases that model the activation of each action unit independently. The RBM in contrast can model
correlations between the action units and hence represent the multi-modal distribution over binary action
vectors required for this task.

For instance, when the NN is applied to stochastic policy task 1 with K = 2 unobserved states the first
and last action units a1 and a5 are effectively set deterministically to 1 and 0 respectively, but the remaining
action units a2, a3, a4 will have p(ai = 1) = 0.5 for i = 2, 3, 4 after learning. Hence, the probability of
drawing one of the two “good” actions is only 1

8
instead of 1

2
for the RBM (which is why the NN achieves a

reward of only 10/8 instead of 10/K.
As explained in footnote 3 in the main text we allowed 50000 actions for learning for SARSA but only

the performance after 20000 actions is shown in Fig. 1 in the main text (in line with the number of actions
available to the other algorithms). Figure B.1 shows the full learning curves for SARSA for the stochastic
policy task.

B.2. Grid world

The grid world task requires an agent to learn how to navigate to a final state. At the beginning of each trial
the agent is placed at a random position in the environment. At each step he chooses one of the four actions

4. While the RBM corresponds to an undirected graphical model, a feedforward NN with stochastic hidden
units would correspond to a directed graphical model.

55

Heess Silver Teh

0 25000 50000
0

1

2

3

4

5

6
ESARSA

a
v
.

re
w

.
/

s
te

p

Figure B.1: Stochastic policy task: full learning curves for SARSA for all three versions of
the task (red: task 1; green: task 2; blue: task 3). Same data as in Fig. 1 in
the main text but all 50000 actions are shown. The dashed black line indicates
the reward achieved by the optimal policy for task 1, the solid black line the
optimal reward for tasks 2 and 3.

(N,S,E,W). The reward is -1 for all steps except if the agent reaches the end state, in which case it is 2. An
episode ends when the agent reaches the end state or after a maximum of 20 actions. If an action cannot be
performed, the agent remains at its current position. States and actions both use a 1-of-N encoding, and we
also use a 1-of-N encoding for the state-value function approximation in ENATDAC, allowing it to represent
the state-value function exactly. We used RBMs with 3 hidden units, and learning was performed for 40000
actions. The particular environment used in the experiments and the results obtained are shown in Fig. B.2.
ENATDAC and EQNAC both find an optimal policy quickly and robustly, while ESARSA takes longer to
converge to a policy, the policy found is usually not optimal, and the policy found is strongly dependent
on the initialization of the policy parameters. Also, we found ESARSA to be much more sensitive to the
settings of the learning parameters than our algorithms.

1 2 3 4 5

1

2

3

4

5
0 20000 40000

−1

−0.5

0

a
v
.

re
w

a
rd

 /
 s

te
p

ESARSA

0 20000 40000
−1

−0.5

0

actions

ENATDAC

0 20000 40000
−1

−0.5

0
EQNAC

Figure B.2: 5× 5 grid world: white squares are fields the agent can move to; black squares
are walls; the end state is marked green. Results shown are for 20 runs. Gray
curves indicate results for individual runs, blue curves show average.

B.3. Blocker Task

80000 160000 240000 320000 400000
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

80000 160000 240000 320000 400000
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

80000 160000 240000 320000 400000
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

80000 160000 240000 320000 400000
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

ESARSA ENATDAC EQNAC Neural Network

Figure B.3: Blocker task: Same data as in Fig. 4.2 in the main text but showing results
for the 20 restarts with different random initializations individually for each
algorithm: Gray lines show individual runs; thick blue line shows the median.

56

Actor critic learning for energy-based policies

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

−5 0 5
−5

0

5

initial 5 steps 10 steps 20 steps 30 steps final

Figure B.4: Octopus arm hitting the target: Each row corresponds to a different run, start-
ing from two different initial positions. The arm is shown in its initial position,
after 5, 10, 20, and 30 steps, and after having hit the target. The target is
shown by the red cross.

30000 90000 150000
0

50

100

150

200

250

300

350

actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

30000 90000 150000
0

50

100

150

200

250

300

350

actions

a
v
e

ra
g

e
 e

p
is

o
d

e
 l
e

n
g

th

ESARSA EQNAC ENATDAC Neural Network

Figure B.5: Octopus arm: Average number of steps required to hit the target. Same data as
in Fig. 4.3 in the main text but results are shown separately for the 10 restarts
with different random initializations. The policies are evaluated every 15000
steps with 100 episodes. Gray lines correspond to individual runs, the median
is shown in blue. For ENATDAC runs that got trapped in a local optimum (as
explained in the text) are shown in light gray, others in dark gray.

B.4. Octopus Arm

For the simulations we used the octopus arm simulator that is part of the RL Glue package5. We considered
an arm with C = 4 compartments. Thus, the continuous state space was 34 dimensional, the binary
action space 14 dimensional. (On the accompanying website6 we also show results for an arm with C = 6
compartments, i.e. with a 50 dimensional state space, and a 20 dimensional action space.) Note that
continuous valued states do note pose a problem for binary conditional RBMs.

At the beginning of each episode the arm is initialized at one of 4 random positions and the goal is
then to hit the target as quickly as possible with any part of the arm. Fig. B.4 shows frames of two movies
of the arm controlled by a learned policy hitting the target from two different initial positions. See the
accompanying website for more results.

In Fig. B.6 we show as an alternative visualization of the results the average reward per step achieved with
the learned policies. As pointed out in the main text ENATDAC occasionally got trapped in local optima,
learning policies in which the arm rotated always in one direction independently of its initial position. With
these policies the arm still hits the target reliably but requires a larger number of steps from some initial
positions. This leads to a lower average reward per step at the end of learning. ENATDAC runs in which
the arm learned suboptimal policies are shown in light gray in Figs. B.5, B.6.

5. http://glue.rl-community.org/wiki/Main_Page

6. http://www.gatsby.ucl.ac.uk/~nheess/papers/ebrl/

57

Heess Silver Teh

30000 90000 150000
0

0.5

1

1.5

2

2.5

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

30000 90000 150000
0

0.5

1

1.5

2

2.5

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

30000 90000 150000
0

0.5

1

1.5

2

2.5

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

30000 90000 150000
0

0.5

1

1.5

2

2.5

actions

a
v
e

ra
g

e
 r

e
w

a
rd

 p
e

r
a

c
ti
o

n

ESARSA EQNAC ENATDAC Neural Network

Figure B.6: Octopus arm: Alternative visualization of the results in Fig. B.5 (Fig. 4.3 in
the main text). Average reward per step of the learned policies as a function
of actions performed during learning. Results are shown for 10 restarts with
different random initializations. Same format as in Fig. B.5

58

