
RD-A157 917 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 1/3-
DISTRIBUTED SY'5TEMS(U) MASSACHUSETTS INST OF TECH
CRMBRIDGE ARTIFICIAL INTELLIGENCE LAB G A AGHA JUN 85 N

UNCLAlSSIFIED RI-TR-844 N@0814-80-C-985 F/G 9/2 NI Imnmmmmmmmmml
I mmmmmmmmmmmmmmlfflf
mmmmmmmmmmmmmmflfflf
mmmmmmmmmmmmmmlfllfllf
EmmmmmmEmmmmmE
mmmmmmmmmmmmmmlfllfllf
EEEEEEEmmmmmEE

Sa~WNVS AO nflWl ,VNOIJVN

27

n- -o

:1 ~ili0

Technical Report 844

Actors: A Model
Of Concurrent

Computation
In Distributed

Systems

Gui A. Aghai

MIT Artificial Intelligence Laboratory

Thsdocument ha. been cipp-oved
I= pblicrelease and sale; its

I lozsnimte.85 8 6 038

UNCLASS I FI ED
SECURITY CLASSIFICATION OF THIS PAGE lWOR Date Entered)

READ INSTRUCTIONS ..
'
e

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. I ACC I RECIPIENT'S CATALOG NUMBER

844

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

ACTORS: A MODEL OF CONCURRENT COMPUTATION Technical Report

IN DISTRIBUTED SYSTEMS 7 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e)

Gul Abdulnabi Agha N00014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA I WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139""__--_"

,I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency June 1985
1400 Wilson Blvd 13. NUMBER OF PAGES -.

Arlington, Virginia 22209 198
14. MONITORING AGENCY NAME & ADDRESS(f different tmr Controlind Office) IS. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED e

Information Systems

Arlington, Virginia 22217 IaS. OECLASSIFICATION/DOWNGRADINGSCHEDULE 2..

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abetract tered in Xlok 20, It dlffeent hem Report)

1S. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side it neceeeary nd Idenify by block nimibe,) -.

Distributed Systems Object-oriented Programming

Concurrency Deadlock

Programming Languages Semantics of Programs

Processor Architecture Functional Programming

20. ABSTRACT (Continue on reveree side It ne eeary and identify by block mekber)

A foundational model of concurrency is developed in this thesis. We

examine issues in the design of parallel systems and show why the actor

model is suitable for exploiting large-scale parallelism. Concurrency in

actors is constrained only by the availability of hardware resources and
by the logical dependence inherent in the computation. Unlike dataflow

and functional programming, however, actors are dynamically reconfigurable

and can model shared resources with changing local state. Concurrency is

DD JAN 73 1473 EDITION OF INOV6SISOBSOLETE UNCLASSIFIED
S/N 0!02-014- 6601 1

SECURITY CLASSIFICATION OF THIS PAGE (W"en Date gntered)

JJ

,".- -. -. , , -. - .. - - 4-.- -----. " " . " 2 .". . . ., - - -. .- -, - ..-

20. spawned in actors using asynchronous message-passing, pipelining, and the

dynamic creation of actors.
-' Vt r

-W definejan abstract actor machine and provide a minimal programming
language for it. A more expressive language, which includes higher level
constructs such as delayed and eager evaluation, can be defined in terms of

the primitives. Examples are given to illustrate the ease with which concurrent

data and control structures can be programmed.

To send a communication, an actor must specify the target. Communications

are buffered by the mail system and are eventually delivered. Two different

transition relations are needed to model the evolution of actor systems. The

possibility transition models events from some view-point. It captures the

nondeterminism in the order of delivery of communications. The Subsequent

transition captures fairness arising from the guarantee of delivery. We

provide a denotational semantics for our minimal actor language in terms of the

transition relations..-

-.. Abstraction in actors is achieved by a model in which the only observable
communications are those between actors within a system and actors outside it.

Our model makes no closed-world assumption since communications may be received

from the outside at any point in time. The model provides for the composition

of independent modules using message-passing between actors that interface the

-.. systems composed with their external environment.

This thesis deals with some central issues in distributed computing.

Specifically, problems of divergence and deadlock are addressed.-., For example,

actors permit dynamic deadlock detection and removal. The problem of divergence

is contained because independent transactions can execute cQncurrently and

potentially infinite processes are nevertheless -ayAi"Th for interaction.

. "A....t A

~Acce55icr; For

NTIS GRA&I
DTIC TAB
Unannounced V

,V By..

Distribution/

Availability Codes

-. Availand/or

'ist Special

2

! -.

,5 . h b . .

. 4.- 1*~ * *
.'"". ."""".' % .''''...'''.. ''. .=. .? .. ";. " -.

•
.' ,." "- . , . .. " " -. "-. ". . e" "-" ",

P Actors: A Model Of

Concurrent Computation

In Distributed Systems

Gui A. Agha

Thsdissertation was submitted to the University of MvichiganI in partial

This

fulfillment of the requirements of the degree of Doctor of Philosophy in

Computer and Communication Science.

The report describes research done at the Artificial Intelligence Labora-

tory of the Massachusetts Institute of Technology. Support for the labora-

tory's aritificial intelligence research is provided in part by the the System

Development Foundation and in part by the Advanced Research Projects

Agency of the Department of Defence under Office of Naval Research con-

tract N0014-80-C-0505.

o Gul Agha 1985

I.

I.* .* - * .

TrO au fentient 16t

(aug I1983 OEMi~ IM8)

Jh.

-°-

PREFACE
.1 b

It is generally believed that the next generation of computers will involve

massively parallel architectures. This thesis studies one of the proposed

paradigms for exploiting parallelism, namely the actor model of concurrent

computation. It is our contention that the actor iiodel provides a general

framework in which computation in distributed parallel systems can be

exploited. The scope of this thesis is limited to theoretical aspects of the

model as opposed to any implementation or application issues.

Many observers have noted the computational power that is likely to

become available with the advent of a new generation of computers. This

work makes a small contribution in the direction of realizing technology

which seems just on the horizon. The possibilities that emerge from the

availability of a massive increase in computational power are simply mind

boggling. Unfortunately, humankind has generally lacked the foresight to

use the resources that science has provided in a manner that would be com-

patible with its long-term survival. Somehow we have to develop an ethic

that values compassion rather than consumption, to acquire a reverence for

life itself. Otherwise this work, among others, will be another small step in

the global march towards self-destruction.

The research reported in this thesis was carried out for the most part

at M.I.T., where I have been working with the Message-Passing Semantics

Group. The group is currently implementing the Apiary architecture for

Open Systems, which is based on the actor model. Much of the develop-

ment of the actor paradigm has been inspired by the work of Carl Hewitt

whose encouragement and constructive criticism has been indispensable to

the development of the ideas in this thesis. Carl Hewitt also read and

commented on drafts of this thesis.

This thesis has been influenced by other work in the area of concur-

rency, most notably that of Robin Milner. Although we have shied away

from using a A-calculus like notation for an actor calculus, the transition

system we develop has a similar flavor. Our preference has been for using a

..... • o . - .• -I - . , .d . . . C o

.°'''4 " °. "°'° '..' "o"". ". . ". '. ' "". '.-"o*"° ' '''''. "" "''°' .' ' .''" . °''" "° .- .. ."".-"- '- , '° .- - -' % , *"*'" "

programming language notation for purposes of overall clarity in expressing

simple programs.

John Holland has provided both intellectual impetus and moral sup-

port over the years; in particular, numerous useful discussions with John

have led to a better perspective on ideas in the field. I am also indebted to

William Rounds for numerous suggestions, among them to develop a simple

actor language and to illustrate its flavor by treating a number of commonly

understood examples. My first thorough exposure to object-oriented archi-

tectures was in a course offered by Paul Scott. Conversations with Robin

Milner, Vaughn Pratt, and Joe Stoy have provided critical feedback. Will

Clinger's thesis interested me in the area of actor semantics. Members

of the Message-Passing Semantics Group at M.I.T. have created an atmo-

sphere which made the work described here possible. In particular, Henry

Lieberman, Carl Manning, Chunka Mui and Thomas Reinhardt provided

helpful comments.

The work described in here was made possible by generous funding from

the System Development Foundation and by the support of the Artificial

Intelligence Laboratory at M.I.T.

Finally, the time during which the ideas in this thesis were developed

was a rather intense time in the lives of my family. Nothing would have

been possible without the patient cooperation of my wonderful wife Jennifer

Cole. It must be added that it was only due to the high spirits maintained

by our son Sachal through most of his short, difficult life that any work at

all could have been done by me.

Gul Agha

Cambridge, Massachusetts

March 1985.

a--

a- -v

..

Contents

Preface W

Table Of Contents v

List Of Figures viii

1 Introduction-1

2 General Design Decisions 8
2.1 The Nature of Computing Elements 9

2.1.1 Sequential Processes 9
2.1.2 Functions Transforming Data Values 10
2.1.3 Actors 12

2.2 Global Synchrony and Asynchrony 14
2.3 Interaction Between Agents 17

2.3.1 Shared Variables 18
2.3.2 Communication 18
2.3.3 The Need for Buffering 20

2.4 Nondeterminism and Fairness 22
2.4.1 The Guarantee of Delivery 23
2.4.2 Fairness and the Mail System 24

2.5 Reconfigurability and Extensibility 26
2.5.1 A Resource Manager 26
2.5.2 The Dynamic Allocation of Resources 29

3 Computation In Actor Systems 32
3.1 Defining an Actor System 33

v

.. I!- .. r... e, 'L-.2.......

I •

3.1.1 Tasks 33
3.1.2 The Behavior of an Actor 36

3.2 Programming With Actors 43

3.2.1 The Basic Constructs 44

3.2.2 Examples 51

3.3 Minimal Actor Languages 58 -*

3.3.1 A Simple Actor Language 59
3.3.2 Act 63

4 A More Expressive Language 66
4.1 Several Incoming Conmnunications 67

4.1.1 A Static Topology 67

4.1.2 A Dynamic "ropology 70

4.2 Insensitive Actors 75

4.3 Sequential Composition 81

4.4 Delayed and Eager Evaluation 84

4.4.1 Primitive Actors 85

4.4.2 Delayed Evaluation 87

4.4.3 Representing Infinite Structures 89

4.4.4 Eager Evaluation 95

5 A Model For Actor Systems 98

5.1 Describing Actor Systems 100

5.1.1 Configurations 100

5.1.2 Requirements for a Transition Relation 102

5.2 Initial Configurations 103

5.2.1 Formalizing Actor Behaviors 104

5.2.2 The Meaning of Behavior Definitions 108
5.2.3 Mapping Actor Programs 115

5.3 Transitions Between Configurations 117

5.3.1 Possible Transitions 119

5.3.2 Subsequent Transitions 122

6 Concurrency Issues 127
6.1 Problems in Distributed Computing 128 '.

6.1.1 Divergence 128

6.1.2 Deadlock 132

Ai

I t.-

I.,

6.1.3 Mutual Exclusion....................... 137

6.2 Graphic Representations. 138
6.2.1 Streams 138
6.2.2 Message Channels. 140

7 Abstraction And Compositionality 144

7.1 Abstraction. 145

7.1.1 Atomicity. 146

7.1.2 Nesting Transactions. 148

7.2 Compositionality. 150

7.2.1 Actors and Ports. 151

7.2.2 Encapsulation in Actors 152

7.2.3 Composition Using Message-Passing. 154

7.2.4 Rules for Composition 155
7.3 The Brock-Ackerman Anomaly. 161

7.4 Observation Equivalence. 166

8 Conclusions 172

A Asynchronous Communication Trees 176

References 187

Vii

6..-uua-x lson. 3 .

List of Figures

2.1 An indeterminate applicative program. 12

2.2 History sensitive functions. 13
2.3 A synchronizing mechanism 16

2.4 A static graph linking the res ource- manager to two devices. 28

3.1 An abstract representation of an actor 38

3.2 An abstract representation of transition. 39

3.3 Actor event diagrams. 42

3.4 A factorial computation. 56

4.1 A fixed topology for a two input function 69
4.2 Dynamically accepted input 71
4.3 Implementing call expressions 73

4.4 Insensitive actors. 78

4.5 Eager evaluation 96

6.1 A perpetual loop. 130
6.2 Dining Philosophers. 133

6.3 Streams and replacement in actors 140

6.4 Communication channels..............142

7.1 Synchronous composition. 150

7.2 Encapsulation in actor systems. 153

7.3 The Brock-Ackerman anomaly. 165

A.1 A typical Asynchronous Communication R*ee 178

A.2 Possible nondeterministic transitions.. 182-

A.3 A new receptionist definition 183

A.4 Acceptance of a communication by an external actor. 183

Viii

- - ~ ~.

Chapter 1

Introducion

The purpose of any language is to communicate; that of a programming

language is to communicate to a computer actions it ought to perform.

There are two different sorts of objectives one can emphasize in the design

of a programming language: efficiency in execution, and expreusveneaa.

By "efficiency," we refer here only to the speed with which the actions

implied in a program can be carried out by the computer. In a precise

sense, the most efficient programming language would be one that literally

told the computer what actions to carry out; in other words, a machine

language.' Expressiveness refers to the ease with which an program can

be understood and shown to behave correctly. A programming language is

expressive to the extent that it can be used to specify reasonable behaviors

in the simplest possible terms.

1 0f course, every kind of processor has its own machine language. Some of these Ian-

guages may be "inherently" more efficient than others.

1i

4%

-e %

N
I

V"

.*..- ** * . ..

.. . ..a- - - -a , . . °o o o • *

r.#I~qI.

CIAPTER 1. INTRODUCTION 2

A programming language that maximized efficiency would not necessar-

ily lead to the specification of programs with the best performance. This is

simply because the programmer may end up spending more time figuring

out how to express rather than what to express. The best gains in per-

formance are to be achieved by discovering less computationally complex

methods of achieving the same result.

By and large, the goal of introducing new programming languages has

been to make it simpler to express more complex behavior. Historically,

the class of actions computers were first expected to carry out was that of

computing well-defined mathematical functions. However, such computa-

tions are no longer the only tasks a modern computer performs. In fact, the

storage of information, sorting and searching through such information, and

even exploration of an imprecisely defined domain in real-time are emerg-

ing as significant applications. For example, computerized databases, such

as the records maintained by a state Motor Vehicle Bureau, and artificial

intelligence applications, such as computerized vehicles pioneering the nav-

igation of Martian surface, are common uses of the computer. This more

general use of computer programs has, in and of itself, important conse-

quences for the class of behaviors we are interested in expressing.

Although newer programming languages have generally favored con-

siderations of expressiveness over those of efficiency, the ability to solve

complex problems by means of the computer has nevertheless increased.

This remarkable trend has been achieved by creating faster and bigger pro-

cessors. However, there is now good reason to believe that we may have

:-

-. °," * 3.a',o" w % - • • o - * - -° -. . - .% * -a, * • ° . .°% " . Oo "° "a a ° . °° " °

p.-.

p.' 6

CIIAPTER 1. INTRODUCTION 3

approached the point of diminishing returns in terms of the size and speed

of the individual processor. Already, smaller processors would be far more

cost-effective, if we could use large numbers of them cooperatively. In par-

ticular, this implies being able to use them in parallel.

This brings us to the central topic of consideration in this thesis; namely,

the development of a suitable language for concurrency. By concurrency

we mean the potentially parallel execution of desired actions. Actually,

concurrency by itself is not the real issue; after all concurrency has been

exploited for a long time in the software revolution caused by time-sharing.

The key difference between the now classic problem of operating systems,

and our desire to exploit concurrency, is that in the former there is little

interaction between the various "jobs" or "processes" that are executed

concurrently. Indeed, the correctness of an operating system is dependent

on making sure that none of the numerous (user-defined) processes affect

each other.

Our problem is quite the reverse: we wish to have a number of processes

work together in a meaningful manner. This doesn't really imply that there

are no important lessons to be learned from operating system theory. For

example, notice that we switched from talking about "processors" to talking

in terms of "processes". A processor is a physical machine while a process

is an abstract computation. From operating systems, we know that we may

improve over-all performance of a processor by executing several processes

concurrently instead of sequentially. How the processors are utilized is an

issue for the underlying network architecture supporting the language. Our

N N'N

-.-'
CHAPTER 1. INTRODUCTION 4

interest is in a model of concurrency that exploits concurrently executed

processes without assuming anything about their concrete realization. The

processes may be distributed over a network of processors which can be used

in parallel, however, if our programming language did not support concur-

rency, such a distributed architecture would not result in any improvement

in performance over a single processor.

Actually, we are not so much concerned with a particular programming

language, but rather, with the meta-linguistic issues behind the constructs

of a concurrent language. The operational semantics of a language defines

an instruction set for computation on an abstract machine. (More precisely,

in case of the actor model, a system of machines). We are interested in the

characteristics of the underlying models of computation. Specifically, we

will examine the issues of expressiveness and efficiency in the context of

concurrent computation.

There are some intrinsic reasons for a theory of concurrency as well. One

of these is the relevance of concurrency to an understanding of intelligent

systems and communities. In particular, natural systems that appear to

learn or adapt are all intrinsically parallel, and in fact quite massively so:

the brain of animals, ecological communities, social organizations whether

these are of human or non-human animals, are all examples of distributed

systems that exploit concurrency. In fact, the genetic algorithm which is

the foundation for adaptation and natural selection is itself intrinsically

', parallel [Holland 751. The success of these mechanisms is sufficient grounds

to interest one in the study of the implications of concurrent processing.

-°.V.

'

°.

• , *

"" ?t**~ *.x............-"** * ** * .* * * . . .

CHAPTER 1. INTRODUCTION 5

The rest of this chapter gives an overview of the thesis. The next chap-

ter reviews the general design decisions that must be made in any model

of concurrent computation. In Chapter 3, we describe the behavior of an

actor and define a simple actor language which is used to show some spe-

cific examples of actors. In the following chapter, we then define several

higher level constructs which make the actor language more expressive, and

provide a mechanism for abstraction in actor systems. These constructs are

definable in terms of the primitive actor constructs and are not considered

as part of the actor formalism. Chapter 4 also defines an expressional lan-

guage, and discusses different strategies for the evaluation of expressions.

Chapter 5 defines an operational semantics for actors by specifying a

transition relation on configurations of actor systems. The guarantee of

mail delivery is formalized by defining a second transition system which

expresses this property. We take the primitive constructs of an actor lan-

guage and show how one can provide these an with operational definition.

In chapter 6, we are concerned with issues raised in related models.

There are some significant difficulties in exploiting concurrency: Distributed

systems often exhibit pathological behavior such as divergence and dead-

lock. The actor model addresses these problems at a variety of levels.

Divergence can be a useful property because of the guarantee of delivery;

deadlock in a strict sense does not exist in an actor system. Besides, the

asynchronous, buffered nature of communication in actors provides mech-

anisms to detect deadlock in a semantic sense of the term. Chapter 6 also

explores the relation between some aspects of dataflow and actors; in par-

I.-

I.,-

. ~ .

~ ~ ..

-. ..-- - -.

CHAPTER 1. INTRODUCTION 6

ticular, the similarity between replacement in actors and what has been

claimed to be the "side-effect free" nature of computation in both systems.

Chapter 7 tackles the issue of abstraction and compositionality in actor

systems. In particular, we discuss the nature of open systems and relate it

to the insufficiency of the history relation observed in [Brock and Acker-

man 77]. The right level of abstraction would permit us to treat equivalent

systems as semantically identical and yet differentiate between systems that

are unequal. We discuss the nature of composition in actors and show how

we can model composition based on message-passing.

The final chapter summarizes some of the implications of the work in

this thesis. The Appendix uses tools from Milner's work to define an ab-

stract representation for actor systems in terms of what are called Asyn-

chronous Communication Trees. This representation provides a suitable

way of visualizing computations in actors.

Contributions

The specific contributions of this thesis are summarized below. This thesis

provides:

" A critical overview of the various proposed models of concurrency.

" A simple outline of the actor model and the specification of minimal

primitive constructs for actor languages.

" A transition system for actor systems and a structured operational

semantics for an actor language.

V.:

*1.~3-7 -. - -7

" CHAPTER 1. INTRODUCTION 7

* A paradigm for addressing problems in distributed computing which

is suitable for computation in open systems.

* A model to support compositionality and abstraction from irrelevant

detail.

3.°,

.°°

.o

.1

".

.5,n

.4%

.5. ~ o

S.

.

SS.... 5

Chapter 2

General Design Decisions

Several radically different models of concurrent computation have been pro- '

posed. In this chapter, we will review the concepts underlying each of

the proposed models. Our interest is in comparing and contrasting their

primitives with a view towards determining their generality. Of particular

concern to us is the relative ease with which massively parallel architec-

tures can be exploited. The design decisions fundamental to any model of

concurrent computation include:

* the nature of the computing elements

o global synchrony versus asynchronous elements

* the mode of interaction between computing elements

* degree of fairness

e reconfigurability and extensibility

8

",. :-.- • .-....-. ..-.- ,- . . .-...-.- ,-...-....-.... ... - -.- .ii

.- '..', .- oo..".. . " oO ., .' - -. #. '..' - . '% °. '. -' -' - . '. -' ' . . .' -' .- ,-%- . ," .' ." .- • ... " ." . o ..• '. ' . -.. . -,.- S'

.. " .*'. , -.... :"'','. ". *,, . .'. ** .* .' ' .' ' -.. , -S-. -, ', .S:,.*.'. - .. , S- . *'S' -. .' ".~ S ' ". -

CHAPTER 2. GENERAL DE SIGN DECISIONS 9

This list is by no means exhaustive but represents the aspects we think

are the most significant. There are other issues, such as the linguistic issues

in the specification of a language based on each of the models, but we will

ignore such details in our present discussion. We discuss each of the design

issues in the sections that follow.

2.1 The Nature of Computing Elements

The elements performing computations are, in an abstract denotational

sense, some kind of a function. However, the domain and range of the

functions defining the behavior of the elements is quite different in each

of the models. Ignoring some significant details, we identify three distinct

kinds of computational elements:

1. Sequential Processes.

2. Functions transforming data values.

3. Actors.

2.1.1 Sequential Processes

The operational notion of a sequential process is that it performs a sequence

of transformations on states, where a state is a map from locations to

values such as integers. In addition, the transformations may depend on

certain "inputs" and produce "outputs." It is this latter aspect which makes

the denotational semantics of systems of sequential process more difficult;

%! - W° d

S

CHAPTER 2. GENERAL DESIGN DECISIONS 10

in particular, explicit consideration of the possibility of deadlock (when a

process is waiting for input that never arrives) is required [Brookes 83].

Sequential processes are themselves, predictably, sequential in nature, but

can execute in parallel with each other.

In a sense, sequential processes are inspired by algol-like procedures in

sequential programming. Examples of systems based on the concept of se-

quential processes include Concurrent Pascal [Brinch Hansen 77], Commu-

nicating Sequential Processes [Hoare 77], and the Shared Variables model

[Lynch and Fischer 81].

2.1.2 Functions Transforming Data Values

A second kind of computational element is a function which acts directly

on data, without the benefit, or burden, of a store: Such functional models

are derived from the A-calculus based languages such as Pure Lisp [Mc-

Carthy 59]. Examples of concurrent systems using some variant of the

functional model include dataflow [Agerwala and Arvind 82] and networks

of parallel processes [Kahn and MacQueen 77]. In datafilow architectures, a

stream of (data) values pass through functional agents [Weng 75). The con-

currency in the system is a result of being able to evaluate the arguments

to the functions in parallel.

Perhaps the simplest model of systems using functions is an indeter-

minate applicative system where the call-by-value is used to evaluate the

arguments and the result of the computation is a single value. Computa-

tion in such systems fans in as arguments are evaluated and passed along.

':-... :.-....:.:.. . -...--...- ..:..:... *:- ,. ..:.:-... ... * :....- .. .-. ...:-,:.? :.v :-.:.. -.. .. i-

CHAPTER 2. GENERAL DESIGN DECISIONS 1-

Fig. 2.1 shows an example of concurrent evaluation in an indeterminate

applicative system.

The functional elements may take several parameters as inputs but,

given the parameters, can output only a single value. The same value

may, however, be sent to different computational elements. Unfortunately,

functions are history insensitive [Backus 78]. This can be a problem when

modeling the behavior of systems that can change their behavior over time.

For example, consider the behavior of a turnstile with a counter which

records the number of people passing through it. Each time the turnstile is

turned, it reports a new number on the counter. Thus its behavior is not

simply a function of a "turn" message but sensitive to the prior history of

the computation. The turnstile problem is essentially equivalent to that of

generating the list of all integers, producing them one at a time in response

to each message received.

This problem is dealt with in some functional systems by feedback, using

cyclic structures, as shown in Fig. 2.2 adapted from [Henderson 80]. The

turnstile is represented as a function of two inputs, a "turn" message and

an integer n. Its behavior is to produce the integer n + 1 in response. The

links act as (first-in first-out) channels, buffering the next value transmitted

until the function has been evaluated and accepts more input. (The same

value is sent down all the links at a fork in the diagram.)

, .~ _- -

CHAPTER 2. GENERAL DESIGN DECISIONS 12

X Y w

gOXj) h('zw)

ffgh)

Figure 2.1: An indeterminate applicative program. The parameters of the

function are evaluated concurrently.

2.1.3 Actors

Actors are computational agents which map each incoming communication

to a 3-tuple consisting of:

1. a finite set of communications sent to other actors;

2. a new behavior (which will govern the response to the next commu-

nication processed); and,

3. a finite set of new actors created.

*** ** ~ p ., ~.

CHAPTER 2. GENERAL DESIGN DECISIONS 13

I.
I°.

urn+1

1+

n

n Li

Figure 2.2: History sensitive behavior as evaluation of a function with feed-

back.

Several observations are in order here. Firstly, the behavior of an actor

can be history sensitive. Secondly, there is no presumed sequentiality in

the actions an actor performs since, mathematically, each of its actions is

a function of the actor's behavior and the incoming communication. And

finally, actor creation is part of the computational model and not apart

from it. An early precursor to the development of actors is the concept of

objects in SIMULA [Dahl, et al 70] which represented containment of data

with the operations and procedures on such data in a single object.

Actors are a more powerful computational agent than sequential pro-

cesses or value-transforming functional systems. In other words, it is possi-

ble to define a purely functional system as an actor system, and it is possible

to specify arbitrary sequential processes by a suitable actor system, but it

is not possible to represent an arbitrary actor system as a system of sequen-

tial processes or as a system of value-transforming functions. To see how

--...

..-..

.

• - . 0..... •..•

CHAPTER 2. GENERAL DESIGN DECISIONS 14

actors can be used to represent sequential processes or functional programs

is not difficult: both are special cases of the more general actor model. If

the reader is not convinced of this, the machinery developed later in this

thesis should make it clear.

It is easy to see why the converse is true: actors may create other ac-

tors; value-transforming functions, such as the ones used in dataflow can

not create other functions and sequential processes, as in Communicating

Sequential Processes, do not create other sequential processes.' In the se-

quential paradigm of computation, this fact would not be relevant because

the same computation could be represented, mathematically, in a system

without actor creation. But in the context of parallel systems, the degree

to which a computation can be distributed over its lifetime is an important

consideration. Creation of new actors guarantees the ability to abstractly

increase the distributivity of the computation as it evolves.

2.2 Global Synchrony and Asynchrony

The concept of a unique global clock is not meaningful in the context of a

distributed system of self-contained parallel agents. This intuition was first

axiomatized in [Hewitt and Baker 77] and shown to be consistent with other

laws of parallel processing in [Clinger 81]. The reasoning here is analogous

'Sequential processes may activate other wequential processes and multiple activations

are permitted but the topology of the individual process is still static. The difference

between activation and creation is significant in the extent of reconfigurability afforded

by each.

%7

, .- '. " '.' " . '. . ' "" -" -, . -'- .. - - .- ." - "- . - . -. - .--" -". - " -. ' - . - .. "5 -. ' --..-- " - -" -

CHAPTER 2. GENERAL DESIGN DECISIONS 15

to that in special relativity: information in each computational agent is

localized within that agent and must be communicated before it is known

to any other agent. As long as one assumes that there are limits as to how

fast information may travel from one computational agent to another, the

local states of one agent as recorded by another relative to its own local

states will be different from the observations done the other way round.

We may conclude that, for a distributed system, a unique (linear) global .r.
time is not definable. Instead, each computational agent has a local time

which linearly orders the events as they occur at that agent, or alternately,

orders the local states of that agent. These local orderings of events are

related to each other by the activation ordering. The activation ordering

represents the causal relationships between events happening at different

agents. Thus the global ordering of events is a partial order in which events

occurring at different computational agents are unordered unless they are

connected, directly or indirectly, because of one or more causal links.

This is not to imply that it is impossible to construct a distributed

system whose behavior is such that the elements of the system can be ab-

stractly construed as acting synchronously. An example of such a system is

Cook's hardware modification machine [Cook 811. The hardware modifica-

tion machine is a mathematical abstraction useful for studying the problems

of computational complexity in the context of parallelism.

The problem of constructing a synchronously functioning system is es-

sentially one of defining protocols to cope with the fundamental epistemo-

logical limitation in a distributed system. To see how the elements of a

4.,

4,e

* ' % o. .,

CHAPTER 2. GENERAL DESIGN DECISIONS 16

system can be construed to be synchronous, consider the example shown

in Fig. 2.3.

ie.
global

Figure 2.3: A synchronizing mechanism: A Global Master controls the ele-

ments of the system.

Assume one element, called the global master, controls when each of

the elements in the system may continue; all elements perform some pre-

determined number of actions, report to the global master and wait for

another "go" message from the global master before proceeding. The global

master knows how many elements there are in the system and waits for each

of them to report before sending out the next "go" message. Conceptually,

we can think of each of the elements acting synchronously and the system

passing through execution cycles on a "global clock". We can ignore the

.. .

