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Abstract

This thesis contains a comprehensive 3D Navier-Stokes computational study of the characteris-

tics of wakes of wind turbines operating in various flow conditions including interacting wakes

between a row of turbines. The computations were carried out using the actuator line technique

combined with the 3D Navier Stokes solver EllipSys3D and a LES turbulence model. Simple

models, based on applying body forces in the computational domain, are developed for impos-

ing sheared and turbulent inflow and their validity is discussed. A few computations on stand

alone turbines are compared to measurements and good to fair agreement are shown in terms

of respectively power coefficient and mean wake properties. The turbulence properties in the

wake are generally characterized by its spectral characteristics and include estimation of spec-

tral coherence, length scales and Reynolds stresses.

Simulations of the wake from an isolated turbine operating in uniform inflow at tip-speed ratios

ranging from λ = 3.21 to λ = 11.78 is presented and provides detailed information about the

wake development including vortex properties and turbulence characteristics.

Calculations on the wake of turbines subject to sheared inflow shows that besides an expected

vertical skewed wake the wake also becomes increasingly asymmetric in the horizontal direc-

tion as it is convected downstream. The latter phenomena, which is also often observed in

measurements, is argued to be caused by the rotation of the wake.

A detailed study is presented to investigate the influence of including turbulence in the inflow.

The study shows that the ambient turbulence causes the vortex system in the wake to become

unstable much closer to the rotor and as a consequence the wake becomes fully turbulent earlier

than if inflow turbulence is neglected. Furthermore, it is shown that the main effect governing

the large scale meandering of wakes is the large scale structures of the ambient turbulence field.

Finally studies are conducted on rows of respectively two and three turbines. The investigation

includes evaluation of the loading on the rotors and it is shown that the turbines are subject to

rather severe yaw moments, even in situations where the mean wind is oriented along the row.

This observation is indicative of large scale dynamics of the wakes.
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Dansk resumé

Den foreliggende afhandling inkluderer omfattende 3D Navier-Stokes beregninger af kølvan-

det fra vindmøller opererende under forskellige betingelser inklusiv interagerende kølvand

mellem møller placeret i rækker. Simuleringerne er udført ved hjælp af actuatorliniemodellen

kombineret med 3D Navier-Stokes løseren EllipSys3D og en LES turbulensmodel. Simple

modeller, baseret på anvendelse af volumenkræfter, til at påtrykke vindgradient og turbulens

er udviklet og deres anvendelse valideres. Nogle få beregninger på enkeltstående møller er

sammenlignet med målinger og god overenstemmelse er opnået både for effekt kurven samt

middelhastigheder og turbulensintensitet i kølvandet. Turbulensegenskaberne i kølvandet er

karakteriseret ved deres spektrale egenskaber og inkluderer estimering af spektral kohærens,

længdeskalaer og Reynoldsspændinger.

Simuleringer af kølvandet fra en isoleret mølle opererende i et ensartet indløb ved tiphastigheds-

forhold mellem λ = 3.21 to λ = 11.78 præsenteres og giver detaljerede informationer om køl-

vandets udvikling inklusiv hvirvel og turbulensegenskaberne.

Beregninger på kølvandet fra møller i en vertikal vindgradient viser at der, udover en forventet

lodret skævhed af kølvandet, også opstår en vandret asymmetri der vokser i størrelse nedstrøms

møllen. Det sidstnævnte fænomen er ligeledes observeret i flere målinger og det argumenteres

at asymmetrien skyldes rotationen af kølvandet.

Et deltaljeret studie af indflydelsen af at inkludere turbulens i indløbet viser at den omgivende

turbulens foråsager at hvirvelsystemet i kølvandet bliver ustabilt meget tættere på rotoren og

som følge heraf bliver kølvandet fuldt turbulent tidligere end hvis indløbet er laminart. End-

videre vises det at storskaladynamikken af kølvandet hovedsagligt er bestemt af de store ko-

hærente strukturer i den omgivende turbulens.

Afslutningsvis præsenteres numeriske simuleringer af rækker på henholdsvis to og tre møller.

Studierne inkluderer evaluering af lastpåvirkningerne på rotorene og det observeres at krøje-

momentlasterne kan være signifikante selv i tilfælde hvor middelvindhastigheden er i samme

retning som møllernes fællesakse. Dette er en indikation på storskalabevægelse af kølvandene.

2



Chapter 1

Introduction

Wind turbines clustered in wind farms are generally subject to a mixed type flow field which

in part is undisturbed and in part influenced by the wake from upstream turbines. As a con-

sequence, these turbines experience a flow field which is substantially altered compared to an

isolated turbine, which in effect reduce power production and increase fatigue loads. The usual

modeling approach used by industry for compensating for wake interaction is by increasing the

overall turbulence level and decreasing the inflow velocity in the design process, however, with

the disadvantages of not capturing the actual turbulence characteristics properly. Nor does such

a modeling approach satisfactorily take into account the important mechanism of wake deficit

meandering, which has been observed in field measurements and may contribute significantly to

the increased loads of downstream turbines. These deficiencies in the modeling of wind turbine

wakes have created a widespread desire in the wind industry to get more reliable predictions of

the flow field experienced by wind turbines operating in the wake of other turbines.

1.1 Prior works

Although wakes, as revealed from several comprehensive reviews [86], [14], [70], have been

a topic of intensive research during the last decades the basis of wind turbine aerodynamics is

still not fully understood even under simple operational conditions.

In the study of wind turbine wakes a distinct division is typically made between the near wake

and the far wake. Nevertheless, the definition of the two regions is somewhat ambiguous. Usu-

ally, the near wake is considered to be the region where the presence of the rotor is felt directly

by the number of blades and the blade aerodynamics. Using this definition the near wake is

essentially the region in which the helical vortex system formed behind the rotor remains stable

and distinct since the shed vortices are directly associated with the radial variation of the bound

vorticity on the blades. Therefore, depending on the rotor loading and the inflow conditions,

the near wake region may extent several diameters downstream of the turbine. Furthermore,

this definition, confusingly imply that the near wake includes the region considered to be the far

wake in the Blade Element Momentum (BEM) method [26], [65] as well as in some analytical

vortex methods [60], [61].

The far wake is the region beyond the downstream position where the wake dynamics are more

or less independent on rotor characteristics. In this region the vortex system formed by the rotor

is completely broken down and the flow field is governed by small scale turbulence.

3



4 Introduction

In the following a survey of previous works on wind turbine wakes will be presented. In the

first two subsections, the works on respectively the near and far wakes are reviewed. Note that

the studies, which consider the influence of shear, ambient turbulence and other external effects,

are described in the section about far wakes. The third subsection is dedicated to reviewing the

research work conducted using the actuator disc principle.

1.1.1 Near wake studies

A vast number of researches have been conducted on the near wake characteristics of wind tur-

bines.

Ebert and Wood [16], [17], [18] conducted a series of measurements in the near wake of a small

2 bladed horizontal axis wind turbine model at different tip speed ratios. They found that at

high tip speed ratios, the tip vortices contain a large part of the angular momentum in the wake

and since this angular momentum balance the power output of the turbine they concluded that

the properties of the tip vortices should be incorporated in new rotor models. Furthermore, they

showed that the pitch of the tip vortices remained rather constant within the first 0.4 rotor radii

downstream the turbine.

Medici et al. [52] carried out comprehensive wind tunnel measurements in the wake of differ-

ent model rotors using both hotwire anemometry and PIV. Fundamental characteristics of the

wake and tip vortices were shown both in axial and yawed flow. In the experiments the tip

vortices could be detected up to approximately 3 diameters downstream the rotor. Moreover,

they showed interesting results connected to yaw-control and large scale vortex shedding in the

wake.

Whale et al. [88] conducted PIV measurements in the wake of a three bladed model wind tur-

bine in a water tank and compared them with data obtained in the wake of two full scale turbines

located at two different sites. The comparison showed fair to rather poor agreement and the dis-

crepancies were attributed to various factors such as Reynolds number scale effects, water tank

blockage, complex terrain and other uncertainties in the full-scale measurements.

Later Whale and co-workers [89] made a PIV investigation of the properties of the wake of a

two bladed model rotor operating at different tip speed ratios and compared the results with

numerical simulations using an inviscid free vortex wake method. The study revealed good

qualitative agreement between the wake structure obtained from experiments and computations

in terms of wake shape, including expansion. Furthermore, it was shown that as long as simi-

larity is obtained in tip speed ratio, the behavior of the wake might be only vaguely sensitive to

blade Reynolds number.

The near wake has moreover been studied by means of vortex wake models with the wake ge-

ometry being either free [6] or prescribed [11]. Even though free wake models can be straight-

forwardly applied to general unsteady flow situations they are computationally costly and tend

to suffer from stability problems due to the intrinsic singularities of the vortex panels. On the

other hand, owing to their dependence on various parameters, prescribed wake models tend to

be limited to more or less well-known steady flow problems.

Also analytical vortex wake models have been proposed in which the wake structure and behav-

ior of the tip vortices is studied by considering the problem of determining the induced velocity

field and stability of a system of helical vortices.

Okulov [60] considered a vortex system consisting of an arbitrary number of identical slender

helical vortices with constant circulation and pitch. The study showed that for vorticity fields
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with helical symmetry simple expressions exist, relating the axial velocity to the tangential ve-

locity and the axial vorticity to the tangential vorticity.

More recently, Okulov and Sørensen [61] extended this work to more general applications by

embedding the system of helical vortices in different types of assigned flow fields. Thereby,

they developed a model suitable for analyzing wakes consisting of helical tip vortices as well as

the trailing vortex sheet of the blades and the root vortex. By means of a parametrical study they

presented stability properties of the tip vortices for assigned flows consisting of axisymmetric

helical vortices with different distributions of axial vorticity. In contrast to previous analytical

works they showed that the tip vortices may be stable and that the radial extents of the assigned

vorticity field strongly influence the stability properties. Results of their proposed model were

compared to the measurements obtained by Medici [52] and generally good agreement was

shown.

Full three-dimensional computations employing the Reynolds-averaged Navier-Stokes equa-

tions have been carried out by e.g. Sørensen et al. [78]. Although advanced CFD methods

have proven to be suitable for predicting and understanding the flow around wind turbines they

still have some shortcomings in terms of inaccurate turbulence and transition modeling. Fur-

thermore, these methods normally are too computationally demanding to obtain a fine grid

resolution in the wake.

Recently, however Zahle [91] presented full three-dimensional unsteady Navier Stokes compu-

tations on the NREL wind turbine using the so-called overset grid method to facilitate a high

resolution of both rotor and wake with a reasonable number of grid points. Good agreement

with measurements was obtained including the blade tower vortex interaction.

The same technique was later used by Zahle and Sørensen [92] to study the influence of grid

resolution on the integrated forces acting on the NREL Phase VI rotor. Their computations

showed that a high resolution of the region located beyond one rotor radius downstream of the

rotor only marginally affected the velocities in the rotor plane.

1.1.2 Far wake studies

The far wake has also been a subject of extensive research both experimentally and numerically.

A common difficulty in field measurements of the far wake is that the dynamically changing

inflow generally is not fully known and even in situations where turbulence is low data acqui-

sition is limited to rather few measuring stations. Therefore, it can be difficult to identify and

isolate the effect of a specific process; though with the emergence of the LiDAR technique

some of these problems can be greatly reduced. On the other hand research work conducted in

wind tunnels under controlled conditions often suffer from various scale and blocking effects

whereby the findings of such studies might not relate to full scale wind turbines.

The NREL Unsteady Aerodynamics Experiment [21], [68] and the more recent European MEX-

ICO project [71] are, so far, some of the very few wind tunnel experiments carried out on wind

turbines which are representative to full scale turbines. However, in the former project only few

wake measurements were included and in the MEXICO project the detailed PIV measurements

of the wake were only carried out in the region extending from approximately 1 diameter up-

stream to little over 1 diameter downstream of the rotor.

Semi-analytical far wake models have been proposed to describe the wake velocity after the

initial expansion [2], [23], [24]. Typically a near wake region is defined during which the pres-

sure recovers to the atmospheric level and the wake becomes fully developed. In this domain
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one dimensional momentum theory is normally used as a starting point for establishing the

wake deficit. After the near wake region the models usually assume rotational symmetry and

self-similarity of the wake deficit based on a Gaussian form or on profiles obtained from inves-

tigations on jets. A problem of most of these models is that they tend to depend on a number

of coefficients and parameters, such as the near wake length and expansion rate, which needs to

be empirically determined, hence questioning their validity in more general applications.

Furthermore, as these models mainly aim at capturing mean flow characteristics, they usually

do not correctly include the important dynamic wake meandering. It is greatly acknowledged

that wake meandering may considerably increase extreme loads and in particular yaw loads on

turbines located in wind farms [46]. The reason for this is that the meandering causes the wake

from upstream turbines to be swept in and out of the rotor plane of downstream turbines. As a

consequence a downstream turbine continuously experience part wake situations even in cases

where the mean wind is in line with the turbines. Moreover, the meandering significantly con-

tributes to the reduction of the depth of the mean wake deficit and hence models disregarding

the effect of meandering tend to under predict the power output of downstream turbines [22].

Ainslie [3] developed a model which included the effect of meandering on wake deficits by cor-

relating the large scale motion of the wake to the variability in the wind direction. Later, he [4]

compared model results to different full scale experiments and generally obtained good agree-

ment between measured and predicted centerline velocity deficit as a function of downstream

distance.

In their wind tunnel study of the wake flow characteristics behind a small wind turbine model,

Medici et al. [52] observed a clear indication of large scale vortex shedding similar to the well

known von Karman vortex street experienced behind two-dimensional cylinders and they hy-

pothesized that these findings might be connected with wake meandering.

Recently, Larsen and colleges [43], [44] presented a consistent physical theory for describing

the dynamic wake meandering. The basic conjecture behind the so called Dynamic Wake Model

(DWM) is that wake meandering is governed by the large scale lateral and vertical turbulence

components in the atmosphere - an interpretation which has been supported by Bingöl et al. [9]

who conducted LiDAR measurements of the wake from a full scale wind turbine located in the

field. For completing the theory of the DWM model, the formulation of the large scale wake

dynamics was further combined with models for respectively the mean velocity deficit and the

added wake turbulence in the meandering frame of reference. Larsen et al. [43] presented the

first steps toward developing a suitable model for the added wake turbulence in the meandering

frame of reference. In this context they proposed to use the enhanced spectral method of Nielsen

et al. [59], which allows for simulating the inhomogeneous, non-stationary and non-Gaussian

turbulence that normally characterize a wind turbine wake. However, such approach requires

detailed knowledge about the turbulence properties of the wake in terms of spectral character-

istics, length scales and spectral coherence.

These quantities have been studied previously through field measurements [32], [85], [80] wind

tunnel experiments [81] and simulations [13]. The uncertainty related to determination of the

scales of turbulence from measurements is, as discussed by Frandsen [24], and also mentioned

above, generally large due to scale effects, limited data acquisition and/or insufficient knowl-

edge about the ever changing inflow, which is also reflected in the rather large variability of the

reported wake length scales.