*' ..." . .

CHAPTER 2. GENERAL DE SIGN DECISIONS 17

precise arrival order of messages to the global master, because in such a

system the exact order may be irrelevant.

The important point to be made is that any such global synchronization

creates a bottleneck which can be extremely inefficient in the context of a

distributed environment. Every process must wait for the slowest process

to complete its cycle, regardless of whether there is any logical dependence

of a process on the results of another. Furthermore, it is not altogether

obvious that such global synchrony makes it any easier to write programs

in general. Although systems designed to act synchronously may be useful

in some particular applications, we will deal with the general asynchronous

distributed environment; the behavior of the synchronous system can al-

ways be derived as a special case. (See, for example, the discussion in

chapter 4 of mechanisms involving an effectively, prioritized exchange of

communications between two actors.)

2.3 Interaction Between Agents

[..

How the elements of a concurrent system affect each other is one of the most

salient features of any model of concurrent computation. The proposed

modes of interaction between the computational elements of a system can

be divided into two different classes:

1. variables common to different agents; and,

2. communication between independent agents.

We take up these two modes of interaction in turn.

[.. .

p *... ...

L, F,

4,

CHAI'TER 2. GENERAL DESIGN DECISIONS 18

2.3.1 Shared Variables

The basic idea behind the shared variables approach is that the various

processes can read and write to variables common to more than one process.

When one process reads a variable which has been changed by another, its

subsequent behavior is modified. This sort of common variables approach

is taken in [Lynch and Fischer 811.

The shared variables approach does not provide any mechanism for

abstraction and information hiding. For instance, there must be pre-

determined protocols so that one process can determine if another has

written the results it needs into the relevant variables. Perhaps, even more

critical is the fact that this approach does not provide any mechanism for

protecting data against arbitrary and improper operations. An important

software principle is to combine the procedural and declarative information

into well-defined objects so that access to data is controlled and modularity

is promoted in the system. This sort of absolute containment of information

is also an important tool for synchronizing access to scarce resources and

proving freedom from deadlock. In a shared variables model, the program-

mer has the burden of specifying the relevant details to achieve meaningful

interaction.

2.3.2 Communication

Several models of concurrent computation use communication between in-

dependent computational agents. Communication provides a mechanism

by which each agent retains the integrity of information within it. There

,,.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~..-,,,.,..,.,,-.-...,,..-... ,.,........,.....,-...

, ..U ." . • , . : - • .- . -- r . = . i . . , . , ' . Z - -' --' o

CIIAPTER 2. GENERAL DESIGN DECISIONS 19

are two possible assumptions about the nature of communication between

independent computational elements; communication can be considered to

be either:

e Synchronous, where the sender and the receiver of a communication

are both ready to communicate; or,

9 Asynchronous, where the receiver does not have to be ready to accept

a communication when the sender sends it.

Hoare's Communicating Sequential Processes and Milner's Calculus of

Communicating Systems assume synchronous communication while the ac-

tor model [Hewitt 77] and dataflow architectures [Ackerman 84] do not.

Let's examine each assumption and its implications. A concurrent com-

putational environment is meaningful only in the context of a conceptually

distributed system. Intuitively, there can be no action at a distance. This

implies that before a sender can know that the receiver is "free" to ac-

cept a communication, it must send a communication to the receiver, and

vice-versa. Thus one may conclude that any model of synchronous commu-

nication is built-on asynchronous communication.

However, the fact that synchronous communication must be defined

- in terms of asynchronous communication does not necessarily imply that

asynchronous communication is itself the right level of abstraction for pro-

gramming. In particular, an argument could be made that synchronous

communication should be provided in any programming language for con-

current computation if it provides a means of writing programs without

~1

..'.,

"- * A'i-'

4.-

I.

CHAPTER 2. GENERAL DESIGN DECISIONS 20

being concerned with detail which may be required in all computation.

The question then becomes if synchrony in communication is helpful as a

universal assumption for a programming language. We examine this issue

below.

2.3.3 The Need for Buffering

Every communication is of some finite length and takes some finite time

to transmit. During the time that one communication is being sent, some

computational agent may try to send another communication to the agent

receiving the first communication. Certainly, one would not want to inter-

leave the arbitrary bits of one communication with those of another! In

some sense, we wish to preserve the atomicity of the communications sent.

A solution to this problem is to provide a "secretary" to each agent which

in effect tells all other processes that the agent is "busy."2 Essentially, the

underlying system could provide such a "secretary" in an implementation of

a model assuming synchronous communication, as in a telephone network.

There is another problem in assuming synchronous communication.

Suppose the sender is transmitting information faster than the receiver

can accept it. For example, as this thesis is typed in on a terminal, the .°1"

speed of the typist may at times exceed the rate at which the computer is

accepting the characters. To get around this problem, one could require

that the typist type only as fast as the editing process can accept the char-

acters. This solution is obviously untenable as it amounts to typing one

2 This could be done for instance by simply not responding to an incoming communication.

% .-.

CHAPTER 2. GENERAL DESIGN DECISIONS 21

character at a time and waiting for a response (in fact, the argument would

continue to the level of electrons!). The other solution is to provide the

system with the capability to buffer the segments of a communication.

Of course, if the underlying system is required to buffer segments of

a communication, it can equally well be required to buffer different com-

munications so that the sender does not have to be "busy waiting" for the

receiver to accept a communication before it proceeds to do some other pro-

cessing. Thus buffered asynchronous communication affords us efficiency in

execution by pipelining the actions to be performed. Furthermore, syn-

chronous communication can be defined in the framework of asynchronous

communication.' The mechanism for doing so is simply "freezing" the

sender until the receiver acknowledges the receipt of a communication [He-

witt and Atkinson 77].

There is yet another significant advantage in buffered asynchronous

communication. It may be important for a computational element to com-

municate with itself; in particular, this is the case when an element defines

a recursive computation. Communication with oneself is however impossi-

ble if the receiver must be free when the sender sends a communication:

this situation leads, immediately, to a deadlock because the sender will be

"busy waiting" forever for itself to be free. The problem actually is worse:

.The notion of synchrony as simultaneity is physically unrealizable. The failure of es-

multaneity at a distance occurs because whether two clocks are synchronous is itself

dependent on the particular frame of reference in which the observations are carried

out [Feynman, et al 19651. We assume any notion of synchronous communication is a

conceptual one.:i:: :':'!

q- 17,~ .71- -. .

CIIAPTER2. GE NE RAL DE SIGN DECISIONS 22

no mutually recursive structure is possible because of the same reason. Mu- I

tual recursion, however, may not be so transparent from the code. There is

no a priori problem with such recursive structures if the communications

are buffered.

Both the dataflow architecture for functional programming [Ackerman 82]

and the apiary architecture for actor systems [Hewitt 80] provide the capa-

bilities to buffer communications from asynchronous computing element.

However, it is not altogether obvious how the computational elements to

provide for buffering communications can be defined in a functional lan-

guage (as opposed to simply assumed). Such buffers are readily defined in

actor languages.

2.4 Nondeterminism and Fairness

* Nondeterminism arises quite inevitably in a distributed environment. Con-

ceptually, concurrent computation is meaningful only in the context of a

distributed environment. In any real network of computational agents, one

can not predict precisely when a communication sent by one agent will ar-

rive at another. This is particularly true when the network is dynamic and

.6~

the underlying architecture is free to improve performance by reconfigur-

ing the virtual computational elements. Therefore, a realistic model must

assume that the arrival order of communications sent is both arbitrary

and entirely unknown. In particular, the use of the arbiter as the hard-

ware element for serialization implies that the arrival order is physically

are.d.. " "

.....f .o arhte r forfuctonl.pogamin..Ake...8].

andtheapiry...................se.....wit.....ovde.he apa '

biiie.b ufe. cmunctin.fo asnhrnu coptigeemns

CHAPTER 2. GENERAL DESIGN DECISIONS 23

indeterminate.

2.4.1 The Guarantee of Delivery

Given that a communication may be delayed for an arbitrarily long pe-

riod of time, the question arises whether it is reasonable to assume that a

communication sent is always delivered. In a purely physical context, the

finiteness of the universe suggests that a communication sent ought to be

delivered. However, the issue is whether buffering means that the guarantee

of delivery of communications is impossible. There are, realistically, no un-

bounded buffers in the physically realizable universe. This is similar to the

fact that there are no unbounded stacks in the universe, and certainly not

in our processors, and yet we parse recursive control structures in algolic

languages as though there were an infinite stack. The alternate to assuming

unbounded space is that we have to assume some specific finite limit; but

each finite limit leads to a different behavior. There is, however, no general

iN

limit on buffers: the size of any real buffer will be specific to any particular

implementation and its limitations. The point of building a semantic model

is to abstract away from such details inherent in any implementation.

The guarantee of delivery of communications is, by and large, a property

of well-engineered systems that should be modeled because it has significant

consequences. If a system did not eventually deliver a communication it

was buffering, it would have to buffer the communication indefinitely. The

cost of such storage is obviously undesirable. The guarantee of delivery

does not assume that every communication is "meaningfully" processed.

... -A -

. * L S ~m

S*.* *.~. .*. -.. 1.*

CHAPTER 2. GENERAL DESIGN DECISIONS 24

For example, in the actor model, the processing of communications is de-

pendent on the behavior of individual actors, and there may be classes of

actors which ignore all communications or indefinitely buffer some com-

nmunications. In particular, the guarantee of delivery provides one with

mechanisms to reason about concurrent programs so that results analogous

to those established by reasoning about the total correctness in sequential

programs can be derived; in some cases, the guarantee helps prove termi-

nation properties.

2.4.2 Fairness and the Mail System

Not all algorithms for delivering communications result in a mail system

that guarantees delivery. For instance, a mail system that always delivered

a "shorter" communication in its buffer may not deliver all communica-

tions. Consider an agent, in such a system, which sent itself a "short"

communication in response to a "short" communication. If a "long" and

a "short" communication are concurrently sent to this actor, it may never

receive the "long" communication.

The guarantee of delivery is one form of what is called fairness. There

are many other forms of fairness, such as fairness over arbitrary predicates,

or extreme fairness [Pnueli 83] where probabilistic considerations are used.

The guarantee of delivery of communications is perhaps the weakest form 2
of fairness one can define (although it is not clear to me what sort of formal

framework one would define to establish this rigorously). The question 1
arises if one should assume a stronger form of fairness; for example, that

*L. .5"-
-.*

CHAPTER 2. GENERAL DESIGN DECISIONS 25

the communications sent are received in an probabilistically random order

regardless of any property they have...-

Consider a system that chooses to deliver up to three "short" commu-

nications for every "long" communication it delivers (if the shorter com-

munications are found). Such a system would still satisfy the requirement

of guaranteeing delivery of communications, but would not satisfy some

stronger fairness requirements, for example, tli requirement that all com-

munications sent have an equal probability of being the next to be delivered.

On the other hand, it may be very reasonable to have such an underlying

mail system for some applications. We prefer to accept the guarantee of

delivery of communications but not any form of fairness stronger than this

guarantee. We will study the implications and usefulness of the guarantee

later in this thesis.

Of course, given the lack of a unique order of events in a distributed

system, what the definitions of stronger forms of fairness really mean is

not altogether obvious. Our initial cognizance in such cases can sometimes

be misleading because our intuitions are better developed for sequential

processes whose behavior is qualitatively different. In particular, the mail

system is itself distributed and the delivery of communications, even ac-

cording to a given observer, may overlap in time.

.... ..-..-.- .

CHAPTER 2. GENERAL DESIGN DECISIONS 26

2.5 Reconfigurability and Extensibility

The patterns of communication possible in any system of processes defines

a topology on those processes. Each process (or computational agent) may,

at any given point in its local time, communicate with some set of pro-

cesses. As the computation proceeds, a process may either communicate

only with the same processes it could communicate with at the beginning

of the computation, or it may evolve to communicate with other processes

that it could not communicate with before. In the former case, the inter-

connection topology is said to be static; and in the latter, it is dynamic.

Any system of processes is somewhat easier to analyze if its intercon-

nection topology is static: the graph representing the connections between

the processes is constant and hence relatively more information about the

system is available at compile-time. Perhaps because of this structural

simplicity in the analysis of static topologies, many models of concurrency

assume that a process can communicate with only the same processes over

its life-time. A static topology, however, has severe limitations in represent-

ing the behavior of real systems. We illustrate these limitations by means

of the following example.

2.5.1 A Resource Manager

Consider the case of a resource-manager for two printing devices. We

may assume for our present purposes that the two devices are identical in

their behavior and therefore interchangeable. One would like this resource-

de

. . . . -

.-,

-..

CIJAPTER 2. GENERAL DESIGN DECISIONS 27
I..

manager to

1. Send the print requests to the first available printing device.

2. When a print request has been processed, to send a receipt to the user

requesting the printing.

These requirements imply that the resource-manager be able to commu-

nicate with a different device each time. Thus a system where the commu-

nication links were static and communications were sent down these links,

without the resource-manager being able to choose which link ought to be

used, would either send a communication to both the devices or to nei-

ther. 'his is the situation in a dataflow graph shown in Fig. 2.4. However,

resource-manager should be able to choose where it wants to send a com-

munication (depending on which device is free), suggesting that the edges

represent only potential communication channels and not actual ones. The

true links would be dynamically determined.

Suppose a system allowed the resource-manager to decide which of the

two printing devices it wanted to communicate, with but relied on syn-

chronous communication. The use of resources would be inefficient if the

resource-manager was "busy waiting" for one particular printing device

while the other one was idle. To get around thisproblem, suppose we re-

quired the resource-manager to keep a track of which device, if any, was

idle and to attempt to communicate only with such a device. In this case,

when a busy device becomes idle, it must inform the resource-manager that

it is free. Once again, if the resource-manager is required to specify which

,'.

- °'D'..-. . .'....'. '. .. '. '. "..' '... %..'. ". " .'..'" .' .-.. ..- .- .-.. ' -.. '...-,."...'.."... .'•.'...-.. , .'..-".,-

- . ..
°

.,t . ,"5-." " - " "" • """ ". . ". ", " * . . . •* . * , . " S * - , , 5 "

CHIAPTER 2. GENERA L DESIGN DECISIONS 28

userusern

resource

mnager

Figure 2.4: A static graph linking the resource-manager to two devices.

particular device it will accept input from, and be "busy waiting" to do so,

the problem persists as it can not predict which one would be free first.

Requiring a receipt to the user introduces other complications. For

one, the number of users will vary with time. This variation by itself

creates the need for a dynamic graph on the processes [Brock 83]. For

another, the maximum number of users need not be constant. In a system

that might evolve to include more resources, the addition of the increased

capacity should be graceful and not require the redefinition of the entire

system. This implies that a solution using a fixed number of communication

........................... ...

CIAPTER 2. GENERAL DESIGN DECISIONS 29

channels is not very satisfactory in an open systerm which is constantly

subject to growth [Hewitt and de Jong 82]. For instance, if we wanted

to add a third printing device, we should not necessarily have to program

another resource-manager , but rather should be able to define a resource-

manager which can incorporate the presence of a new printing device when

sent an appropriate message to that effect.

A system that is not only reconfigurable but extensible is powerful

enough to handle these problems. Reconfigurability is the logical pre-

requisite of extensibility in a system because the ability to gracefully extend

a system is dependent on the ability to relate the extension to the elements

of the system that are already in existence. An elegant solution to this prob-

lem of resource management using an actor system can be found in [Hewitt,

et al 84].

2.5.2 The Dynamic Allocation of Resources

Extensibility has other important consequences. It allows a system to dy-

namically allocate resources to a problem by generating computational

agents in response to the magnitude of a computation required to solve

a problem. The precise magnitude of the problem need not be known in

advance: more agents can be created as the computation proceeds and the

maximal amount of concurrency can be exploited.

For example, consider a "balanced addition" problem, where the ad-

dition has to be performed on a set of real numbers. If the numbers are

iVio

.

- N K7 . .

.

CHAPTER 2. GENERAL DESIGN DECISIONS 30

added sequentially,

(((, + a2) + a3) + a4) + ... + a.)

then there is a classic problem of "propagation of errors," discussed in

[von Neumann 58]. The problem occurs because real numbers are imple-

mented using floating-point registers. Computational errors, instead of

being statistically averaged, become fixed as rounding errors move to more

significant bits. It is preferable to add the numbers in pairs,

...((,(+a2) + (a3 + a4)) + ((a + ao)+(...)1 + ... + (a,-, + a.)...)

which results in the error being statistically reduced by the "law of large

numbers."

Addition in pairs is ideal for concurrent computation because it can be

done using parallel computation in log-time, as opposed to linear time when

done sequentially. Now if we had a program to carry out this addition in

pairs, we may like the program to work even if we input a different number

of real numbers each time. Thus we can not define a static network to

deal with this problem [Emden and Filho 82]. Addition in pairs is easily

accomplished in an actor system by creating other actors, called customer4,

and doing the evaluations concurrently. Such concurrency is the default in

actor languages.

Reconfigurability in actor systems is obtained using the mail system

abstraction. Each actor has a mail address which may be freely commu-

nicated to other actors, thus changing the interconnection network of the

. ?'.'.'

*.

.

* %** . o.

- - I - - - -- , I- - .- .- .- - -- ' 7 k .

CI1APTEU 2. GENERAL DESIGN DECISIONS 31

system of actors as it evolves. We will discuss the specific mechanisms later

in this thesis.

W. W P

Chapter 3

Computation In Actor

Systems

In this chapter, we examine the structure of computation in the actor

paradigm. The discussion here will be informal and intuitive, deferring

consideration of the technical aspects to later chapters. The organization

of this chapter is as follows. In first section, we explain actors and commu-

nications. The second section outlines the constructs which suffice to define

a minimal actor language. We give some examples of actor programs to

illustrate the constructs using only structured "pseudo-code." In the final

section, kernels of two simple actor languages are defined and a program

example is expressed in each of these languages. The two languages, SAL

and Act, are both minimal yet are sufficient for defining all possible actor

systems. SAL follows an algol-like syntax while Act uses a Lisp-like syntax.

In the next chapter, we will define some new linguistic constructs, but these

32

. - .

-.o. - -

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 33

constructs will not be foundational; they can be defined using a minimal

actor language. Such extensions to a minimal language demonstrate the

power of the primitive actor constructs.

3.1 Defining an Actor System

Computation in a system of actors is in response to communications sent

to the system. Communications are contained in tasks. As computation

proceeds, an actor system evolves to include new tasks and new actors that

are created as a result of processing tasks already in the system. All tasks

that have already been processed (and all actors that are no longer "useful,"

a notion we will define more precisely), may be removed (i.e., garbage

collected) from the system without affecting its subsequent behavior.' The

configuration of an actor system is defined by the actors it contains as well

as the set of unprocessed tasks.

3.1.1 Tasks

In somewhat simplified terms, we can say that the unprocessed tasks in a

system of actors are the driving force behind computation in the system.

We represent a task as a three tuple consisting of:

1. a tag which distinguishes it from all other tasks in the system;

'We refer here to the semantic equivalence of the systems with and without "garbage."

Of course, the performance of the system is a different matter.

..' .. .:
F, d

2-~

CIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 34

2. a target which is the mail address to which the communication is to

be delivered; and,

3. a communication which contains information made available to the

actor at the target, when that actor processes the given task.

As a simplification, we will consider a communication to be a tuple of

values. The values may be mail addresses of actors, integers, strings, or

whatever, and we may impose a suitable type discipline on such values.

There are other possible models here; perhaps the most exciting of such

models, and the one using the greatest uniformity of construction, is one

in which the communications are themselves actors.2 In such a model,

communications may themselves be sent communications. For example, if

we want a communication kt to print itself, we could send a communication

k2 to the communication k, which asked k, to print itself. Communications

as actors also provide an effective and simple way to implement call-by-

need using futures, where a future is a communication that can be sent a

communication to evaluate itself. The semantic theory of actors is, however,

considerably complicated by modelling communications as actors, and we

therefore won't do so here. 3

2The behavior of an actor is to send communications to other actors it knows about (i.e.,

its acquaintances), which in turn do the same until the communications are received by

pre-defined primitive actors such as numbers and primitive pre-dcfined operations (See

Section 4.4.). In the more general universe of actors model, tasks themselves are actors

which have three acquaintances, namely the three components of the tuple given above.

3 For a discussion of the universe of actors model see §4.4.

S. . a

CIIAPTEIR 3. COMPUTATION IN ACTOR SYSTEMS 35

The target imust be a valid mail address. In other words, before an

actor can send the target a communication, it must know that the target

is a valid mail address [hlewitt and Baker 77] . There are three ways in

which an actor a, upon accepting a communication Ican know of a target

to which it can send a communication. These are:

e the target was known to the actor a before it accepted the commu-

nication ,

o the target became known when ai accepted the communication k be-

cause it was contained in the communication /,or

o the target is the mail address of a new actor created as a result of

accepting the communication k.

A tag helps us to uniquely identify each task by distinguishing between

tasks which may contain identical targets and communications. We will

make use of the uniqueness of each tag when we define an operational

semantics for actor systems. An important observation that should be

made here is that any particular representation of the tags is somewhat

arbitrary. The tags are specified because they are useful in keeping a track

of tasks. However, the tasks themselves are existentially distinct entities.

There are various ways of representing tags; one such representation

is a string of nonnegative integers separated by ""(periods). Using this

representation, if w is a tag for task t, then w.n, where n is some nonnegative

integer, can be the tag for some task created as a result of processing t.

In this way, if we start with a set of tags uniquely associated with the

. . . . -- - - S -- * -- . -. -..."

.

CIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 36

tasks, we can guarantee that all tasks always have distinct tags (by using a

restriction that the last number appended is distinct for each task created

by the sane actor in response to the same communication). Note that there

may be only a finite number of tasks in any given system.

3.1.2 The Behavior of an Actor

As we discussed earlier, all computation in an actor system is the result

of processing communications. This is somewhat similar to a data-driven

system like dataflow, and in contrast to systems based on processes that

either terminate or are perpetually "active." Actors are said to accept a

communication when they process a task containing that communication.

An actor may process only those tasks whose target corresponds to its mail

address. When an actor accepts a communication, it may create new actors

or tasks; it must also compute a replacement behavior.

For any given actor, the order of arrival of communications sent to that

actor is a linear order. In particular, this implies that the mail system must

provide suitable mechanisms for buffering and arbitration of incoming com-

munications when such communications arrive at roughly the same time.

The mail system places the communications sent to a given target on the

mail queue corresponding to that target. For most purposes, it is appropri-

ate to consider the mail queue as part of the mail system. However, when

we wish to deal with issues related to the arrival order of communications,

such as the guarantee of mail delivery4 we have to consider the mail queue

'The presence of comnmunication failures in a real system should not be considered a bin-

• • ~~~~~~~~~~~~~. .. •• - . •., .. °- • . , • . •. . . • . -

', '.... .'..'.,'..' .'- -. ',€ -,%. , ., . ; -.,.,- ., ,. ., .. , -,. .. , -, - ... ,'..'. :.., . .'...• .- .- -,.. - "-."..', '-,"o1--.*

I I !*I I I I - II .. -I I. I' I I I. .-.-... -

V..

CHIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 37

explicitly. -"

r An actor may be described by specifying:

its mail address, to which there corresponds a sufficiently large mail

queues; and,

* its behavior, which is a function of the communication accepted.

Abstractly, we may picture an actor with a mail queue on which all

.- communications are placed in the order in which they arrive and an actor

machine8 which points to a particular cell in the mail queue. The end of a

communication on the mail queue can be indicated by some special symbol

reserved for the purpose.' We represent this pictorially as in Fig. 3.1.

When an actor machine Xn accepts the nth communication in a mail

queue, it will create a new actor machine, Xn 1, which will carry out the

replacement behavior of the actor. This new actor machine will point to

drance for a theoretical investigation assuming a reliable mail system. See the discussion

in Section 2.4.

"The mail queue will be considered large enough to hold all communications sent to a

given actor. This implies that a mail queue is, in principle, unbounded, while only a

finite fragment of it is used at any given point in time. This is quite similar to a read-

only tape of a Turing Machine. However, the writing is done, indirectly, using the mail .1

system.

'No assumption should be made about an actor machine being sequential, indeed, an

actor machine, much like machines in the real world, may have components that function "

in parallel.

7Thus the variable length of a commumication is not a problem.

%

%°

.. %

" -,-, - . -"--r,.* .;.. "','"'"'.' : - " "'" "".'-""".'".."-.". .".-"-"'."-".'"""'" ' ."-"" -" ". "-

F.'

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 38

12... n

mai,

L qucuc

x actor machine

Figure 3.1: An abstract representation of an actor. The actor machine

contains information that determines the behavior of an actor. It accepts

the current communication and can not process information from any other

communication.

the cell in the mail queue in which the n+11! communication is (or will be)

placed. This can be pictorially represented as in Fig. 3.2.

The two actor machines X and X,, 1 will not affect each others be-

havior: X processes only the nth communication. (Of course, if Xn sends

the actor itself a communication, X,+ may be the actor machine which

processes the same.) Specifically, each of the actor machines may create

their own tasks and actors as defined by their respective behaviors. Before

the machine Xn creates X,,+, X,, may of course have already created some

actors and tasks; however, it is also the possible that Xn may still be in

............. _-..

CHAPTER 3. COMPUTATION IN ACTOR S YSTEMS 39

1 2 n n+1

* mail
qucuc

xn
nx

xn+I

creates tasks7

creates replacement

creates actors

mail
queue __________________

Figure 3.2: An abstract representation' of transition.

the process of creating some more tasks and actors even as Xn~1 is doing

the same. In any event, note that the machine Xn will neither receive any

..6.$

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 40

further communications nor will it specify any other replacement.'

If we define an event as the creation of a new actor or task, or the speci-

fication of the replacement, then the order of events that are caused, at any

actor, by the acceptance of communications is a partial order. The replace-

ment machines at any mail address have a total order between them. This

linear order is isomorphic to the arrival order of the corresponding com-

munications which result in their replacement (as may be readily inferred

from the Fig. 3.2).

An event-based picture for computation in actors uses life-lines which

are shown in Fig. 3.3. Each actor has an order of acceptance of communi-

cations which is linear. The events in the life of an actor are recorded in the

order in which they occur: the further down the line, the later in local time.

Activations (causal ordering of events) are indicated by the lines connecting

two different actors with the arrow on the line indicating causal direction.

Finally, each lifeline is labeled by the pending communications, i.e., the

communications that have been received but not processed. Clinger [81]

used collections of life-lines to provide a fixed-point semantics for actors.

The resulting pictures are called the actor event diagrams.

A couple of general remarks about the implementation issues are in

order here:

Remark 1. The reader may wonder about the efficiency of constructing a

new actor machine in response to each communication accepted. It should

We will later model functions that require more input as a collection of these elcmental

actors.

. .

. - .'..

.

.

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 41

be emphasized that this is simply a conceptual assumption that frees us

from the details of any particular implementation. Concurrency simply

means potential parallelism. Some implementations may find it useful to

generally delay constructing the replacement until the old machine can be

cannibalized. However, delaying the construction of the replacement is not

a universal requirement as would be the case in a sequential machine. Thus,

if there are sufficient resources available, computation in an actor system

can be speeded up by an order of magnitude, by simply proceeding with

the next communication as soon as the ontological necessity of determining

the replacement behavior has been satisfied. The advantages of this kind

of pipelining can be illustrated by the following simple example: Consider

a calculation which requires 0(n2) sequential steps to carry out, where

0(n) represents the size of input. Suppose further that computing the

replacements takes only 0(n) steps. If we had a static architecture with

0(m) processes, it would take 0(n2) cycles per calculation. By pipelining,

an actor-based architecture could carry out m calculations in the same

time as a single calculation because it would initiate the next computation

as soon as the replacement for the previous one had been computed- a

process taking only 0(n) steps.

Remark 2. It should also be pointed out that the structure of an ac-

tor machine is extremely concurrent: when any parLicular segment of the

computation required by the acceptance of a communication has been com-

pleted, the resources used by the corresponding fragment of the "machine"

are immediately available. It may be difficult, if one thinks in terms of

•°-S

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 42

skss
pendin

creates actors

creates
a

tasks"

taret,

communication

Figure 3.3: Actor event dtayram.n Each vertical line represents the events

occurring in the life of an actor. The arrows represent causal links.

sequential processes, to conceive of the inherent parallelism in the actions

of an actor. The structure of computation in a sequential process is lin-

ear: typically, activations of procedures are stacked, each activation storing

its current state. However, in an actor program, the absence of assign-

ment commands permits the concurrent execution of the commands in a

SL

.°

-'. , . °, . , . , = . - . , -. , ,,-.., , . . • • -,-., .____ ___-

CH1APTER 3. COMPUTATION IN ACTOR SYSTEMS 43

-p.q

specification of the behavior of an actor. We will discuss the specific mech-

anisms for spawning concurrency, such as the use of customers to continue

computations required for a transaction, later in this chapter.

3.2 Programming With Actors

In this section, we define the constructs necessary for the kernel of a min-

imal actor language. We also give some simple examples of actor pro-

grams. These examples illustrate, among other things, the versatility of

message-passing as a general mechanism for implementing control struc-

tures, procedure and data abstraction in the actor construct, and the use

of mail addresses instead of pointer types in data structures. The feasibility

of representing control structures as patterns of message-passing was first

described in [Hewitt 77].

Despite its simplicity, the kernel of an actor language is extremely pow-

erful: it captures several important features of computation in the actor

paradigm; among them, the ability to distribute a computation between

concurrent elements, the ability to spawn maximal concurrency allowed by

the control structure, the unification of procedural and declarative infor-

mation, data abstraction and absolute containment, and referential trans-

parency of identifiers used in a program.

An actor accepts a single communication as "input." Thus, if a com-

putation is a function of communications from several different actors, it

has to be defined using a system of actors. We will introduce linguistic

• %1

L....

- - - - - --. '% . *..*p.." *.*• % . ." ,". . ."- . . ." . . .% % %.. . ..- ' , %. % % . a

7IJAPTER 3. COMPUTATION IN ACTOR SYSTEMS 44

constructs to simplify expressing some multi-input functions in a trans-

parent manner. All such constructs can be defined in terms of the actors

definable in a minimal actor language, and we therefore confine our present

discussion to the constructs necessary for a kernel language.

3.2.1 The Basic Constructs

To define the initial configuration of an actor system we need to create

some actors and to send them some communications. However, we also

promote modularity by specifying the actors that may communicate with

the "outside," i.e., with actors not defined within the configuration. A

program in an actor language consists of:

* behavior definitions which simply associate a behavior schema with

an identifier (without actually creating any actor).

* new expressions which create actors.

o send commands which are used to create tasks.

" receptionist declaration which lists actors that may receive communi-

cations from the outside.

e external declaration which lists actors that .are not part of the popu-

lation defined by the program but to whom communications may be

9 Such behavior schemas are not considered to be actors in the simple model we are

currently using. In another language, such definitions can be used to create actors that

are "descriptions" of actor behaviors. The behavior of such description actors would be

to create actors of the given description when sent an appropriate communication.

. "

S. a..
.. *.* *.*. .*.* *a .

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 45

sent from within the configuration.

We discuss the syntax and intended meaning for each of the expressions

which can be used in a minimal language. For some simple expressions, we

also show what a feasible syntax might be.

Defining Behaviors

Each.time a actor accepts a communication, it computes a replacement

behavior. Since each of the replacement behaviors will also have a replace-

ment behavior, in order to specify the behavior of an actor, we need to V

specify a potentially infinite definition. Obviously one can not write an in-

finite string to define each replacement. Fortunately, we have the principle

of recursive (or inductive) definition so familiar from mathematics. Essen-

tially, we parameterize each expressible behavior by some identifier which

will be a free variable in the definition. Whenever a behavior is specified

using the behavior definition, we must specify specific values for the iden-

tifiers parameterizing the behavior definition. For example, the behavior

of a bank-account depends on the balance in the account. We therefore

specify the behavior of every account as a function of the balance. When-

ever a particular account is created, or a replacement behavior specified,

which uses the behavior definition of a bank-account, a specific value for

the balance in the account must be given.

There are also an infinite number of possible values for the incoming

communication. Therefore, a behavior definition is expressed as a function

-'' of the incoming communication.

op".

ft * 5,'* *

ft S . S* .1

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 46

Two lists of identifiers are used in a behavior definition. Tie first list

corresponds to parameters for which values must be specified when the actor

is created. This list is called the acquaintance list. The second list of pa-

raeinters, called the communication list, gets its bindings from the incoming

communication. When an actor is created, and it accepts a communication,

it executes commands in the environment defined by the bindings of the

identifiers.

Creating Actors

Actors are created using new expressions which return the mail address of

a newly created actor. The mail address should be bound to an identifier or

communicated; otherwise, it would not be useful to have created the actor.

The syntax of new expressions would be something corresponding to the

following:

(new expression) ::= new (beh name) (ezpr {, expr }*)

The (beh name) corresponds to an identifier bound to a behavior given

by a declaration using a behavior definition. A new actor is created with

the behavior implied by the behavior definition and its parameters are

instantiated to the values of the expressions in the parenthesis. In actor

jargon, we have defined the acquaintances of an actor. The value of the

expression is the mail address of the actor created and it can be bound to

an identifier called an actor name by a (let command). An actor name may

be used as the target of any communication, including communications sent

in the initial configuration.

%:
-4-%

* 4.

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 47

Actors created concurrently by an actor may know each others mail
addresses. This is a form of mutually recursive definition permissible in

actors. However, all the newly created actor knows is the mail address of

the other actor: It does not have any other direct access to the internal

structure of that actor.

Creating Tasks

A task is created by specifying a target and a communication. Communi-

cations may be sent to actors that already existed, or to actors that have

been newly created by the sender. The target is the mail address of the

actor to which the communication is sent. The syntax of a command that

would create tasks is something like the one given below:

(send command) :: send (communication) to (target)

where a communication is a sequence of expressions (perhaps empty). The

expressions may be identifiers, constants, or the appropriate functions of

these. The expressions are evaluated and the corresponding values are sent

in the communication. The target is an identifier bound to the mail address

of an actor.

Declaring Receptionists

Although creating actors and tasks is sufficient to specify an actor system,

simply doing so does not provide a mechanism for abstracting away the

internal details of a system and concentrating on the behavior as it relates

.°4

, ••- • • • • • - - . - . ~o -. - - - . . - o o ,. ° % o o. ", . '. '. -,". "€

'°-

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 48

to outside the actor system specified by the program. In order to simplify

reasoning about the composition of independently defined and debugged

systems and to permit greater modularity in a system, we allow the pro-

grammer to specify the initial set of receptionists for any system. The

receptionists are the only actors that are free to receive comnuunications

from outside the system. Since actor systems are dynamically evolving and

open in nature, the set of receptionists may also be constantly changing.

Whenever a communication containing a mail address is sent to an actor

outside the system, the actor residing at that mail address can receive com-

munications from the outside and therefore become a receptionist. The set

of receptionists increases as the system evolves.

If no receptionists are declared, the system can not initially receive

communications from actors outside the system. However, the mail address

of an actor may subsequently be delivered to an external actor, so that the

actor system may evolve to include some receptionists. This illustrates the

potentially dynamic nature of the set of receptionists.

Declaring External Actors

Communications may be sent to actors outside an actor system. Typically,

an actor may get the mail address of another actor which is not in the

system in a communication from the outside. It would then be able to send

communications to this actor. However, even when an actor system is being

defined, it may be intended that it be a part of a larger system composed I.

of independently developed modules. Therefore, we allow the ability to

.. M %.

•) NL '¢

F. P• -

CIIAPTE? 3. COMP'UTATION IN ACTOR SYSTEMS 49

declare a sequence of identifiers s external. The compihler associates these

identifiers with actors whose behavior is to buffer the comnimunications they

accept. Whenever a given actor system is composed with mother in which

the external actors arc actually specified, the buffered mail can be forwarded

to the mail address of the actual actor (which was hitherto unknown). We

will show how the compositionality can be actually implemented in an open,

evolving system using message-passing.

There need be no external declaration in an program. In this case, no

communication can initially be sent to mail addresses outside the actor

system defined by the program. However, as the system receives commu-

nications from the outside, the set of external actors will "grow." Notice "

that it is useless to have an actor system which has no receptionists and no

external actors because such an autistic system will never affect the outside

world!

Commands

The purpose of commands is to specify the actions to be carried out. We

have already discussed most of the basic commands which would create new

actors and new tasks. We also need a command to specify a replacement.

The syntax of the become command in SAL is:

become (expression)

where the expression is bound to a mail address. The actor simply forwards

all its mail to the actor at the specified mail address. If the expression is

a new expression, then there is no need to assign a new mail address to

a-

a- : .::

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 50

the created actor since that mail address would be equivalent to the mail

address of the actor it is replacing. Thus the picture in Fig. 3.2 is concep-

tually correct. If the expression is the mail address of an already existing

actor then operationally the actor becomes a forwarding actor to the exist-

ing actor. In this case, the picture in Fig. 3.2, although literally correct,

does not express the equivalence of the two mail queues. Denotationally,

the replacement behavior is the same as the behavior of the actor to which

the communication is forwarded. This denotational equivalence would not

be valid in a model which did not assume arrival order non-determinism

and the guarantee of delivery.

There is one other kind of command which is necessary: a conditional

which determines which branch is taken. Conditional or branching com-

mands are of the usual if-then or case form. It is also useful to allow let

bindings so that identifiers may serve as a shorthand for expressions in a

particular context. We have already shown the use of let bindings in the

recording of the mail addresses of newly created actors.

Default Behaviors

Since all actors must specify a replacement behavior, we use the default

that whenever there is no executable become command in the code of an

actor in response to some communication, then we replace that actor with

an identically behaving actor. Since the behavior of an actor is determined

by a finite length script involving only conditional commands for control

flow, it is can be thought of as a finite depth tree one of whose branches is

. .. - C-

bV.

.............

". " " '. -". " " " " - ". ," ". "" - " " "- ". ". . - - - " . "-" " . "r " . "" ,' ' " -' - . ., '.-' .- °,.I,_ -, - C S.- .. ., ' -',- .. ' -' -S'

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 51

executed. The particular branch executed depends on the communication. ° -

Thus it is (easily) decidable if no replacement has been specified for a given

acquaintance and communication list.

3.2.2 Examples

We define several examples of programs written using actors. These ex-

a" ples illustrate the relative ease with which various data structures and

control structures can be implemented in an actor language. Specifically,

we will give the implementation of a stack as a "linked list" of actors.

This simple example also illustrates how the acquaintance structure makes

the need for pointer types superfluous in an actor language. Other data

structures can be defined in a similar manner.

The second example we present is that of the -recursive factorial func-

tion. This is a classic example used in (almost) any work on actors. An

iterative control structure can also be easily defined [Hewitt 77]; we leave

it as an exercise for the interested reader. The technique for an iterative

factorial is similar to the standard accumulation of parameters in functional

programming. The final example in this section is an implementation for

an actor specified by an external declaration. This example should clarify

the use of external declarations to bind actors that are in the population of

some independent module. The independent module can be later composed

with the module presently being specified. We will deal with some more

'-The tree need not be finitely branching because the communications can be one of an

arbitrary countable set.

'-F

N N.

":*W b

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 52

complex example1s in the next chapter.

Example 3.2.1 A Stack. We implement a stack as a collection of actors

with uniform behavior. These actors will represent total containment of

data as well as the opecrations valid1 on such dlata. AssuniW that the linked

list consists of a collection of nodes which store a value and know the mailI address of the "next" actor in the link. The code for defining a stack element

is given below. We skip all error handling code because such details will

simply detract from the basic behavior being expressed. We assume that

there is a pre-defined value NIL and use it as a bottom of the stack marker.

Two kinds of operations may be requested of a stack-node: a push or a pop.

In the first case, the new content to be pushed must be given, and in the

second, the customer to which the value stored in the s tack-node can be

sent.

become link

send content to customer

if operation requested is push then

let P =new stack-node with current acquaintances

{become new stack-node with acquaintances new-content and P)

The top of the stack is the only receptionist in the stack system and was

the only actor of the stack system created externally. It is created with a

.-

NI.conplent exa.p is a.......... the bottom ofaptr.

.

I.'.

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 53

that no mail address is ever communicated by any node to any external

actor. Therefore no actor outside the configuration defined above can af-

fect any of the actors inside the stack except by sending the receptionist

a communication. When a pop operation is done, the actor on top of the

stack simply becomes the next actor in the link. This means that all com-

munications received by the top of the stack are now forwarded to the next

element.

For those concerned about implementation efficiency, notice that the

underlying architecture can splice through any chain of forwarding actors

since their mail address would no longer be known to any actor, and in due

course, will not be the target of any tasks. The user is entirely free from

considering the details of such optimizations.

Example 3.2.2 A Recursive Factorial. We give this classic example

of a recursive control structure to illustrate the use of customers in im-

plementing continuations. The example is adapted from [Hewitt 77] which

provided the original insight exploited here. In a sequential language, a re-

cursive formula is implemented using a stack of activations. In particular,

the use of a stack implies that a factorial can accept only one communica-

tion from some other actor and is busy until it has computed the factorial

of the given number. There is no mechanism in the sequential structure for

distributing the work of computing the factorial or concurrently processing

more than one request.

Our implementation of the factorial actor relies on creating a customer .1

which waits for the appropriate reply, in this case from the factorial itself,

..

CIJAPTEI?3. COMPUTATION IN ACTOR SYSTEMS 54

so that the factorial is concurrently free to proccss the next communication.

We assume that a coin muni cation to a factorial includes a mail address to

which the value of the factorial is to be sent. The code for a recursive

factorial is given below. Note that we use self as the mail address of the

actor itself. This mail address will be instantiated when an actor is actually

created using the behavior definition and serves as shorthand by eliminating

the need for a parameter in the definition.

Rec-Factorial with acquaintances self

let communication have an integer n and a customer

become new Rec-Factorial

if n =0

then send [1l to customer

else let c be a Rec-Customer created which will accept an integer k

and send n*k to the customei

{send n - 1 ,the mail address of c to self}

In response to a communication with a non-zero integer, n, the actor

with the above behavior will do the following:

*Create an actor whose behavior will be to multiply the n with an

integer it receives and send the reply to the mail address to which the

factorial of n was to be sent.

e Send itself the "request" to evaluate the factorial of n - 1 and send

the value to the customer it created.

F

* °

.

S.., S ."

* ' .. S. SS,~S. ,Sa. ***~*** S~* ~ - ~ * *..

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 55

One can intuitively see why the factorial actor behaves correctly, and

can use induction to prove that it does so. Provided the customer is sent the

correct value of the factorial of n - 1, the customer will correctly evaluate

the factorial of n. What's more, the evaluation of one factorial doesn't

have to be completed before the next request is processed; i.e., the factorial

actor can be a shared resource concurrently evaluating several requests.

The behavior of the factorial actor in response to a single initial request is

shown in Fig. 3.4.

This particular function is not very complicated, with the consequence

that the behavior of the customer is also quite simple. In general, the

behavior of the customer can be arbitrarily complex. The actor originally

receiving the request delegates most of the processing required by the re-

quest to a large number of actors, each of whom is dynamically created.

Furthermore, the number of such actors created is in direct proportion to

the magnitude of the computation required.

There is nothing inherently concurrent in the recursive algorithm to

evaluate a factorial. Using the above algorithm, computation of a single

factorial would not be any faster if it were done using a sequential language

as opposed to an actor language. All we have achieved is a representation

of the stack for recursion as a chain of customers. However, given a network

of processors, an actor-based language could process a large number of re-

quests much faster by simply distributing the actors it creates among these

processors. The factorial actor itself would not be the bottleneck for such

computations. (Of course, it would be useful to have fast communication

-..•.

.

CIAPTER 3. COMIPTATION IN ACTOR SYSTEMS 56

factorial

3., customer
2-.

'.0

2

6 ~ _

to customer

Figure 3.4: The computation in response to a request to evaluate the facto-

rial of 9. The Ob's represent dynamically created customers (see text).

links between the processors).

In general, there are also more parallel algorithms for evaluating func-

tions, and these algorithms can be exploited in an actor-based language.

For example, a more parallel way of evaluating a factorial treats the prob-

lem as that of multiplying the range of numbers from 1...n. The problem is

recursively subdivided into multiplying two subranges. Such an algorithm

results in the possibility of computing a single factorial in log n parallel

.. 1

.....

JCJAPTER 3. COMPUTATION IN ACTOR SYSTEMS 57

time.

Example 3.2.3 External Actors. An actor program defines an initial

configuration with its external actors defined by an (external declaration).

To promote composition of independently programmed modules, the exter-

nal actors are compiled in a specific manner. This example simply illus-

trates how one might implement external actors. The desired behavior of

an external actor is to as follows:

0 simply hold all communications sent to it until the system is composed

with another that contains the actor in question.

e respond to a communication telling it to forward all its mail to the

actual actor when the composition is carried out.

In response to an external declaration, we actually create an actor which

will exhibit the above behavior.

The code for an implementation can be given as follows. Assume that

an actor called buffer is simultaneously created and, appropriately enough,

buffers all communications until it accepts a communication telling it to

forward them to a given mail address. Such a buffer could be specified as

a queue using a linked list in a manner analogous to the implementation

of the stack given above. One could also be a bit perverse and specify the

buffer as a stack without changing the correctness of its behavior (recall

the arrival order nondeterminism of the communications). As a stack, the

behavior of the buffer would be given as below:

P.A 2 -

p...

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 58

Buffer with acquaintances content and link

if operation requested is release A content 7$ NIL then

send content to customer

send release request with customer to link

become customer

if operation requested is hold then

let B be a new buffer with acquaintances content and link

{ become new buffer with acquaintances new-content and B J

Assume for the purposes of simplification that a protocol for specifying

a communication to become the actor at the mail address m exists and

that such a communication has the form become m, where m is the mail

address of the actor to which the mail should be forwarded. The behavior

of an external actor is specified as below:

extern with acquaintances buffer

if the communication is become customer

then become customer

send release request with customer to buffer

else send hold request with customer to buffer

3.3 Minimal Actor Languages

In this section, we give the syntax for two minimal languages, SAL and

Act. The programming language SAL has been developed for pedagogical

reasons and follows an algol like syntax. Act is related to the languages im-

plemented by the Message-Passing Semantics Group at M.I.T. and follows

.'5

"" '-"-":-"-"-" ." ."."."."'"-"- ,"." .".'.".". ""'" -".-''-'-"-''.'.-. ".'-'-'.-"'" -% -"-" " -" " '-""- "" -" -''- " '-''- ""

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 59

a lisp-like syntax. Act can be considered as a kernel for the ActS language

[Hewitt, et al 841. One basic difference between SAL and Act is in how they

bind identifiers and would provide for their authentication. SAT. would use

conventional type-checking whereas Act uses an elaborate description syse-

tern based on a lattice structure for reasoning with the descriptions. For

the rest of the thesis we will use expressions whose syntax we have already

given in the previous section. For simple examples we will use SAL's syn-

tax. However, it is not necessary to look at the details of the syntax in this

section: the only feature of SAL's syntax that the reader needs to know is

that the acquaintance list is enclosed in (..)while the communication list

is enclosed in .. 1

Notation. The usual Backus-Naur form is used. In particular, (...) en-

closes nonterminal symbols. We use darker letters for the terminals and id

for identifiers. {.}is used to enclose optional strings, and a superscripted

*indicates 0 or more repetitions of the string are permissible. Wben a

reserved symbol, such as {,is underlined, it stands for itself and not for its

usual interpretation.

3.3.1 A Simple Actor Language

We give the syntax for the kernel of SAL. Behavior definitions in a SAL

program are declarative in the the same sense as procedure declarations in

an algol-like language: behavior definitions do not create any actors but

ir simply identify a identifier with a behavior template. Actors are created by

new expressions whose syntax is the same as that given in the last section.

irr

i- '. . - ::'- ., ' =. ., . . ',' .- :+ - +- , . : + . , o S . - _ _ . -. + -. • .-- - . + .

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 60

(behavior definition):

def (beh name) ((ecquaintance ist)) [(communication list)]

(cormmand)*

end def

Quite often the identifiers to be bound depend on the kind of commu-

nication or acquain' list: For example, if the communication sent to a

bank is a withdrawal request then the communication must also specify the

amount to be withdrawn; but if the communication is a request to show

the balance, then it should not specify any amount. We follow the variant

-ecord structure of Pascal [Wirth 72] to deal with the variability of the

" rr bindings. Basically, we branch on the value of an identifier called

:eld and depending on the value of the tag-field, different identifier

e expected. The value of tag-field is called a came label.

The ,of the parameter lists is as follows:

(parameter list) ::- {IdI (var list) } { id , (var hIt) e I

(var list) ::= case (tag-field) of (variant)' end case

(variant) ..-. (case label) : (parameter lit)

where id is an identifier, e is an empty string (in case the parameter list

is empty), the tag field is an identifier, and the case label is a constant

(data-value). The example below illustrates the use of parameter lists. A

communication list in the behavior definition of a bank account is given.".

or

~~.... . ..- . .-.. , ,.,, ,... .. --.- ,- ,-, .-..-. ,. .*.. , , . .. ,.., .

* * * * d .'*.S .*~~*S***'**.S*S*..5.. ~ ~ . , . % " . ,'. ..- ,..

CIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 61

case request of

deposit (customer, amount)

withdrawal (customer, amount)

balance (customer)
end case

Thus a communication [deposit, Joe, $50.00], where Joe is the mail ad-

dress of some actor, would be an appropriate comnniunication to send to a

bank account created using the above behavior definition.

We avoid specifying any type structure in our programming language

for the sake of simplicity. It is not difficult to specify one: All we would

have to do is use type declarations with the every identifier. Static type

checking could be performed when the code is compiled to make sure that

the identifiers are used correctly in the commands (with respect to their

types). For example, identifiers used as targets must have the type mail

address. Dynamic type-checking can be used whenever a new actor is ac-

tually created: it would check if the parameters are correctly instantiated.

Dynamic type-checking would also have to be used when a communication

is accepted.

(command) ::= if (logical expression) then (command)

{ else (command)} ii I

become (expression) ,

(send command) (let bindings) {command}

(behavior definition) I (command)*

The syntax is for the most part quite obvious. We have already defined

behavior definitions above. Note that the scope of an identifier bound by

.. ::..:;* .* ~ * .*

-. • 1pP . .

L°..L

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 62

a behavior definition is lexical. The syntax for send command was given in

the last section. It is simply:

(send command)::= send (communication) to (target)

let bindings allow one to use an abbreviation for an expression. There is

no mutual recursion unless new expressions are being bound; in the latter

case, the actors created can know each others mail addresses. The syntax

for let bindings is as follows:

(let bindings) let id = (expression)

and id (expression)

We give only one example of a behavior definition in SAL to illustrate the

flavor of the syntax. The code below is for an actor which behaves like a

stack-node discussed in example 3.2.3 (§3.2).

def stack-node (content,link)

[case operation of

pop : (customer)

push (new-content)

end case]

if operation = pop A content $ NIL then

become link

send content to customer

fi

if operation push then

let P = new stack-node (content,link)

{ become new stack-node (new-content, P)}

fi end def

.7.,

I:,-°

I.%

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 63

Note that we assume NIL is a predefined value and SINK is the mail address

of some actor. A node can be created by a new command of the form given

below.

let p = new stack-node (NIL,SINK)

The node created will subsequently serve as the receptionist for the stack

since the mail address bound to p will always represent the mail address of

the top most node of the stack.

3.3.2 Act

The language Act is a sufficient kernel for the ActS language which is

a descendant of Act2 [Theriault 83]. One basic distinction between Act

and SAL is that the former uses a keyword-based notation while the latter

uses a positional notation. The acquaintance list in Act is specified by

using identifiers which match a pattern. The pattern provides for freedom

from positional correspondence when new actors are created. Patterns are

used in pattern matching to bind identifiers, and authenticate and extract

information from data structures. The simplest pattern is a bind pattern

which literally binds the value of an identifier to the value of an expression in

the current environment. The syntax of pattern matching is quite involved

and not directly relevant to the our purposes here. We therefore skip it.

When an actor accepts a communication it is pattern-matched with the

communication handlers in the actor's code and dispatched to the handler

of the pattern it satisfies. The bindings for the communication list are

'r

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 64

extracted by the pattern matching as well. Wc do not provide the syntax

for expressions except to note that the new expressions have the same

syntax as in §3.2 namely the keyword new followed by an expression. The

syntax of behavior definitions in Act prograns is given below.

(behavior definition)

(Define (new id { (with identifier (pattern))})

(communication handler)*)

(communication handler) ::="

(Is-Communication (pattern) do (command))

The syntax of commands to create actors and send communications is -

the same in actor definitions as their syntax at the program level. The

syntax of the send-to command is the keyword send-to followed by two

expressions. The two expressions are evaluated; the first expression must

evaluate to a mail address while the second may have an arbitrary value.

The result of the send-to command is to send the value of the second

expression to the target specified by the first expression.

(command) (let command) I (conditional command) I
(send command) f (become command)

(let command) (let ((let binding)*) do (command)')

(conditional command) (if (expression)

(then d.o (command)')

(else do (command)'))

[.•.

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 65

(send command) (send-to (expression) (expression))
(become command) (become (expression))

The example of a stack-node definition from §3.2 is repeated below.

For simplicity, we skip all error handling code. Note the keywords in the

acquaintance and communication lists. These keywords allow a free order

of attributions when the actors are created or when communications are

sent. All the bindings we give are simple; in general the bindings can be

restricted to complex patterns which allow authentication of the data by

pattern matching.

(define (new stack-node (with content -c)

(with next-node =next))

(Is-Communication (a pop (with customer --m)) do

(jif (NOT (= c empty-stack))

(then(become next)

(send-to (i) (A popped-top (with value -c))))))

(Is-Communication (4_ push (with new-content _=v)) do

(let (x = new stack-node (with content c)

(with next-node next)).

do (become new stack-node (with content v)

(with next-node x)))))

°.%

• . . ' a
• .. i... .. .i.i.. .i .-. --. .. --.. ...- ,. -- .- .. .-.-.. -.-: ., . .. -. . ..-..

,' ~~~~~?..-"%. .:,.o-...% ' ,..'...... .'-'....- .. , .. . -' '.". . .- '. ..-. .-. '.-. .. .- -'

p Ni

.;

Chapter 4

A More Expressive Language

In this chapter, we will define some higher-level constructs that make the

expression of programs somewhat simpler. The purpose of this exercise is

two-fold: firstly, we wish to build a somewhat richer language, and secondly,

we illustrate the versatility of the constructs in a minimal actor language.

For purposes of brevity, we will use SAL in simple examples. In more in-

volved examples, we simply use pseudo-code. The issues discussed in this

chapter include: developing a notation to represent functions whose ar-

guments are supplied by communications from several different actors; the

question of delegation which arises when determining the replacement actor

requires communicating with other actors; the meaning and representation

of sequential composition in the context of actor system; and lastly, the

implementation of delayed and eager evaluation for arbitrary expressions.

The interest in such evaluation strategies stems in part because they are

interesting ways to demonstrate the utility of inal)ping values like numbers

66

S...':'...

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 67

into a corresponding set of actors.

4.1 Several Incoming Communications

One of the simplest questions one can ask is what the representation of

functions of several different inputs is going to be. If all the values needed

to evaluate a function are to be received from the same actor, and at the

same time, then there is no issue because comnmunications in the kernel

language are defined as a list of values. In general, however, carrying out

some computation may require values from different actors. An actor need

not know who the sender of the communication it is currently processing is.

Modelling the above situation requires using some special protocols. The

specifics of the construction are dependent on the type of scenario in which

the multiple inputs are required.

4.1.1 A Static Topology

There are two distinct possible scenarios for an actor representing a func-

tion of several arguments. If the sender is irrelevant, then the actor simply

becomes an actor which responds appropriately to the next incoming com-

munication. If the senders are relevant but static, as in dataflow languages,

then we can represent the function as a system of actors: one actor as

the receptionist for each sender and one actor that does the final function

evaluation. Each receptionist buffers communications until it receives a

ready communication from the function-apply actor, and then it sends the

J..

-........................ °

s,. .

f.

.

. -- - .. - . - * ** **,~. .

CIAPTER 4. A MORE EXPRESSIVE LANGUAGE 68

function-apply actor another communication together with its own mail ad-

dress. The mail addresses serve to identify the sender. A concrete picture

for such a function-apply is an agent on an assembly line which is putting

"nuts" and "bolts" together and needs one of each to arrive in order to

fasten them before passing the result on. The receptionists act to buffer

the "nuts" and "bolts."

Consider the simple case of a function-apply actor which needs two

inputs and sends the result to a actor at the mail address m, as shown

in Fig. 4.1. We assume actors at mail addresses m, and m 2 act to buffer

incoming arguments and are the receptionists for this system of three actors.

The actor at m is an external actor. The program for the actor to evaluate

the function f can be given as below.

We give two mutually recursive definitions. Only one actor need be

created using the two-inputs-needed definition. The behavior of this actor

will be alternately specified by one or the other of the definitions. One

observation that can be made is that the mutual recursion in the definitions

is simply to make it easier to understand the code: It would be entirely

possible to write a single definition to achieve the same purpose. The

alternate definition would use an acquaintance and branch on its value to

the two possible behaviors.

def two-inputs-needed (m, M2 m)[sender arg]

if sender =m

then become new one-input-needed (mi, M 2, second, arg)

else become new one-input-needed (ml, M 2, first, arg)

fi end def

. . . I
.o."

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 69

/ -- recepionist 2

function-
apply

/r exiernal actor
cofiguration -

Figure 4.1: A fixed topology for a two input function.

def one-input- needed (in1 , Mn2 , m, new-arg-position, old-arg)

sender, arg

let kc =if new-arg-position =second then f(old-arg , new-arg)

else f (new-arg , old-arg) fi)

{send []to m}

send ready to m,

send ready to M 2

become new two- inpu ts- needed (inm, in2)

end def

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 70

The function-apply actor which needs two inputs from actors ml and M 2 can

be created by the expression new two-inputs-needed (Mi, M 2). We assume

that the actor m is defined in the lexical scope of the new expression.

4.1.2 A Dynamic Topology

A more interesting case of a many argument function is one in which the

senders can vary. One frequently useful form occurs when more input to

complete some computation may depend on the segment of the computa-

tion that has been carried out so far. Such a situation represents a dynamic

topology of the interconnection network of actors. For example, an interac- . "

tive program may need more input to continue with some transaction. The

source of the input may vary: the program may sometimes get the input

off some place on a disk, or perhaps from a magnetic tape, or a user. A

static topology where all the communications are received from the same

senders before the computation starts, or even during it, will not work in

this case. " 71
The general form for implementing requests for input from some par-

ticular actor is a call expression, which has the syntax:

call g [k

where k is a communication and g is an identifier bound to a mail address.

The value of the call expression is the communication sent by g as the reply

when it accepts the present communication k. One way to picture the flow

of the computation is given in Fig. 4.2. However, the figure is somewhat

.°•

,. :.-.

... . - ¢

. . .. • , a • . .
o

. .
•

. . % ."

io • - . . _ . .-. - ~

p.S

,p.

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 71

misleading as a representation of what actually occurs in an actor system.