Therefore, it is beneficial to use numerical methods since these besides providing all needed

data about the wake also makes it easier to study the effect of a single parameter.
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Detailed numerical studies of the far wake, including the development of the Reynolds stresses,

have been carried out by Crespo and colleagues [12], [13], [27] using methods based on the

UPMWAKE model in which the wind turbine is supposed to be immersed in an atmospheric

boundary layer. This model uses a finite difference approach to solve the parabolized RANS

equations combined with a k − ǫ turbulence model. The code is capable of predicting some

fundamental effects in the far wake and generally has proved to compare reasonably well with

measurements but as the model is based on parabolized Navier-Stokes equations it cannot be

applied to situations where flow recirculation occurs.

As mentioned above wind shear and atmospheric turbulence is inherent for all wake measure-

ments carried out in the field. Nevertheless, computations on wind turbines operating in non-

uniform conditions are rare compared to the amount conducted in uniform inflow. Most of the

numerical studies conducted on wind turbine wakes in shear flows uses simplified representa-

tions of the rotors such as the actuator disc or line technique (see section 1.1.3).

Sørensen and Johansen [79] simulated the rotor designed in connection with the UPWIND

project subject to a strongly sheared inflow. For the simulation they used a spherical computa-

tional grid, which rotated with the rotor and thus no physical wall boundary was included. The

velocity shear was imposed at the inlet boundary in a way that ensured a constant low velocity

at ground level. The computations revealed considerable circumferential hysteresis effects of

the blade loading and showed disturbances of the velocity field upstream of the rotor, which

were much larger than for the same rotor operating in uniform inflow.

More recently, Zahle and Sørensen [93] used full Navier Stokes computations combined with

an overset grid technique to simulate the flow over two different rotors operating in a strongly

sheared inflow. Thereby, they facilitated a more correct inclusion of the wall boundary and the

numerical predictions were compared to those obtained using a spherical grid similar to the one

presented by Sørensen and Johansen [79]. Although, the study revealed reasonable good agree-

ment in the predictions of the blade forces the induced velocities upstream of the rotor, were

observed to differ significantly. When using the overset grid technique the upstream influence

was reduced to levels comparable to that seen for a uniform inflow case, as should be expected,

and therefore it was concluded that this method were more suitable for simulating turbines in

shear flow.

Besides, presenting the loading on the rotors the downstream development of the wake was

also investigated qualitatively. Contours of the instantaneous velocity and vorticity in a vertical

plane along the center axis revealed a skewed wake due to the higher transport velocity at the

top. Moreover, contour plots of the axial velocity at various downstream cross-sections revealed

a development where the wake became increasingly horizontally asymmetric with downstream

position.

The horizontal asymmetry was not observed to the same extent immediately downstream of the

rotor and also was not seen in the blade loads, which were found only to lag the blade azimuth

position moderately. Evidently, it seems that, rather than the load distribution, it is the rotation

of the wake which is responsible for the asymmetry as it causes low velocity air from the lower

part of the wake to surge upwards on one side and high velocity air from the upper part to move

downwards on the other side. This is an interesting observation since it might be expected that

when the load distribution on the blade is nearly the same at the two horizontal positions then

this should also be reflected in a nearly horizontally symmetric development of the wake.

In fact, studies of wakes of turbines operating in shear flows are usually limited to studying the

development in the vertical plane intersecting the center axis, which represents the most ob-
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vious difference from the purely rotationally symmetric wake, while the full description of the

flow field have received less attention. However, there are several field measurements [90], [10],

which seems to indicate that the wake is asymmetric in the horizontal direction. Sometimes, the

asymmetry is explained as being due to upstream obstacles or other external effects [27]. Nev-

ertheless, the computation of Zahle and Sørensen [93], suggest that the asymmetry may also be

due to the rotation of the wake. This hypothesis is further supported by the work of Jimenez

et al. [38], where a measured horizontal asymmetry of the wake could not be reproduced by a

constant loaded rotor - a model which does not include rotation.

1.1.3 Actuator disc models

The numerical simulations presented in this work are all conducted using the actuator line

method, which is described in more detail in chapter 2. However, there exists a large vari-

ety of methods, which utilize the same overall principles and therefore this section is devoted to

reviewing the various formulations of these models and their application.

Characteristic for all the methods is that they use equivalent forces to represent the rotor while

the surrounding flow field is governed by a full set of Euler or Navier Stokes equations. The

advantage of this technique is mainly that the presence of the rotor is modeled without having to

resolve the viscous airfoil boundary layer and therefore the grid resolution can be significantly

reduced compared to full CFD.

The simplest formulation is the constantly loaded actuator disc, in which the forces representing

the rotor are prescribed and distributed on a permeable disc of zero thickness. This approach

has been adopted by several researchers to study and validate the assumptions underling the

momentum theory [72] as well as for giving information about fundamental features of axisym-

metric wakes including unsteady wake states [74].

More recently, Jimenez et al. [38] used a constant loaded actuator disc in combination with

large eddy simulations of the flow field to study the properties of the Reynolds stresses and in

later work [39] also the spectral coherence in the wake of turbine operating in a modeled atmo-

spheric boundary layer. The presented results were in both cases found to be in fair agreement

with experiments and it was concluded that large eddy simulations are useful for obtaining de-

tailed information about wake flow characteristics.

More accurate rotor modeling is achieved by using the generalized actuator disc method, which

essentially represents a straight-forward extension of the blade element momentum method

(BEM). The main difference is that, whereas the BEM is based on the assumption of the flow

taking place in radial independent stream tubes the generalized actuator disc method has no

restriction on the kinematics of the flow since it is governed by the unsteady Euler or Navier

Stokes equations. Thus, in the generalized actuator disc method the aerodynamic forces act-

ing on the rotor are, as in the BEM, computed from two dimensional airfoil characteristics,

corrected for three-dimensional effects, using a blade element approach. In order to model an

actual rotor with a finite number of blades, a tip correction is usually applied to the forces and

subsequently they are distributed evenly along each annular element.

Numerical simulations of actual wind turbines employing the generalized actuator disc model

have been carried out by Sørensen et al. [72] and Mikkelsen [56] in axisymmetric flow con-

dition in order to study unsteady phenomena and for rotors subject to conning by Madsen and

Rasmussen [45] and Mikkelsen et al. [55].

Masson [51] used the actuator disc technique and a k − ǫ type turbulence model to simulate a
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wind turbine operating in uniform inflow and later Masson and colleagues [5], [40] devised a

technique for simulating rotors operating in an atmospheric boundary layer with different types

of stratification.

Mikkelsen [56], used an actuator disc approach combined with a full 3D projection of veloci-

ties and forces on the disc for establishing approximate simulation of a rotor operating in yaw

misaligned conditions. The computed results were found to be in reasonable agreement with

measurements; however, a major limitation of the method is that it is incapable of producing

skewed wake geometries.

A formulation of the actuator disc method, in which the forces acting on the disc are determined

from the local flow conditions in a fully three dimensional manner has been used by Ivanell et

al. [37] for simulating a small wind farm consisting of 3×3 wind turbines. In this study the tur-

bines were operating in a logarithmic sheared velocity profile and simulations were conducted

both with and without inclusion of inflow turbulence. Besides giving a qualitative description of

the wake behavior it was also shown that the inflow angle of the oncoming flow and the ambient

turbulence level had a significant effect on the total power output of the park.

The main limitation of the actuator disc method is that it strictly speaking only is valid for ro-

tationally symmetric flow conditions since the forces at each spanwise section are distributed

evenly in the azimuthal direction. This also imply that the presence of the blades is taken as an

integrated part in the circumferential direction and hence the method cannot capture the influ-

ence of the tip vortices.

To overcome this limitation Sørensen and Shen [75] developed the actuator line model, where

the loading, is distributed along lines representing the blades of the turbine in a fully three-

dimensional domain.

This technique, combined with the Navier Stokes equations, was used by Mikkelsen [56] and

Ivanell [35] for simulating the wakes of a wind turbine operating in steady uniform inflow and

by Mikkelsen [56] for a yawed rotor.

Mikkelsen et al. presented actuator line computations on both isolated turbines [57] and rows

of wind turbines [58] placed in prescribed inlet velocity profiles using a simple method based

on introducing body forces in the entire computational domain.

Ivanell et al. [36] conducted actuator line computations with a high resolution of the wake to

study the stability properties of the tip and root vortices formed in the wake of a wind turbine

operating in a laminar and uniform inflow.

The final, and most advanced, class of hybrid methods described in this section is the so-called

actuator surface model. This model extent the principles of the actuator line method by dis-

tributing the forces, obtained at each airfoil section, along the chord line in a manner that repre-

sent the chordwise pressure difference distribution over the airfoil. Thereby, the method more

closely resembles the local flow field around the local airfoil section, however still without hav-

ing to resolve the viscous boundary layer.

Shen and Sørensen [69] proposed a version of the actuator surface model in which the local

blade forces are distributed along the airfoil chord according to a set of empirical relations ex-

pressing the chordwise pressure difference as a function of airfoil shape and angle of attack. The

empirical functions were established by fitting curves to the chordwise pressure obtained from

2D airfoil computations using the XFOIL software. The presented model was used to simulate

the flow past a Nordtank 500 kW wind turbine and the numerical predictions were compared

with actuator line computations. The comparison showed only small differences but generally

the actuator surface model more accurately predicted the flow structure near the blades and in
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the region of the tip vortices. Furthermore, it was shown that a certain minimum of grid points

are needed in the region of the rotor blades in order to capture correctly the flow around the

airfoil.

Dobrev et al. [15] used the actuator surface model together with a simplified representation of

the chordwise pressure distribution to simulate the NREL phase VI wind turbine. Comparison

with measurements showed that the model was capable of reproducing the mechanical power

for low and moderate inflow velocities; whereas larger deviations were observed at high veloc-

ities where the flow field is detached.

1.1.4 Summary and status

From the above given literature survey the following conclusions about the state of the art of

wind turbine wake research can be made:

• The experimental work conducted in wind tunnels are generally put at a disadvantage

due to too low Reynolds number and other scale effects. On the other hand in field

measurements the flow conditions are generally not fully known due to terrain effects,

wind shear, turbulence and changes in wind direction, which complicates identifying a

specific phenomenon. For this reason it should be appreciated that, unless the datasets

from the given sites are very large, validating numerical models through comparison with

field measurements of the wake may be questionable because any observed agreement or

discrepancy could be somewhat coincidental.

• Even though a large variety of numerical methods have been developed, ranging from

inviscid vortex methods to full unsteady Navier-Stokes based techniques, many of which

has proven to show an acceptable agreement with a given set of measurements, it seems

that no one has attempted to use these methods for providing more complete and gen-

eral features of unsteady wind turbine wakes including a satisfactory description of its

turbulence characteristics.

• Most of the work conducted so far has either considered the near wake or the far wake,

whereas the intermediate region, where the vortex system undergoes a transition from or-

ganized flow structures to a fully turbulent flow has received less attention. In this context

the stability properties of the tip vortices are of paramount importance, especially in rela-

tion to wind turbines that are grouped in wind farms, since it is clear that if a wind turbine

is located in a wake consisting of stable tip vortices it will be more severely loaded than if

the vortices break down by instability. Although, the stability of helical vortices has been

studied both analytically [60], [61] as well as through simulations [87] and experiments

[19] it appears that the knowledge about this topic is still far from satisfactory, even for

simple inflow conditions.

• The basic aerodynamic behavior of wakes of wind turbines subject to sheared and/or

turbulent inflow are other issues which are far from well understood. While wind shear

and inflow turbulence is an integrated part of all field measurements, it appears that only

few research works have been dedicated to explicitly treating their impact on wind turbine

wakes. Most of the investigations on the influence of sheared inflow on the wake only
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considers mean properties (velocity and turbulence intensity) in a vertical plane placed

along the center axis of the turbine. In fact it seems that the recent computational study of

Zahle et al. [93] is the first where examples of the complete three dimensional behavior

of the wake from a wind turbine operating in sheared inflow is presented.

• The physics behind large scale wake meandering is still not completely understood. Al-

though several research works indicate that the meandering is driven mainly by the large

scale turbulence components of the atmosphere, the phenomena is presumably also influ-

enced by the large coherent structures formed as consequence of vortex break down in a

manner which is not known. Nevertheless, the model proposed by Larsen and colleagues

[43] is promising since it captures what is believed and seems to be the most important

physics of wake meandering and in the same time is easily integrated in existing aeroe-

lastic wind turbine models. However, in order to complete this method, suitable models

for the wake deficit as well as for the added wake turbulence described in the meandering

frame of reference is required.

1.2 Present work

This thesis presents full unsteady three-dimensional Navier Stokes simulations of wakes of wind

turbines operating in various inflow conditions using a method, which combines large eddy sim-

ulations with an actuator line technique.

The objective of the investigation is to examine in detail the properties of wind turbine wakes

and to propose consistent ways of characterizing them. Based on the state of the art of wind

turbine wake research the thesis mainly aims at providing more insight into the dynamic fea-

tures of wind turbine wakes such as wake deficit development, vortex breakdown, turbulence

properties and wake meandering. The main focus is on the wake of isolated turbines subject

to different flow conditions, including wind shear and/or turbulent inflow, but also results from

simulations of two and three interacting wakes are discussed in detail.

The remaining parts of this thesis is organized as follows:

Chapter 2 describes the numerical methods used for simulating the wind turbine wakes and is

followed by a study of the sensitivity of the simulations to various solver and flow parameters

in chapter 3.

Thereafter a study on isolated turbines is presented in which the complexity of the inflow con-

ditions is systematically increased. Chapter 4-6 present the numerical simulations of the wake

of a turbine operating in uniform inflow at different tip speed ratios. The first of these chapters

describe the numerical setup and shows the initial results, while the two subsequent chapters

present respectively the vortex properties and the turbulence characteristics of the wake.

Chapter 7 consists of a comprehensive study of the blade loading and the wake development

from a wind turbine operating in a sheared non-turbulent inflow.

In chapter 8-9, an investigation of the wake from a turbine subject to a non-sheared turbulent

inflow is carried out. Initially, the overall wake properties are compared to those observed in

uniform inflow. Thereafter, a detailed study of the wake turbulence characteristics is conducted

and the results are compared to those obtained from a corresponding simulation of another tur-

bine.

As a final study on isolated wind turbines chapter 10 presents a simulation and analysis of the

wake of a turbine operating in sheared and turbulent inflow.
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The chapters 11-12 are devoted to investigating the flow field between a row of turbines. To

begin with a row of three turbines is considered in a situation where the row is aligned with

the mean wind, i.e. full wake operation. This study includes both laminar and turbulent inflow

conditions.