The actor f does not (necessarily) have to wait for the reply from the actor

g: a customer can be created which will continue processing when the reply

from the actor g arrives. While the customer is "waiting" for the reply

from g, the actor f may accept any communications pending in its queue.

p.i

Figure 4.2: The behavior of actor f in response to a communication may be

a function of a communication from the actor g.

The use of customers to implement continuations is more accurately

portrayed in Fig. 4.3. This figure may be compared to the example of the

recursive factorial in §3.2. There is some sequentiality, modeled by the

causality ordering of the events, in the course of the computation triggered

by a communication to the actor f. There is a degree of concurrency as

..........

. --. :.. -.. -. o *.* . ,.-. .- .- -. .-

CIAPTER 4. A MORE EXPRESSIVE LANGUAGE 72

well. If the call expression occurs in the following context in the code for f:

S' let x = (call g[k]) {S) S"

then the actions implied by S' and S" can be executed concurrently with

the request to g. Moreover, as discussed above, we do not force the actor f

to wait until the reply from the actor g is received. The actor f would be

free to accept the next communication on its mail queue, provided it can

compute its replacement.' The customer created to carry out the actions

implied by the command S will wait for the reply from the actor g.

Notice that the general scheme for representing requests is analogous to

our earlier implementation of the factorial actor. Using a call expression,

the program for a recursive factorial may be written as below:

def exp Rec-Factorial() n n -

become new Rec-Factorial ()
if n = 0

then reply [1]

else reply [n * (call self [n - 1])1

fi end def

We use def exp instead of def so that it is clear that the actor will return

a reply to a customer that is implicit in all communications accepted. The

incoming communication will have the form:

_1 'We will discuss the case where an actor can not compute its replacement without further

input in the next section.

-'-..*. ** *

.............

i . - . . ,. , . . - .- . -- . .- . - - ' , . - - . - " , ,,r- . - ,, - , . - - , . ' ' , - - , " ' .. ' , ,'

ir;,:: -;

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 73

9i
..

(request)

(reply)

customer

- . Figure 4.3: The behavior of actor f is defined by program with a call ex-

pression which requests more input. Some of the events are activated by the

reply to a customer.

...
."..,k

but our syntax explicitly shows only [kl,...,kjl. The mail address m is

bound when the expressional actor gets a communication. A translator can

insert the customer and subsequently map the command reply [x] into the

equivalent command:

send [x] to m

The actor at m will be the customer which will continue the transaction

"'Q" initiated at the time of its creation. Comparing the above code with that

% "%.

.-

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 74

of factorial in the previous chapter (see Fig. 3.4) should make it clear how

the behavior of the appropriate customer can be dediced: essentially, the

segment of the environment which is relevant to the behavior of the cus-

tomer has to preserved; a dynamically created customer can do this. A

SAL compiler whose target language is the kernel of SAL can translate the

above code to one in which the customer creation is explicit. Also note that

only one reply command may be executed (in response to a single request).

Thus a purely expression oriented language can be embedded in SAL

(or equivalently in Act). The concurrency in such a language is inherent g

and the programmer does not have to worry about the details related to

creating customers for implementing continuations. Another advantage to

the "automatic" creation of customers is that it provides protection against

improper use by the programmer, since the programmer has no direct access

to the mail address of the customer created.

There is one aspect of the expression oriented language that may be dis-

turbing to the functional programming aficionados: namely, the presence

of side-effects implicit in the become command. Recall that the ability to

specify a replacement behavior is necessary to model objects with changing

local states. The become command provides a mechanism to do so. The

become command is actually somewhat analogous to recursive feedback in

a dataflow language. This similarity (and the differences) will be discussed

in greater detail in chapter 6.

--. -.i................

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 75

4.2 Insensitive Actors

When an actor accepts a communication and proceeds to carry out its

computations, other communications it may have received must be buffered

until the replacement behavior is computed. When such a replacement

actor is known, it processes the buffered communications, as well as any

new ones received. The precise length of time it takes for an actor to

respond to a communication is not significant because no assumption is

made about the arrival order of communications in the first place.2

However, the desired replacement for an actor may depend on com-

munication with other actors. For example, suppose a checking account

has overdraft protection from a corresponding savings account. When a

withdrawal request results in an overdraft, the balance in the checking ac-

count after processing the withdrawal would depend on the balance in the

savings account. Thus the checking account actor would have to commu-

nicate with the savings account actor, and more significantly the savings

account must communicate with the checking account, before the new bal-

ance (and hence the replacement behavior) is determined. The relevant

communication from the savings account can not therefore be buffered un-

til a replacement is specified!

We deal with this problem simply by defining the concept of an in-

sensitive actor which processes a type of communication called a become

communication. A become communication tells an actor its replacement

2 Communication delays are an important performance issue for a particular realization

of the abstract actor arcitecture. Our focus here is restricted to semantic qucstio.s.

CHIAPTER1 4. A MORE EXP~RESSIVE LANGUAGE 76

behavior. The behavior of an insensitive actor is to buffer all conmmunica-

tions until it receives a communication telling it what to become. Recall

that external declarations were similarly implemented in E2xample 3.2.3.

First consider what we would like the behavior of a checking account

to be: if the request it is processing results in an overdraft, the checking

account should request a withdrawal from its savings account. When a

reply to the request is received by the checking account, the account will

do the following:

e Reply to the customer of the (original) request which resulted in the I

overdraft; and,

* Process requests it subsequently received with either a zero balance

or an unchanged balance.

Using a call expression, we can express the fragment of the code relevant

to processing overdrafts as follows:

let r = (call my-savings [withdrawal, balance - amount]
{if r = withdrawn

then become new checking-ace(O, my-savings)

else become new checking-acc (balance, my-saving.)

fi

reply [rl

To show how a call expression of the above sort can be expressed in

terms of our kernel, we give the code for a bank account actor with overdraft

.2 .o.. .*. * . . i; " : ,-...-... . , *-,.] . , ,

-- 4

' _- . ,. .. •
",

. ,' ,. , , , ,- , , * ,. , • , ,, -, - : . ,,~ - - . . . , - . . .-

CHIAPTER 4. A MORE EXPRESSIVE LANGUAGE 77

protection. Again the code for the customers and the insensitive actors need

not be explicitly written by the programmer but can instead be generated

by a translator whenever a call expression of the above sort is used. That

is to say, if a become command is in the lexical scope of a let expression

that gets bindings using a call expression, then the translator should do the

work explicitly given in the example below. Not requiring the programmer

to specify the behavior of the various actors created, such as the insensitive

bank account and the customer to process the overdraft, protects against

elroneous communications being sent to these actors. It also frees the

rogramnmer from having to decide her own protocols.

A bank accouzit with an overdraft protection is implemented using a

system of four actors. Two of these are the actors corresponding to the

checkinig and savings accounts. Two other actors are created to handle

requests to the checking account that result in an overdraft. One of the

actors created is simply a buffer for the requests that come in the checking

account while the checking account is insensitive. The other actor created,

* an overdraft process, is a customer which computes the replacement be-

VL

havior of the checking account and sends the reply to the customer of the

withdrawal request. We assume that the code for the savings account is

almost identical to the code for the checking account and therefore do not

specify it here. The structure of the computation is illustrated by Fig. 4.4

which gives the actor event diagramu corresponding to a withdrawal request

Ih:

causing an overdraft.

The behavior of the checking account, when it is not processing an over-

. . -; . -

CHAPTER 4. A MORE EXP'RESSIVE LANG UAGE 78

checking-aec savings-acc

<request>

overdraft-

(release)

Figure 4.4: Insensitive actors. During the dashed segment the insensitive

checking account buffers any, communications it receives.

draft, is given below. When the checking account accepts a communication

which results in an overdraft, it becomes an insensitive account.

CHAPTER 4. A MORE EXIPRESSIVE LANGUAGE 79

checking-acc (balance my-savings) [(request)]

if (deposit request)

then become new (checking-acc with updated balance)

send (receipt) to customer

if (showu-balance request)

send [balance] to customer

if (withdrawal request) then

if balance > withdrawal-amount

then become new (checking-acc with updated balance)

send (receipt) to customer

else let b = new buffer

and p = new overdraft-proc

{become new insens-acc (b,p) }

send (withdrawal request with customer p) to my-savings}

The behavior of an "insensitive" bank account, called insens-acc, is

quite simple to specify. It is given below. The insensitive account forwards

all incoming communications to a buffer unless the communications is from

the overdraft process it has created. 3 The behavior of a buffer is similar

to that described in Exanple 3.2.3. The buffer can create a list of com-

munications, until it receives a communicatijn to forward them. It then

forwards the buffered communications and becomes a forwarding actor so

that any comnmunications in transit will also get forwarded appropriately.

3Due to considerations such as deadlock, one would program an insensitive actor to

be somewhat more "active" (see §6.1). Good programming practice in a distributed

environment require that an actor be continuously available. In particular, it should be
o-.

possible to query an insensitive actor about its current status.

-.. 5-..

.5 .' ... '... . .'." , .-. .. ,.... . , -•... .' " -.. ",".",,.- ."'.. ".-. . . -. '.

:5.,.-.-..............
./ • • ."-"-.5'... " . tS',' .,' *,-,*,.,.-,-.-..' ,S."".% ¢ ,' -?', .i- .;''

CIIA PTER 4. A MORE EXPRESSI VE LA NG UAGE 80

insens-acc (buffer, proxy) [request , sender]

if request =become and -sender = proxy

then become (replacement specified)

else send (communication) to buffer

Finally, we specify the code for a customer to process overdrafts. This

customer, called overdraft-process receives the reply to the withdrawal re-

quest sent to the savings account as a result of the overdraft. The identifier

self is bound, as always, to the mail address of the actor itself (i.e., the actor

whose behavior has been defined using the given behavior definition). The I

response from the savings account may be a withdrawn, deposited, or com-

plaint message. The identifier proxy in the code of the insensitive account

represents the mail address of the over-draft process. The proxy is used to

authenticate the sender of any become message targeted to the insensitive

actor.

overdraft-proc (customer ,my-checking , my-savings

checking- balance) [(savings- response)]

send [become ,self] to my-checking

send [(savings-response)] to customer

if (savings response is withdrawn)

then become new checking-acc (0 , my-savings)

else become new checking- acc(checking- balance , my-savings)

V'.

.............. ~.

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 81

4.3 Sequential Composition

In the syntax of our kernel language, we (lid not provide any notation for

sequential composition of commands. The omission was quite intentional.

Although sequential composition is primitive to sequential machines, in

the context of actors it is generally unnecessary. Recall that the primitive

actor carries out only three sorts of actions: namely, sending communica-

tions, creating actors, and specifying a replacement behavior. The order

of these actions is immaterial because there is no changing local state af-

fecting these actions. Furthermore, the order in which two communications

are sent is irrelevant because, even if such an order was specified, it would

not necessarily correspond to the order in which the communications were

subsequently received. 4

There are some contexts in which the order of evaluation of expressions .-

seems sequential even in the kernel of SAL. The two obvious places are

conditional expressions and let expressions. A conditional expression must

be evaluated before any of the commands in the body can be executed.

Such evaluation can not be done at compile time. However, the entire con-

ditional command can be executed concurrently with any other commands

at the same level. One can think of each command as an actor to which

a communication is sent with the current bindings of the identifiers. The

"command actor" in turn executes itself in the environment provided by

the communication.

'IUnlcss the two communications are sent to the same target, there may not be a unique

ordering to their arrival. See the discussion in Section 2.2.

.-.-.... •....%"°. % o'°o ° . o ° ,... -.-. °. .
.

° * o ° ° .°-.-..°" °. .• ° , .•........°..........° . °° °

CIIAPTER 4. A MORE EXIRESSIVE LANGUAGE 82

A let command, unless it is binding a new expression, is nothing more

than an abbreviation that can be removed by the compiler if desired. A

translator can substitute the expression for the identifier whereever the

identifier is used (in the scope of the let binding).

A more interesting case is that of let commands binding new expressions.

New expression bindings serve as abbreviations for behaviors instead of val-

ues. However, the behavior associated with an identifier is not necessarily

constant. In an abstract sense, the identifier (in its scope of use) always

denotes the same object. For example, a bank account refers to the same

bank account even though the behavior of the bank account is a function

of the balance in it.

Let bindings have another characteristic: They may be mutually re-

cursive since concurrently created actors may know of each other. The

question arises in what sense the behavior of an actor depends upon the

other actors. The only requirement is that concurrently created actors may

know each others mail address. This in turn means that the mail addresses

of each of the actors should be known before any of the actors are actu-

ally created (since the behavior of each is dependent on other actors' mail

addresses). The operational significance of this is quite straight-forward.

Not withstanding their absence in the kernel of our actor language,

sequential composition of commands can be meaningful as a structural

representation of certain patterns of computations. Sequential composition

in these cases is a result of causal relations between events. For example,

consider the commands S1 and S 2 below:

"..W

,° 1

..---

CIAPTER 4. A MORE EXPRESSIVE LANGUAGE 83

S - send cali g [x] to f

S2 send [call g [y]]to f

then the sequential composition of S, with S 2 has a very different meaning

than the concurrent composition of the two commands because the effect of

accepting comnmunication [x] may be to change the actor g's subsequent be-

havior. Thus sequential composition can result in only some of the possible

order.of events inherent in the concurrent composition.

Sequential composition of the above kind is also implemented using

customers. The command S SI; S2 is executed concurrently with other

commands at the same level. To execute S, the actions implied by the

command S are executed, including the creation of a customer to handle

the reply from g. When this customer receives the reply from g, it carries

out the other actions implied by S1 as well executing S2 .

Notice however that if S and S 2 were commands to simply send com-

munications to g, then no mechanism for any sequential composition of the P6"

two actions implied would be definable in our kernel language. Nothing

signals the end of any action at an actor other than the causal relations

in the events. For example, causality requires that the actions of an actor

must follow the event that creates it. The conclusion to be drawn is that

concurrent composition is intrinsic in a fundamental and elemental fashion

to actor systems. Any sequentiality is built out of the underlying concur-

rency and is an emergent property of the causal dependencies of events in

the course of the evolution of an actor system.

i"2

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 84

4.4 Delayed and Eager Evaluation

In this section, we will develop the model of actors in which all expressions,

commands and communications are themselves considered to be actors. We

will call this model of actors the universe of actors model. The universe
of actors model is useful for defining a language that is the actor equiva-

lent of a purely expressional language. Specifically, the universe of actors

model permits an easy (and efficient) ilnplementation of the various expres-

sion evaluation mechanisms, such as delayed and eager evaluation, using

message-passing.

Computation in actor systems is initiated by sending communications to

actors that are receptionists. A single behavior definition in fact represents

a specification of a system of actors with one of them as the receptionist

for the system; the behavior of this receptionist is to execute a sequence of

commands concurrently. We can consider each command to be an actor and

the receptionist, upon accepting a communication, sends each command a h

message to execute itself with the current environment specified by the

communication sent. The command will in turn send communications to

expressions and create customers to process the replies. This process must,

naturally, be bottomed out at some point by actors which do not send any

"requests" to other actors but simply produce "replies." Hence, we need a

special kind of actor, called a primitive actor, with the characteristic that

some of these primitive actors need not (always) rely on more message-

passing to process an incoming communication. Furthermore, primitive

actors have a pre-defined behavior which never changes (i.e., the behavior

"

AD-Ai37 917 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 2/3
I DISTRIBUTED SYSTEMS(U) MASSACHUSETTS INST OF TECH

CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB 0 A RGHR JUN 85

UNCLSSIFIEDAI-TR--844 N64-80 -C--B95F/9/2 NL

so EEEEEEEEEEEEEN
I flfflfl..fl..flof

I lflflfflfll..flflof
mhohhohEohhhhE
EhhhEEmhhEohEE

-.W 4 f l . ~l - - - 1 7 -T 7

SUa~NVS .40 (WIhM ,VNOLWN

~.1 0.

7 1 7 7 - -- -- *,.....-, 7 1

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 85

is unserialized). Which actors are defined as primitive depends on the

particular actor system.

4.4.1 Primitive Actors

Primitive actors are used in order to "bottom-out" a computation. 5 Hence,

the set of primitive actors must include the primitive data values and the

basic operations on them. In particular, simple data objects such as inte-

gers, booleans and strings must be considered primitive. When an integer

is sent a message to "evaluate" itself, it simply replies with itself. To

carry out any computation, primitive operations, such as addition, must be

pre-defined. There are various mechanisms by which a consistent model,

incorporating primitive operations, can be developed: one such scheme is

to also define operations such as addition to be primitive actors.

Our bias, however, is to encapsulate data values and the operations valid

on the data into uniform objects. Hence, we define each integer as an actor

which may be sent a request to add itself to another integer. The integer

would then reply with the sum of the two integers. In fact an integer, n may

be sent a request to add itself an arbitrary integer expression, e. In this

case one must also send the local environment (which provides the bindings

for the identifiers in e). The bindings of the identifiers will, of course, be

primitive actors. One way to understand this notion is to notice that the

expression e is really equivalent to call e [env] where env is the environment

5Theriault [83] used the term rock-bottom actors to describe these actors and the material

on primitive actors closely follows his implementation in ActS.

, . .- ,.o]

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 86

in which the evaluation of the expression is to be performed. If e is an

integer constant, it will reply with itself and, subsequently, n will reply

with the correct sum. Specifically, the behavior of the expression e + n, in

response to a request to add itself to the expression e in the environment

env, can be described as:

let z = call e [env]

{ reply [n-+ z]}

If e is not an integer but an integer expression, a call to it must result in an

integer. Thus the meta-circular behavior of the expression, e el + e2, is

to send evaluate messages to each of the expressions el and e2 and to then

send a message to the first expression (which would now have evaluated to

the primitive actor that corresponds to the value of el) to add itself to the

actor the second expression evaluates to.

Notice that we use integers, and expressions, as though they were iden-

tifiers bound to mail addresses, and, indeeC, as actors they are. To under-

stand this concept, consider the relation between the numeral 3 and the

number 3. For our purposes, in the universe of actors model, the identifier

3 is bound to the mail address of the actor S. Since S is a primitive actor,

its behavior is pre-defined. Furthermore, the behavior of the actor 3 never

changes (such a behavior is called an unserialized).

There may be more than one actor 3 in a program: the identifier 3 is

completely local to the scope of its use. However, the identifier 3 has been -

reserved for a particular functional (unserialized) behavior and may not be

used differently by the programmer. One useful implication of the fixed

. ~ - , .- °°?. :

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 87

behavior of an integer like 3 is that it does not really matter how many 3's

there are in a given actor system, or whether two 3's in an actor system

refer to the same actor 3 or different ones. Ergo, when a communication

contains the actor 3, it is an implementation decision whether to "copy"

the mail address of the actor 3 or whether to copy the actor itself: the latter

possibility is useful for maintaining locality of reference in message-passing

for efficiency reasons.6 To put it another way, the unserialized nature of

primitive actors implies that there is no theoretical reason to differentiate.

between the expression new 3, and simply 3.

4.4.2 Delayed Evaluation

In functional programming, delayed evaluation is useful for processing infi-

nite structures by exploring at any given time, some finite segments of the

structure. Using delayed expressions, the evaluation of a function is explic-

- itly delayed until another function "resumes" it. Thus, delayed evaluation

is the functional equivalent of co-routines [Henderson 80].

In actor systems, it is not necessary to define delayed evaluation as a

primitive: Since an actor becomes another actor as a result of processing

a task, an actor already represents an infinite structure which unfolds one

step at a time (in response to each communication accepted). Similarly,

co-routines are one particular case of a concurrent control structure; actors

allow one to define arbitrary concurrent control structures. Each control

•There is no notion of copying actors in the actor model. What we mean is create a new

actor with the behavior identical to the current behavior of the (old) actor.

.

''

:..
.S S.

.
.~ S S ~*** S * * S~ 5.5.

S S S.S ".' S

.. %.

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 88

structure defines a graph of activations of processes and, as such, every

control structure can be represented as a pattern of message-passing [lie-

witt 77]. The actor model allows dynamically evolving patterns of message-

passing. Static control structures, such as co-routines, are a special (de-

generate) case of the dynamic structures.

As the above discussion suggests, delayed evaluation is a syntactic ex-

tension to an actor language and not a semantic one. We define delayed

expressions in order to make our purely expression oriented extension of

SAL more expressive. The construct does not add any expressive power to

the language.

The expression delay e denotes the mail address of the expression e as

opposed to the actual value of e. Recall that the expression e is equivalent

to call e [env] where an expression denotes the mail address at which the

expression resides (see the discussion about the universe of actors model in

the previous section).

For purposes of the discussion below, we assume that the environment

S." is sent to any expression receiving a request. Now we have to decide what is

meant by expressions which contain delayed expressions as subexpressions.

For example, the expression:

el e2 * delay e3

is a product of an arithmetic expression and a delayed (arithmetic) expres-

sion. When e2 has been evaluated it receives the request [*, delay e3], where -

delay e3 represents the mail address of the expression e3 . Assume e2 has

evaluated to some integer n. The only feasible way of handling the expres-
t. .f

.

" . - t. - -. . . . t f* f t..

p°

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 89
I...

F.'"

sion el then is to "return" (i.e., to reply with) its current local state, which

will be equivalent to the expression n * e3. That is exactly what is done,

except that the mail address of the expression el is returned. el has now

become an actor behaviorally equivalent to the expression n * e3 , and not

the value of the expression.

4.4.3 Representing Infinite Structures

The delayed expressions we have defined so far do not really represent

potentially infinite structures, because the expressions they define are not

recursive. However, our def exp behavior definitions already provide for

such recursive structures. In this section we explore this analogy with the

help of a detailed example. We will present an example using a functional

programming notation and using actors. Two different actor systems are

defined with equivalent observable behavior; the second system uses actors

that change their behavior. Furthermore, the second actor system does

not use the list construction and separation operators. Thus the flavor

of the two actor systems is quite different even though they have similar

behaviors.

The Example in Functional Programming

The purpose of the following example is to define some functions which

evaluate a given number of initial elements of an infinite list. The notation

uses a functional form for the cons operation but not for the car or cdr. All

functions are taken from Henderson [80]. Consider, the delayed expression

... %

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 90

in the function integersfrom(n) below:

integersfrom(n) = cons(n , delay integerafrom(n + 1))

integers from(n) is an example of such an infinite list, namely the list of

all the integers greater than n. This list of may be evaluated only partially

at any given point in time. The function first(i, x) defined below gives the

first k arguments for an infinite list z whose cdr has been delayed. (In the

functional program, one has to explicitly force the evaluation of a delayed

list.)

first (i, z) if i=O then NIL

else cons (car z , first (i - 1, force cdr z))

Now we define two more functions which can be used to return the cumn- Pq

lative sum of all the elements of a list up to some "th element. The function

sums(a, x) returns a list whose ith element is the sum of the first i elements ..

of the list z and the integer a. Finally, the function firstsums(k) uses the

functions defined so far to return the list of initial sums of the first i positive

integers.

sums (a, z) cons (a + car:, delay(sums (a + car x, force cdr x))

firstaums (k) first (k , sums(O,integersfrom(1)))

A System of Unserialized Actors

Let us now define an actor system which produces the same behavior. We

will do this in two different ways. First, we define a system of actors all

ko

I-.

.-. *4 ;-- - - .-

- ~ ~ ~ -.. - - -. .

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 91

of whom have unserialized behaviors (i.e., they are always replaced by an

identically behaving actor). We therefore give their definitions without any

become commands in them. (Recall the default that an actor is replaced

by an identically behaving actor if no become is found in its code). We will

subsequently define a system of actors which uses serialized behaviors when

appropriate. The idea behind defining two systems is to show the relation

between actor creation and actor replacement. The systems also show the

relation between delay and actor creation.

Assume that the operations cons, car and cdr exist and are defined

on actors representing lists. cons is sent the mail address of two actors

and returns a list of the two mail addresses. It is important to note the

equivalence of the mail address of a primitive actor and the actor itself.

There are two possibilities for a list x: it may consist of a primitive actor

(equivalently the mail address of a primitive actor) or it can be the mail

address of an arbitrary list. car x equals x if x is a primitive actor, or

equivalently the mail address of a primitive actor, otherwise car x is the

mail address of the first element of the list. cdr x is NIL if x is a primitive

actor, and otherwise returns a mail address corresponding to the rest of the

list.

All the actors whose behavior is given by code below are expressions.

We will not bother to enclose the definitions in def exp ... end def since the

definitions are all rather brief. There is no need delay or force operators:

a delayed list is represented by the mail address of an actor representing

that list.

I."

... 4-...

V

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 92

The first function we define is integersfrom(n). The behavior of an

integersfrom(n) actor is that it responds to an evaluate request (i.e., a

request of the form II) by replying with a list whose car is the integer n and

PE. whose cdr is the mail address of an actor with the behavior integersfrom(n+

1).-"

integersfrom(n) [] reply [cons (n, new integersfrom(n + 1)) .

The behavior of an actor whose behavior is given by first () is as follows:

when it is sent a request [i, z], where i is an non-negative integer and x is or

an arbitrary list, it replies with the first i elements of the list. We assume

that the list x is sufficiently long to have i elements.

first() [i,z] = if i=O then reply [NIL

else reply [cons (car z , call self ji - 1, cdr z]) j

Finally, we give the behavior definitions for the two remaining actors.

firstsums() defines an actor whose behavior is to give a finite list whose tth

element is the sum of the first i non-negative integers. The length of the list

of sums in the reply is specified in the communication received. In order

to create a system which returns the list of initial sums of non-negative

integers, we need to create only a firstsums() actor; all the other actors

will be created by this actor. The actor created will always be the sole

receptionist for such a system since no mail address is ever communicated

to the outside.

sums(a,z) [let b = a+car.

{ reply [cons (b,new sums(b,cdr z))] } *"

CIAPTER 4. A MORE EXPRESSIVE LANGUAGE 93

firstsums()lk[_ let p = new integersfrom(l)

and s = new sums(O,p)

and f = new first()

{ reply[call f [k, a] J]

The fact that all the behaviors are unserialized implies that it is possible

to use the same actors for different requests. Thus if an actor with behavior

first() exists, it doesn't matter if a communication is sent to the same

actor or to a new actor created with the behavior first(). The converse

of this property is that an actor with unserialized behavior can never be a

history-sensitive shared object. This same limitation is applicable to purely

functional programs.

A System With Serialized Actors

We now attack the same problem with actors that may change their local

state: i.e., actors that may be replaced by actors whose behavior is different

than their own. The point of defining this system is to show the relation

between actor creation and replacement. The example also illustrates the

similarity between a delayed expression and a serialized actor.

It should be noted that actors are in fact more general than expres-

sions in functional programming. For one, actors, unlike expressions, may

represent (history-sensitive) shared objects. For example, a bank account

written as a function which returns a partly delayed expression will have

returned an argument purely local to the caller. This means that such a

;.*1

.° • . ., . • ° ° ° , - - - - -° • -, . . . - - °

.-... ,......., .,..• ...-. %..,..... -..- ,-- - - ..-..- -..-.. , .% .

I.--. -: - -

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 94

bank account can not be shared between different users (or even between

the bank manager and the account owner!). In dataflow architectures,

the problem of sharing is addressed by assuming a special merge element.

However dataflow elements have a static topology (see the discussion in

chapter 2).

The definitions below do not use cons, car, and cdr operations. Instead

we simply construct and bind the communication lists. The behavior def-

inition of integersfrom(n) is that it accepts a simple evaluate message, [1

and replies with the integer n. However, the actor presently be'comes an

actor with the behavior integersfrom(n+l). An actor with its behavior de-

fined by sums(a,x) has two acquaintances, namely a and z. a is the sum

of the first umpteen elements and x is the mail address of an actor which

replies with the umpteen+1 element of the "list." The sums actor calls z

and replies with the next sum each time it is called.

The behavior definitions of first is similar to the previous section ex-

cept that we use explicit call's. Note that the definition of firstsums() is

identical to the one given above, and is therefore not repeated.

integers-from(n) [] reply [n]

become new integers-from(n + 1)

firs() [i, z] if i=O then reply []

else reply [call z [I, call self [i - 1, xl I

sums(a,x) [] let b=a+callz[]

{reply [b]

become new sums(b,z) }

..

A .

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 95

The concept of replacement provides us with the ability to define lazy

evaluation so that same expression would not be evaluated twice if it was

passed (communicated) unevaluated (i.e., if merely its mail address was

sent). If lay.. evaluation was desired, one could send communications con-

taining the mail addresses of expressions, instead of the primitive actors the

expressions would evaluate to. In this scheme, the message-passing disci-

pline is equivalent to a call-by-need parameter passing mechanism, instead

of a call-by-value which is the default in our definition of SAL.

However, the point of actor architectures is not so much to merely

conserve computational resources but rather to provide for their greedy

exploitation- in other words, to spread the computation across a extremely

large-scale distributed network so that the overall parallel computation time

is reduced. At the same time, it would be inadvisable to repeat the sme

computation simply because of the lack of the ability to store it- a seri-

ous problem in purely functional systems [Backus 77]. In the next section -

we provide a strategy for evaluation of expressions which satisfies these

requirements.

4.4.4 Eager Evaluation

The inherent parallelism in actors provides many options for a greedy strat-

egy in carrying out computations. The idea is to dynamically spawn nu-

merous actors which will carry out their computations concurrently. These

actors can exploit all the available resources in a distributed systems. We

have already seen pipelining of the replacement actors as a mechanism for

. .'..

CJIAPTER 4. A MORE EXPRESSIVE LANGUAGE 96

increasing the speed of execution on a parallel architecture. In an actor

language, the pipelining is made possible by the use of customers by which

continuations are incorporated as first-class objects.

e

x

Figure 4.5: Eager evaluation. The dotted line shows the acquaintance rela-

tion. X creates Y and tells it about e while concurrently sending an evaluate

message to e

Another mechanism by which the available parallelism in an actor lan-

guage can be exploited is by schemes for eager evaluation. To speed up the

computation to its logical limits, or at least to the limit of the number of

available processes in a particular network, one can create an actor with

the mail addresses of some expressions (which have not necessarily been

evaluated) as its acquaintances. So far, this is similar to how one would

implement call-by-need. However, for eager evaluation we concurrently send

the expression, whose mail address is known to the actor created, a request

I~~~~.-".. ' ..-.-.. '"."...'............... '.' '......---.',...-....,••".....

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 97

to evaluate itself. Fig. 4.5 shows this pictorially. The net effect is that an

actor Y which has been created may accept a communication even as the

expression e which is its acquaintance is being evaluated concurrently. The

expression subsequently becomes the primitive actor it evaluates to. Thus

the evaluation of the same expression need not be repeated.

r

2.

"°'.
2'w

b'°.

-: . 1 d

..

41:

"'C ."-.-

,s~r
.'C

Chapter 5

A Model For Actor Systems

A model for any collection of objects provides a map from the objects into

equivalence classes that contain elements which are considered to be indis-

tinguishable from each other. In other words, a model provides an abstract

perspective in which the "irrelevant" details are ignored in establishing the

equivalence of systems. A denotational model is one in which the meaning

of a system can be derived from the meanings of its constituent parts. We

will refer to this property as compositionality.

The semantics of sequential programming languages has been rather

successful in building denotational models of programs which abstract away

the operational details of the sequential systems defined by the programs. In

the case of concurrent systems, however, the requirements of compositional-

ity have resulted in proposed denotational models which retain substantial

operational information. The reason for this is as follows. Composition in

concurrent systems is achieved by inter-leaving the actions of the systems

98

-.-

* . *'-

CIIAPTER 5. A MODEL FOR ACTOR SYSTEMS 99 7

that are composed: thus the denotations for a system require the reten-

tion of information about the intermediate actions of the system (see, for

example, [Milner 80] or [de Bakker and Zucker 83]).

In this chapter we will develop a model for actor systems based on

semantics by reductions. The actor semantics follows a structured opera-

tional style long advocated by Plotkin. In particular, we define transition

relations which represent the evolution of an actor system as the cornputa-

tions it is carrying out are unfolded. Two transition relations are necessary

to capture the behavior of an actor system. The first of these, called a

possible transition, represents the possible orders in which the tasks may

be processed. The possible transition relation is, however, insufficient to

capture the guarantee of mail delivery. We therefore define a second tran-

sition relation, called subsequent transition, which expresses just such a

guarantee.

The plan of this chapter is as follows. The first section specifies a

formal definition for the configuration of an actor system and states the

requirements relevant to defining an operational semantics of actors. In

the second section we map actor programs to the initial configurations they

define. The last section discusses two kinds of transition relations between

configurations. These transition relations provide an operational meaning

to actor programs.

.1r

i

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 100

5.1 Describing Actor Systems

The configuration of an actor system is described by the actors and tasks

it contains. There is no implied uniqueness in the configuration of an actor

system: different observers may consider the system to be in quite different

configurations. This issue is discussed in greater detail in Section 5.3. To "

describe the actors in a system, we have to define their behaviors and their

topology. Descriptions of actor systems are embodied in configurations and

therefore we will first develop some notation to represent configurations.

The definitions below assume that actor behaviors are well-defined- a

topic we will discuss in §5.2.

5.1.1 Configurations

There are two components in a configuration: namely, the actors and the

tasks. The tasks represent communications which are still pending; in other

words, communications that have been sent but not yet accepted by the

target. These communications may or may not have been delivered; they

are simply yet to be processed. We keep equivalent tasks (i.e., those with

the same communication and target) distinct by specifying a unique tag for

each task in a configuration.

Definition 5.1 Tasks. The set of all possible tasks, T, is given by

T = Ix.MxK

where I is the set of all possible tags, N is the set of all possible mail

addresses, and K is the set of all possible communications. We represent

....

1%. ..

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 101

tags and mail addresses as finite sequences of natural numbers, separated

by periods, and communications as a tuple of values. If r is a task and

T = (t, m, k) then we call t the tag for the task r and m the target.

We define a local states function to represent the behaviors of the actors

from some view-point. Since there are only finitely many actors in any given

configuration, this is really a partial function on the set of all possible

mail addresses. However, when appropriate, one can treat the local states

function as a total function by defining an undefined behavior, called 1, and

mapping all undefined elements to 1. For our immediate purposes, defining

a total function is not necessary. In the definition below, we assume that a

set of possible actor behaviors B exists.

Definition 5.2 Local States Function. A local states function I is a

mapping from the mail addresses of the actors in a system to their respective

behaviors, i.e.,

I M - B

where M is a finite set of mail addresses (M C N), and B is the set of

all possible behaviors, respectively. We represent the set of all local states

functions by C.

A configuration is defined as follows. A restriction on the tags of a config-

uration (specified in the definition below) is necessary to ensure that there

always exist transitions from a given configuration with unprocessed tasks.

We wish to avoid any tag conflicts as an actor system evolves.

.. -

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 102

Definition 5.3 Configurations. A configuration is a two tuple (1,T),

where I is a local states function and T is a finite set of tasks such that no

task has a tag which is the prefix of another tag or mail address.1

I.

Note that the set T in fact represents a function from the a finite set

of tags to the cross product of mail addresses and communications. The

degenerate case of the prefix relation is equality and thus no two tasks in

a configuration may have the same tag.

5.1.2 Requirements for a Transition Relation

What any behavior definition gives us is a map from a finite list of variables

to a "behavior." These variables are given specific values whenever any

actor is created in the system. An actor's behavior specifies the creation

of new tasks and actors as a function of a communication accepted. Newly

created actors must have mail addresses that are unique and the different

tasks in a system need to be kept distinct.

A global scheme for assigning mail addresses to newly created actors is

not a faithful representation of the concurrency inherent in an actor system

although such a scheme would provide a simple mechanism for generating

new mail addresses in much the same way as the semantics of block decla-

rations in Pascal provides for the creation of new variables [de Bakker 80].

We will instead provide a distributed scheme for generating mail addresses.

One can maintain the uniqueness of tasks by providing distinct tags -

for each and every task in an actor system. In fact, one purpose of mail

'The prefix relation is defined using the usual definition for strings.

2 *

* . ~ . ~ W. .

C1tAPTER 5. A MODEL FOR ACTOR SYSTEMS 103

addresses is quite similar to that of tags: mail addresses provide a way

of differentiating between identically behaving actors. Mail addresses also

specify a network topology on actors by allowing one to define a directed

graph on them (the nodes in such a graph denote the actors). We will use

the unique tags of a task to define more unique tags and mail addresses

for the new tasks and actors created. Having defined a scheme which guar-

antees the uniqueness of tags and mail addresses, we can transform the

instantiations of the behavior definition into a transition relation from each

actor and task to a system of actors and tasks. This transition relation can

be extended meaningfully to a system of actors and tasks as long as mail

addresses and tags can be generated in a distributed fashion and maintain

U their uniqueness as the system evolves.

5.2 Initial Configurations

Our goal is to map actor programs to the initial configurations they define.

To do so we have to specify how the meaning of the various constructs in an

actor program. We confine our consideration to minimal actor languages

such as the kernel of SAL and Act defined in Section 3.2. Since all the

extended constructs are definable in such minimal languages, and since

the kernel is much simpler than any expressive extension, such a restricted

focus is not only pragmatically desirable but theoretically sufficient .

L
•

.. °*°

" -".p

I &_

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 104

5.2.1 Formalizing Actor Behaviors

The behavior of an actor was described informally in Section 2.1.3. In a

nutshell, we can represent the behavior of an actor as a function from the

possible incoming communications to a 3-tuple of new tasks, new actors,

and the replacement behavior for the actor. We give a domain for actors

below. Since the given domain of actor behaviors is recursive, it is not

immediately obvious that th.. behavior of an actor is well-defined: We can

deduce from a simple cardinality argument (following Cantor) that not all

functions of the form in definition 5.5 will be meaningful.

There are two ways to resolve the domain problem for actors. The first

solution is to use Scott's theory of reflexive domains [Scott 72] to map actor

behaviors into an abstract, mathematically well-defined space of functions.

Applying Scott's theory each actor program denotes a value in the specified
.5.

abstract space. Such valuations, however, may or may not suggest a means

of implementing an actor language. In fact, one can show that computation

paths defined using the transition relation specify information system as

defined in [Scott 821.

In the denotational semantics of sequential programs, a major advan-

tage of the fixed-point approach has been the ability to abstract away from

the operational details of the particular transitions representing the inter-

mediate steps in the computation. The sequential composition of functions

representing the meaning of programs corresponds nicely to the meaning of

the sequential composition of programs themselves. This also implies that

the meaning (value) of a program is defined in terms of the meaning of

,1 ,.
.

.. t.... *4,*..°4

4-.. * . *.

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 105o°

its subcomponents [Stoy 77]. Furthermore, since sequential composition is

the only operator usually considered in the case of deterministic, sequential

programs, the fixed-point method is fully extensional [de Bakker 80].

Unfortunately, fixed point theory has not been as successful in providing

extensional valuations of concurrent programs. The problem arises because

of the requirements of parallel compositionality: Specifically, the history of

a computation is not as easily ignored. We will return to this topic in

Chapter 7.

What we propose to do in this chapter is to provide a functional form

for the behavior of an actor in a given program. Specifying the meaning

of a program in these terms does not abstract all the operational details

related to the execution of the code. These functions will in turn be used to

define the initial configuration and the transitions between configurations.

The representations are entirely intentional in character and thus provide

constructive intuitions about the nature of computation in actor systems.

Note that the semantics of actor programs developed in this section is

S.-"2. denotational because the meaning of a progrmun is built from the meaning

of its constituent parts. We begin by defining actors and their behaviors.

Definition 5.4 Actors. The set of all possible actors, A, is given by

:: = MxB ..

where .M is the set of all possible mail addresses (as above), and B is the

set of all possible behaviors.

The tag of the task processed by an actor a is used to define new tags

71

,' ,. ":I

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 106

for the tasks, and new mail addresses for the actors, that are created by

CI in processing the task. Notice that there are only a finite number of

tags and mail addresses possible. A recursive domain for actor behaviors

is given below.

Definition 5.5 Behaviors. The behavior of an actor, with the mail ad-

dre&- -i. is an element of B, where

B = (I x (in) x K - F.(T) x F.(A) x A)

where F.(T) is the set of all finite subsets of T and F.(A) is the set of finite

subsets of A. Furthermore, let P be a behavior for an actor at mail address

m, and t be the tag and k be the communication of the task processed, such

that f3(k) (T,A,.y), where

A = {cq,. .. ,a.,} ;;

then the following conditions hold:

1. The tag t of the task processed is a prefix of all the tags of the tasks

created:

Vi (1 < i < n =} 3mi E M 3k, E K 3t eI (ri = (t.t',mi,k)))

2. The tag t of the task processed is a prefix of all the mail addresses of

the new actors created:

". ~~Vi (I <i< n' 3# E, 8 3 t' E I (,a, (t.t!,,o,))) -,

% , i

S•....-...... ,......,...

CIIAPTER 5. A MODEL FOU ACTOR SYSTEMS 107

3. Let I be the set of tags of newly created tasks and M be the set of

mail addresses of newly created actors. Then no element of I U M is

the prefix of any other element of the same set.

4. There is always replacement behavior.

." 'B(Y=.(M '

The example below is for illustrative purposes. The meaning developed

in §5.2.2 will allow us to derive from the code the functional form given.

Example 5.2.1 Recursive Factorial. The recursive factorial discussed

in section 2 is an example of an unserialized actor. The code for such an

actor is given in Section 3.3. The behavior of a recursive factorial actor at

the mail address m, (M, o), can be described as follows:

I 1 ({(t.,k 2,[1I)}, 0, (m,)) if k, 0

({(t.1, m, 1k, - 1, t.2])}, {(t.2, V,)} (n, po)) otherwise

where m is the mail address of the factorial actor, t is the tag of the task

processed. The behavior of the newly created customer can be described

as

.-, (t', t.2, [nl) ({(t'.1, k2 , [n * k1])} 0 (t.2,/3.))

where t.2 is the mail address of the newly created actor, and t' is the tag

of the task it processes. J3 is bottom-behavior, which is equivalent to an

infinite sink. Note that it can be shown in any actor system that this newly

created actor will receive at most one communication, thus the behavior of

its replacement is actually irrelevant.

.7.

-. %

CIIAPTER 5. A MODEL FOR ACTOR SYSTEMS 108

5.2.2 The Meaning of Behavior Definitions

Recall that an actor machine embodies the current behavior of an actor.

Conceptually, an actor machine is replaced with another, perhaps identi-

cal, actor machine each time a conmnmnication is accepted by an actor. The

behavior of an actor machine is quite simple: it involves no iteration, recur-

sion, synchronization, or state change. The behavior is simply a function

Ki of the incoming communication and involves sending more communications

to specified targets, creating new actors, and specifying a replacement ac-

tor machine.2 We will use the syntactic default in an actor program thatI whenever there is no become command in the code of an actor, then the

replacement behavior is simply an identically behaving actor. One can now

safely assert that all actors definable in an actor language like SAL specify a

replacement behavior. Alternately, we could have decided that a behavior

definition which did not provide a replacement in some case was simply

meaningless.

In this section, we closely follow the relevant notation and terminologyI. from [de Bakker 80]. Each actor program consists of a finite number of

behavior definitions which will form templates for all the behaviors of actors

that may be created in the course of program execution. We will define the

meaning of a behavior definition as a map from:

e The mail address, self, of the actor whose behavior has been defined

using the template; and

2
The rest of this ection is a technical justification for a well formed interpretation of

actor behaviors and may be skipped without loss of continuity.

'-.?."..'.--;. 2--'2.;'.- '.:--.-.'.-".-.-.. - . . . -. -2 - -. ,..- ".2"....2..2.2." °i"-..... :.'........--.....". "....-...-..".-...

°-o

IW

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 109

e The variables in the acquaintance list of the behavior definition.

And a map into a function mapping a task with target self into a three

tuple consisting of:

* A set of tasks;

* A set of three tuples consisting of a mail address, a behavior definition,

anI a list of values; and,

* A three tuples consisting of the mail address self, a behavior defini-

tion, and a list of values.

We carry out the construction formally. We first define the syntax for

the class of primitive expressions. There are three kinds of primitive ex-

pressions: integer, boolean and mail address expressions. These expressions

will occur in different commands. The class Icon typically corresponds to

identifiers such as 3,4,-1,..., while the class Ivar corresponds to the iden-

tifiers used for integers in a program. Note that there is no class of mail

address constants in the expressions of our language because the program-

mer has no direct access to mail addresses. The primitive expressions given

below are purely syntactic objects which will be mapped into mathematical

objects by a valuation function.

Definition 5.6 Syntax of Primitive Expressions.

1. Let Ivar, with typical elements X, y,..., be a given subset of the class

of identifiers, and Icon be a given set of symbols with typical elements

°°. .. .

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 110

n,.... The class Iexp, with typical elements s,..., is defined by

8 ::= xIn Is + 2 I...

(Expressions such as s, - S2 may be added.)

2. Let Mvar, with typical elements a,..., be a given subset of the class

of identifiers, E be an element of Dvar (defined later) and el,...,ei

be arbitrary expressions, then the class Mexp, with typical elements

h,..., is defined by

h :=a new E(ei,...,ei) ::

S. Let Bvar, with typical elements b,..., be a given subset of the class

of identifiers, and Bcon be the set of symbols {true, false}. The

class Bexp, with typical elements b,..., is defined by

b true false 8 =2 1 hi =h2 b

We now assume the existence of three classes of mathematical objects:

namely, a class of integers, V, a class of mail addresses, M, and a class of

truth values, W = {tt, ff}. The integers and the truth values have the

usual operations associated with them, such as addition for integers. We

assume that the concatenation operator works for the mathematical objects

called mail addresses since the class of mail addresses will be identical to .

the class of tags and the latter will be suffixed to define new mail addresses.

Let the set of primitive variables, Pvar, be the separated sum of integer,

. -..... .. -- .. .
°. ." - " " - ' - " ° " ° " - " ° ° ° - " - " ° ""-" " ° * ' " ° ""-. °- . " ° ' ° - "- '

- ° "

" ". . ' - '

CHIAPTER 5. A MODEL FOR ACTOR SYSTEMS 111

boolean, and mail address variables. 3 Similarly, let P be the set of primitive

values representing the separated sum of the integers, the truth values and "

the mail addresses. A local environment is defined as an element of:

E Pvar -- Pval

There are three semantic functions that need to be defined to give a meaning

to the primitive expressions. Given a local environment these functions map

primitive expressions to primitive values. These functions are:

V: Iexp - (-* V).

M: Mexp - E --- M)

The definitions of the first two functions are by induction on the com-

plexity of the arguments and have nothing to do with actor semantics in

particular. We therefore skip them. We will define the meaning function

below which will provide the valuation for new expressions. Essentially,

new expressions evaluate to a new mail address. We will assume a single

function 7r representing the separated sum of above three functions such

that 7r maps each expression into its corresponding value given a particular

local environment, or.

We now give the syntax of commands, and using commands, the syntax

of behavior definitions. The syntactic classes defined are called Cmnd and %

3 Strictly speaking the set Bvar is superfluous since boolean expressions can be defined

without it. However, we will assume that all three kinds of variables exist and are

distinct.

. .,'-'.'. ... -

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 112

Bdcf. The syntax below is a slightly abbreviated form of the syntax used in

SAL. The two noteworthy differences between SAL and the syntax below

are as follows. First, we allow let bindings only for new expressions. The

semuantics of let bindings in other cases is quite standlardl, and in any case

iiot absolutely essential to our actor programs. Second, we use new expres-

sions, as opposed to arbitrary expressions, in all become commands. The

semantic interpretation of becoming an arbitrary actor is simply to acquire

K a forwarding behavior to th~at actor (see §3.2.1). The behavior can thus be

expressed as a new expression using a predefined forwarding behavior and

specifying its acquaintance as the expression. The only reason for these

simpl ifi cations is brevity.

Definition 5.7' Syntax of Behavior Definitions.

1. The class Cmnnd with typical elements S,*, given by

S S1 //S 2 Iif b then S, else S2

send [ei,... ,ej to a Ibecome new E(ei,...,e,)

let a, new Ej(ej,. . .,e,, and..

and a3=new E3 (e,...,e,,) { 5

where the use of the identifiers corresponds to their reserved status

above. The identifiers E,..., are used as defined below.

2. Let Dvar be set of pre-defined symbols. The class Bdef with typical

elements D,..., is given by

D def E(pj,...,p)[p!,,...,p'.S enddef C

V..

. *~*% *** ***~ * ~ % ~ .. % '.~ %

GRAPTER 5. A MODEL FOR ACTOR1 SYSTEMS 113

The semantics of the class Cvitd is defined below. The semantics maps

a given local environment into a 3-tuple representing tasks created, actors

created and a replacement actor, respectively. Note that actors are simply

denoted by a mail address, an element of Dvar, and a list of primitive values

which will map into the primitive variables used in the behavior definition

using the element of Dvar. We also assume that two primitive variables,

namely self and curr, of the class Mvar are defined by the local environment.

self represents the mail address of the actor whose code contains the given

command and curr represents the tag of the task being currently processed.

The meaning function is defined on the complexity of the commands. We

will not bother to define a complexity measure for the commands but will

simply follow the syntactic definition. The details are trivial. Note that

a represents the local environment and ala/x represents the environment -

which is equal to a except that it has the primitive value a for the primitive

variable x. The operation U represents a component-wise union (i.e., the

three components are union independently).

The meaning function 7 maps each command in a given local environ-

ment to a three tuple representing the communications sent, actors created

and the replacement actor. The meaning of concurrent commands is the

component-wise union of the commands themselves, i.e., the communica-

tions sent are the communications sent by each and the actors created are

the union of the actors created by executing each of the commands. Recall

that there may be only one executable become command in the code of an

actor for any given local environment. If the union ends up with more than

...- ,

CIAPTER 5. A MODEL FOR ACTOR SYSTEMS 114

one replacement actor than it does not define an actor behavior. The main

point of interest in concurrent composition is the suffixing of the current

tags. This mechanism ensures that the new actors and tasks created by the

actor will satisfy the prefix condition in definition 5.5. Assume that curr is

initially bound to I on the left hand side of all the equations given below.

7(S,//S 2)(alt/currl) = F(S1)(t.1/currJ) j-.(S2)(oit.2/currI)

The meaning of the conditional command and the send command is straight-

forward. The become command specifies the replacement behavior by spec-

ifying an identifier which will denote a behavior definition and a list of

values which will partially determine the local environment in which the

command in the definition is executed.

JrF(Si)(a) if 7r(b) =tt :

I (if b then S, else S2) (a) = Jr(S2)(G) ifhrwis =,-

F (S 2)(a) otherwise

T(send [el,... ,e,i to a)(ot/currj) =

Q{ t. 1, 7t (a) (a), [7r (el) (a), . . ., 7r (, (a) . -

I(become new E(ei,...,e,))(ojm/selfJ) =

(0,0, {(m, E~aw(e,)('), ... ,(e) }).

The creation of new actors is accomplished by new expressions and let

bindings. We have to specify the new mail addresses for all concurrently

created actors which may know each others mail address. The command in

the scope of the bindings is also executed in an local environment where all .

... . . .
. U -"