Following this the wake of two turbines subject to a strongly sheared and low turbulent inflow

are simulated in a case where the downstream turbine operates partly in the wake of the up-

stream one.

Finally, the main results of the thesis are summarized in chapter 13.

Appendix A provides some important quantities in the analysis of turbulent flows and discusses

their application in the study of wind turbine wakes.



Chapter 2

Numerical Modeling

In this chapter the basis of the models used for the computations of wind turbine wakes is

presented together with a description of the simulated wind turbines.

2.1 Actuator line model

The actuator line method, introduced by Sørensen and Shen [75], is a fully three-dimensional

and unsteady aerodynamic model for studying the flow field around wind turbines. The method

combines a three-dimensional Navier-Stokes solver with a so-called actuator line technique in

which body forces are distributed radially along lines representing the blades of the wind tur-

bine. Originally the method was formulated in vorticity-velocity variables but later Mikkelsen

[56] reformulated it in primitive variables (pressure-velocity) in order to combine it with the

flow solver EllipSys3D to be described later. The basis of the model is the incompressible

Navier-Stokes equations

∂V

∂t
+ V · ∇V = −1

ρ
∇p+ ν∇2V + f , ∇ · V = 0 (2.1)

where f denote the body forces, which represent the loading on the rotating blades.

The body forces acting on the blades are determined using a blade element approach combined

with tabulated two-dimensional airfoil characteristics. Figure 2.1 shows a cross-sectional airfoil

element at radius r in the (θ, z) plane.

The local velocity relative to the rotating blade is determined from the shown velocity triangle

as

Vrel =
√

V 2
z + (Ωr − Vθ)2 (2.2)

Here, Ω denotes the angular velocity and Vz and Vθ are the velocities in the axial and tangential

direction, respectively. The flow angle between Vrel and the rotor plane is determined as

ϕ = tan−1(
Vz

Ωr − Vθ

) (2.3)

13
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Figure 2.1: Cross-sectional airfoil element showing velocity and force vectors

The local angle of attack is given by α = ϕ− γ, where γ denote the local pitch angle. It should

be emphasized that the angle of attack, in the present work, is determined without subtracting

the induction from the bound vortices. Having determined the angle of attack and the relative

velocity the lift and drag force per spanwise length are found as

f 2D = (L,D) =
1

2
ρV 2

relc(CLeL, CDeD) (2.4)

where CL = CL(α,Re) and CL = CL(α,Re) are the lift and drag coefficients, respectively, Re
is the Reynolds number based on chord length c and eL and eD denote the unit vectors in the

direction of respectively the lift and drag.

The applied aerodynamic blade forces need to be distributed smoothly on several mesh points

in order to avoid singular behavior. In practice the aerodynamic blade forces are distributed

along and away from the actuator lines in a three-dimensional Gaussian manner by taking the

convolution of the computed local load, f , and a regularization kernel ηǫ as shown below

f ǫ = f ⊗ ηǫ, ηǫ(d) =
1

ǫ2π3/2
exp

[

−
(

d

ǫ

)2
]

(2.5)

Here d(= |x − sei|) is the distance between cell centered grid points and points at the i′th
actuator line and ǫ is a parameter that serves to adjust the concentration of the regularized load.

Hence, the regularized force per unit volume becomes

f ǫ(x) =
B
∑

i=1

∫ R

0

f 2D(s)ηǫ(|x − sei|)ds (2.6)

The influence of the parameter ǫ will be studied in chapter 3.

The advantage of representing the blades by airfoil data, as it is done in the actuator line model,

is that much fewer grid points are needed to capture the influence of the blades compared to

what would be needed for simulating the actual geometry of the blades. Therefore, the actuator

line model allows for a detailed study of the dynamics of the different wake structures, such

as the tip and root vortices, using a reasonably number of grid nodes. Furthermore, the model

benefits from being applicable with simple structured grids and therefore issues connected to

grid generation do not occur. On the other hand, a drawback of the method is its reliance on
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tabulated airfoil characteristics as well as the models connected to these data, which are needed

for simulating complicated phenomena such as dynamic stall, transition and three-dimensional

effects. However, as the main purpose of the present thesis is to study fundamental wake effects

it is considered of minor importance to capture the loads on the rotor exactly.

2.2 Flow solver - EllipSys3D

The computations of the global flow field have been carried out using the 3D flow solver

EllipSys3D developed by Michelsen [53], [54] and Sørensen [77]. This code solves the

discretized incompressible Navier-Stokes equations in general curvilinear coordinates using

a block structured finite volume approach. EllipSys3D is formulated in primitive variables

(pressure-velocity) in a non-staggered grid arrangement.

In EllipSys3D the solution to the Navier Stokes equations is advanced in time using an itera-

tive time-stepping method. In each time step a number of sub iterations are carried out where

the momentum equations are used as a predictor and the rewritten continuity equation (pressure

correction equation) is used as a corrector for the solution at the subsequent time step. The pres-

sure correction equation is in the present work solved using the SIMPLE algorithm and pressure

decoupling is avoided using the Rhie/Chow interpolation technique. The convective terms were

discretized using a hybrid scheme combining the third order accurate QUICK (10%) scheme

and the fourth order CDS scheme (90%). This scheme was employed as a compromise between

avoiding the unphysical numerical wiggles, occurring when using the fourth order CDS and

limiting numerical diffusion due to the upwinding nature of the QUICK. The influence of dis-

cretization scheme is discussed in 3.

Large eddy simulation (LES) was used to model the small unresolved length scales of turbu-

lence. In LES the governing equations are obtained by filtering the time dependent Navier-

Stokes equations in physical space such that those eddies which are below a certain size are

filtered out. The resulting equations thus only govern the dynamics of the large scales, while

the smaller scales are modeled by some eddy-viscosity based sub-grid scale model. In prac-

tice, the finite volume discretization of the flow equations works implicitly as a filter where the

scales larger than the grid spacing are resolved while the scales below are modeled using an

eddy-viscosity based sub-grid scale model.

A vast number of turbulence models for LES have been proposed as reviewed by Sagaut [67]

and in the present work the subgrid scale (SGS) viscosity was modeled using the vorticity based

mixed scale model by Phuoc [62]. In this model the SGS viscosity is given by

νsgs(x, t) = ρCm|∇ × V̄ (x, t)|α(q2
c )

1−α
2 (x, t)∆̄1+α (2.7)

Here ρ is the density, V̄ is the filtered velocity, ∆̄ is the filter cut-off length, which is set equal

to ∆V ol1/3, where ∆V ol is the volume of a given cell, Cm and α are constants which here are

set to respectively 0.01 and 0.5. The kinetic energy q2
c is evaluated in physical space as

q2
c (x, t) =

1

2
(v̄i(x, t))

′(v̄i(x, t))
′ (2.8)

Here, (v̄)′ = V̄ − ˜̄V , with ˜̄V denoting the doubled filtered velocity, represents the high frequency

part of the resolved velocity field. The additional filter designated with a tilde is referred to as
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the test filter. The mixed scale model has been chosen because of its simplicity and because it

both accounts for the dissipation of energy and the important interaction between the smallest

resolved scales and the largest unresolved scales.

2.3 Modeling the atmospheric boundary layer

Several methods have been used in CFD to simulate the effect of the atmospheric boundary

layer. The simplest method is to assume a laminar flow and just impose a given wind shear

profile at the inlet and allowing for some development through the domain. This approach was

used by Sørensen and Johansen [79] and Zahle and Sørensen [93] to study the wake of a wind

turbine operating in extreme wind shear.

The usual approach for simulating the turbulent wind over rough terrain is to solve the incom-

pressible RANS equations together with the high Reynolds number k − ǫ turbulence model

often combined with a law of the wall model to capture the inner near wall region, see e.g. [77].

Using this approach the mean equilibrium wind shear profile is related to the wall shear stress.

More recently LES based models have also been applied for simulating the atmospheric bound-

ary layer over complex terrain. In order to reduce computational costs these methods are often

combined with models for the flow in the near wall region either in terms of a wall function

or through the use of hybrid methods, which simulates the near wall region using RANS. A

formulation of the former of these methods were in combination with an actuator disc approach

used by Jimenez et al. [38], [39] for simulating the wake of a wind turbine operating in an

atmospheric boundary layer.

A version of the more physical hybrid model was implemented in EllipSys3D by Bechmann

[7] and used with success in the study of three atmospheric test cases. Though this model is

basically capable of capturing a wide range of turbulent structures in the atmosphere such work

still has not been combined with studies of wind turbine wakes.

In the present work the atmospheric boundary layer is modeled using a technique where body

forces applied to the entire computational domain is used to impose a given but arbitrary steady

wind shear profile, while free-stream turbulence is modeled by introducing synthetic turbulent

velocity fluctuations to the mean flow upstream of the rotor.

2.3.1 Modeling the mean wind shear

The method of imposing a given wind shear profile by applying body forces was presented by

Mikkelsen et al. [57] and is essentially based on the immersed boundary technique. Tradition-

ally the immersed boundary technique is used to deal with problems in complex geometries

since it offers a simple way of coping with boundaries that do not comply with the mesh layout.

A review of the various applications of the immersed boundary technique is provided in [66].

Here, the technique of introducing body forces will be used to prescribe a desired mean velocity

profile in the entire domain. Hence, the idea is to conduct an initial computation without the

wind turbine included in the domain in order to establish the force field required to obtain the

desired mean wind shear profile. The obtained steady force field is afterward stored and fixed

in the subsequent computation where the wind turbine is included.

In the following the method will be described for the unsteady case, however, the method easily

applies for the steady case as well.
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In order to determine the body force required to obtain a desired velocity in a given computa-

tional cell consider again the incompressible Navier-Stokes equations

∂V

∂t
+ V · ∇V = −1

ρ
∇p+ ν∇2V + f , ∇ · V = 0 (2.9)

As mentioned in section 2.2 EllipSys3D solves this coupled set of equations using the SIM-

PLE/PISO predictor corrector method. In discretized form the integrated momentum equation

yields a large system of linear equations

APV
t+∆t
P +

∑

i

AiV
t+∆t
i = SP + fP (2.10)

Here V denotes any of the three velocity components, S is a source term that includes the

pressure and body forces and f refer to the external body force which is to be adjusted to

establish a desired velocity. The subscript P denotes the current cell and the identifier, i =
E,W,N, S,B, T , refer to the neighboring cells. From the discretized momentum equation the

external force required to establish the desired velocity U0 in the computational cell P at a given

time step is predicted as

fP = APU0 +
∑

i

AiV
t+∆t
i − SP (2.11)

This procedure is carried out for all cells in the domain and continued until a converged steady

state shear profile is obtained.

The above method for imposing a prescribed wind shear is easy to implement and generally

has good convergence properties. Though, it evidently does not simulate the real physics of the

atmospheric boundary layer it is believed to capture the most important features in relation to

the simulation of wind turbine wakes.

In order to illustrate the use of the method and to evaluate the expected influence of the forces

needed to sustain a given velocity profile consider a simple fully developed laminar flow above

an infinite flat plate as sketched in figure 2.2. The wall is considered infinite in the horizontal

Wall

Mean flow

y

z

Figure 2.2: Sketch of idealized flow over a flat plate

directions with no variation in any flow properties in these directions. In this case Vx = Vy = 0
and the Navier-Stokes equation reduces to the following ordinary differential equation

ν
d2Vz

dy2
+ f = 0 (2.12)



18 Numerical Modeling

where f represents the prescribed body forces

Assuming, as it is done in all the computations involving modeling of the atmospheric boundary

layer presented in this thesis, that the mean velocity profile may be expressed in terms of a power

law profile

Vz = V∞ζ(η), ζ(η) = ηα, η =
y

H
(2.13)

where H is the hub height of the wind turbine. Then differentiating twice gives the following

expression for the body forces needed to sustain the given velocity profile.

f(η) = −α(α− 1)ν
V∞
H2

ηα−2 (2.14)

Now, what is most relevant for the present work is the expected influence of the applied forces

on a wind turbine wake. This is evaluated by computing the added effect, Eflow per unit volume

required to maintain the power law profile and integrate across a volume representative for the

wake. Considering a wake region with a volume of V ol = D2L having center at hub height H .

In this case the total effect of the prescribed force field on the wake is

E =

∫

V ol

EflowdV ol = µDL

∫ H+R

H−R

Vz
d2Vz

dy2
dy =

µV 2
∞

DL

H

∫ 1+R/H

1−R/H

ζ
d2ζ

dη2
dη = µV 2

∞

DL

H
β (2.15)

where

β =

∫ 1+R/H

1−R/H

ζ
d2ζ

dη2
dη =

[

α(α− 1)

2α− 1
η2α−1

]1+R/H

1−R/H

(2.16)

Expressing the effect from the wind turbine wake system as

P =
1

2
πγR2ρV 3

∞CP (2.17)

where γ is the fraction of energy transferred to the wake and CP is the power coefficient. Then,

the relative effect of E compared to P is

ε =
E

P
=

µV 2
∞

DL
H
β

1
2
πR2ρV 3

∞CPγ
=

4β

πCPγ

L

H

1

Re
=

ε0

Re
, ε0 =

4β

πCPγ

L

H
(2.18)

Thus, the effect of the force field given by equation 2.14 on the wake system is inversely pro-

portional to the Reynolds number. This is not surprising since at high Reynolds numbers the

flow only undergoes limited development and hence the forces needed to maintain a given inlet

profile are small.

To get a more complete impression of the magnitude of ε figure 2.3 displays a representative

plot of ε0 as a function of α. For the shown case the maximum effect of the prescribed force field

on the wake is in the order of 20/Re. Therefore, considering the magnitude of the Reynolds

numbers (O(105)) of the computations presented in this thesis it seems reasonable to use body

forces to prescribe the mean shear profile.
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Figure 2.3: Variation of ε0 as a function of α; H/R = 2, L/H = 5, CP = 0.5 and γ = 0.15

2.3.2 Modeling the atmospheric turbulence

The atmospheric turbulence is modeled by introducing artificial turbulent fluctuations upstream

the wind turbine.

Generation of inflow turbulence

The introduced turbulence was generated using the method of Mann [48], [49], which is based

on a model of the spectral tensor. This algorithm models the spectral tensor (three-dimensional

spectrum) using rapid distortion theory, implying a linearization of the Navier Stokes equation,

combined with an assumption of linear shear and a model for eddy lifetime.

The algorithm of Mann is capable of simulating all three velocity components of a three-

dimensional incompressible turbulence field, which is homogeneous, stationary, Gaussian,

anisotropic and has the same second order statistics as the atmosphere. The output of the algo-

rithm is a spatial box of equidistantly spaced turbulence. Here, the z-axis is in the direction of

the mean wind speed and is inferred as a time axis via Taylor’s frozen turbulence hypotheses.

It should be noted that, since the simulated turbulent fluctuations are periodic in all directions,

turbulence is generally generated in a box with each of the cross flow dimensions twice the size

wanted and then only one quarter (the lower left corner) of the box is used as input in the later

modeling of the inflow turbulence.

Applying the turbulent fluctuations

The usual approach adopted when applying turbulent fluctuations from a pre-generated pseudo

turbulence field is simply to superimpose the fluctuating velocities to the mean velocities at the

inlet boundary [41]. Here, however, it is, as illustrated in figure 2.4, proposed to introduce the

turbulence field in a plane located just upstream of the rotor and not at the inlet, whereby the

turbulent fluctuations are better preserved prior to impacting the rotor.

Furthermore, instead of adding turbulent fluctuations directly to the mean flow, it is proposed

to use unsteady concentrated body forces for generating the prescribed turbulent fluctuations.

The reason for using this approach is mainly to avoid possible problems with lack of continuity;
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Figure 2.4: Iso-surfaces of vorticity magnitude of wake of wind turbine operating in sheared

and turbulent inflow.

Even though the turbulence generator by Mann automatically produces incompressible fields,

continuity is generally not conserved in a discretized domain. This is not a problem when

used in an aero-elastic model but can be problematic in a numerical simulation and therefore

introducing the synthetic turbulence in terms of body forces rather than, as a mass source/sink

seems beneficial.

The basis of the proposed method is identical to that used for prescribing the steady shear

profile. From the discretized momentum equation the external force required to establish a

fluctuation u0 about the mean V in the computational cell P at a given time step is predicted as

fP = AP (V + u0) +
∑

i

AiV
t+∆t
i − SP (2.19)

During the following sub-iterations the instantaneous solution will converge toward the desired

velocity.

The above procedure is carried out at each time step for all mesh points in the given plane

upstream of the rotor. To circumvent possible problems of singular behavior the applied forces

are smeared in the direction normal to the plane using a one-dimensional Gaussian approach.

Hence the forces are distributed away from the plane by using the convolution

f ǫ = fP ⊗ ηǫ, ηǫ(z) =
1

ǫ
√
π

exp

[

−
(

z − zd

ǫ

)2
]

(2.20)

Again ǫ is a parameter that serves to adjust the concentration of the regularized load and d =
z − zd is the normal distance from a grid point to the turbulence plane. In the present work the

parameter ǫ is set equal to the side length of a grid cell.

Since the resolution of the grid used for generating the turbulence normally is coarser than the

grid used in the subsequent numerical simulation of the wind turbine both spatial and temporal

interpolation is required. For a given time t in the simulation, two successive planes from the

turbulence box corresponding to the turbulent field at time Ti and Ti+1, where Ti < t < Ti+1 is

used as input. For each of these planes bilinear interpolation is used to get the velocity in point

P at respectively time Ti and Ti+1. Thereafter these velocities are interpolated in time to get the

velocity at time t.
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2.4 Computational domains

All computations in the present work have been conducted in Cartesian computational domains

and here some of their common features will be described. Two different grid configurations

have been used depending on the given flow problem: one for computations on wind turbines

operating in non-sheared inflow and one for wind turbines operating in sheared inflow. The

overall layouts of the two configurations are sketched in figure 2.5, which also serves to define

the used coordinate system.

The dimensions of the grids are Lx ×Ly ×Lz, where Lz denotes the domain length (in the flow

direction), Ly the domain height and Lx the domain width. The actuator lines were in all cases

a)
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Figure 2.5: Sketches of computational domains; a) Cross-section of grid for uniform inflow; b)

Cross-section of grid for sheared inflow; c) Top view of the two grid layouts.

rotating in the z-plane and positioned as indicated in the figures. In order to resolve the strong

gradients in the vicinity of the actuator lines and in the same time preserving the generated flow

structures in the wake a high concentration of grid points were distributed equidistantly in the

region around and downstream the rotor. The dimensions of the equidistant region, occasionally

referred to as the near domain, are chosen according to the given flow problem but in general its

height and width extents outside the rotor plane in order to account for wake expansion. Outside

the equidistant region grid points were stretched away toward the outer boundaries. In all the
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computations the resolution in the near domain corresponded to 30 grid points per rotor radius.

In order to facilitate parallelization of the computations the grid was divided into a number of

blocks with an equal number of grid points in each direction.

For the computations on turbines subject to uniform mean inflow the following boundary con-

ditions were applied:

• At the inlet boundary the velocity in the z-direction was assumed uniform and equal to

the free-stream velocity i.e. Vz = V∞, while the velocity components in the x and y
direction were zero, i.e. Vx = Vy = 0.

• At the outlet boundary Neumann conditions were imposed, i.e. ∂Vx

∂z
= ∂Vy

∂z
= ∂Vz

∂z
= 0

• At the lateral boundaries (x/R = −Lx/2, x/R = Lx/2) periodicity were imposed.

• The lower and upper boundaries were applied with symmetry conditions, implying that

Vy = 0 and ∂Vx

∂y
= ∂Vz

∂y

In the computations involving a sheared inflow the following changes were made to the above

boundary conditions:

• At the inlet boundary the velocity in the z-direction was specified according to the wanted

shear profiles i.e. Vz = Vz(y), while the velocity components in the x and y direction were

zero.

• At the lower boundary the usual wall condition was imposed, while the upper boundary

was prescribed according to the velocity profile i.e. Vz = Vz(Ly) and Vx = Vy = 0.

• The outlet were applied with unsteady convective conditions, i.e. ∂V
∂t

+ U ∂V
∂z

= 0,

where U is a velocity that is independent of location on the outflow surface and is chosen

to maintain overall mass conservation. The necessity of imposing this boundary condition

in case of sheared flow is shown in chapter 3.

2.5 Wind turbines

The computations presented in this thesis were conducted using airfoil data from respectively

the Tjæreborg and the NM80 wind turbine.

The Tjæreborg turbine has a blade radius of R = 30.56 m and rotates at Ω = 22.1 RPM, cor-

responding to a tip speed of 70.7m/s. The blade sections consist of NACA 44xx airfoils with

a chord length of 0.9m at the tip, increasing linearly to 3.3m at hub radius 6m. The blades are

linearly twisted 1o per 3m.

Figure 2.6 shows the lift and drag polars used for respectively the NACA 4412 and the

NACA 4424 airfoil. These airfoils represent blade sections near the tip and the root, respec-

tively. In the range of angles of attack between approximately minimum and maximum CL the

data are taken directly from wind tunnel measurements provided by Abbott and von Doehnhoff

[1]. Outside of this range the airfoil data have been corrected for three-dimensional effects.

Further technical details of the rotor can be found in [95].
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Figure 2.6: Lift and drag polars used in the computations for representing respectively the

NACA 4412 and the NACA 4424 airfoil.

The radius of the NM80 turbine isR = 40.04m and it has a variable rotational speed depending

on the wind speed; at a wind speed of V∞ = 5m/s the rotational speed is 11.2 RPM, while it at

V∞ = 20m/s is 17.2 RPM. Further details about the NM80 turbine can be found in [29].

2.6 Summary

The different parts of the model used for the simulations of the wind turbine wakes have been

presented. The principles of the actuator line method were described and its advantages re-

lated to simulation of wind turbine wakes were discussed. Following this the 3D Navier Stokes

solver EllipSys3D, in which the actuator line model is implemented, was presented together

with a short description of the sub-grid scale model applied for modeling the small scale turbu-

lence. Next, the technique of using body forces to model the atmospheric boundary layer in-

cluding turbulence was presented along with a description of its implementation in EllipSys3D.

Finally, the overall layout of the used numerical grid configuration was described followed by

a description of the wind turbines used in the wake studies.



Chapter 3

Numerical sensitivity

In order to establish the overall requirements for the various grid and solver parameters used

with the actuator line computations a parametric study of their influence on the computed results

have been conducted. Unless otherwise stated, all the computations in this study considered a

uniform inflow velocity of V∞ = 10 m/s and were carried out using airfoil data from the

Tjæreborg wind turbine.

3.1 Domain dimensions

The size of the computational domain should be large enough to avoid the influence of the

boundaries on the local flow through and downstream the turbine. Here, only the influence

of the cross-sectional area of the domain was investigated since the outlet boundary in all the

computations presented in this thesis generally is located very far from the rotor in question.

The layout of the meshes is as sketched in figure 2.5 with the number of grid points in each

direction being 128. They all had quadratic cross-sections (Lx = Ly) and a fixed length of

Lz = 18R.
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Figure 3.1: Predicted power coefficient as a function of domain width.
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Figure 3.1 shows the predicted power coefficient as a function of side length. As seen a side

length greater than 18R seems to be sufficient to obtain convergence in the predicted power.

3.2 Regularization parameter

Ideally, the regularization parameter, ǫ, should be chosen such that the applied forces are dis-

tributed over an area representing the chord distribution and in the ultimate case of course re-

semble the chordwise pressure distribution, as in the actuator surface approach. However, due

to limited computer resources this is not an option and hence it is of interest to study how the

choice of the parameter affects the result.

The influence of ǫ has previously been studied for an axisymmetric actuator disc by Sørensen

and Shen [75] and for the actuator line method formulated in a polar frame of reference by

Ivanell [35] and Mikkelsen [56].

Here, the sensitivity of the computed solutions to the regularization parameter was investigated

in a cubic mesh with side lengths 18 rotor radii and a layout identical to the one used for the

study of the influence of the domain size.

Figure 3.2 compares the distribution of the axial interference factor, az = (1 − Vz/V∞), along

an actuator line for four different values of ǫ. The values of ǫ are scaled with the resolution of

the actuator lines ∆r, which is equal to the length of a cell in the equidistant region. From the
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Figure 3.2: Radial distribution of the axial interference factor along an actuator line for differ-

ent ǫ values.

figure it is seen that increasing ǫ result in a more smooth variation of the velocity near the root

and tip. For ǫ = 1.5∆r the radial distribution display significant oscillations, thus indicating

that this value of ǫ is too small. On the other hand, if ǫ is chosen too large the applied forces

will be smoothened considerably and thereby the distinct pattern of the tip and root vortices

may be smeared out. Choosing ǫ = 2∆r appeared to offer good compromise between reducing

oscillations and limit the smoothing of the loading.
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3.3 Time step

In connection with unsteady Navier-Stokes computations an often used criterion for time ad-

vancement schemes is that the Courant-Friedrich-Levy-number (CFL) should not exceed 1,

requiring that a disturbance must not be convected more than one grid spacing during a single

time step.

However, when using the actuator line method with a Cartesian grid the time step size is

mainly restricted by the tip speed ratio of the rotor since the movement of the blade tip dur-

ing one time step should not exceed one grid spacing. Therefore, the minimum number of time

steps per rotor revolution should be greater than 2πR/∆r, which with the given grid resolution

(∆r/R = 1/30) corresponds to 188.5 time steps per rotor revolution. This latter requirement

for the time step is far more restrictive than the CFL condition and in all of the computations

performed in this thesis the maximum CFL number rarely exceeded 0.2.

The influence of time step was investigated in the same grid as used for the study on the regu-

larization parameter. In the study the number of time steps per rotor revolution was varied from

204 to 1020.

Figure 3.3 displays the lift distribution along the blades of the wind turbine for various time

steps. As seen in the range of tested time resolution any difference is barely seen and it was
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Figure 3.3: Lift distribution along an actuator line for various time steps.

concluded that a time step corresponding to 204 time steps per rotor revolution was sufficient

to obtain accurate solutions.

3.4 Pressure solver

In the majority of the computations presented in this thesis the pressure correction equation has

as mentioned in section 2.2 been solved using the SIMPLE algorithm. For unsteady problems,

however, it is common to apply the more accurate PISO algorithm and therefore it was studied

whether using the latter algorithm affected the computed result. The study was carried out in

the same computational mesh as used for the computations presented in chapter 4, i.e. a grid

with a high resolution of the region extending from the rotor plane and 7 diameters downstream.

The study showed that, though changing to the PISO algorithm causes a general decrease in the
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residuals of the pressure; it has no effect on the rotor loading and the flow behavior. The reason

for this is that the CFL number of the actuator line computations is always very low (see section

3.3) and therefore a more accurate treatment of the pressure correction equation is not needed.

Since the computational costs of the PISO algorithm is nearly twice that of the SIMPLE algo-

rithm it is recommended to use the latter algorithm. It should be appreciated, however, that in

other flow problems it could be advantageous to combine an increased time step with the PISO

algorithm.

3.5 Reynolds number

Most of the computations presented in this thesis have been carried out at a Reynolds number

based on rotor radius of 105. This Reynolds number is of course considerably lower than expe-

rienced in the field and it might be expected to have an impact on the computed rotor loads and

turbulent length scales in the wake.

However, as discussed by Sørensen et al. [74] and Mikkelsen [55] the Reynolds number used

in the actuator line computations have, due to the absence of boundary layers, only a minor

influence on the overall wake behavior provided it has reached a certain critical minimum.

In "real life" the Reynolds number of course affects the small scale structures in the wake,

a)

b)

c)

Figure 3.4: Vorticity contours in the wake of the turbine using QUICK; a) Re = 104; b) Re =
105 and c) Re = 106. Regions of high vorticity appear as light colors.

which are smaller for larger Reynolds numbers. Nevertheless, in the computations the filter

width, grid spacing and differencing scheme rather than the Reynolds number are the main pa-

rameters governing the smallest length scales.

This is illustrated qualitatively in figure 3.4, which depicts the contours of the absolute vorticity

in the wake for Reynolds numbers in the range 104 − 106. The shown results have been com-
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puted on a grid identical to the one used in chapter 4 and using the QUICK scheme. As seen

the overall flow behavior is the same though at Re = 104 the wake is clearly more diffusive and

the observed instabilities in the wake are moved downstream.

3.6 Differencing scheme

As shown in section 3.5, the smallest resolvable scales in the computations presented here are

too large for molecular viscosity to be important and hence energy dissipation mainly stems

from the SGS-model and from numerical diffusion. In order to limit the latter contribution the

convective terms in the Navier-Stokes equations should generally be discretized using schemes

with as low numerical diffusion as possible.

Central difference schemes benefit from having small truncation errors (producing low numer-

ical diffusion) but on the other hand tend to produce unphysical numerical wiggles due to their

unboundedness. This is shown in figure 3.5, which displays the downstream contours of re-

spectively the axial velocity and vorticity in a plane going through the wind turbine center

axis computed using a fourth-order central difference scheme (CDS4) and a grid identical to

the one used in chapter 4. In the present case the numerical wiggles gradually build up with

time and eventually demolish the solution. The oscillations depend on the local Peclet number

Pe = ρVz∆z/µ and it can be shown [20] that a sufficient but not necessary condition for bound-

edness is Pe ≤ 2. This criterion, however, is obviously not fulfilled for the grid resolution and

Reynolds number used in the present computations.

When using the QUICK scheme the numerical wiggles are avoided, however, due to its up-

Figure 3.5: Contours of respectively absolute vorticity (top) and axial velocity (bottom) in the

wake of the turbine using CDS4. High vorticity values appear as light colors.

wind nature, this scheme introduces artificial viscosity, which may cause a loss of details of the

turbulent structures.