.

~~~~~~~~~~~~. .- ..- " .. . . . . . . . ..*........ . . ..-.....' .
°

., •.o, .. ," . . . . ... •°,- - . *,**. . .. .



CH1APTER 5. A MODEL FOR ACTOR SYSTEMS 115

r.b

the identifiers for the actors are bound to the mail addresses of the newly

created actors.

7(let at: new Bi(ei,...,ei,)and ... and

a =,ew Ej(e,.. .,ei,) {S})(o,/currl)= 7(S)(o')U1:

(:, (,,: V < n < j (a,, = (t.n, E,,r(ei)(o,'),... ,,(ej.)(a'))},0)

where a' lai/t.1,...,<' t.j

Now the meaning of a behavior definition is simply to modify the pro-

gram environment by mapping each Dvar into the meaning of the com-

mand. We skip the (simple) proof that a behavior definition defines be-

haviors that satisfy the requirements of definition 5.5. The tag and mail

address generation schemes we used were intended to satisfy these require-

ments. The only other constraint of interest is that there be at most one

executable become command. The behavior definition is simply not well-

defined if its meaning violates this constraint. 4

5.2.3 Mapping Actor Programs

The basic syntax of a SAL program consists of behavior definitions and

commands. The commands are used to create actors and to send them

communications.5 Now a program environment associates the identifiers in

Dvar with the meaning of commands for each behavior definition in the

"* "Ii an implementation, we would generate an error message.

5 We are ignoring for the present the receptionist and external actor declarations; although

such declarations are useful for imposing a modular structure on the programs, they do

not directly affect the transitions internal to the system.

. .j

,... . . . .. . . . . . . . . . . . . . . . . . . ..



I,

p. .

I.. (

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 116
p.°

program. All other members of Dvar are undefined and may not be used

in the commands of a syntactically correct program. The program itself

is a single command (recall that concurrent composition of commands is a

command) and its meaning is given using the function 7 defined above with

the local environment as the program environment. The technique used

here is similar to that in used in [de Bakker 80] where procedure variables

are defined in the denotational semantics of recursion. The syntax of a

program can be given as follows:

P ::= D... D. S5

where the Di's represent behavior definitions and S represents a command

(which may, of course, be the concurrent composition of other commands).

The variable curr is initially bound to 1.

Note that none of the top level commands can be a become command be-

cause the commands are not being executed by a given actor. Thus an actor

program is mapped into a two tuple representing the initial configuration.

A transition relation tells us how to proceed from a given configuration

by, nondeterministically," removing a task from the system and adding the

effects of processing that task. The effects of processing a task are given by

the behavior of its target, namely the actors and tasks the target creates

and the replacement it specifies.

6We will return to the issue of the guaranteeing mail delivery in Section 5.3.



CtAPTER 5. A MODEL FOR ACTOR SYSTEMS 117

5.3 Transitions Between Configurations

In a sequential machine model, the intuition behind transitions is that

they specify what actions might occur "next" in a system. However in the

context of concurrent systems, there is generally no uniquely identifiable

transition representing the "next" action since events occurring far apart

may have no unique order to them (as the discussion in §5.2 indicated).

Our epistemological interpretation of a transition is not that there really is

a unique transition which occurs (albeit nondeterministically), but rather

that any particular order of transitions depends on the frame of reference,

or the view-point, in which the observations are carried out. This difference

in the interpretation is perhaps the most significant difference between a

nondeterministic sequential process and the model of a truly concurrent Sys-

tern: In the nondeterministic sequential process a unique transition in fact

occurs, while in a concurrent system, many transition paths, represent-

ing different viewpoints, may be consistent representations of the actual

evolution.

Our justification for using a transition system is provided by the work

of Clinger [81] which showed that one can always define a (non-unique)

global time to represent the order of events. Events in Clinger's work were W

assumed to take infinitesimal time and the combined order of events was

mapped into a linearly ordered set representing a global time. A global time

corresponds to events as recorded by some (purely conceptual) observer.

Remark. Transitions, unlike events, may take a specific finite duration

and may therefore overlap in time. This is not a problem in actor systems

e.°. o .

.........,o... -..... .. .. . .. .



CIIAPTER 5. A MODEL FO1 ACTOR SYSTEMS 118

because of the following:

1. All transitions involve only the acceptance of a communication.

2. There is arrival order nondeterminism in the order in which com-

munications sent are accepted and this arbitrary delay subsumes the

precise duration of a transition. Specifically:

(a) When a particular communication is sent because of a transition

need not be explicitly modeled: Although a communication may

not have been sent before another transition occurs, this possi-

bility is accounted for by the fact that the communication may

not cause the "next" transition.

(b) When the replacement accepts the next communication targeted

to the actor is indeterminate: Thus the time it takes to designate

the replacement need not be explicitly considered.

(c) The above reasoning holds for creation of new actors as well.

Global time' in any concurrent system is a retrospective construct: it

may be reconstructed (although not as a unique linear order) after the fact

by studying the relations on the events in a parallel system. Information

about the order of events in a circumscribed system is often useful. In

implementations supporting actor systems, such information is useful in

delimiting transactions. Transactions are defined by the events affecting

- the reply to a given request (in particular, the events ordered between

-" 7 By global time, we mean any linear order on the events in the universe.

*. 4 1 .

. . .. . "°••° . 'o° •. *°°,°% .. , •" •...'. '.°.. *. o' -°.' °o . . . .... . . .... . . .... . . . .•.. . . . . . . . . . . . . . . . . .o.. . . . . . . .° ° . o
. . . . .. •. . .° ffi •. °.. .. o . .. . . .,.. . •°. . , . . , % . ° • . ° o o



CIIAPTER 5. A MODEL FOR ACTOR SYSTEMS 119

the request and its corresponding reply). Transactions are useful tools for

debugging a system or allocating resources to sponsor activity. The deter-

mination of an order of events (the so-called combined order as it combines

the arrival order with the order of causal activations) in an implementa-

tion is achieved by running the actor system in a special mode where each

actor records events occurring at that actor and reconstructing the causal

activations by following the communications sent.

The possible ways in which a conceptual observer records events, i.e., the

behavior of such an observer, corresponds to that of some nondeterministic

sequential process. This correspondence is the reason why nondeterminism

is used in mathematical models to capture the parallelism. However, the

character of the correspondence is representationalis tic, not metaphysical.

In particular, the behavior of a parallel system may be represented by

-, many (consistent) nondeterministic sequential processes corresponding to

different observers.

5.3.1 Possible Transitions "

In this section, we discuss how actor systems may evolve in terms of their

descriptions. A transition relation specifies how a configuration may be

replaced by another which is the result of processing some task in the

" . former.

Notation. Let states and tasks be two functions defined on configurations

that extract the first and second component of a configuration. Thus the

range of states is the set of local states functions and the range of tasks is

. .. .... .. ...



CHAPTER 5.- A MODEL FOR ACTOR SYSTEMS 120

the power set of tasks, where the set of tasks may be treated as functions.

from tags to the target and communication pairs.

The definition for the possible transition relation essentially shows how

an interpreter for an actor language would, in theory, work. It thus specifies

an operational semantics for an abstract actor language. Note that defining

a language in this manner amounts to specifying its scmiantics by reduction.

We will first define the possible transitLion relation and then show that such

transitions do indeed exist for any arbitrary configuration.

Definition 5.8 Possible Transition. Let cl and C2 be two configuration.

c1 is said to have a possible transition to C2 by processing a task r (t, m, k),

symbolically,

c1  C2

if T E tasks(ci), and furthermore, if states(ci)(m) /3where

13tmk) =(T, A, -1

and the following hold

tasks(C2 ) =(tasks(c 1 ) - (r)) U T

states(c2 ) =(states(c 1 ) - ((in,6B)1) U A U {

In order to show that there exists a possible transition from sorn given

configuration, as a result of processing any given task in that configuration,

we need to show that a valid configuration can always be specified using

the above equations for its tasks and states. The proof of this proposition

uses the conditions on the tags for tasks in a given configuration to assure

7 
.,

CHAPTER 5. .OE O CO YTM . . . -



1:K

SCIAPTER 5. A MODEL FOR ACTOR SYSTEMS 121

the functional form for the tasks and states of the configuration resulting

from the transition.

Lemma 5.1 If cl and c2 are configurations such that cl - c2 then no

task in c2 has a tag which is the prefix of the tag of any other task in c2.

Proof. (By Contradiction) Let t1 and t2 be the tags of two tasks rT and

r 2 in the configuration c2 such that t1 = t2 .w for some string of integers w

separated by periods. We examine the four possible cases of whether each

of the tasks belongs to the configuration cl.

• " If rl,T 2 E tasks(el) then since cl is a valid configuration, we immedi-

ately have a contradiction. On the other hand, if neither of the two tasks

are in cl, then by Definition 5.5 the the prefix relation is not valid either.

We can therefore assume that one of the tasks belongs to the tasks of cl

and the other does not. Suppose rl E tasks(cj) and r2 V tasks(ci). Since

r2 V tasks(cl), r2 E T, where T is the set of tasks created in the transition.

Thus 3i (t 2 = t.i) which together with the hypothesis that t1 = t2.w implies

that tl = t.i.w. But since rl,r G tasks(c1 ) we have a contradiction to the

prefix condition in the tasks of configuration cl.

The only remaining case is that of r2 E tasks(el) and r i tasks(c1 ).

Now t= t.i = t2 .w. If w is an empty string then t is a prefix of t2 and

both are elements of tasks(ci), a contradiction. If w = i then t = t2 and

thus t2 q tasks(c2 ). But if w is longer than a single number than t is a

prefix of t2 which also contradicts the condition that they are both tasks in

ci -.

Z '

°.,•., +o+°o ,°.". ° . .'°° .. .+ + . . . -...... .. - .. ... o •.. . . . • . . +, %•o 1.

. . .. . . . . + -. . . . . .... ... ' t . . +. . ,r t t+ , :, - ' I"



CIIAI'TER 5. A MODEL FOR ACTOR SYSTEMS 122

Lemma 5.2 The set states(c2) in the above definition represents a local

states function.

Proof. We need to show that the none of the newly created actors have

the same mail addresses as the actors that already existed in Cl. Suppose

("1', /3') is a newly created actor as a result of processing the task r. If t is

the tag for the task r then m' = t.i for some nonnegative integer i. Now if

there is another actor with the same mail address in the configuration c2 ,

from lemma 5.2 we know that it can not be a newly created actor. Thus

it is in the domain of states(ci). Then m' = t.i contradicts the assumption

that the tags of tasks in cl are not prefixes to any mail addresses in cl. -t

Lemma 5.3 The tags of tasks in C2 are not prefixes to any mail addresses

in c2 .

Proof. Also straightforward (skipped). -"

The above three lemmas imply the following theorem.

Theorem 5.1 If cl is a configuration and r E tasks(cj) then there exists

a configuration c2 such that cl -* c2.

5.3.2 Subsequent Transitions

Of particular interest in actor systems is the fact that all communications

sent are subsequently delivered. This guarantee of delivery is a particular

form of fairness, and there are many other forms of fairness, such as fairness

over arbitrary predicates. We will not go into the merits of the different

"-" .1

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .".. . .
- .. ... i°-. .. ...



CIIAPTER 5. A MODEL FOR ACTOR SYSTEMS 123

forms here but will consider the implications of guaranteeing the delivery

of any particular communication even when there is a possiblc infinite se-

quence of transitions which does not involve the delivery of a particular

communication sent. To deal with this guarantee of mail delivery, it is not

sufficient to consider the transition relation we defined in the last section.

We will instead develop a second kind of transition relation which we call

the subsequent transition. The subsequent transition relation was developed

in [Agha 84J.8 We first define a possibility relation as the transitive closure

of the possible transition and then use it to define subsequent transition.

Suppose the "initial" configuration of an actor system had a factorial

actor antl two requests with the n, and n 2 respectively, where n and n 2

are some nonnegative integers. Since in this configuration, there are two

tasks to be processed, there are two possible transitions from it. Thus

there two possible configurations that can follow "next." Each of these has

several possible transitions, and so on. This motivates the definition of

a fundamental relation between configurations which can be used to give

actors a fixed-point semantics.'

Definition 5.9 Possibility Relation. A configuration c is said to pos-

sibly evolve into a configuration c', symbolically, c - c', if there exists

a sequence of tasks, ti, t,, and a sequence of configurations, co,.... C, I

"Milner brought to our attention that the relation we define here is similar to that

developed independently in [Costa and Sterling 84] for a fair Calculus of Communicating

Systems.

'Such a domain does not respect fairness.

m1

... .. .... I....

... 2.L %

@ ° -•



-:.-" • ° . . . - ..... ' "7 . -. -- - 7 ' : -" . - - . - - - - ' " ' " "" :" '

CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 124

for some n, a non-negative integer, such that,
tt t n .

c-co -+ Cl C n  C

Remark 1. If n = 0 above, we simply mean the identity relation.

One could show, by straight forward induction, that the "initial" con-

figuration, cl,,,t, with the factorial actor possibly goes to one in which a n!

communication is sent to the mail address of the customer in the request to

evaluate the factorial of n. When tile factorial actor is sent two requests, to

evaluate the factorials of the nonnegative integers n, and n 2 , one can make

a stronger statement than the one above: Considering that the computa-

tion structure is finite, one can show that there is a set of configurations, C

that cf.,t necessarily goes to such that both the factorial of n, and n 2 have

been evaluated. The configurations in C have the interesting property that

no further evolution is possible from them without communications being

sent by some external actor. We call such a configuration quiescent (cf.

termination of a computation).

Consider the following example which requires concurrent processing of

two requests. Suppose the factorial actor (as we defined it in Examples 3.2.2

and 5.2.1) was sent two communications, one of which was to evaluate the

factorial of -1 and the other was to evaluate the factorial of n, where n is

some nonnegative integer. The behavior of the factorial actor implies that

it would embark on the equivalent of a non-terminating computation. More

precisely it would send itself a communication with -k in response to a

communication with -k - 1, and so on, and therefore it will not possibly

evolve to any configuration which is quiescent.

.........................-..

. . . . . . . . . .. . ... . . . *. . • ...-. 1



CIAPTER 5. A MODEL FOR ACTOR SYSTEMS 125

Recall that in the actor model the delivery of all communications sent is

guaranteed. This implies that despite the continual presence of a commu-

nication with a negative number in every configuration this configuration

possibly goes to, it must at some point process the task with the request to

evaluate the factorial of n.10 We can express this sort of a result by defining

the following relation on sets of configurations.

Definition 5.10 Subsequent Transition Relation. We say a configu-

ration, c subsequently goes to c' with respect to r, symbolically, c c'

if

(r e tasks(c) A c--- c' A r V tasks(c') A

-3c" (r § tasks(c") A c -o c" A c" -- c')

Basically, the subsequent transition represents the first configuration

which does not contain the task in question. If we defined the set of con-

figurations, C, as follows

C = {c'I c + c)'}

then the guarantee of mail delivery implies that the configuration c must

pass through C. We can define a necessity relation based on the subsequent

relation but will not digress here to do so. The subsequent transition thus --

provides a way of defining a fair semantics by derivation for an actor model.

"°This in turn results in the request to evaluate the factorial of n - 1. Thus by induction

we can establish that at some point in its life, this factorial actor will (indirectly) -

activate a communication [n!] to the mail address of the customer in the corresponding

- communication.

,. .- •



CHAPTER 5. A MODEL FOR ACTOR SYSTEMS 126

The model is assumed to have these two transition relations as primitives.

Remark. The subsequent relation defines what may be considered locally

infinite transitions. This is due to the nature of nondeterminism in the

actor model. The relation captures the unbounded nondeterminism in-

herent in the actor paradigm. For a discussion of this phenomenon, see

[Clinger 81]. Some authors have found unbounded nondeterminism to be

rather distressing. In particular, it has been claimed that unbounded non-

determinism could never occur in a real system [Dijkstra 77]. Actually -

unbounded nondeterminism is ubiquitous due to the quantum physical na-

ture of our universe. For example, it is found in meta-stables states in VLSI

[Mead and Conway 80].

A°°.



Chapter 6

Co ncurrency Issues

In this chapter, we discuss how the actor model deals with some of the

common problems in the theory of concurrent systems. The first section

discusses the implications of the actor model for divergence, deadlock and

mutual exclusion. The problem of divergence is severely contained by the

guarantee of delivery of communications. Deadlock, in a strict syntactic

sense, can not exist in an actor system. In a higher level semantic sense

of the term, deadlock can occur in a system of actors. Fortunately, even

- in the case of a semantic deadlock, the structure of actor systems implies

that the "run-time" detection of deadlock, and hence its removal, is quite

feasible.

In the second section, we discuss issues related to functionality in a

system and the imposition of a merge structure on communications. With

respect to functionality, we show that the concept of side-effect free history

sensitive functional computation in streams is similar in at least one ab-

127

-%~~ %:-

:...:.... .. ......... ...... . ..... .•. ............ .. ,. . . .. . . . . . .. .............. ......... .........-. . ...-...
~~~~~~~~~~~~~~~~~..... . ................ ,.............-.-........ , .. .• .. .. , . .- ,


CHAPTER 6. CONCURRENCY ISSUES 128

stract way to the specification of replacement behavior in actors. In both

cases, history-sensitivity is achieved by similar functional mechanisms. Fi-

nally, despite the iniherent arrival order nondeterminism, we show the abil-

ity to define communication channels in actors which in effect preserve the

order of communications between actors.

6.1 Problems in Distributed Computing

There are some problems which are peculiar to distributed systems and

cause one to require a great deal of caution in exploiting distributed com-

puting. We will discuss three such problems as they relate to actors:

namely, divergence, deadlock, and mutual exclusion. In each instance, we

will show how the actor model provides the mechanisms to limit, and per-

haps to eliminate these problems.

.q

6.1.1 Divergence

A divergence corresponds to what is commonly called an "infinite loop."

In some cases, such as a process corresponding to a clock or an operating

system, an infinitely extending computation is quite reasonable and termi-

nation may be incorrect (indeed, aggravating!). At the same time, one may

wish to have the ability to stop a clock in order to reset it, or bring down an

operating system gracefully in order to modify it [Hoare 77]. Thus we would

like to program potentially infinite computations that can nevertheless be

affected or terminated.

.. .-........... -.-....-......-.......... ,. .- - .. -.... •. ,,. : ..-.- -,.-. ...
. -. '. -,... - -. *'. . • .- .- . .- .- .- ,, .-,.,. .. . -,. .,.- . ,, - .- - .- . - . .. - -"- ,. .- - - - -. ."-",- .

'., ' , . ' - _ •- .. . * .-.

CIAPTER 6. CONCURRENCY ISSUES 129

If one looked at the computation tree defined by the possibility transi-

tion then the execution method of an actor program would seem to be mod-

elled as choice-point nondeterminism [Clinger 81] or depth search [Harel 79].

In this execution scheme, an arbitrary pending communication is nonde-

terministically accepted by its target causing a transition to the next level

in a tree. Using choice-point nondeterminism, it is impossible to guarantee

the "termination" of a process which has the potential to extend for an

arbitrarily long period of time.

Consider the following simple program. We define the behavior of a

stop-watch to be a perpetual loop which can be reset by sending it an ap-

propriate communication (an actor with such behavior may even be useful

as a real stop watch, if we had some additional knowledge about the time

it took for such an actor to receive and accept the "next" communication

it sends itself).

stop-watch(n)

if message = (go)

then become new stop-watch(n + 1)

send (go) to self

else become new stop-watch(O)

send [n] to customer

Suppose z is created with the behavior stop-watch (0). If x is sent a "go"

message, then z will embark on a nonterminating computation. If we wish

to "reset" z, we can send it another communication, such as [customer,

"reset"], where customer is the mail address of some actor. If and when

*. . .%.

.
-. *4** , * * * * * *

CtlAPTER 6. CONCURRENCY ISSUES 130

this message is processed, z will be "reset." Without the guarantee of

delivery of communication, however, the "reset" message may never be

received by x and there would be no mechanism to (gracefully) reset the

stop-watch. Since the actor model guarantees delivery of communications,

x will at some point be "reset." It will subsequently continue to "tick."

11 121 [n].."

Figure 6.1: When a reset message is processed, one of an infinite number

of messages may be sent to the customer. The stop-watch will subsequently

continue to tick.

In the case of the stop-watch the potentially perpetual activity affects

subsequent behavior. This need not always be the case. A 'nontermi-

nating" computation can sometimes be "infinite chatter." Indeed, this is ."

the definition of divergence in [Brookes 83]. We have seen an example of

this kind of divergence in the case of our factorial actor when it was sent

a message with -1. In a language where the factorial is defined using a

looping construct, the factorial could be rendered useless once it accepted

a message containing -1. This is because it would embark on a nonter-

minating computation and therefore never exit the loop in order to accept

the next communication. The nontermination of a computation in a Ian-

• " • • . . . o . . . ° . . o ° o ~ ~ o ~ o,• . . ' . o . ' , o~ o ° ° . . . , o ' .f0' ° ' • . .- % - . . - ° . . -.. O. . . % % .o.. • . ' o . *. .*° • ° %

t ' ° o . " . ' % ' • % ° ' ' ° . o ° ° - . " • , . ', ° - • • - % % ° . ° ° . - ° o ' - % - ° . ° - . . -. ° o - - . • ° ° ° N
°

• . .~ _ __" _ _ __°° ° " ° - . • .

CRAPTER 6. CONCURRENCY ISSUES 131

guage using loops inside a process is a serious problem in the context of

a distributed system. The process with an infinite loop may be a shared

resource, as would most processes in a network. Since the process is never

"done," any other process wishing to communicate with it may not do so

and one can have a domino effect on the ability of the system to carry out

other computations.

One solution to this problem is to use multiple activations of a process.

In this framework, each communication to the factorial would activate a

process of its own. Activations solve the problem for unserialized behavior,

as is the case with the factorial. However, when we are interested in a

shared object which may actually change its behavior, as is the case in a

stop-watch, nmltiple activations are not a solution.

The actor model deals with the problem of divergence whether or not

the behavior of actors involved is serialized. Divergence, defined as end-

less chatter, does not affect other activity in the constructive sense that all

pending communications are nevertheless eventually processed. The pres-

ence of such divergence simply degrades the performance of the system.,

The guarantee of mail delivery also fruitfully interacts with divergence as

the term is used in the broader sense of any (potentially) nonterminating

computation.

1
Using resource management techniques, one can terminate computations which continue

beyond allocated time. The actor always has a well-defined behavior and would be

available for other transactions even if some concurrently executing transactions run

out of resources.

%.

I,

* . -,

L

CIAPTER 6. CONCURRENCY ISSUES 132

6.1.2 Deadlock

One of the classic problems in concurrent systems which involve resource

sharing is that of deadlock. A deadlock or deadly embrace results in a

situation where no further evolution is possible. A classic scenario for

a deadlock is as follows. Each process uses a shared resource which it

will not yield until another resource it needs is also available. The other

resource, however, is similarly locked up by another process. An example

of the deadlock problem is the dining philosophers problem [Dijkstra 71].

The problem may be described as follows. Five independent philosophers

alternately eat and philosophize. They share a common round table on

which each of them has a fixed place. In order to eat, each philosopher

requires two chopsticks.' A philosopher shares the chopstick to his right

with the neighbor to the right and like-wise for the chopstick to his left. It

is possible for all the philosophers to enter, pick up their right chopsticks

and attempt to pick up the left. In this case, none of the philosophers can

eat because there are no free chopsticks.

The behavior of a philosopher and that of a chopstick is described as

follows:
3

2 The usual version is two forks. However, it has never been clear to me why anyone,

even a philosopher, would require two forks to eat!

'Since we are using expressions, if we were in SAL or Act, we would have to specify the

behavior in case the reply from the chopstick was not free. However, the problem of

deadlock has been formulated with no defined behavior in such cases.

%';

*1 .

,~~~~~~~~~... ,........,.... -. -. . . .- -.,,0 ...-.. -, - . - - . .-. .. , .-. - .. - -. ,' -- ,

CHAPTER 6. CONCURRENCY ISSUES 133

Figure 6.2: The scenario for the Dining Philosphers problem. Shared re-

sources can lead to deadlock in systems using synchronous communication.

phil (left-chop ,right-chop) [
let x = call right-chop [pick]

and y = call left-chop [pick]

{if x free and y =free then (eat) ... }

chopstick(state) [k]
if k =pick and if state ="free"

then reply [free]

become new chopstick (busy)

A solution to this problem is to define a waiter who acts as a recep-

tionist to the dining area: The waiter can make sure that no more than

C'~~~~ . C.

* .-Sb, ,

CtlAPTER 6. CONCURRENCY ISSUES 134

four philosophers attempt to eat simultaneously. In this case, at least one

philosopher will be able to pick up two chopsticks and proceed to eat. Sub-

sequently, this philosopher would relinquish his chopstick allowing another

philosopher to eat [Brookes 83].

The "waiter" solution is a particular example of the strategy of access

to a shared resource in order to avoid the possibility of deadlock. The

difficulty with this solution is that the mechanisms for avoiding deadlock

have to be tailored using advance knowledge about how the system might

deadlock. Furthermore, the waiter is a bottleneck which may drastically

reduce the throughput in a large system. However, this is the only sort

of solution in systems relying on synchronously communicating sequential

processes. In fact the philosopher who picks up his right chopstick can not

communicate with his left chopstick as the left chopstick is "busy" with the

philosopher to that chopstick's left. Furthermore, even if a philosopher,

phil1 , knew that he shared his left chopstick with another philosopher, say

phil2 , unless phil2 was already ready to communicate with phill, the latter

could not send a message to the former. In such a system, not only is

there a deadlock, but there is no mechanism for detecting one. In fact in

languages using synchronous communication, deadlock has been defined as

a condition where no process is capable of communicating with another

[Brookes 83].

Two areas of Computer Science where the problem of deadlock arises in

practice are operating systems and database systems. In operating systems,

deadlock avoidance protocols are often used. However, in database systems

,.

... -. ,., .A.. ' - . " . .-.,. ' .- .

- - " -..

K" '" °

CIIAPTER 6. CONCURRENCY ISSUES 135

it has been found that deadlock avoidance is unrealistic [Date 83]. The

reasons why deadlock avoidance is not feasible in concurrent databases can

be summarized as follows:

9 The set of lockable objects (cf. chopsticks in the dining philosophers

example) is very large- possibly in the millions.

* The set of lockable objects varies dynamically as new objects are

continually created.

e The particular objects needed for a transaction (cf. "eating" in our

example) must be determined dynamically; i.e., the objects can be

known only as the transaction proceeds.

The above considerations are equally applicable to the large-scale con-

currency inherent in actor systems. The actor actor model addresses this

problem in two ways. First, there is no syntactic (or low-level) deadlock

possible in any actor system, in the sense of it being impossible to corn-

municate (as in the Brookes' definition above). The chopstick, even when

"in use," must designate a replacement and that replacement can reply to

the philosopher's query. What sort of information is contained in the reply,

and what the philosopher chooses to do with the reply depends on the pro-

gram. If each philosopher is programmed to simply keep trying to use the

chopstick then, indeed, in a semantic sense, the system can be deadlocked.