To overcome the problem of on one hand avoiding the unphysical numerical wiggles of the

CDS4 and on the other hand limit the numerical diffusion of the QUICK it was decided to use

a hybrid scheme combining 90% of the former and 10% of the latter scheme. As seen in figure

4.4 when using this hybrid scheme the wiggles are avoided, while due to the reduced false vis-

cosity the vortex system seems more distinct and also breaks up close to the rotor than when a
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pure QUICK scheme is applied.

3.7 Grid configuration and resolution

As mentioned in section 2.1 one of the advantages of the actuator line method is that it does not

require a mesh of the actual blade geometry and thus in principle can be applied with any grid

configuration. However, the selected grid of course influences the accuracy of the numerical

solution and therefore it is worthwhile to study the sensitivity of the solution to the used grid.

It should be appreciated that the computed solution always will exhibit a dependency on grid

configuration and resolution, but what is important here is to quantify the error committed.

Here, the impact of mesh configuration was studied by comparing the results from the compu-

tations obtained on the grid as the one used in chapter 4 with those obtained on respectively a

Cartesian and a regular polar grid both having higher resolutions.

The fine Cartesian grid had a layout identical to the one used in chapter 4 (and sketched in figure

2.5) except that each block of the grid contained 803 grid points resulting in a resolution of 40

grid points per rotor radii in the equidistant region.

The polar mesh had an axial extend of 43.3 rotor radii and lateral boundaries located 15 rotor

radii away from the center line. The equidistant region extended 1.3 rotor radii in the radial di-

rection and from half a rotor radius upstream to 7 rotor radii downstream of the rotor plane. The

resolution in this region corresponded to 70 grid points per rotor radii. The final polar grid con-

sisted of 40 blocks each with 643 cells resulting in a total of 10.5 · 106. It should be mentioned

that in the polar formulation the actuator lines were fixed in the mesh while a rotational velocity

at the boundaries created the rotational reference frame. Furthermore, the mesh comprised only

one third of the rotor area, which was established by imposing periodic boundary conditions in

the circumferential direction. Further details about the polar computation can be found in [36].

The distributions of the axial interference factors predicted in respectively the rotor plane and

6 rotor radii downstream using respectively the two Cartesian grids and the polar grid is com-

pared in figure 3.6. The corresponding plot for the tangential velocity component is presented

in figure 3.7. The shown distributions are averaged in the tangential direction.

As seen the agreement between the results obtained on different grids are quite good though the

computation in the polar grid generally predicts lower axial and tangential induction than for

the other configurations.
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Figure 3.6: Influence of grid configuration and resolution on predictions of the radial distri-

bution of the circumferential averaged axial interference factor in respectively the

rotor plane and in the plane 6 rotor radii downstream of the rotor.
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Figure 3.7: Influence of grid configuration and resolution on predictions of the radial distribu-

tion of the circumferentially averaged tangential velocity in respectively the rotor

plane and in the plane 6 rotor radii downstream of the rotor.

It should be noticed that the regularization parameter is not the same in the three cases. For the

Cartesian grids ǫ = 2∆r, while it in the polar grid was ǫ = ∆r, where ∆r is the cell length

in the equidistant region. Therefore the forces are more concentrated on the finer grids and

this might also affect the result. Another source for the observed deviations could be that the

computation on the polar grid is carried out without application of a turbulence model.

Figure 3.8 shows the wake development computed on the fine Cartesian grid by displaying

vorticity contours in the x/R = 0 plane. This figure provides a qualitative validation of the

computation by comparison with the corresponding plot obtained on the coarser Cartesian grid

in figure 4.4.
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Figure 3.8: Downstream development of the wake at V∞ = 10m/s computed using the fine grid.

The rotor is located to the left. Regions of high vorticity appear as light colors.

As seen the overall wake development is the same, however, there are also noticeable differ-

ences. On the fine grid the tip vortices are more concentrated and hence their distinct pattern

appears clearer. Furthermore, when using the fine grid, the tip vortices are observed to break

down closer to the rotor, while the root vortices appear somewhat more stable. However, con-

sidering the rather small deviations in figure 3.6 and 3.7 and due to the significantly increased

computing costs associated with using the fine grid it was justified to use the coarser grid.

3.8 Boundary conditions

As mentioned in section 2.4 the traditional Neumann condition is used at the outlet in most

of the computations presented in this thesis. This boundary condition, however, is known to

cause unphysical behavior of the computed flow field near the outlet. Nevertheless, this was not

considered a problem here, since the computational meshes used in the present thesis, always

is stretched away from the near domain and toward the outer boundaries in order to avoid their

influence on the region of interest.

Nonetheless, in connection with the computations of wind turbines operating in sheared inflow

it was still found necessary to use the convective boundary condition. An example of this is

illustrated in figure 3.9, which shows the streamwise velocity contours in a horizontal plane

going through the center of two NM80 turbines operating in strong shear and low ambient

turbulence. The details about this computation are presented in chapter 12.

From the figure it is evident that, when the Neumann condition is employed at the outlet, the

flow is disturbed significantly in the region close to the outlet and far from the wake. These

disturbances evolve upstream and eventually destroy the solution. The same pattern is clearly

not observed when the convective boundary condition is applied.
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Figure 3.9: Contours of axial velocity in a horizontal plane intersecting the hub of two NM80

turbines using respectively Neumann (left) and convective (right) outflow boundary

conditions.

3.9 Summary

This chapter presented a thorough study of the sensitivity of the numerical solutions to various

solver and grid parameters.

Initially, it was shown that the cross sectional area should be at least 18R × 18R in order to

avoid the influence of the boundaries on the computed solutions.

Secondly, it was revealed that the smearing parameter should be about twice the grid spacing in

order to reduce oscillations along the blades without smearing out too much the loading.

Thirdly, a time step study showed that a time step corresponding to about 200 time steps per

rotor revolution was sufficient to obtain accurate solutions. It was mentioned that the time

step mainly is restricted by the tip speed ratio and that the CFL number therefore is very low

(typically less than 0.2). Due to the low CFL number it was argued that the SIMPLE algorithm

was sufficient for solving the pressure equation and therefore this scheme was chosen instead

of the more accurate PISO algorithm.

Following this, it was shown that the computed solutions are fairly insensitive to changes in

radius based Reynolds number provided it is at least 105.

Thereafter, the sensitivity of the solutions to the used differencing scheme was discussed. In

order to both avoid numerical wiggles and limit numerical diffusion it was proposed to use a

hybrid scheme combining the CDS4 and QUICK scheme.

The influence of grid resolution and layout on the numerical solution obtained with the Cartesian

grids used in the present thesis (figure 2.5), was studied by comparing with results predicted on

respectively a Cartesian and a Polar mesh both having a finer resolution. The study revealed

some grid dependency but the deviations were small enough to justify the use of the coarser

grid.

Finally, it was shown that in the computations on wind turbines subject to wind shear it is

necessary to use a convective outflow boundary condition to obtain good results.



Chapter 4

Wind Turbine Wake Aerodynamics in

Uniform Inflow - Initial Results

This chapter presents the initial results from a series of actuator line computations carried out

on the Tjæreborg wind turbine operating in a uniform inflow of respectively V∞ = 6 m/s,
10m/s, 14m/s and 22m/s, corresponding to tip-speed ratios of respectively 11.78, 7.07, 5.05
and 3.21.

The objective of this chapter is to show the capabilities of the actuator line method and to

establish the initial documentation of the near and far wake development for a wind turbine

operating at four very different conditions. In the next two chapters a more thorough analysis of

the obtained data will be presented focusing on respectively the tip vortex properties and wake

turbulence characteristics.

4.1 Numerical Setup

The computations were carried out in a Cartesian computational domain as sketched in figure

2.5a and 2.5c. The dimensions of the grid was (Lx, Ly, Lz) = (18R, 18R, 26.8R), where the

z-coordinate is in the flow direction. The actuator lines were rotating in the z-plane located 7

rotor radii downstream of the inlet and the point of rotation was in the center of the plane.

The grid was divided into 32 blocks (2 in the x and y direction respectively and 8 in the z-

direction) with 64 grid points in each direction. Thus, the used mesh contained 128×128×512
grid points corresponding to a total of 8.4 · 106.

The equidistant region (see figure 3.4), in which grid points were concentrated to resolve and

preserve the generated flow structures, extended from 1R upstream the rotor to 14R down-

stream. Furthermore, the cross-sectional area of this region was set to 2.6R × 2.6R in order to

account for wake expansion.

4.2 Validation - comparison with measurements

The numerical solutions obtained on the used grid have already been validated in terms of a

numerical sensitivity study in chapter 3. However, in order to further validate the numerical

results the power production of the Tjæreborg wind turbine was computed and compared to

experiments. Figure 4.1 shows the measured and computed power coefficient as a function of

33
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wind speed. Generally there is a good agreement between measurements and computations.

The discrepancies are most probably due to inaccurate airfoil data, which are found from two

dimensional flows in a wind tunnel and therefore becomes unreliable when three-dimensional

effects comes into play.
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Figure 4.1: Comparison of measured and computed power coefficient for the Tjæreborg wind

turbine.

4.3 Blade loading

Figure 4.2 shows the time averaged radial distribution of the axial interference factor, az =
1 − Vz/V∞ along the blades of the turbine. In the case where λ = 11.78 the induction is

seen to undergo a rather significant increase toward the tip reaching levels BEM methods only

can handle by using empirical corrections. For the rotor operating at λ = 7.07, where the

Tjæreborg turbine has nearly optimal performance, the distribution of the axial interference

factor is almost uniform, while moderate variations is observed at λ = 5.05. At λ = 3.21
the maximum induction takes place at approximately r/R = 0.25 and from this point on the

induction decreases continuously toward the tip.
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Figure 4.2: Radial distribution of the axial interference factor along the blades for each inflow

velocity.
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The distributions of circulation, Γ = L/(ρVrel), along the blades are depicted in Figure 4.3.

As seen the bound circulation is nearly constant over most of the blade at λ = 7.07 and varies

only slightly at the highest tip speed ratio. At λ = 5.05 the distribution is seen to be smoother

near the tip and root, though similarly to the two higher loaded rotors the bound circulation

drops somewhat abruptly in both ends of the blade. The large gradients in bound circulation

near the tip and root indicates that in these situations the turbine generates a wake consisting of

rather strong concentrated tip and root vortices. Furthermore the shown distributions imply that

the wake in these inflow conditions presumably is characterized by only containing very little

trailed vorticity.

For the lowest tip speed ratio the bound circulation is seen to vary continuously along the blade,

thereby indicating that a large amount of vorticity is trailed into the wake from the entire span

of the blade. Moreover, the distribution shows that for λ = 3.21 the generated tip vortex

supposedly is fairly weak and that the strongest vortices are formed near the root.
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Figure 4.3: Radial distribution of circulation along the blades for each inflow velocity.

4.4 Wake flow characteristics

Figure 4.4 show contours of the instantaneous absolute vorticity in the vertical plane through

the wind turbine center axis (x/R = 0) for each of the tested cases. Regions of high vorticity

appear as light colors. Note that the rotor is located to the left in the plots and that only the

downstream development of the wake is shown.

For all cases except at λ = 3.21, the bound vorticity of the blades is primarily shed downstream

from the tip and root of the rotor, which is consistent with the distributions of bound circulation

shown in Figure 4.3. Moreover, the smoother distributions of the bound vorticity near the root

at λ = 5.05 apparently cause the hub vortices to have a somewhat larger radial extent than at

the two higher tip speed ratios. As expected the wake of the rotor operating at λ = 3.21 differs

quite significantly from the other situations by having vorticity distributed over the entire radial

extent of the wake.

For the three lowest tip speed ratios the bound vorticity is observed to be shed off in individual

vortex tubes, whereas this does not seem to be the case at λ = 11.78. A closer inspection of the

vorticity contours at λ = 5.05 and 7.07 revealed that the distinct tip-vortex pattern is preserved
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about 10 rotor radii and 1.3 rotor radii downstream respectively, where after they smear into a

continuous vorticity sheet. At λ = 3.21, on the other hand, the vortex pattern remain distinct

in the entire equidistant region, due to the high pitch of the vortex system. For the rotor oper-

a)

b)

c)

d)

Figure 4.4: Downstream development of the wake visualized using vorticity contours. The rotor

is located to the left; a) λ = 11.78 (V∞ = 6m/s); b) λ = 7.07 (V∞ = 10m/s); c)

λ = 5.05 (V∞ = 14m/s); d) λ = 3.21 (V∞ = 22m/s)

ating at the highest tip-speed ratio instability of the tip vortices is observed to appear only 1.5

rotor radii downstream and after 5 rotor radii the wake completely breaks up. In the case where

λ = 7.07 the tip vortices are observed to undergo a Kelvin Helmholz instability approximately

10 rotor radii downstream. The root vortices become unstable at an earlier point (about 6 rotor

radii downstream of the rotor) due to their proximity and further downstream the root and tip

vortices interact, which causes the wake to become fully turbulent.

In contrast to the two other cases, instability of the tip vortices does apparently not occur at

λ = 5.05 and λ = 3.21 due to the generally higher stability of the tip vortices, when the tip-

speed ratio and thus also the thrust is low.

The full three-dimensional behavior of the flow field around and downstream of the rotor is vi-

sualized in terms of iso-surface plots of vorticity in figure 4.5. The iso-surface plot show that

the wake at λ = 3.21 has a clear and stable screw surface geometry due to the large amount of

trailed vorticity from the blades. For λ = 5.05 and 7.07 the visualization give a good impres-
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a) b)

c) d)

Figure 4.5: Visualization of the downstream development of the wake using iso-surface plots of

vorticity; a) λ = 11.78; b) λ = 7.07; c) λ = 5.05; d) λ = 3.21

sion of the helical structure of the distinct tip vortices and in the latter case the transition into a

continuous vortex sheet. At λ = 11.78 the plot clearly illustrates the complete break down of

the tip vortices into small scale turbulence, which as described above takes place only few rotor

radii downstream.

Figure 4.6 show the development of the axial velocity distribution in the wake for each of the

tested operational condition as indicated in the figure. The distributions are averaged both in

time and in the circumferential direction.

Close to the rotor, the axial velocity correlates directly with the load distribution of the rotor

and, due to turbulent mixing, also with the pressure field just behind the rotor.

The deficit develops at a rate depending on the loading on the rotor. For the heaviest loaded

rotor wake expansion is significant and the strong break down of the tip vortices results in a

rapid transition into a fully turbulent wake. As a consequence the deficit develops quickly to

become nearly Gaussian approximately 7 rotor radii downstream of the rotor after which the

wake deficit apparently can be assumed self-similar.