However, notice that one can specify the behavior of the chopstick so that

the replacement replies with information about who is using it even while

it is "busy." Thus, phill can query phil2 about phil2 's use of the chopstick
.- N

~~~~~~~~.. .. . . . ......... * • ... . ° "o "..° ° ,"" ' ' ' =' '* , - ' * ' ' • '' ° ' ° '

... ... ... .. .', O..... .... . , ,.°' '. ° ' ' . -. °'.Q °,. ,. . - ° °•-, .-. , , . % . ,. , - . "



CIAPTER 6. CONCURIIENCY ISSUES 136

shared between them. In the end, it would be apparent to the inquisitive

philosopher that he was waiting for himself- which is the condition for

deadlock.

The most involved aspect of a deadlock is detecting it. Since in the

actor model, every actor must specify a replacement, and mail addresses

may be communicated, it is possible to detect deadlock. An actor is free

and able to figure out a deadlock situation by querying other actors as to

their local states. Thus an actor need not be prescient about the behavior

of another actor. For example, the ability to communicate mail addresses

means that a philosopher need not know in advance which other philosopher

or philosophers may be using the chopstick of interest. These philosophers,

while they may be "busy" eating or looking for a chopstick, nevertheless

are in turn guaranteed to accept commnnications sent to them, and thus a

system can continue to evolve.

Our solution is in line with that proposed for concurrent database sys-

tens where "wait-for" graphs are constructed and any cycles detected in

the graphs are removed [King and Collmeyer 73]. We would carry out the

process of breaking the deadlock in a completely distributed fashion. A

concern about deadlock detection is the cost of removing deadlocks. Expe-

rience with concurrent databases suggests that deadlocks in large systems

occur very infrequently [Gray 1980]. The cost of removing deadlocks is thus

likely to be much lower than the cost of any attempt to avoid them.

A system of actors is best thought of as a community [Hewitt and

de Jong 831. Message-passing viewed in this manner provides a founda-

~------------



CHAPTER 6. CONCURRENCY ISSUES 137

tion for reasoning in open, evolving systems. Deadlock detection is one

particular application of using message-passing for reasoning in an actor

system: Any actor programmed to be sufficiently clever can figure out why

the resource it needs is unavailable, and without remedial action, about

to stay that way. To solve this sort of a problem, negotiation between in-

dependent agents becomes important. In open and evolving systems, new

situations will arise and thus the importance of this kind of flexibility is

enormous.

Another consequence of "reasoning" actors is that systems can be easily

programmed to learn: A philosopher may become one that has learned to

query some particular philosopher who is a frequent user of the chopstick

it needs instead of first querying the chopstick. Or the actor may become

one which avoids eating at certain times by first querying a clock.

6.1.3 Mutual Exclusion

The mutual exclusion problem arises when two processes should never si-

multaneously access a shared resource. An actor represents total contain-

ment, and can be "accessed" only by sending it a communication. Fur-

thermore, an actor accepts only a single communication and specifies a

replacement which will accept the next communication in its mail queue.

The actor may specify a replacement which simply buffers the communi-

cations received until the resource is free. We have seen an example of

this strategy with insensitive actors. Although, a single receptionist may

control access to a resource, the resource itself can still be modelled as a

...................................................... . ,.

.- .° .°. •. o.-. °.o-° . -, . - .° - .. o- ., - . - . - . . - - . - o-. - o -. . o.o - o -, ,• - ,° ° * ° , -. - ° '• "



CHAPTER 6. CONCURRENCY ISSUES 138

system of actors so that there may be concurrency in the use of the re-

source. There can also be multiple receptionists in a system, when this is

appropriate. The mutual exclusion problem, it can be safely asserted, is

not really a prolem for actors.

6.2 Graphic Representations

In this section, we deal with some of the graphical aspects of the communi-

cation patterns. First, we discuss the analogy between the ability to send

oneself communications in dataflow and the replacement model in actors.

We establish the functionality in the behavior of actors by defining nodes

in the spirit of dataflow graphs to illustrate the similarity. Second, we treat

the problem of communication channels and the ability, in actors, to con-

strain the effects of universal nondeterministic merges without defining any

new construct.

6.2.1 Streams

A stream is a sequence of values passing through a graph link in the course of

a dataflow computation [Weng 75]. Streams were introduced for 'side-effect

free history-sensitive computation'. In this section, we show by analogy to

streams, that actors are also side-effect free in the same sense of the term.

To see the equivalence, consider each node as containing a single behavior

definition which is equivalent to all the behavior definitions which may be

used by the replacements. The fact that there may be a sequence of def-

.......- ,

. . . . .|



CHAPTER 6. CONCURRENCY ISSUES 139

initions in a SAL program is a matter expressive convenience. Actually,

having more than one behavior definition does not really change anything.

The identifier used in a new expression is simply a selector of which behav-

ior definition to use and this fact can be communicated just as well. There

are only a finite number of definitions, and the identifier corresponding to

each one is simply a selector. A single behavior definition which receives

an identifier and branches on it to the code corresponding to the behavior

would have an equivalent effect. The become command in the program is

equivalent to sending oneself a communication with the values of acquain-

tances including the identifier corresponding to the definition to be used in

order to determine the replacement behavior.

There is an apparent difference between actors and nodes in dataflow

graphs; in dataflow the values "output" form a single stream. So the corre-

spondence can be visualized more closely using the picture Fig. 6.3 which

uses appropriate filters on the stream to separate the message intended for

the actor itself and that intended for "output."

Of course actors, unlike the elements of dataflow, do more than pass

streams- they may change their acquaintances and they may create other

actors. Furthermore, actors themselves are not sequential in character and

the replacement is concurrently executed. One consequence of this is the

ability to use recursive control structrures which can not be used in static

dataflow. One variation of the dataflow model allows for fully re-entrant

ccde by tagging the "tokens" (messages) [Gurd et al 85]. This, however,

results in forcing the computation through a possible bottleneck instead of

.:-'. .,*



CIIAPTEt 6. CONCURUENCY ISSUES 140

-!.

Ik
"..

hcconic h(x)Ikl

S v(.v)-.-.

V " .

Figure 6.3: The replacement of an actor can be computed using streams

which feed the value of the requisite identifiers for the new behavior. Actors

can separate the values needed for replacement from those "output."

distributing it as is conceptually feasible. The cause of this limitation is

the static nature of inter-node topology. Although the actor model allows

for dynamic creation, the behavior of an actor is nevertheless functionally

determined.

6.2.2 Message Channels

Many systems preserve the order of messages between processes. A stream

in dataflow is defined as a sequence of values, and thus by definition is

. . . . . . . .

. . . . . . . . . . . . . .. . .



IIAPTER 6. CONCURRENCY ISSUES 141

ordered. This creates the interesting problem in dataflow when the order

of input from two sources can not be pre-determined. A special element for

non-deterministic merge has to be assumed and such an element can not

be (lefined in terms of the other constructs in the (ldataflow model.

The preservation of the order of messages between processes is some-

times simply a function of the hardware configuration. For example, in

point-to-point communication between two processors the message chan-

nel preserves the order of communications. Sometimes this property can

be usefully exploited in computations. An example of this kind of use is

found in [Seitz 85] which describes as architecture based on 64 processors,

called the Cosmic Cube. In Seitz's system, multiple processes may reside

on a single processor but processes are never migra ed. The processes are

asynchronous and use message-passing to interact. However, unlike actors

the messages are sent along fixed channels so that (coupled with the lack

of migration of processes) the order in which messages are sent by a pro-

cess A to a process B is the same order in which B receives those messages

(although other messages may be inter-leaved).

There are two problems with the strong hardware-based order preserva-

tion of message. First, the failure of a single processor would be disastrous

since one couldn't re-route a message and necessarily preserve its order in

transmission with respect to other messages already sent. Secondly, this

scheme creates difficulties in load balancing which requires variable routing

of messages and migration of processes. It is for these reasons that the -

*: -actor model assumes nondeterminism in the relation between the order in

....-.- '..



-- 7 -7

CHAPTER 6. CONCURRENCY ISSUES 142

process I message

chantiel

process 2

Figure 6.4: A communication channel preserves the order of communica-

tions between two processes. Such channels can be readily defined in actor

systems.

which communications are sent and the order in which they are received.

Such nondeterminism is termed arrival order nondeterminism.

It is nevertheless possible to define actors whith preserve the order in

which they, in effect, process communications from each other. Suppose

we wished that an actor f "processed" communications from an actor g in

the same order as they were sent by g. What the actor g needs to do is

tag each message it sends to f with a reference number and increment that

number each time. The actor f in turn remembers the number of messages

it has so far processed from g. If it has processed two, and message number

4 from g arrives next, f simply buffers that communication until it has

accepted message number 3 from g. Since the delivery of communications

is guaranteed, the communication enclosing message number 3 will also

arrive. Subsequently, the actor f will check its buffer for message number

4 and proceed to process the same. The details can be easily written out

• 4 . 4 . . . . . 4 .. ,.

,."." ."-."-. - ." . -. : -' -. .-. -. - :'-','% %""4 - .... '-" . . . . ".. -'.°. . '. , " ..°"," ." "'...-" -",."-'



CIIAPTER 6. CONCURRENCY ISSUES 143

in SAL. We have shown that it is not necessary to add any new constructs

in order to define order-preserving communication channels in an actor

language.

The scheme we use to show the definability of channels is similar to

that used in Computer Network Architectures where sequence numbers are

used in packet switched networks to carry out sequence checking [Meijer

and Peeters 83]. However, unlike network architectures, we do not make

ubiquitous use of virtual network channels because doing so would generally

have the effect of slowing the speed with which parallel computations were

actually carried out. * ..

. .• A



°.

Chapter 7

Abstraction And

Compositionality

The ability to write and debug large software systems is strongly depen-

dent upon how successfully the system can be partitioned into independent

modules. Two modules are independent if we can ignore the internal details

and treat them as black-boxes with certain input-output behavior. Concur-

rency involves a nondeterministic interleaving of events; one consequence of

such interleaving is that when systems are composed, events in one system

are interleaved with the events of the other. Unfortunately, the behavior of

the composed system is not necessarily deducible from the abstract repre-

sentations of the behaviors of the modules composed. In this chapter, we

address these issues as they relate to concurrency in general and our actor

language in particular.

144

%'5

"" . . . . . . . . . .".. . . . . . . . . . . . . .'p**

. . .. . . . . . . . . . . . ..

~. iD . :-.- X ...- ..-.. -. ' P" ' .,,' . ,', .t , '""". "',Pp "-" ." " ," p.- . ."." ' . ."" ",".
f .

"" " ,.



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 145

7.1 Abstraction

A classic problem in concurrent systems is the difficulty abstracting away

from the operational behavior of a system. Consider a programming lan-

guage with the assignment conmand. Let .7 be the function which maps

commands in this programming language to their meanings. Let S1 =z 

x + 1 be a command in this language. If n is any given integer, the state

an/rj stands for a state where n is the value of z. Now the meaning of S1

can be expressed as:

Similarly, if S2  z := 2 *z then the meaning of S 2 is given by

.TS2): /-/ "

If we were to compose the commands S1 and S 2 sequentially, then their

meaning functions would also be composed sequentially. However, if we

are going to compose the two commands concurrently then the situation

is not so simple. Suppose that the command S represents the concurrent

composition of the S and S2, i.e., S S, II S2 , where I represents con-

current composition. The meaning of S is not obvious: If we started in

a state where z = 2, then two of the possibilities are that S, precedes

S 2 or the other way round. In each case, we can deduce the meaning of

S by sequentially composing the meanings of S, and S2: Thus after the

execution of both commands, z may be 6 or it may be 5. However, it is

also possible that the execution overlaps in time. For example, to execute

F4

"o°. . . . . . . . . . . . . . . . . . . ° • o • . , • ° . . ° . - - - . - ° ° ° - -

o- • , .° ° - ° 0 .. o'.- ° 0• . . . . . •* . . *, * % . *••. ° - •• , *'. •° - . ... ° • * • . -, °• -



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 146

S, we may FETCH the value of x, but before S, has finished execution, z

may be fetched by S2 . In this case, the "final" state could be o13/1 or

a14/xI, neither of which is obvious from a composition of the denotational

meanings of the two commands.'

7.1.1 Atomicity

The solution to this problem is usually given by specifying which commands

are atomic, i.e., by specifying that the execution of certain commands may

not be interrupted [de Bakker 80]. For example, if the assignment com-

mand is defined to be "atomic," then one would need to interleave only the

meanings of assignment commands.

The problem with the atomicity solution is that it fixes the level of

granularity or detail which must be retained by the meaning function. Thus,

if the assignment command is atomic, one must retain information about

each and every transformation caused by an assignment in a program. This

necessarily means that one can not abstract away the operational details

to any higher degree. If, for example, one is defining the abstract meaning

of an iterative loop, all the transitions involved in the iterative loop must
-o,1

be retained by the meaning function.

The approach to abstraction in actor systems is somewhat different.

'It may appear that

•r(S, S2) = M(S,;S 2) UY (S2; S,) U F(S) u T(S.)

but one can construct a slightly more complex example where this relation does not

hold either.

a%.

...............-....'..- ..... " "........- ...-............ l.....-................. .............. .......... "". .- .... ".... '" "

-...-.... o..-......'.' -.......... ...-- . .. ;.....-.-...- ..-. "....-.-......" '.,..... "... -



CIIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 147

The concept of a receptionist is defined to limit the interface of a system to

the outside. The use of the receptionist concept is illustrated in the context

of the assignment example. We define two systems whose behavior differs

partly because the receptionist in each is used to attain a different level of

abstraction. Consider the first system: x is the receptionist in this system

and the behavior of x is as follows:

x(n) [(request)]

if (request) = FETCH then reply [n]

if (request) STORE i then become new x(i)

This system has the a level of granularity where the behavior of the con-

figuration must be considered in terms of interleaving FETCH and STORE

messages. However, in a larger system x may no longer be a receptionist

and it may be possible to avoid this level of detail. Por example, let r be the

receptionist for an actor system and the behavior of r be given as follows:

r(n) [(request)]

if (request is to assign value f(x))

then let a=f(n) { become new r(a) }

if (request is to show value)

then reply [n]

Note that the nesting of the become command inside the let expression

creates a sequentiality in the execution (see the discussion about the let

construct in §4.3). In this larger configuration, one need no longer consider

the FETCH or STORE events. The level of granularity is comparable to the

"atomicity" of assignment commands. However, we can define yet larger

°;-



K'7 -- 77 - 7 77

CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 148

systems with other receptionists so that these operational details can be

ignored as well. We illustrate this concept by means of another example.

7.1.2 Nesting Transactions

Consider a bank account which may be accessed through different money

machines. Suppose further that this bank account is shared between several

users. The behavior for such a bank account may be something like that in

Example 3.3. Now one may want that once the account is accessed through

a money machine, it should complete the transactions with the user at that

machine before accepting requests for transactions from other users. The

definition of the bank account as given in example 3.3 implies that the bank

account processes one request at a time but that it may interleave requests

from different "users" and "money machines." To create a system where

transactions at each money machine are completed before other transac-

tions are acceptable, we define a larger configuration where the receptionist ..- "

for the system is some actor called account-receptionist. All communica-

tions to the account must be sent through this receptionist and the trans-

actions of the account-receptionist consist of several sub-transactions with

the users. The behavior of the receptionist may be described as follows:

2

. . . . ..o.



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 149

,• a-free-account

become (a-busy-account with the current customer)

(process the request)

a-busy-account

if customer i (current customer)

then send (request) to buffer

if customer = (current customer)

then if (request = release)

then send (release) to buffer

become a-free-account

else (process the request)

What the receptionist does is to prevent the interleaving of requests

to the account from different users. An analysis of the behavior of this

system can thus be done by considering the overall results of transactions

from each machine without having to consider all the possible orders in

which the requests from different machines may be recieved. We need to

consider the possible order in which entire sets of sub-transactions may

occur (since the order in which the first request from a user is received is

still indeterminate).

One can construct arbitrarily complex systems so that their behavior

is increasingly abstract. There is no pre-determined level of "atomicity"

for all actor systems. Instead, it is the programmer who determines the

degree of abstraction; the concept of receptionists is simply a mechanism

to permit greater modularity and hence procedural and data abstraction.

2. 
.



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 150

7.2 Compositionality

One of the desirable features about Milner's Calculus of Communicating

Systems (CCS) is that it models compositionality rather effectively. Mil-

ner's notion of composition is based on mutual experimentation by two

machines: a machine S offers experiments which may combine with exper-

iments of another machine T to yield an "interaction." Both machines,

as a result of the interaction, change their local states. Milner's notion of

interaction is based on intuitions of how machines may be plugged together

physically, a notion that relates very well to synchronous communication. VA '

.I' a ' -

Figure 7.1: Synchronous composition: In CCS, composition of systems is

analogous to plugging machines together. Figure from [Milner 801.

When an interaction between two machines occurs in Milner's system,

one simply links the ports on the two machines. Ports which may be linked

are considered complimentary ports. One can hide a port provided one aso

hides its complement. Thus, upon composition, one can abstract away from

* I

D'° .A .



.,- °- 9~7 *.-

CIHAPTER 7. A13STIIACTION AND COMIPOSITIONALITY 151

the ports by an operation called restriction.

7.2.1 Actors and Ports

The notion of hiding ports using the restriction operator has somewhat

different implications in CCS than its intuitive interpretation seems to be

when thinking in terms of actors. When a port and its complement have

been restricted, its the interaction between the two that has been hidden.

The port as a result of the interaction, will subsequently unfold its behavior

and this behavior will not be hidden. Thus, to use actor jargon, the port

may "become" another port which may even have the same label as the

one that is hidden. In terms of actors, the restriction operator is equivalent

to hiding the acceptance of a single communication; it is not equivalent to

bliding all the conniunications that may be received by the given actor.

A system of actors is best thought of as a community of agents. The

agents retain their identity even as their behavior changes. Actors have %
0,

mail addresses which permanently identify them. The "behavior objects"

in CCS do not necessarily maintain any "identity" as they interact with

the other objects. For example, in CCS, once an agent accepts an input, it

may never accept another input on the same port, as it may no longer have

the same port as a result of processing the communication. Besides, the

ports do not uniquely identify an agent since different agents may use the

same "port" name and thus different complimentary ports may be linked.

In contrast, communications in actors are sent to a specific unique target

actors.

-2- °

. .. . . .... . . . ... ..-. . . ... ° •. °.•."°.-.° °.-.• °- • " -.,-° ,-° - . . °-- , . . - ., - ° . ... . . . . . . . . ..-... , o ° ° o .



U1

CIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 152

" - There are other differences between the behavior of an agent in CCS

and that of an actor. One of these is that agents in CCS are themselves

sequential in character: only one experiment may be performed at a time.

The justifications Milner provides for this seqnentiality are:

1. Tractability of the model; and,

2. The desire to have a "behavior object" represent the system according

L to an observe- capable of only one experiment at a time.

We gave a similar argument about the import of using nondeterminism.

to model concurrency (§5.2). The fact remains that concurrency includes

the potential for overlap in time in both models. There is, however, a fun-

damental difference between Milner's "behavior objects" and the behavior

of an actor: the actor itself is a concurrent agent. The difference is reflected

in the language defined by Milner to illustrate CCS and actor languages:

in the former, sequentiality is intrinsic; in the latter, it is present only due

to causal interactions (§4.2).

7.2.2 Encapsulation in Actors

Any system must have receptionists which can accept information from the

"outside," and any system must know of agents that are external to the

system. The designation of receptionists and external actors provides for

structuring the input-output behavior (or, what in other fields would be

called the stimulus-response or sensori-motor aspects) of a system. There

..

i- • i- i . - -. . . . - .- ". i 
•

. - . : . . . -.• -. -- . . - . -.- •.,-. 
i
-
i
.

,
- . : ... - . - i 21 N .. ;i:? :.: ? i:ii)}



CiA1PTER 7. AISTRACTION AND COMPOSITIONALITY 153

are several observations to be made here which are relevant to actor sys-

tems:

V • "

(r r P
" 2

P.

IP
2 p e

3 2

e

Figure 7.2: Communications sent by p3 to r2 are not observable in an en-

capsulated system, just as those sent by r, to p, are "internal."

- An actor which serves as a receptionist may also be known to other

actors within the system. Communications between such "internal"

actors and a receptionist will not be observable. Thus it is not so much

an actor that is visible or hidden, but rather it is communications

between a given sender-target pair that are observable when either

the sender or the target is external. (See Fig. 7.2.)

- As a system evolves, new receptionists may be added and new external

actors may become known. The echanism for this change is simply

•. .

ma 
• 0*



CIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 154

the ability to send messages containing mail aldresses.

e One can not arbitrarily restrict receptionists: Once a mail address hasa:

been communicated to the outside, it is available for use by external

actors. However, if a mail address is unknown to the outside, or

becomes unknown, then the actor is no longer a receptionist.

7.2.3 Composition Using Message-Passing

Compositionality in actors is achieved by message-passing. Independent

systems are connected by sending some external actors in each module a

communication to become forwarding actors which simply send their mail

to some receptionists in the other module. The justification for the term

"become" in the specification of replacement actors is the same as the WN

reason why the external actors and receptionists they forward their mail to

are equivalent. We observe the following:

Proposition: If the behavior of an actor x is unserialized, and its behavior

is to forward all the communications it accepts to an actor y, then sending .

a communication to x is equivalent to sending the communication to y.

The proposition is seen to be true because of the arrival order nonde-

terminism in the actor model. A communication sent to the actor x will

be eventually recieved by the actor y. Since the arrival of a communica-

tion is always subject to an arbitrarily delay, even if the communication

was originally targetted to y, it would have arrived at some indeterminate

time at y. Note that the guarantee of delivery is essential in establishing

this proposition because otherwise it would be possible for z to recieve the

::::::::::::::::: ::::::::::::::::!.".. . ... " .. ......... " " : " .... .. ":. " .
" .. . . . -.. o,-°. -• ° .' .°°° ,.'- -. "°. . "° j '.--° °° ° - . •, . • .. ,. -. .-.. . . .-.. . . . . . . . . . . . .".. . . . . . . .- °.- °•



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 155

communication and yet y to never receive it.

The rigorous proof of the above proposition would require us to show

that given a configuration with a forwarding actor, we can construct an

equivalent configuration without the forwarding actor replacing the actor's

mail address in the acquaintance lists of all actors and tasks in the config-

uration defined with the mail address of the actor to which it forwards the

communications it receives. The two configurations must be shown to be

equivalent in some semantic sense. When an actor, x, acquires the unseri-

alized behavior to forward all communications it receives to an actor y, the

actor x is said to become y. Using the above proposition as justification we

will assume that two such actors are one and the same.

The rules to compose configurations are developed and these may be

used to compose systems by composing configurations they may be in. All

composition will be done using message-passing, and as a consequence there b:

is no need to assume uniqueness in the configuration at the "time" of com-

position of a system: The impact of the composition is nondeterministic

because of the arrival order nondeterminism in the communications which

are forwarded. Since there is arrival order nondeterninism for all mnes-

sages in actors, no special construction is necessary to the represent the

composition of two systems.

7.2.4 Rules for Composition

In this section we develop the constraints that must be satisfied by any

scheme which carries out the composition of two systems. We provide

.4

• . . . . . . - . . - -. - -° - : • . .-.-- - % . % - -°-% . - o o.



CIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 156

the constraints in terms of configurations and assert their realizahility by

showing a definition of composition which would satisfy the conditions. To

compose actor programs, one would map them to the initial configurations

they define and compose these configurations using the rules of comiposition-

given.

Constraints on Interface Actors

We first define all the applicable rules for constraining the actors that in-

terface with the outside- i.e., set of receptionists and external actors for

a composed system.

Let extern(ct) represent the actors which are external to a configuration

cl, and recep(c 2) represents actors which serve as receptionists in some

configuration c2 , then there may be some actor z such that z E extern(cl)n

recep(c2). It is also possible (but not necessary) that when c I and c2 are

composed, such an actor z is no longer a receptionist of the composed

system because the only actors x may have been a receptionist for are in

the other system composed. In any case, x will not be external to the

composed system. Let c = cl 11 C2 , where 11 represents the composition

operator. We can assert the following properties about the receptionists

and external actors of c:

1. All receptionists in the composed system must be receptionists in one

of the two configurations:

recep(c) c recep(cm) U recep(c2 )

J

'-.' °-. -", ,' '-.' " " -" '-,..-.% ' % ° , • " % ' -- b' '"f",- ' .- ' . "-." ., " '"-" ..
°

.,"- .•"" , .- " ''-,



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 157

2. The only actors which may no longer be the receptionists are actors

that are external to one of the configurations composed:

(recep(cj) U recep(C2 )) - recep(c) C extern(cj) U extern(C2 )

3. All external actors in a composed configuration must be external to

one of the two configurations:

extern(c) c extern(ci) U extern(C2 )

4. The only actors which may no longer be external are actors that are

receptionists for one of the configurations composed:

(extern(cl) U extern(c2 )) - eztern(c) c recep(Cq) U reCep(C2)

Since we wish to have the identifiers in an actor program (and corre-

spondingly mail addresses in a configuration) be local to the module (or

to the configuration), we have to provide a means of "relabeling" the same

so as to link receptionists and external actors. Thus when two program

modules are composed, we may have a declaration of the form:

let id, = id2 and id3 = id4 ...

where id, is the identifier for an external actor in the first module, and id2

is an identifier for a receptionist in the second, or vice-versa. Similarly for

id 3 and id4, and so on. The intended interpretation of the above declaration

is that in order to compose two modules, we simply send an appropriate

It

6'6)% *** *.~*. % %*. .. % . . *%'% * %%".- .- :"-'?: '." '?,'? .'? ','?.-,-- ,,-'?.".-.".. .--. .'.,.. . . ... .•.-. .".... .... ,-'.'..



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 158

communication the external actors in each of the modules telling them

which receptionist in the other module they should become.

One can not necessarily deduce the receptionists of a composed system

from the receptionists of its constituents: Some receptionists may have been

s0 dlesignlated only because they were supposed to represent external actors

in the 'other' module. Thus a new receptionist declaration may be given

for a composed system, provided that such a declaration satisfies properties

1 and 2 above.

Formalizing Composition

We now turn to developing a detailed definition for composing two config-

urations. To be precise, assume a configuration is a four tuple with the

functions states, tasks, recep, and eztern extracting each component. (We

are expanding the definition of a configuration used in chapter 5 which was

concerned more specifically with the internal evolution of an actor system

and thus took into account only the first two components.) The population

of a configuration c, pop(c), consists of mail addresses that are in c but are

not elements of extern(c). Suppose c, and C2 are two configurations. To

compose cl and C2, we need to specify the new receptionists and external

actors. Notice that if c, and C2 are arbitrary configurations and we assume

mail addresses are local to a configuration (recall that mail addresses are

merely ways of labeling actors to specify topological properties of a sys-

tem), then there is no guarantee that pop(c ) n poP(C2) = 0. Similarly,

if tags(c) is the set of tags used in the tasks(c), then it is possible that 1
• . . -

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ton.sed.n.captr.5.hi. .wa :.



CHAPTER 7. ABSTRACTION AND COMPOSITIONA LITY 159

tags(cj) fl tags(C2 ) ~0

In fact, even if the populations and tags of two configurations are dis-

joint, the states and the tasks can not be simply combined using the union

operation. To see why, recall the prefix condlitiou in the definition of a

configuration (Definition 5.3) and its use in Theorem 5.1: The condition

states that no tag be the prefix of any other tag or mail address in a con-

figuration. This property is necessary to maintaining the uniqueness of all

tags and mail addresses of tasks created.

Tags and mail addresses have no re ality of their own. They are merely

labels we define to keep a track of computation in an actor system. So we

will provide a map to new tags and mail addresses in a composed system

so that the new tags maintain the structure implied by the original tags

and at the same time satisfy the requisite constraints. Providing a map to

carry out the composition has no intrinsic value but simply demonstrates

the ability to carry out composition.

Definition 7.1 Composition. Suppose that c, cl and C2 are configura-

tions such that c c, c 1ID,R C2 , where D is a declaration equating external

actors and receptionists, and R is a receptionist declaration satisfying the

constraints given above. Let the declarations in D be equivalences of the

form i.e ,z: j.r where i, j E {1,2}, e E extern(ci) and r E recep(ci).

Then the following conditions hold:

1. The tags and mail address are simply prefixed by the configuration

they came from. Thus,

tasks(c) = (i.t, i.m, k') ((t,mr, k) E tasks(c,) A k' kli.t/t,.. .j

.4.g

,....A..



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 160

2. The states of all actors not in the declaration D are unchanged ex-

cept of the transformation on the mail addresses. Let forwarding(x)

represent the behavior of an actor which sends all communications it

accepts or has buffered on to x, then

states(c)(i{M) forwarding(j.r) if i.m i j.r in D

b otherwise given (m, b) E ci

3. The external actors are those who have not been declared to be equiv-

alent to some receptionist in the composed system.

extern(c) = (extern(cl) - {x lr E recep(c 2)(1.X = 2.r E D)} U

(extern(c2 ) - 1X I 3r E recep(c2 )(2.x = 1.r E D)))

4. The receptionists of c are given by the declaration R.

Note that our definition can be easily extended to composition of an

arbitrary number of configurations. Parallel composition should of course

be commutative and associative. In our definition, the configurations them-

selves would be different depending on the order of composition. However,

there is a strong equivalence relation between them, namely a direct rela-

beling equivalence. Since there are only a finite number of tags and mail

addresses the problem of determining the equivalence of any two configu-

rations is decidable.

To compose already existing systems, we need to compose all the con-

figurations the systems may be in. If we use the cI + c2 to represent the -

fact that a system may be in configuration c, or in configuration c2 then:

(c, + c2) (c3 + c4) = (c Ic3) + (c Ic4) + (c2 Ic 3) + (c2 Ic4)

. 0"1

....- . . - - -. . . . . . . . . . . . . . . . .



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 161

where any declarations in the composition on the left hand side of the

equation are carried out to each of the terms in the right hand side.

7.3 The Brock-Ackerman Anomaly

An algebra of concurrent processes is defined over equivalence classes of

the processes.2 The canonical members of each equivalence class provide

an abstract representation for all the processes in the class. There are two

considerations in defining equivalence relations. On the one hand, the ab- r

stract representation of processes must discriminate between systems which

when operated on or composed with other systems lead to behaviors we

wish to distinguish from each other. On the other hand, the representa-

tion must not discriminate between systems that behave identically in all

contexts. A context is determined by the degree of encapsulation and the

"environment" of other processes it interacts with.

In the case of sequential programs, the history relation which maps in-

puts to outputs is sufficient to provide an abstract characterization of a

program. In the context of concurrent systems, the history relation is the

weakest equivalence relation which may be used to model systems. In other

words, it contains the minimal information necessary to differentiate be-

tween systems. Unfortunately, as [Keller 771 and [Brock and Ackerman 81]

have shown, it is not sufficient to discriminate between systems that are

observably different. Of the two cases cited, the Brock-Ackerman anomaly
21,I this section we use the term process to impart a general flavor to the disClnmion. In

particular, systems of mtors are "processes."

?...

",'"- ,' '." "'"."''°"-""°. "f" ."-'"'"-'".".."....-...".....""...".""....".,"....."....."......'".".."....".."................".......",.......-....... -".'
. , .. • , • % .. . ...-. . . . . . . .- . . . . . . . . . . . . .,, .. l ...lhml~ .,.gn 

"- n

... aimd k~ik a 
,

,



CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 162

represents a more serious problem. We discuss it in the contcxt of actor

systems.

The Brock-Ackerinan anomaly shows that when each of two systems

with the same history relations is composed with an identical system, the

two resulting combined systems have distinct history relations. Let M( be a

fuinction mapping a process to the history relation it defines. We convert

the relation into a function by using the standard technique of collecting all

the terms representing the possible elements which are related to each given

element of the domain. We first define two actor systems S, and S 2 such

that they have an )I(S 1 ) = )(S 2). We then define a system U and show

that )I(S iI U) $ )(S2 IIU) where represents a parallel composition.

The receptionist in both systems S, and S 2 is an actor whose behavior

is described by:

D(a) [A;]

send [k] to Pi

send [k] to Pi

In other words D accepts a communication and sends two copies of it to

J.%

an acpresnt amore a.tos pble.oi Wedis i. iThe eotext actor "

bosystems S n 2i aldetr-cq nS eairo h

acuntnc aping to stres the istomunication it aceptns. and to sndert..

~~~athe eond nom uncation accepngthed standartehnque It c llecigbll-d

tha emsersnigteposbeemnswihaereae oec ie ':

elemnt f th doain.We irstdefne wo atorsystms l an S-su:

CIIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 163

P(inputs-so-far, external-acq, first-input) [k]

if inputs-so-far=O then become new P1(1, external-acq, k) -

if inputs-so-far=l then

become SINK

send [first-input] to ezternal-acq

send [k] to external-acq

where the behavior of a SINK is simply to "burn" all communications it

accepts.

Now a system whose population is {d,p}, with behaviors D(pi) and

P (0, e, 0), respectively, and whose external actor is e, has the history rela-

tion which maps:

0 - 0

{XIX2) (Y!1, 1 Y2 , Y2 Y2}

where xi is the communication ki sent to the target d, and y, is the corn-

munication ki sent to the target e. Recall the arrival order nondeterminism

in actors. Thus X1 X2 is the same as x 2 X1 since the communications may

arrive in either order at the target d. Internally, when d accepts [k1] it will

send two k, messages to p, and similarly for k2 . However, these four com-

munications to p, may be interleaved in an arbitrary manner. In general,

the history relation can be represented as:

Now consider an actor system S 2 with a receptionist d which has an ac-

quaintance P2. The initial behavior of P2 is described by P2 (0, e) where:

........... "...

. . .°°..

CHAPTER 7. ABSTRACTION AND COMPOSITIOINALITY 164

P2 (inputs- so-far, external-acq) [k]

send 1k] to ezternal-acq

if inputs-so-farzO then become new P1 (1, external-acq)

if inputs-so-far=1 then become SINK

The difference between the (initial) behavior of p, and P2 is that p, waits

for two inputs before forwarding them both but P2 forwards two inputs as

they are received. However, as the reader may readily convince themselves,

because of arrival order nondeterndnisin the history relation on the system

S2 is identical to that on system S1.

Suppose that each of the actor systems Si are composed with another

actor system U where el is the receptionist and has the (unserialized) be-

havior E(el,eC2), where E is as follows:

E(external-acql , external-acq2) [k]1

send [k] to external-acq2

send [k] to external-acqi

send [5 ki to external-acql

In U both el and C2 are external. When we compose Si with U, d is the

only receptionist and e2 the only external actor in the composed system.4

The external actor a in U is declared to be the receptionist d (see fig 7.3).

The history relation on T, which is the composition of S, and U maps

Xi--* V1 Y1

where yj is the message k, to e2. Note that p, has accepted both commu-

nications before forwarding thein to e2. However, the history relation on T2

-..

.'."

CHAPTER 7. AIS'ItACTION AND COMIOSIlIONALITY 165

Vd

~-.1

I , I
I

1 e

e
2

Figure 7.3: The Brock-Aekcrman anomaly. When the systems S, and S2 are

composed with a system U which has the population el, the history relations

of the two composed systems are quite different.

maps

X -- + { y 1 y | , V I } V '11

where y' is the message 5*kI sent to e2 . This happens because the second k,

sent to P2 may arrive after the 5 * k, message sent by el has been forwarded

and accepted by pi.

The Brock-Ackerman anomaly demonstrates the insufficiency of the his-

tory relation in representing the behavior of actor systems (in fact, in any

..

... : .. ,,. o, , , _-

CIIAPTER 7. ABSTRACTION AND COMPOSITIONALITY 166

I..

processes which have a nondeterministic merge in them). The problem

with the history relation is that it ignores the open, interactive nature of

systems which may accept communications from the outside and send coin-

munications out at any stage. Having sent a communication, the system

is in a different set of possible configurations than it was before it did so,

and provided we have a model for the behavior of a system, we can deduce

that the number of possible configurations it may be in has been reduced.

Thus the two systems, S and S2 are different to begin with because after

having sent a communication to the outside, their response to subsequent

communications from the outside is distinct.

7.4 Observation Equivalence

We have seen two equivalence relations on configurations in the previous

sections. The first of these was a direct relabeling equivalence an the second

was the equivalence induced by a history relation. Neither of these equiv-

alences is satisfactory. The history relation was shown to be too weak; it

collapses too many configurations into the same equivalence class.

The equivalence relation induced by direct relabeling is not satisfactory

in an admittedly direct sense. For example, suppose two configurations were

identical except that at one mail address m the actors in their respective

states differed in that only the tags and mail addresses created by them

were unequal. (This could happen using our definition of the behavior

function if, for example, the order of new expressions was different). Using

. . . .

.'-. .-. .~. .-

CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 167

direct equivalence, these configurations would not be mapped to the same

'- equivalence class. What we would like to do is to consider configurations .'

rnthat have transitions to equivalent configurations equivalent. Fortunately

an inductive definition, establishing equivalences to depth n for an arbitrary

depth, is not necessary for this purpose: Since there are only a finite number

of behavior definitions, their equivalence under relabeling can be directly

established as well.

. Unfortunately, this weaker relabeling equivalence is not satisfactory ei-

- ther. Consider two configurations which axe identical except that one of

them has an actor x such that:

1. x is not a receptionist;

2. x is not the target of any task in the configuration; and

- 3. the mail address of x is not known to any other actor and is not in

any of the communications pending in the configuration.

It can be safely asserted that the two configurations, with and without the

actor x, are equivalent (see §3.1.1). In implementation terms, the actor x

. would be a suitable candidate for garbage collection. However, these two

configurations are clearly not equivalent under relabeling.

We therefore need to define a notion of observation equivalence between

* • configurations (following [Milner 801). The only events "observable" in a

encapsulated system are of two kinds:

e Communications sent from the outside to some receptionist; and

...-

CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 168

9 Communications sent by an actor in the population to an external

actor.

This suggests three kinds of transitions from each configuration- tran-

sitions involving the acceptance of a communication sent from the outside

to a receptionist (input), a transition involving the sending of a communi-

cation to an external actor (output), and an internal action (corresponding

to processing a task in the configuration which is internal to the config-

uration). The first kind of transition leads to a configuration c' from a

given configuration c such that tasks(c') : tasks(c)U r where r is the task

accepted from the outside. The other two kinds transitions are the ones

already defined in chapter 5, except that we ignore the labels on all tran-

sitions that are not targeted to an external actor. We can now identify

computation in actor systems as a tree with these three kinds of labels on

its branches (see Appendix).

How does the composition of trees work in this framework? In CCS,

when two trees are combined, the inputs and outputs are matched in a syn-

chronous manner and constitute a silent transition. Rather surprisingly, no

change in the technical aspect of this definition is necessary to accommo-

date composition in actor systems despite the fact that communication is

asynchronous in actor system. The reason is simply as follows: Only the ac-

ceptance of a communication constitutes a transition from a configuration,

thus when two configurations are composed all we are doing is reconciling

the acceptance of a communication by an external actor, with the subse-

quent behavior of that actor. The latter is given by the actions in the tree

,' .%"

.....-...-...,.-,.-. -., '.. ..:.,-..-..-..-..-...'....'.,..,.".., . ..,.-.....-."."..-......'. ,..".. .-.-.,....,',., ,. ","-, ., .-,",,,, .

CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 169

corresponding to the configuration where the actor is a receptionist. Be-

cause of arrival order nondeterniinisiu, the arrival of the commiunication is

delayed arbitrarily long in the first configuration, thus the composition is,

in effect, asynchronous.

A configuration can be extensionally defined using the tree of events

specified above. The definition is inductive- two configurations are ob-

servation equivalent to degree n if they have have the same observable

transitions at the n-th level of the tree. This notion differentiates between

all the configurations one would want to differentiate between. After all, ifr

it is impossible to observe the difference between two configurations despite

any interaction one may have with the systems involved, then there is no

point discriminating between the two systems.

Brock 1831 has proposed a model using scenarios which relate the inputs

and the outputs of a system using a causal order between them. The model

however has several limitations, such as fixed input and output "ports," and

it does not support compositionality. The first of these two deficiencies is

related to the lack of a labeling scheme such as is afforded by the mail

address abstraction in actors.