For the rotor operating at λ = 7.07 the wake is observed to expand moderately until approx-

imately 6 rotor radii downstream where the deficit reaches a maximum, which in agreement

with BEM, is around twice the induced velocity in the rotor plane. This result is further in

good agreement with laminar actuator disc computations presented by Mikkelsen [56]. From

this point on the radius of the wake stays nearly constant until around 10 rotor radii after which

turbulent mixing causes the distribution to develop toward a more Gaussian like shape.

For the two lightest loaded rotors the wake hardly develops and reaches equilibrium where the
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axial induction again takes values approximately twice those on the rotor. Thus, in this case the

boundary between the interior and the exterior of the wake stays well defined by the tip vorticity

sheet for all downstream positions.
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Figure 4.6: Computed profiles of the time and circumferentially averaged axial velocity at dif-

ferent downstream positions; a) λ = 11.78; b) λ = 7.07; c) λ = 5.05; d) λ = 3.21

Figure 4.7 shows the development of the velocity component in the tangential direction. Once

again the shown distributions are averaged both in time and in the azimuthal direction.

The air in the wake rotates in the opposite direction to the rotor as a consequence of the re-

action torque imposed upon the air by the rotor. For both λ = 5.05 and 7.07 the behavior of

the tangential velocity is comparable to what was observed for the axial induction factor in the

sense that an equilibrium value of approximately twice the value on the rotor plane is reached

though in the latter case wake rotation seems to reduce as the wake becomes unstable. Again

the reached equilibrium value is in good agreement with the simple BEM methods. The plot of

the development of the tangential velocity at λ = 11.78 reveal some wake rotation within the

first 3 rotor radii downstream but further downstream strong separation of the flow causes the

tangential velocity to gradually diminish.

Figure 4.7 also indirectly reveal the downstream development of the averaged circulation dis-

tribution, which is computed by multiplying with 2π, i.e. as Γ = 2πrVθ. It is interesting to note
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Figure 4.7: Computed profiles of the time and circumferentially averaged tangential velocity

at different downstream positions; a) λ = 11.78; b) λ = 7.07; c) λ = 5.05; d)

λ = 3.21

that the maximum circulation in the wake is approximately 3 times that of the bound circulation

along one blade indicating that, in agreement with the Helmholz theorem for vortex filaments

in inviscid flows, the circulation is fairly conserved. However, it is observed that as viscous

phenomena take place the theorem is generally not fulfilled. The conservation of circulation in

the wake is investigated in more details in the next chapter.

4.5 Summary

The wake of the Tjæreborg wind turbine operating in uniform inflow at four different tip speed

ratios was simulated and the initial results presented. The computations were carried out in

numerical mesh, which ensured a high resolution of the region from the turbine and 7 rotor di-

ameters downstream. For the rotor operating at λ = 11.78 the tip vortex system was shown to

completely break down around 5 rotor radii downstream and as a consequence the wake under-

went a rapid transition into what could be considered a far wake, i.e. the axial velocity profiles

followed closely a Gaussian shape and the tangential velocities were nearly zero.
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When the rotor operated at λ = 7.07 the tip and root vortices were shown to become unsta-

ble approximately 10 and 6 rotor radii downstream of the rotor respectively. These instabilities

were observed to grow until they merged approximately 12 rotor radii downstream of the rotor,

where after the wake started to become fully turbulent.

The wake of the two lightest loaded rotors was predicted to remain stable throughout the entire

downstream domain. In these cases wake expansion was negligible and the general wake char-

acteristics was observed to undergo very little development. Hence, in these two cases a larger

domain is required to predict how the transition from a near wake to a far wake takes place.

Besides providing new insight into the overall development of the wake the computations also

revealed other important features such as a fairly conserved circulation.



Chapter 5

Wind Turbine Wake Aerodynamics in

Uniform Inflow - Vortex Properties

The tip and root vortex properties in the wake of the Tjæreborg wind turbine operating in uni-

form inflow is studied using the same computational data as presented in chapter 4. The ob-

jective is to contribute to the overall understanding of the influence of the vortices on the wake

and in this connection also validate some of the common assumptions made in methods aim-

ing at modeling the wake using respectively momentum and vortex theory. Moreover, some

limitations of studying the vortex properties with the used grid resolution will be discussed.

5.1 Classical wake models

One of the most fundamental theories in the study of wind turbine performance is perhaps the

one-dimensional momentum theory, as formulated by Froude [25]. In this theory the rotor is

modeled as a frictionless uniformly loaded actuator disc in axisymmetric steady incompressible

flow. By considering a balance of axial momentum and kinetic energy in a stream tube enclosing

the actuator disc, it can be shown that the velocity in the rotor plane, Vd equals the average of

the velocity far upstream, V∞, and far downstream Vw. This result is normally written in non-

dimensional form as

Vd = (1 − az)V∞, Vw = (1 − 2az)V∞ (5.1)

where az = 1 − Vd/V∞ is the axial interference factor and represents the induced velocity in

the rotor plane.

Besides the above fundamental result the one-dimensional momentum theory also yields the

following simple expression relating the thrust coefficient of the disk to the axial induction

factor

CT = 4az(1 − az) ⇒ az =
1

2

(

1 −
√

1 − CT

)

, CT < 1 (5.2)

Combining conservation of mass with equation 5.1 and 5.2 the wake radius, Rw, after the initial

expansion can be expressed in terms of CT as follows

Rw = R

√

1 − az

1 − 2az

= R

√

1 +
√

1 − CT

2
√

1 − CT

, CT < 1 (5.3)

41
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Hence, if the thrust coefficient is known equation 5.3 can be used to determine the far wake

radius, which again can be considered an estimate of the radial position of the tip vortices. It

should be appreciated, however, that methods based on the one dimensional momentum theory

only is valid for az less than about 0.3, which can readily be seen from equation 5.1 where a

negative velocity in the wake is predicted for az greater than 0.5. In practice a correction is

normally applied for az greater than 0.2 [30].

Another set of classical methods are the inviscid vortex wake models, in which the shed vorticity

in the wake is employed to compute the induced velocity field.

The simplest vortex models consider a rotor with an infinite number of blades with the wake

described by vortex rings. Such model was e.g. developed by Øye [94], in which an iterative

procedure was used to compute the relation between the induced velocities in the wake and the

thrust on the disk.

Also analytical vortex wake models has been proposed where the far wake is assumed to consist

of N infinitely long helical tip vortices of circulation, Γ, with constant radius, a, and helical

pitch, h = 2πl, as well as a single concentrated axial hub vortex of circulation −NΓ in order

to conserve circulation. The axial and tangential velocity induced by the N helical tip vortices

may be determined analytically by the following expression, derived by Okulov [60]

Vz,tip(r, χ) ∼= ΓN

2πl

(

1

0

)

+
Γ

2πl

4
√
l2 + a2

4
√
l2 + r2

Re

N
∑

n=1

[

{±}ei(χ−2πn/N)

e{∓}ξi − ei(χ−2πn/N)

− l

24

(

3r2 − 2l2

(l2 + r2)3/2
+

9a2 + 2l2

(l2 + a2)3/2

)

ln
(

1 − e{±}ξ+i(χ−2πn/N)
)

]

(5.4)

Vθ,tip(r, χ) =
ΓN

2πr
− l

r
Vz,tip(r, χ) (5.5)

Here, the terms in braces are defined such that the upper one corresponds to r < a, and the lower

one corresponds to r > a, while r and χ = θ ± z/l are the helical variables and

eξ =
r

a

√
l2 + a2 + l√
l2 + r2 + l

(

exp
(√

l2 + r2
)

exp
(√

l2 + a2
)

)1/l

(5.6)

If equation 5.4 is averaged in the circumferential direction all terms except the first vanish

hence predicting a constant axial induction inside the wake. Accordingly equation 5.5 reveals

that the circumferentially averaged induced tangential velocity will be inversely proportional to

the radial position.

If the root vortex as mentioned above is assumed to lie along the system axis it only contributes

to the tangential induction. In this case the tangential velocity induced by the complete (N +1)
vortex system becomes

Vθ(r, χ) =
ΓN

2πr
− l

r
Vz,tip(r, χ) +

Γ0

2πr
(5.7)

Here, the circulation of the root vortex would normally be set to Γ0 = −NΓ in order to con-

serve circulation as mentioned above.

Equation 5.5 directly shows that, for vorticity fields with helical symmetry, the velocity tangen-

tial to the helical lines remains constant i.e. [60]

Vz ±
r

l
Vθ = ±const (5.8)
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5.2 Vortex positions and pitch

The positions of the tip and root vortex centers can be identified directly from the vorticity

contours presented in figure 4.4 as the location of highest local vorticity.

It should be noted that, with the current resolution of the wake, the center of the tip vortices

could only be identified up to about 1.3 rotor radii downstream of the rotor at λ = 7.07, while

at λ = 11.78 it was not possible at all to identify distinct local extremes from the contours.

Therefore, in these situations the actual downstream location of the vortex centers could not be

extracted. However, their radial position was in these cases taken as the centre of the vorticity

sheet at selected downstream positions. It should further be emphasized that using the absolute

value of the vorticity as a means of identifying vortex cores is limited by its strong dependence

on the chosen contour levels and especially far from the rotor the method is accompanied with

some uncertainties.

Figure 5.1 shows the radial location of the tip vortex centers as a function of their downstream

position. The horizontal dotted lines also shown in the figure indicate the far wake radius

computed from equation 5.3, i.e. the predictions of 1D momentum theory for a uniformly

loaded disk with the same thrust coefficient as determined from the corresponding actuator line

computations (shown in table 5.1). Note, that the classical 1D momentum theory cannot be

applied for the case λ = 11.78, where CT = 1.16 since this value clearly is outside the theory’s

bounds of application. For this reason the predictions of the 1D momentum theory is only

shown for thrust coefficients corresponding to those of the three lightest loaded rotors.

λ(V∞) 3.21(22m/s) 5.05(14m/s) 7.07(10m/s) 11.78(6m/s)
CT 0.14 0.56 0.85 1.16

Table 5.1: Predicted thrust coefficient as a function of tip speed ratio
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Figure 5.1: Radial location of the tip vortices as a function of downstream position. The hori-

zontal dotted lines indicate the corresponding predictions by 1D momentum theory

(equation 5.3) in the cases (from top to bottom) λ = 7.07, λ = 5.05 and λ = 3.21

For the two lowest tip speed ratios, where the expansion of the wake is also lowest, the agree-

ment between 1D momentum theory and the actuator line method is good. The observed differ-
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ences might very well be due to uncertainties in the determination of the vortex core positions.

On the other hand, at λ = 7.07 where the thrust coefficient is CT = 0.85, 1D momentum theory

is observed to over-estimate the wake expansion compared to that predicted by the actuator line

computations. Figure 5.2 shows the downstream position of respectively the tip and root vortex
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Figure 5.2: Angular positions of tip (a) and root (b) vortex cores as a function of their down-

stream location determined from contour plots of vorticity

cores as a function of their angular location, ψ (wake age). Because of the above mentioned

difficulties in identifying distinct extremes from the contours this procedure could not be ap-

plied for the case λ = 11.78. Note that the results have been obtained by phase-lock ensemble

averaging over a number of rotor revolutions. From figure 5.2 the helical pitch of the vortices

can be estimated as

h = 2π
∂z

∂ψ
(5.9)

As seen the results are well estimated with straight lines and thus, the root and tip vortex pitch

in all cases appears to be approximately constant. The latter result is consistent with the exper-

imental results presented by Ebert and Wood [18] and by Grant and Parkin [28].

By determining the slope of the fitted lines the tip vortex pitch was found to be approximately

1.90, 1.06 and 0.7 for respectively λ = 3.21, 5.05 and 7.07, while the corresponding root vortex

pitch was found to be respectively 1.6, 1.0 and 0.7.

The estimated tip and root vortex pitch values are plotted against the tip speed ratio in figure

5.3 and are compared with the values in the case of zero induction i.e. where the vortices are

traveling at free stream velocity.

The figure shows an overall trend of decreasing pitch with increasing tip speed ratio as expected.

The nearly uniform loading of the rotor at λ = 5.05 and 7.07 causes the tip and root vortex pitch

to be nearly equal in these cases. On the other hand the difference between the root and tip vor-

tex pitch is rather large at λ = 3.21 where the rotor is non-uniformly loaded. Furthermore, as

a consequence of the very low induction near the tip at λ = 3.21 the tip vortex pitch is close to

the zero induction curve.
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Figure 5.3: Pitch of respectively tip- and root vortices as a function of tip speed ratio

As described above the relation given in equation 5.10 is valid for flows with helical symmetry

and therefore can be used to evaluate the radial distribution of the pitch of the vortex system in

the wake, i.e.

l =
rVθ

const− Vz

⇔ h = 2π
rVθ

const− Vz

(5.10)

The constant appearing in the above expression is evaluated at the centre axis (r = 0), where it

according to equation 5.8 equals the axial velocity, i.e. const = Vz(r = 0).
Figure 5.4 presents the computed distributions of the pitch for various downstream positions

in the wake. At λ = 3.21, results are only shown for the inner part of the wake because

the denominator in equation 5.10 becomes very small in the region r/R = 0.8 − 1. The

computed pitch at λ = 3.21 undergoes large variations indicating that in this case the vorticity

field formed behind the turbine is not well modeled by assuming helical symmetry. The same

can be concluded for the case λ = 11.78. On the other hand, at λ = 5.05 and 7.07 the computed

profiles of the pitch (at least for radial positions between the root and tip vortices) attains fairly

constant values of about respectively 1.02 and 0.63. Even though the values differs somewhat

from those estimated directly from the contours the constant profiles indicate that at least a large

part of the wake can be considered helical symmetric.
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Figure 5.4: Radial distribution of pitch computed from equation 5.10 for various downstream

positions. a) λ = 11.78; b) λ = 7.07; c) λ = 5.05; d) λ = 3.21

5.3 Circulation

Figure 5.5 shows the downstream development of the circumferentially and time averaged cir-

culation distribution computed as Γ = 2πr〈Vθ〉. Also shown in the plot is, NΓbound, the profile

of the bound circulation along the blades (as shown in figure 4.3) multiplied with the number of

blades. Thereby, the plot directly reveals if the circulation in the wake is conserved as stated by

the Helmholz theorem for vortex filament in inviscid flows.

As seen at λ = 3.21 and 5.05 circulation is generally well conserved throughout all the investi-

gated downstream positions.

As revealed from the maximum of the circulation profiles, circulation is also fairly well con-

served at λ = 7.07 but only until approximately 12 rotor radii downstream, where after the

breakdown of the vortex system causes the circulation to decrease. In the latter case the circula-

tion is furthermore observed to undergo considerably redistribution with downstream position.

However, the distribution of circulation is in this case still rather uniform 6 rotor radii down-

stream of the rotor, hence indicating stable tip vortices at this position. Even though the circu-

lation profiles are not as uniform at λ = 5.05, the sharp drops observed in the inner and outer

part of the wake indicates strong tip and root vortices in agreement with figure 4.4. A uniform

circulation distribution furthermore, directly reveal that the tangential velocity varies approxi-

mately inversely proportional to the radial positions which is in agreement with equation 5.5.