Philosophically, what we understand to be causality may be nothing

more than necessary sequentiality: After all, the pragmatic significance of

imputed causal inference in the physical world is simply an expectation of

sequentiality in the spatio-temporal order between events considered to be

the cause and those considered to be the effect. The inference of a causal

relations is an open-ended, undecidable problem since the observation of a

spec...d..o... Te.e.ntonis.dut.e..w.cnigr.ins.e.b

.....................nt to dere - fthyhaehvete aeobeval

• . - .- . . , -. -.--- - - •~ - - - I I _ __

C'HAPTER 7. ABSTRACTION AND COMPOSITIONALITY 170

cause may be separated from the observation of an effect by an arbitrary

number of events. The same arbitraryi delay property is true of the guar-

antee of mail delivery. Both of these p~roperties may only be deduced from

a proposed model of the internal workings of a system rather than from

observations on a system. In contradistinction, the notion of observation

equivalence is based on the testability of equivalence to an arbitrary depth. 3

T.e problem with the history relation is that it ignored the open, in-

teractive nature of systems. Any system may accept a communication at

any time, and given that it has produced a particular communication, its

response to a subsequent input is different because of the transitions it has

undergone to produce that particular communication. The communication

produced is of course simply symptomatic of the change in the system. In-

ternally, the change has already occurred, whether or not we have observed

its external manifestation- i.e., whether or not the communication sent

has been received. On the one hand, until we observe the effects of the

change, there is uncertainty, from the external perspective, as to whether

°.•

the change has already occurred. On the other hand, after we have ob-

served the effects of a transition, we have at best a model for how the

system was at the time the transition occurred rather than a model of its

nAdmittldly, a curious proposition since we can test only one path of possiblc evolutions

Of a system. The usual solution to this difficulty is having an arbitrary number of

systems prc-detcrinined to be equivalent, presumably in some stronger physical sense.

The idea is to experiment on these systems in diffcrent ways to determine their behavior

% to any desired degree.

/..

.. *- . •• teractive nature of ystems. Any system ma accpt comuiato at"..-

W °•°

anytim, ad ive tht t hs podueda prtiulr cmmuicaio, is , '

CHAPTER 7. ABSTRACTION AND COMPOSITIONALITY 171

"current" status.' However, if we have any understanding of the mechanics

of a system, given a communication from that system, we can prune the

tree of possible transitions that the system may have taken.

'Compare the reasoning behind the old Heisenberg Uncertainty Principle to the situation

here. An interestinng discussion of "quantum physics and the computational metaphor"

can be found in [Manthey and Morey 831.

Chapter 8

Conclusions

We have developed a foundational model of concurrency. The model uses

very few primitive constructs but can nevertheless accommodate the re-

quirenments for a general model of concurrent computation in distributed

systems. The flavor of transitions in actors is one of a pure calculus for

concurrency; it differs from Milner's Calculus of Concurrent Systems pri-

marily in two respects: it does not assume synchronous communication,

and, it explicitly provides for dynamic creation of agents.

Actors integrate useful features of functional programming and object-

oriented programming. While other functional systems have some measure

of difficulty dealing with history-sensitive shared objects, actors do so quite

easily. At the same time, actors avoid sequential bottlenecks caused by

assignments to a store. The concept of a store, in the context of parallel

processing, has been the nemesis of the von-Neuman architectures.

Actors are inherently parallel and exploit maximal concurrency by using

172

t p: = * : . ' _ : 2 . -. . ..- . ' - - : : = . = -. . i". , . .. - . . . - . '

* ;. -* * . * . . .•

CHAPTER 8. CONCLUSIONS 173

the dynamic creation of customers and by pipelining the replacement pro-

'I cess. The semantics of replacement is fundamentally different from changes

to a local store. Replacements may exist concurrently. This kind of pipelin-

ing can be a powerful tool in the exploitation of parallel processors. In fact

pipelining (specifically, instruction pre-fetching), has been an extremely

successful tool in speeding up the computation on many processors cur-

rently in use. Unfortunately, the degree to which pipelining can be carried

out in the current generation of processors is restricted by the ubiquitous

assignments to a store, and the use of global states implicit in the pro-

gram counter. Actors allow pipelining to be carried out to its logical limits

as constrained by the structure of the computation and by the hardware

resources available.

Perhaps the most attractive feature about actors is that the programmer

is liberated from explicitly coding details such as when and where to force

parallelism and can concentrate on thinking about the parallel complexity

of the algorithm used. If one is to exploit massive parallelism, using parallel

processors on the order of tens, perhaps hundreds, of millions of processors,

it will not be feasible to require the programmer to explicitly create every

process which may be executed concurrently. It is our conjecture that

actors will provide the most suitable means for exploiting parallelism made

feasible by the advent of distributed systems based on VLSI.

Message-passing is elemental to computation in actors. The time com-

plexity of communication thus becomes the dominant factor in program

execution. More time is likely to be spent on communication lags than

J.°%...

,.o

CHAPTER 8. CONCLUSIONS 174

on the primitive transformation on the data. Architectural considerations

such as load balancing, locality of reference, process migration, and so forth,

acquire a pivotal role in the efficient implementation of actor languages.

The information provided by a transitional model of actor systems is

too detailed to be of "practical" use. The structure of transactions and

transaction-based reasoning for the verification of actor programs needs to

be studied. The semantics developed here will simply provide the justifi-

cation for such axiomatic treatment. The open and interactive nature of

actors implies that any description of actor behavior will necessarily in-

volve a combinatorial explosion in the exact configurations possible in a

system. However, by establishing invariants in the behavior of a actor, we

can satisfy our self as to its correctness. The importance of proving pro-

gram correctness in concurrent systems is underscored by the fact that it is

not possible to adequately test such systems in practice. In particular, ar-

rival order nondeterminism implies that any particular sequence of message

delivery need never be repeated regardless of the number of tests carried

out.

Another critical problem for computer architectures to support actors

is controlling computational activity. Since actors may be shared objects,

one can not simply assign them a fixed amount of computational resources

upon creation. If transactions involving the same actors are concurrently

executed, the resources used by each transaction need to be assessed sepa-

rately. Furthermore, concurrent sub-transactions are spawned dynamically

in actor system as many messages may be sent in response to a single mes-

5-°

,..

,.'g . " "'.".". . -. -o .. " -' -' -' -'-'... - .' -•,.'-'-- ". "- ", ". ". ". ".,."".""."".-"-'." .- •" "" " ' " -" ,3"." ." - .' ."- • " '- '.5 .' .'.

CHAPTER 8. CONCLUSIONS 175

sage. These sub-transactions must be allocated resources dynamically as

well. Since it is impossible to correctly assess the computational resources

needed, the allocation has to be constantly monitored. The problem of

transactions is in general intractable if the transactions are not properly

nested.

We have addressed a number of general problems that plague compu-

tation in distributed systems. Among these problems are deadlock, diver-

gence, abstraction and compositionality. The problem of deadlock is dealt

with by the universal replacement requirement. The effects of divergence

on the semantics of a computation are contained by the guarantee of mail

delivery. The problem of abstraction is addressed by the concepts of recep-

tionists and transactions and, at the model-theoretic level, by the notion

of observation equivalence. And finally we support compositionality using

pure message-passing.

A simple minimal actor language is shown to be sufficient to accom-

modate extremely expressive structures, including potentially infinite ones.

The denotational semantics of actor behaviors is defined and a transition

relation for configuration follows simply from the semantics. Finally, we

have dealt with equivalence relations between actors and provided some

connections with other models of concurrency.

.

. r-

App endix A

Asynchronous Communication

Trees

Milner [801 has developed an elegant calculus for synchronously commu-

nicating agents (called CCS). As an aid to visualizing computation in a

system of such agents, Milner has proposed Communication Trees (CTs)

as a model for CCS. As Milner has observed, CTs are actually more pow-

erful than COS; in other words, there are large classes of CTs which can

not be expressed as programs in CCS. For example, the topology implied

by CCS is static whereas there is no such restriction on OTs. We develop -

Asynchronous Communication Trees (T's) as a model to aid in visualizing

I..

computation in actors and a means by which we can define composition,

direct equivalence, observation equivalence, etc., in actor systems. The in-

triguing feature of T's is that they capture the open, interactive nature of

computation in actors. It is recommended that the reader carefully study

176

.

* *. * AG. -

r
.

. - • - ." .. % / . . .' . _. i . - - .•" " . ". -

APPENDIX A. ASYNCIIRONOUS COMMUNICATION TREES 177

Milner's work, in particular Chapters 5 and 6 before trying to figure out

the material here in any depth.

There are three fundamental differences between actors and CCS:

o Communication is synchronous in CCS while it is asynchronous in

actors.

e The topology on CCS agents is static while communications in actors

may contain mail addresses.

a There is no dynamic creation of agents in CCS while actors may be

created dynamically.

Rather surprisingly, the algebra used to define T's is almost identical to

that used in CTs; the primary difference is in the concrete interpretations

associated with each. We interpret only the acceptdnce of a communication.

as a transition (what Milner calls "action"): Sending a communication is

simply represented by the fact that every branch of the tree has a transition

corresponding to the acceptance of the communication by its target. This

fact follows from the guarantee of mail delivery.

We represent each configuration as an T. A few simplifying assumptions

will be made. First, we assume that there are no mail address conflicts be-

tween different configurations (since we provide a relabeling operator, this

is without loss of generality). Second, we assume that the external mail

addresses represent the true mail address of the external actor. When two

configurations are composed, this will be a useful simplification. The jus-

tification for this assumption is two-fold: firstly, using message-passing the

Fo

2 L 2
o

"." " ." , . . .- ,d"-. , . -'-"-'°. . %" . . .'. ' '-'.., ''.. .. ,' ,,.., . - . '. " , " " .,...- ."" .. ,- % , "" .

APPENDIX A. ASYNCIIRONOUS COMMUNICATION TREES 178

external actor forwards all mail it has received to the actor it is supposed

to become; and secondly, the communications it sent to the external ac-

tor can arrive in any order in the first place. Thirdly, we assume that

there are a countable number of communications, which may be enumer-

ated as k0 , kl, Any communication may be sent to any actor, if the

communication sent is inappropriate (such as having the wrong number of

parameters"), then we assume there is a default behavior. We can assume

that the tags of tasks are part of the enumeration of communications and

used to create new mail addresses.' However, tagging tasks is not useful in

defining observation equivalence; furthermore, it is also possible to specify

a different mechanism to create mail addresses using other mail addresses.

The technical development remains quite similar.

A typical T consists looks like Fig A.1

.p

Figure A.1: A typical Asynchronous Communication Tree

The three kinds of potential transitions (or in Milner's terminology,

'Recall that a union of all finite collections of a countable set is still countable. • "

. .. . -

P p p . .- . .

Sp ~ pP -. .p p P -

7 7.

APPENDIX A. ASYNCIRONOUS COMMUNICATION TREES 179

actions) have the following intuition:

(i) Corresponding to each current receptionist in the configuration is a

potential transition labeled by its mail address (these are the positive

labels, a, in the figure) and the communication it may accept.

The ih tree it dominates represents the behavior of the configuration

if the receptionist accepts a communication ki.

(ii) For all communications accepted by an external actor, there is a tran-

sition to the tree corresponding to the behavior of a configuration

without the pending communication. These transitions are labeled by

the mail address of the external actor (using negative labels ,...

(iii) For all communications accepted by an actor in the population, there

is an internal transition (labeled by '). 2 ,-,

The relation between configurations and T's should be intuitively clear

from the above description. If each node were marked by the configu-

ration it represented, then (i) would correspond to a transition from a

configuration c to a configuration c' such that states(c) = states(c') and

tasks(c') = tasks(c) U r where r is the task accepted from the outside;

(ii) is the acceptance of a communication by an external actor, and (iii) is

acceptance of a communication by any actor in the population.

When an actor accepts a communication, it may create other actors or

send new communications to specific targets. These will simply show up

2 Milner represents internal transitions, or what he terms "silent actions," by r but we

used that letter to denote tasks. -

.,i,.. . .'. ,".. ---... '-. " . -. -'- . -'" . . " ... i.. •i. -i ".'."-2.. ..- .. ".i : -

APPENDIX A. ASYNCHIRONOUS COMMUNICATION TREES 180

in the subsequent behavior of the configuration to which the transition is

made. We do not label nodes in our trees (cf. Milner's C's) because the

label would be simply another way of noting the sub-tree doininated by the

given node. Formally we define an ACT as follows:

Definition A.1 Asynchronous Communication Trees. Assume the

function extern(k) represents the external actors communicated in k. An

T with receptionists R and external actors E is a finite set3 of pairs of the

form

(i) < a, f > a E R where f is a family of T's with receptionists R and

external actors E U extern(ki) indexed by possible communications k.

accepted; or,

(ii) <-, < k, t >> E where k is a communication targeted to the

mail address / and t is an T with receptionists R and external actors

E U extern(k); or,

(iii) < g, t > where t is an T with receptionists R and external actors E.

Remark. The receptionists denote all the current receptionists as well

as the (potential) future receptionists; the external actors denote only the

currently known external actors. The asymmetry arises because any fu-

ture receptionists are created locally thus their potential mail addresses

are internally determined (even if they are functions of the incoming tags),

IF 3 We do not need a multiset because all mail addresses are unique. However, T's in their

full generality may lack rules guaranteeing uniqueness of mail addresses. Technically

this does not create any difficulty; it simply chamiges the nature of nondetertainism.

N;
,".

.J=

p (.

t- ~~~~~....d :.,.. -- -,_;. ,,', : ,s., ,:,_' • ''''',_. . "-." '

AD-AIS?7 91? ACTORS: A MODEL OF CONCURRENT COMPUTATION IN 3/3
I DISTRIBUTED SYSTEMS(U) MASSACHUSETTS INST OF TECH~CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB G A AGHA JUN 85

I UNCLASSIFIED AI-TR-B44 N89914-B0-C-0505 F/G 9/2 N7 E.E.EE

Lmp

SOMVOVJS jo nVyUflh -NWUWN

mil O1113

3sin

q~ ~~O _____ 1___

* -. . ".r r -C.r

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 181

however the mail addresses of external actors which become known as a

result of an incoming communication are in principle unknowable.

We will now define an algebra of T's and then define three operations

namely, composition, restriction, and relabeling on the T's. The actual

algebra is almost identical to CTs except, not surprisingly, in the notion of

receptionists and external actors. CTs used sorts which were a fixed set for

each CT. The concrete interpretations placed on the terms are, of course,

quite different. The definitions below are adapted from [Milner 80].

Let TR x E denote the T's with receptionists R and external actors E

and k0, k,..., denote the possible communications. We have an algebra of

r's as follows:

NIL(nullary operation)

NIL is the T o

+ (binary operation)

+ E TRxEIXTRx E2 TRxE

whereR = (RIUR 2)andE = (El UE)

a (a w-ary operation)

a takes a set of members of TR x E indexed by ko, kl,... , and produces

a member of T(R U {(a}) x (E U eztern(k,)) for the ktb member. This

operation adds a receptionist with mail address a, see Fig A.3. Let K =

.z9

: :....

*.-, .-. . a. *-

7J,
1 7 -. -

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 182

+ ,-

Figure A.2: Possible nondetermini-tic trwaitions.

, kl,..., then

a E (K-TR xK) -T(RU fa)) xE

. (a family of unary operations)

Vk 5(k) E TR x E TR x (Eu ext rn(k))

,(k) represents the fact that the communication k has been accepted by '

an external actor with the mail address a. See Fig A.4

e (a unary operation)

eETRxE --+TR xE

The interpretation of the + operation is nondeterminism in the model-

tI + t2 simply means that we may be in the tree tI or in the tree t2 . The rest

of the operations are straight-forward and correspond to their description in

the introduction. The trees differ from the transitions model of Chapter 5 in

a....

*% a'.,'

APPENDIX A. ASYNCIIRONOUS COMMUNICATION TREES 183

aa

Figure A.3: A new receptionist definition.

(k)

a (k (•j.).

Figure A.4: Acceptance of a communication by an external actor.

that they represent computation in an open system: It is possible to send a

communication from the outside to a receptionist (the potential transitions

are included to account for this fact). However configurations contain all

the information necessary to map them into the trees and, furthermore, we

can commute the diagram of the composition maps in configurations and

T~o..

The mechanics of how T's are built will become clearer with the com-

position operation. Composition will allow us to combine acceptance of

o

,. - . * 4 . * 4-- .- 4.--.....: v - - .*-4.4 * - . 4 . 4.4.

*4 4 * 4 . -.

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 184

communications sent to the receptionists (positive label bindings) in one

atree with cceptance by the corresponding external actors (negative label

bindings) in a different tree to create an internal action of the composite.

We now provide three operations on T's, namely, (concurrent) composition,

restriction and relabeling.

Compoition

Composition, f, is a binary operation on T's such that:

II E TR 1 xEI X T R 2 x E2-* TR x E

where R (R 1 UIR2), E = (El - R 2) U (E2 -RI) and (RIfnR 2) 0. Let

-t e TR Eand u E TR2 X , then t 1 u has the following branches:

(i) For each branch of t representing a communication from the outside

to a receptionist (i.e., for the branches with the positive labels), there

is a branch which represents the input followed by the composition

with u of each of the trees it dominates. This branch reflects the fact

that communications may be received by receptionists in t before any

other actions take place. Mutatis mutandis for the receptionist of u.

(ii) For each branch of t representing an internal transition, a branch

corresponding to the internal transition followed by the composition

with u of the tree it dominates. This simply says that the internal

action could happen before any of the effects of composition happen.

Mutatis mutandis for branches of u.

.5.

'% ... % ,, , % % % %," ,,,., . .. ,.

*o ,...-- ~ -,- . - ~ .- .. . ~ * . . . -

APPENDIX A. ASYNCGIRONOUS COMMUNICATION TIEES 185

(iii) For each branch of t representing a communication to an external

actor P3 there are two possibilities. If 0 ! lR2 then there is simply a

equivalent branch followed by the composition with u of the tree it

dominates. Otherwise, for each branch of u representing a commu-

nication from the outside to the receptionist 13, there is an internal

action followed by the composition of the tree in u which follows ac-

cepting the given communication and the tree the "output" branch

dominates. The acceptance has been internalized because of the com-

position. Mutatis mutandis for "output" branches of u.

The composition operator preserves arrival order nondeterminism since

it simply represents the interleaving of all the possibilities.

Restriction

The restriction operation, \, removes a receptionist from a system. The

result is that the mail address removed is no longer available for composi- 0, :

tion with other trees. However, if the corresponding actor was involved in

accepting any communications from actors within the configuration, then

- these transitions are unaffected. One obviously can not remove internal

actions since they are not "guarded" by the mail address. Formally,

\a E TRxE-T(R (a})xE

Relabeling

Given a map from mail addresses to mail addresses, this operator changes

both the positive and negative bindings associated with each. It is unary
6... k

""

* * 0.Jll* 0

.

,,- , ,, + . . . , • .. . " . \ , • . . -'- ," "'..'..% o..,''" %• ... '. ..••.... % .o '•... °*''''... % % .'

,7 -j z.-,

APPENDIX A. ASYNCHRONOUS COMMUNICATION TREES 186

operator. Note that in an actor system, R n E = 0, therefore positive and

negative versions of the same label can not co-exist in the same T.

We skip the straight-forward recursive definitions of restriction and re- 4.

labeling.

The algebra now behaves like the algebra of CTs; in particular, the same

definitions of strong equivalence and observation equivalence can be used.

Observation equivalence on T's provides an intuitively abstract description

of actor systems and retains the right amount of information. We refer to

L [Milner 80] for details.

An interesting, and not too difficult exercise, is to draw sufficient frag-

ments of the T's for the two systems S, and S2 used in discussion of the

Brock-Ackerman anomaly (§7.3). These T's are indeed not observation

equivalent.

One remark may be pertinent, if peripheral, here. Milner has shown

that observation equivalence is a congruence relation for all operations ex-

cept the "+" operator. The counter-example which shows that observation

equivalence is not a congruence relation uses the absorption property of the

NIL tree under the + operation. The counter-example would not work if ,-"

NIL. had internal transitions to NIL. In any case, a congruence relation can

be defined in terms of observation equivalence.

: . 4]

.

187

References

[Ackerman 841 Ackerman, W. B. Efficient Implementation of Applicative
Languages. LCS Tech Report 323, MIT, March, 1984.

[Agerwala and Arvind 821 Agerwala, T. and Arvind. Data Flow Systems. Computer
i5, 2 (Feb 1982).

[Agha 841 Agha, G. Semantic Considerations in the Actor Paradigm of Concurrent

Computation. Proceedings of the NSF/SERC Seminar on Concurrency,

Springcr-Verlag, 1984. Forthcoming

[Agha 851 Agha, G. Actor Information Systems. M.I.T. A.I. Lab

[Atkinson and Hewitt 791 Atkinson, R. and Hewitt, C. Specification and Proof
Techniques for Serializers. IEEE Transactions on Software Engineering SE-5

No. 1, IEEE, January, 1979.

[Backus 781 Backus, J. Can Programming be Liberated from the von Neumann

Style? A Functional Style and Its Algebra of Programs. Communications of -

the ACM 21, 8 (August 1978), 613-641.

[Brinch Hansen 771 Brinch Hansen, P. The Architecture of Concurrent Programs.

Prentice-Hall, Englewood Cliffs, N.J., 1977.

[Brock 831 Brock, J. D. A Formal Model of Non-determinate Dataflow

Computation. LCS Tech Report 309, MIT, Aug, 1983.

[Brock and Ackerman 811 Brock J.D. and Ackerman, W.B. Scenarios: A Model of
Non-Determinate Computation. In 107: Formalization of Programming

Concepts, Springer-Verlag, 1981, pp. 252-259.

[Brookes 831 Brookes, S.D. A Model For Communicating Sequential Processes.

Tech. Rep. CMU-CS-83-149, Carnegie-Mellon, 1983.

[Clinger 811 Clinger, W. D. Foundations of Actor Semantics. AI-TR- 633, MIT

Artificial Intelligence Laboratory, May, 1981.

[Cook 811 Cook, S.A. Towards a Complexity Theory of Synchronous Parallel

Systems. L'Enseignement Mathematiqu Reveu Internationale, Geneva (Jan-'

June 1981).

[Costa and Stirling 841 Costa, G. and Stirling, C. A Fair Calculus of

Communicating Systems. Foundations of Computer Theory, LNCS,
Springer-Verlag, 1984.

[Dahl, Myhrhaug, and Nygaard 701 Dahl 0. J., Myhrhaug B., and Nygaard K.

Simula Common Base Language. Tech. Rep. S-22, Norwegian Computing

Center, October, 1970.

[Date 831 Date, C.J. An Introduction to Database Systems. Addison-Wesley, 1983.

a..,. ,.

, ..-J-a

,% '~~. ..,: ",. .- •...o -....-..............

188 "'

p [de Bakker 801 de Bakker, J.W. Mathematical Theory of Program Correctness.
* Prentice-Hall International, 1980.

Ide Bakker and Zucker 821 de Bakker, J.W. and Zucker, JA•. Processes and the
Denotational Semantics of Concurrency. Information and Control , 54
(1982), 70-120.

[Dijkstra 771 Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1977.

[Emden and Filho 821 van Embden, M.H., and de Lucena Filho, G.J. Predicate
Logic as a Language for Parallel Programming. In Logic Programming,
Academic Press, 1982.

[Feynman et al 65) Feynman, R., Leighton, R., and Sands, M. The Feynman

Lectures on Physics Addison-Wesley, 1965.

[Golson and Rounds 831 Golson,W. and Rounds,W. Connections Between Two
Theories of Concurrency: Metric Spaces and Synchronization Trees. -?

Information and Control, 57 (1983), 102-124.

[Gray 801 Gray, J. Experience with the System R Lock Manager. IBM San Jose
Research Laboratory, 1980.

[Greif 751 Greif, I. Semantics of Communicating Parallel Processes. Technical
Report 154, MIT, Project MAC, 1975.

[Gurd, et al 851 Gurd, J.R., Kirkham, C.C., and Watson, I. The Manchester
Prototype Dataflow Computer. Communications of the ACM 28, 1 (January
1985), 34-52.

[Harel 791 Harel. D. Lecture Notes in Computer Science Vol 68: First-Order

Dynamic Logic. Springer-Verlag, 1979.

[lenderson 80] Henderson, P. Functional Programming: Applications and
Implementation. Prentice-Hall International, 1980.

[lewitt 771 Hewitt, C.E. Viewing Control Structures as Patterns of Passing

Messages. Journal of Artificial Intelligence 8-3 (June 1977), 323-364.

[tlewitt 801 Hewitt C. E. The Apiary Network Architecture for Knowledgeable

Systems. Conference Record of the 1980 Lisp Conference, Stanford

University, Stanford, California, August, 1980, pp. 107-118.

[tlewitt 83] Hewitt. C. Some Fundamental Limitations of Logic Programming.
A.I. Memo 748, MIT Artificial Intelligence Laboratory, November, 1983.

[lewitt and Atkinson 771 Hewitt, C. and Atkinson. R. Synchronization in Actor

Systems. Proceedings of Conference on Principles of Programming

Languages, January, 1977, pp. 267-280.

[Hewitt and Baker 771 Hewitt, C. and Baker, H. Laws for Communicating ParallelI, Processes. 1977 IFIP Congress Proceedings, IFIP, August, 1977, pp. 987-992.

',=.1

o" .. .% " " ...% " % -.% .- ,,,. % % -°."°"• • ..'% .' '.' '°. ... • .= ' '°.' .%J-- -.

189

[tlewitt and de Jong 831 Hewitt, C., de Jong, P. Analyzing the Roles of
Descriptions and Actions in Open Systems. Proceedings of the National
Conference on Artificial Intelligence, AAAI, August, 1983.

[Hewitt, et al 841 Hewitt, C., Reinhardt, T., Agha, G. and Attardi, G. Linguistic
Support of Receptionists for Shared Resources. Proceedings of the
NSF/SERC Seminar on Concurrency, Springer-Verlag, 1984. Forthcoming

[Hoare 781 Hoare, C. A. R. Communicating Sequential Processes. CACM 21, 8
(August 1978), 666-677.

[Holland 751 Holland, J.H. Adaptation in Natural and Artificial Systems. U. of
Michigan Press, 1975.

[Hwang and Briggs 841 Hwang, K. and Briggs, F. Computer Architecture and
Parallel Processing. McGraw Hill, 1984.

[Kahn and MacQueen 781 Kahn, K. and MacQueen, D. Coroutines and Networks
of Parallel Processes. Information Processing 77: Proceedings of the IFIP
Congress, IFIP, Academic Press, 1978, pp. 993-998.

[Keller 771 Keller, R.M. Denotational Models for Parallel Programs with
Indeterminate Operators. Proceedings of the IFIP Working Conference on
Formal Description of Programming Concepts, IFIP, August, 1977.

[King and Collmeyer 731 King, P. and Collmeyer, A. Database Sharing: An
Efficient Mechanism for Supporting Concurrent Processes. Proceedings of

NCC, 1973.

[Liskov, Snyder, Atkinson, and Schaflert 771 Liskov B., Snyder A., Atkinson R.,
and Schaffert C. Abstraction Mechanism in CLU. Communications of the
ACM 20, 8 (August 1977).

[Lynch and Fischer 811 Lynch, N. and Fischer, J. On Describing Behavior and
Implementation of Distributed Systems. Theoret. Comp. Science 13, 1
(1981).

[Manthey and Moret 831 Manthey, M. and Moret, B. The Computational
Metaphor and Quantum Physics. CACM (February 1983).

[McCarthy 591 McCarthy, John. Recursive Functions of Symbolic Expressions and
their Computation by Machine. Memo 8, MIT, March, 1959.

[Mead and Conway 801 Mead, C. and Conway, L Introduction to VLSI Systems.
Addison-Wesley, Reading. MA, 1980.

[Meijer and Peeters 821 Meijer, A. and Peeters, P. Computer Network
Architectures. Computers Science Press, 1982.

[Milner 80] Milner, R. Lecture Notes in Computer Science. VoL 92: A Calculus of
Communicating Systems. Springer-Verlag, 1980.

o.°.

.. '

190

[Peterson 771 Peterson, JL. Petri Nets. Comput. Survey (Sept. 1977).

[Pnueli 831 Pnueli, A. On the Extremely Fair Treatment of Probabilistic

Algorithms. Proceedings of the Fifteenth Annual ACM Symposium on 'he

Theory of Computing, 1983.

[Pratt 821 Pratt, V. R. On the Composition of Processes. Proceedings of the Ninth

Annual ACM Conf. on Principles of Programming Languages, 1982.

[Scott 721 Scott, D. S. Lattice Theoretic Models for Various Type-free Calculi.

Proceedings 4th International Congress in Logic, Methodology and the

Philosophy of Science, Bucharest, Hungary, 1972.

[Scott 821 Scott, D. S. Domains for Denotational Semantics. ICALP-82, Aarhus,

Denmark, July, 1982.

[Seitz 851 Seitz, C. The Cosmic Cube. Communications of the ACM 26, 1 (January

1985), 22-33.

[Smyth 781 Smyth, M.B. Petri Nets. J. cf Comput. Survey Science (Feb. 1978).

[Stay 771 Stoy, Joseph E. Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. The MIT Press, Cambridge, MA, 1977.

[Theriault 831 Therault, D. Issues in the Design and Implementation of Act2.

Technical Report 728, MIT Artificial Intelligence Laboratory, June, 1983.

[von Neumann 581 von Neumann, J. The Computer and the Brain. Yale U. Press,
New Haven, Conn., 1958.

[Weng 751 Weng, K.-S. Stream-Oriented Computation in Data Flow Schemas.

TM 68, MIT Laboratory For Computer Science, October, 1975.

[Wirth 721 Wirth, N. The Programming Language Pascal. Eidgenossiche

Technische Hochschule Zurich, November, 1972. -

?"-'

5---

I .. . -- - . .-.- - .,,-.S*~

FILMED

9-85

DTIC
.......... --;.....-v....* ... ,,'**\-7..'.*!