For λ = 11.78, the circulation is far from being conserved even close to the rotor but in this

case the flow conditions is also dominated strongly by viscous phenomena.
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Figure 5.5: Profiles of time and circumferentially averaged circulation at different downstream

positions in the wake compared to the bound circulation of the blades. a) λ =
11.78; b) λ = 7.07; c) λ = 5.05; d) λ = 3.21

5.4 Induced velocities

Figure 5.6-5.8 show the axial velocity component as a function of rotor azimuth angle at dif-

ferent radial and downstream positions for the three lowest tip speed ratios. The corresponding

figures at λ = 11.78 are not shown here because the induced velocities in this case do not vary

in the circumferential direction since the grid resolution, as mentioned above, was insufficient

to capture the distinct nature of the tip vortices.

In all the shown cases there are three distinct peaks associated with the passage of the vortices.

At λ = 3.21 these peaks remain clear for all tested downstream sections and the vortex passage

is felt throughout the entire radial extent of the wake due to the strong hub vortex and the large

amount of vorticity shed from the blades. Moreover, the figure shows that the peaks associated

with the various radial positions are out of phase due to the non-uniform loading.

For the two shown sections downstream of the rotor operating at λ = 5.05 the influence of the

distinct vortex system is visible for nearly all radial positions though they are most clear near

the tip vortices. As expected, there is a phase shift of about 90o between the curves obtained at

radial positions inside and outside the location of the tip vortices due to the change of sign of

the induction.
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Figure 5.6: Axial velocities as a function of azimuth angle downstream of the rotor at λ = 7.07.

a) z/R = 1; b) z/R = 3.
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Figure 5.7: Axial velocities as a function of azimuth angle downstream of the rotor at λ = 5.05.

a) z/R = 3; b) z/R = 6.
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Figure 5.8: Axial velocities as a function of azimuth angle downstream of the rotor at λ = 3.21.

a) z/R = 6; b) z/R = 10.
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At λ = 7.07 the peaks are only visible for radial positions close to the tip vortices and tend to be

rather weak as a consequence of the limited resolution. The lack of resolution also causes the

peaks from the tip vortices to decay rapidly with downstream position and 3 rotor radii down-

stream they are only vaguely visible. However, this was expected from figure 4.4, where it was

shown that the distinct tip vortices smeared into a continuous vorticity sheet about 1.3 rotor

radii downstream.

In figure 5.9 and 5.10 the temporally and circumferentially averaged profiles of respectively

the axial and tangential induction in a section located 6 rotor radii downstream of the rotors at

respectively λ = 5.05 and 7.07 are compared with the corresponding predictions from equation

5.4 and 5.7, with the used parameters chosen as summarized in Table 5.2.
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Figure 5.9: Comparison of respectively; a) the axial interference factor and; b) the tangential

induction predicted from respectively the actuator line computations and equation

5.4-5.5. The distribution has been averaged both in time and in the circumferential

direction. (λ = 7.07, z/R = 6)
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Figure 5.10: Comparison of respectively; a) the axial interference factor and; b) the tangential

induction predicted from respectively the actuator line computations and equation

5.4-5.5. The distribution has been averaged both in time and in the circumferential

direction. (λ = 5.05, z/R = 6)

A more relevant comparison would of course have been of the predicted circumferential varia-

tion of the induced velocities since these are provided by the analytical expressions of Okulov

(equation 5.4-5.5). However, due to the limited resolution in the computations a comparison of

the induction near the individual vortices could not be properly carried out. Recall from chapter

4 that 6 rotor radii downstream of the rotor the wake at λ = 5.05 and 7.07 has reached a state of

equilibrium where the induced velocities are approximately twice those at the rotor plane, cor-
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responding to the far wake of the one-dimensional momentum theory. The two cases λ = 3.21
and 11.78 are not shown here since they obviously do not compare well with expression 5.4 and

5.5, which only include the induction of the tip vortices and a concentrated centre vortex.

λ a/R h = 2πl Γ/(RV∞)
7.07 1.27 0.70 0.13
5.05 1.13 1.05 0.13

Table 5.2: Parameters used in the comparison shown in figure 5.9 and 5.10. The values have

been estimated from respectively figure 5.1, 5.4 and 5.5

As seen there is generally a good agreement between the predictions of maximum axial induc-

tion for both of the shown cases, however, as equation 5.4 only includes the influence of the tip

vortices and not the vorticity shed from the blades and the hub, this expression cannot capture

the correct shape of the profiles. The influence of the shed vorticity from the blades and hub

could be accounted for by adding an extra term in equation 5.4 such as proposed by Sørensen

and Okulov [76], nevertheless, it is generally difficult to establish a correction, which can be

used for all wake situations.

The tangential induced velocity is seen to compare less well than the axial component but at

least the predictions, especially at λ = 7.07, agree fairly well in terms of shape in the outer part

of the wake. The huge over prediction of the induced tangential velocity by expression 5.5 in the

inner part of the wake is due to the unphysical assumption of the root vortex being concentrated

on the centre axis, which in turn causes the tangential velocity to be inversely proportional to

the radius.

5.5 Summary

This chapter has presented the properties of the tip and root vortices in the wake of the Tjære-

borg turbine operating in a uniform inflow at various tip-speed ratios. It was shown that both

the tip and root vortex pitch was constant in the wake and that it increased with decreasing tip

speed ratio.

Moreover, it was found that at λ = 3.21, 5.05 and 7.07 the circulation in the wake is fairly

conserved. However, in the latter case circulation underwent significant redistribution and was

only conserved until the vortex system started to break up. In the wake of the rotor operating at

λ = 11.78, where the wake breaks up close to the rotor, circulation was not conserved at all. In

addition, it was shown that at λ = 5.05 and 7.07 most of the circulation was contained in the tip

and root vortices.

Furthermore, a study of the azimuthal variation of the velocities revealed that at λ = 3.21 the

induction of the individual vortices was felt throughout all the explored downstream positions,

while this individual pattern, due to limited grid resolution, was less pronounced for higher tip

speed ratios.

Besides the above findings some of the results of the actuator line computations were compared

with models based on classical theory.

The azimuthally averaged axial induction predicted by the analytical vortex model of Okulov

[60] at λ = 5.05 and 7.07 compared well with the corresponding prediction of the actuator
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line simulation in terms of maximum induction but deviated somewhat in terms of shape. Fur-

thermore, it was found that the model of Okulov captured the correct shape of the azimuthally

averaged tangential induction quite accurately but that it generally was over predicted compared

to the result of the actuator line computations.

Finally, it was shown that the one dimensional theory captured the wake expansion well at

λ = 3.21 and 5.05 but over predicted it at λ = 7.07.



Chapter 6

Wind Turbine Wake Aerodynamics in

Uniform Inflow - Turbulence Properties

The basic turbulence properties in the wake of the Tjæreborg turbine operating in a uniform

inflow are characterized using the same computational data as presented in chapter 4. However,

the main focus here is in the cases λ = 11.78 and λ = 7.07 which represents the most interesting

wake dynamics. The study includes calculation of Reynolds-stresses, self-similarity profiles,

length-scales, spectral characteristics and coherence properties.

6.1 Reynolds stresses

Figure 6.1-6.4, for each tip speed ratio, presents the radial distribution of the four main compo-

nents of the Reynolds-stress tensor, 〈vivj〉, at different positions downstream of the turbine. All

the shown curves are averaged in the circumferential direction. The two components 〈vzvθ〉 and

〈vrvθ〉 are zero due to circumferential symmetry [63] and hence are not shown in the figures. It

should be noted that the scale of the figure axes are not the same and that the magnitude of the

Reynolds-stresses generally increase with increasing tip speed ratio.

In the near wake of the rotor operating at λ = 11.78 the Reynolds stresses has a distinct maxi-

mum in the region of the tip vortices but further downstream the Reynolds-stress distributions

develop toward a bell shaped form. Comparing figure 6.1 with figure 4.6 it is evident that

the generated turbulence is more persistent than the mean velocity deficit. Furthermore, it is

observed that for increasing distance to the rotor, the three normal stresses approaches each

other and the shear stress goes toward zero, which indicate that the wake exhibit increasing

isotropy with downstream position. Both of these observations are consistent with field

measurements presented in [31] and [10].

52
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Figure 6.1: Profiles of the Reynolds-stresses at λ = 11.78 for different downstream sections. a)

z/R = 3; b) z/R = 6; c) z/R = 10; d) z/R = 14.
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Figure 6.2: Profiles of the Reynolds-stresses at λ = 7.07 for different downstream sections. a)

z/R = 3; b) z/R = 6; c) z/R = 10; d) z/R = 14.
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Figure 6.3: Profiles of the Reynolds-stresses at λ = 5.05 for different downstream sections. a)

z/R = 3; b) z/R = 6; c) z/R = 10; d) z/R = 14.
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Figure 6.4: Profiles of the Reynolds-stresses at λ = 3.21 for different downstream sections. a)

z/R = 3; b) z/R = 6; c) z/R = 10; d) z/R = 14.
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At λ = 5.05 and 7.07 the Reynolds stresses are largest in the region of the root and tip vortices,

however especially in the latter case, where the vortex system breaks up (see figure 4.4), the

downstream development is significant and the Reynolds stresses become more distributed over

the entire radial extent of the wake.

In the final case, λ = 3.21, the Reynolds stresses maximizes in the inner part of the wake

and only a small peak is observed due to the presence of the tip vortices. This is consistent

with figure 5.5 and 4.4, showing that the wake in this case is characterized by significant shed

vorticity and a dominating root vortex.

It should be noted that for λ = 3.21 and 5.05 the levels of the Reynolds-stresses are generally

very small and indeed, in a rotating frame of reference the wake can almost be considered steady

in these two cases.

6.2 Self-similarity

In appendix A the concept of self-similarity is briefly described and it is noted that the ax-

isymmetric wake actually does not become exactly self-similar but only approaches this stage

asymptotically in the far wake as Vs/V∞ tends to zero. In practice self-similarity is observed

for Vs/V∞ less than about 0.1, however, looking at figure 4.6 it is clear that this requirement is

not exactly fulfilled within the range of investigated downstream positions. For this reason only

self-similarity in relation to the mean velocity deficit will be tested here, since it as mentioned

above develops faster than the turbulence.

In Figure 6.5 the scaled velocity profile defined by equation A.24 is shown for respectively

λ = 11.78 and 7.07 at different downstream sections and the result is compared to the analyti-

cal constant eddy-viscosity solution given by (see appendix A)

fv(ξ) = exp(−αξ2) (6.1)

where α = ln 2 and ξ = r/r1/2.
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Figure 6.5: Scaled mean velocity downstream of the rotor operating at a) λ = 11.78 and b)

λ = 7.07

As seen the wake of the rotor operating at λ = 11.78 can be assumed self-similar in terms of

the mean axial velocity after approximately 7 rotor radii since all scaled profiles after this point

nearly collapse on a single curve. For λ = 7.07 self-similarity seems a fair assumption beyond

16 rotor radii. The analytical solution and the computed results compare very well in the inner
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part of the wake but differ in the outer part. The same results are typically observed in the wake

of cylinders and flat plates [63].

6.3 Spectral characteristics

Figure 6.6 and 6.7 show the spectral characteristics of the streamwise velocity component at

different radial and downstream positions for respectively λ = 11.78 and λ = 7.07. All the

shown spectra have been computed using spectral averaging in the circumferential direction.

The corresponding spectra of the radial and tangential velocity components are not shown here

since they were found to be similar to those of the axial velocity. However, these spectra will

be characterized in the next section by the standard deviation σk and the characteristic Kaimal

length scale Lk using the procedure outlined in appendix A.

It should be appreciated, that the rather steep drop of the shown spectra observed at high fre-

quencies mainly is attributed to a combination of the limited spatial resolution and numerical

diffusion. Finally, it is noted that the spectral estimates in the wake center (r/R = 0) is consid-

erably more noisy than the spectra at the other radial positions because the spectral averaging

in the azimuth direction result in no averaging at r/R = 0.
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Figure 6.6: Spectral characteristics of the axial velocity component in the wake of the rotor

operating at λ = 11.78. a) z/R = 6; b) z/R = 14.
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Figure 6.7: Spectral characteristics of the axial velocity component in the wake of the rotor

operating at λ = 7.07. a) z/R = 10; b) z/R = 13.
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Comparing spectra obtained at the various tested radial positions with figure 6.1 and 6.2 it is

seen that a general characteristic of the turbulence is that it has the largest energy contents in the

regions with the highest gradients. At λ = 11.78 the shown spectra furthermore indicate that

the wake turbulence decays and tend to become more spatial homogeneous with downstream

position. The trend toward more spatial homogeneous turbulence with downstream position is

also observed at λ = 7.07, however in this case the energy level is increasing in agreement with

figure 6.2.

At λ = 11.78 none of the spectra show sign of organized structures at distinct frequencies,

however, there is a clear region with an approximate slope of −5/3, which is characteristic for

the initial sub-range.

For the rotor operating at λ = 7.07, the spectra obtained 13 rotor radii downstream has more or

less the same characteristic shape as those found at λ = 11.78, whereas the spectra obtained 10
rotor radii downstream has a clear sign of a organized hub vortex in agreement with the contour

plots shown in figure 4.4.

6.4 Characteristic length scales

In the following the characteristic length scales, Lk,i of the wake will be estimated at differ-

ent radial and downstream positions by fitting the various computed spectra with the Kaimal

spectrum as described in appendix A. The analysis is only carried out for the rotor operating

at λ = 11.78 since only in this case the wake could be considered fully turbulent for all tested

positions.

Figure 6.8 shows the estimated standard deviation, σk,i, and the Kaimal length scale, Lk,i of

each velocity component as a function of radial and downstream position.
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Figure 6.8: Downstream development of Lk,i (top figures) and σk,i (bottom figures) in the wake

of the Tjæreborg turbine operating at λ = 11.78. a) Radial component; b) Tangen-

tial component; c) Axial component.

The surface plots of σk,i displays the same features as figure 6.1, i.e. that the wake generated
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turbulent energy is largest in the regions associated with the largest gradients and that the tur-

bulence attenuates and tend to become more spatial homogeneous with downstream position.

The variation of the corresponding length scales Lk,i is modest and without a clear trend. How-

ever, it seems like the length scales generally correlates negatively with the turbulence intensity.

From the figure it is revealed that the typical Kaimal length scale in the wake is respectively in

the order 0.7R, 0.7R and 1.5R for respectively the radial, tangential and axial velocity compo-

nent. For comparison the corresponding characteristic length scale of the velocity component in

the flow direction associated with the atmospheric boundary layer is specified in the IEC code

[34] as

Lk = 8.1L; L =

{

0.7 y y ≤ 60m
42m y > 60m

(6.2)

Hence, for the Tjæreborg wind turbine with a radius of R = 30.56 m a characteristic length

scale is about 11R which as expected is considerably larger than in the wake.

6.5 Coherence

In appendix A it is shown how the coherence can be quantified in terms of the coherence decre-

ment C(rm, φm, θ, z), where rm, φm and θ are defined in figure A.4. In the following, the

coherence is only studied for the axial velocity component since the coherence properties of the

other components were expected to be similar.

Figure 6.9 displays the spatial variation of the circumferentially averaged coherence decrement

at two sections downstream of the rotor operating at λ = 11.78.
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Figure 6.9: Spatial variation of the coherence decrement in the wake of the rotor at λ = 11.78.

a) z/R = 6; b) z/R = 14.

The coherence decrement is observed to undergo rather small and sporadic variations at

z/R = 6 while there at z/R = 14 appears to be a tendency toward smaller values in the outer

part of the wake. Furthermore, it seems that the overall level of the coherence decrement is de-

creasing vaguely with downstream position, which is consistent with the length scales generally

being somewhat smaller at z/R = 6 than at z/R = 14.
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6.6 Large scale dynamics

In order to study the large scale dynamics of the wake the temporal evolution of the wake center

was computed. Inspired by the definition of a center of mass a wake center is here defined in

terms of the axial interference factor az = 1 − Vz/V∞ as follows:

Rc(z, t) = (xc(z, t), yc(z, t)) =

∑

i |az(xi, yi, z, t)|ri
∑

i |az(xi, yi, z, t)|
, ri = (xi, yi) (6.3)

where the summation is carried out over all grid cell at a given downstream position.

Figure 6.10 shows how the x and y coordinates of the wake center evolves in time for a section

located 14 rotor radii downstream of the rotor.
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Figure 6.10: Temporal evolution of wake center coordinates in a section located 14R down-

stream of the rotor operating at λ = 11.78

As seen the variability of the two signals is quite small, the standard deviations being in the

order of 0.07-0.08, which suggests that wake meandering is modest.
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Figure 6.11: Comparison of the mean axial velocity profile with the corresponding profile

computed in a frame of reference, which follows the wake center (z/R = 14,

λ = 11.78).

The rather insignificant meandering is further illustrated in figure 6.11, which compares the

ensemble averaged axial velocity profile computed around the dynamic wake center with the

corresponding profile in the fixed frame of reference. As expected, the difference between the

two profiles is small due to the vague influence of large scale dynamics.
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6.7 Summary

This chapter has presented a comprehensive study of the turbulence characteristics in the wake

of the Tjæreborg turbine operating in a uniform inflow at tip speed ratios ranging from λ = 3.21
to 11.78.

A study of the Reynolds-stresses revealed that, for λ = 5.05, 7.07 and 11.78, most of the turbu-

lence is produced in the shear layer formed by the tip and root vortices and that turbulence in

the latter case tend to become increasingly isotropic with downstream position. For λ = 3.21
the Reynolds-stresses were generally very low and developed fairly insignificantly within the

range of explored downstream positions.

For the rotors operating at respectively λ = 7.07 and 11.78 it was found that the axial velocity

deficit can be considered self-similar for downstream positions beyond respectively, 16 and 7
rotor radii.

An investigation of the spectral characteristics for the same two cases revealed that the turbulent

energy generally is distributed on a broad range of frequencies. However, at a position 10 rotor

radii downstream of the rotor operating at λ = 7.07 there was a clear indication of a rhythmic

root vortex.

At λ = 11.78 the characteristic length scales of each velocity component was estimated and it

was shown that they are considerably lower than those of typical atmospheric turbulence.

Following this, the coherence properties in the wake of the rotor at λ = 11.78 was investigated

and it was found that the coherence decrement was undergoing moderate variations.

Finally, a study of the dynamics of the wake center revealed rather insignificant wake meander-

ing.



Chapter 7

Wind Turbine Wake Aerodynamics in

Atmospheric Shear Flow

This chapter explores the wake of the Tjæreborg wind turbine operating in an atmospheric

shear flow. The objective is to document the overall development of the wake and to extract

some general features of rotor aerodynamics in a standard shear flow.

7.1 Mesh configuration

The computations were carried out in a Cartesian computational domain as sketched in figure

2.5b and 2.5c. The dimensions of the grid was (Lx, Ly, Lz) = (20R, 24R, 26.8R), where the

z-coordinate is in the flow direction. The actuator lines were rotating in the z-plane located

7 rotor radii downstream of the inlet and the point of rotation was placed at H = 2R above

ground.

The grid structure and resolution was comparable to the grid used for the uniform computations,

i.e. it was divided into 32 blocks (2 in the x and y direction respectively and 8 in the z-direction)

with 64 grid points in each direction and having an equidistant region extending from 1.3R
upstream the rotor to 14R downstream. Furthermore, the cross-sectional area of the equidistant

region was set to 2.6R× 2.6R in order to account for wake expansion.

7.2 Atmospheric shear layer modeling

The mean wind shear of the atmospheric boundary layer was modeled according to a power law

profile

V0(y) = V∞

( y

H

)α

(7.1)

Where the exponent α was set to 0.2, which is representative for the flow over flat terrain, the

mean velocity in hub height was set to V∞ = 10m/s and the hub height was set to H = 2R.

61



62 Wind Turbine Wake Aerodynamics in Atmospheric Shear Flow

7.3 Blade loading

Figure 7.1 shows the azimuth variation of the axial velocity for various radial positions along

the blade. Note that an azimuthal angle of 90o corresponds to the blade being oriented vertically

upwards.
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Figure 7.1: Azimuth variation of the axial velocity for various spanwise positions on the blade

As expected the sheared inlet velocity profile causes a nearly sinusoidal behavior of the veloci-

ties seen by the blade. From the figure, it also appears that there is no significant phase shift of

the velocities. This is more clearly shown in figure 7.2, which depicts the spanwise distribution

of the axial velocity at four distinct azimuth positions. Any differences in the axial velocities at

the two horizontal positions (0o and 180o) are barely visible hence indicating a high degree of

horizontal symmetry of the rotor loading.
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Figure 7.2: Radial distribution of the axial velocity for different azimuth positions.

Figure 7.3 shows the corresponding spanwise distributions of the axial interference factor com-

puted as

az(r, θ) =
V0(y) − Vz(r, θ)

V∞
=
( y

H

)α

− Vz(r, θ)

V∞
=

(

r sin θ +H

H

)α

− Vz(r, θ)

V∞
(7.2)

where V0 represents the inflow velocity profile given by equation 7.1 and Vz is the axial velocity

at the blade. Comparing figure 7.3 and 7.2 it is evident that the azimuthal variation of the axial
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induction is far less than that of the axial velocity. Furthermore, it is interesting to observe that

the distribution of the axial induction compares quite well to the induction of the rotor operating

in a uniform inflow (figure 4.2), both in terms of shape and level.
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Figure 7.3: Radial distribution of the axial interference factor for different azimuth positions.

Figure 7.4 shows the distributions of circulation, Γ = L/(ρVrel), along the blade at the four

azimuth positions. As in the corresponding uniform inflow case, see figure 4.3, the bound cir-

culation is nearly constant along the blade at all azimuth positions, though as might be expected

the circulation is lower when the blade is pointing downwards. The nearly uniform distribution

of the bound circulation indicates a wake characterized by concentrated tip and root vortices,

while trailing vorticity is marginal.
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Figure 7.4: Radial distribution of the bound circulation for different azimuth positions.

The radial distribution of respectively the axial and tangential blade forces are depicted in figure

7.5 at the four different azimuth positions. As expected the loading is generally highest when

the blade is in its upright position (90o) and lowest when it is pointing downwards (270o). More-

over, in agreement with the observations made about the normal velocities the blade loading is

observed to be almost identical at the two horizontal positions 0o and 180o, thereby indicating

an insignificant phase-lag. In a recent CFD study on two different wind turbines operating in a

strongly sheared flow Zahle and Sørensen [93] reported a modest phase-lag of the blade forces,

which caused the loading on the blade to be slightly larger at the horizontal position where the
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Figure 7.5: Radial distribution of respectively; a) the axial and; b) the tangential force for

different azimuth positions.

blade is on its way down (180o) than when it is in the horizontal position where it is moving

upwards. The phase-lag of the loading can be explained as being attributed to the unsteady

effect of vortex shedding due to changes in circulation on the airfoil. This also explains why

the phase-lag observed by Zahle and Sørensen [93] was most significant at the inner part of the

blade since the local reduced frequency (k = ωc/(2Vrel)) here is higher due to the larger chord

and lower relative velocity.

The reason that a phase-lag do not occur in the actuator line computation is probably that the

grid resolution is too coarse to capture the circulatory effect of the airfoil wake. However, it

should be emphasized that the phase-lag observed in [93] for a typical MW wind turbine op-

erating in a very strong shear flow was rather small, especially at the outer part of the blade,

which, from a load perspective, is most important, and therefore the absence of a phase-lag in

the actuator line computations is not considered to be a major issue.

7.4 Wake characteristics

Figure 7.6 show contours of the instantaneous absolute vorticity in the vertical plane through

the wind turbine center axis (x/R = 0). Regions of high vorticity appear as light colors. Note

that the rotor is located to the left in the plot and that only the downstream development of the

wake is shown.

Figure 7.6: Downstream development of the first 15 rotor radii of the wake visualized using

vorticity contours. The rotor is located to the left. Regions of high vorticity appear

as light colors.
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The wake is, as expected from the distributions of bound vorticity (figure 7.4) dominated by the

tip and root vortices, while the vorticity trailed from the blades is negligible. Comparing figure

7.6 and figure 4.4 it appears that the behavior of the wake vortex system in the sheared inflow

has many similarities to that observed in the corresponding uniform inflow case. However, as

expected, a consequence of the inflow velocity shear is that the transport of the tip vortices is

slightly larger when in the top position than in the bottom position.
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Figure 7.7: Computed profiles of the time averaged axial velocity in a vertical plane going

through the rotor center axis. The downstream location is indicated in the top axis.

Figure 7.7 shows the downstream development of the time averaged axial velocity in a vertical

plane going through the rotor center axis (x/R = 0). In order to give an impression of the

induction, the inlet velocity profile defined by equation 7.1 is also included in the figure. The

non-symmetric development of the wake is apparent where, in agreement with figure 7.3, the

induction is largest in the upper part of the wake. This, however, is not a common feature for

wakes in shear flow and generally depends on the degree of shear, the wind turbine and the

operational conditions. In the present case the intensity of the tip vortices is highest when in

the top position (see figure 7.4) but at the same time the pitch of the vortices is also largest

here due to the inflow velocity shear and therefore it is generally difficult to predict in advance

whether the largest deficit will occur in the upper or lower part of the wake. The presence of the

ground causes the wake to expand more upwards than downwards and also make the ambient

flow accelerate below the rotor and the wake. Another interesting feature to observe is that the

wake, in contrast to the uniform inflow case, apparently does not, to the same extent, reach an

equilibrium stage as e.g. it is evident that the velocity deficit 6 and 10 rotor radii downstream

differs somewhat from each other. Finally, it is noted that even though the wake is not fully

developed 14 rotor radii downstream it is evident that the wake does not develop toward the

same Gaussian shape as observed in the uniform inflow case.

In figure 7.8 the axial interference factor is plotted as a function of height for various down-

stream positions. Also included in the figure, is the curve representing the induction in the rotor

plane multiplied with two, in order to facilitate a direct comparison with the predictions of the

BEM method. Evidently, in the upper part of the wake the induction is generally more than

twice that in the rotor plane, while the opposite is true in the lower part of the wake.
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Figure 7.8: Computed profiles of the time averaged axial interference factor in a vertical plane

through the rotor center axis. The different downstream positions are indicated in

the figure.

Figure 7.9 shows the development of the normalized tangential velocity in the same cuts as in

figure 7.7 and again the asymmetric development is clearly visible. It is interesting to note that

despite the bound circulation being lowest when the blade is in its downward position (figure

7.4) this is not reflected in the development in the wake, where it is clear that the tangential

velocity develops toward the largest values in the lower part of the wake. This behavior of the

tangential velocity could be related to the wake expanding more upwards than downwards as

revealed from figure 7.7.
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Figure 7.9: Computed profiles of the time averaged tangential velocity in a vertical plane going

through the rotor center axis. The downstream location is indicated in the top axis.

In order to give a more clear impression of the asymmetric development of the wake figure

7.10 presents the contours of the time averaged axial velocity at various downstream positions.

The mean in-plane velocity field is presented as vectors. The view is from downwind, i.e. the

azimuth position corresponding to 0o is to the right.
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Figure 7.10: Contours of the mean axial velocity field in the wake. The mean in-plane veloc-

ity is presented as vectors. From left to right: 1R, 2R, 4R, 6R, 10R and 14R
downstream of the turbine.

The most important observation to make from the figure is that the rotation of the wake seems

to cause a redistribution of the axial velocity deficit and thereby the wake becomes horizontally

asymmetric as it is transported downstream. This behavior is in very good qualitative agreement

with both the CFD study of Zahle and Sørensen [93] as well as with measurements presented

in [10].

Figure 7.11-7.14 presents the contours of the four main components of the Reynolds stress ten-

sor at three downstream positions. Again the view is from downwind. Below each contour plot

the radial distribution of the respective Reynolds stress is presented for four distinct azimuth po-

sitions in order to give a more quantitative impression of its behavior. Note, that as the wake is

no more rotationally symmetric the two components 〈vrvθ〉 and 〈vθvz〉 are now non-zero. How-

ever, a closer inspection of these components revealed that they were still significantly lower

(an order of 3 − 4 times less) than the component 〈vrvz〉 and hence they are not shown here.

Generally, the normal stress in the flow direction is the dominant component attaining approx-

imately twice as large values as the in-plane normal stresses. The shear stress attains values

comparable to the in-plane normal stresses, though as expected with a different sign over the

bulk of the wake. The non-zero shear stress and the difference in the normal stresses reveal that

the Reynolds stresses exhibit significant anisotropy.
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Figure 7.11: Contours of 〈vzvz〉. From left to right: 6R, 10R and 14R downstream. The fig-

ures below each contour plot show the corresponding radial distribution for four

different azimuth positions.
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Figure 7.12: Contours of 〈vθvθ〉. From left to right: 6R, 10R and 14R downstream. The fig-

ures below each contour plot show the corresponding radial distribution for four

different azimuth positions.
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Figure 7.13: Contours of 〈vrvr〉. From left to right: 6R, 10R and 14R downstream. The fig-

ures below each contour plot show the corresponding radial distribution for four

different azimuth positions.
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Figure 7.14: Contours of 〈vrvz〉. From left to right: 6R, 10R and 14R downstream. The fig-

ures below each contour plot show the corresponding radial distribution for four

different azimuth positions.
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At the section located 6 rotor radii downstream of the rotor all components of the Reynolds

stress tensor are generally small and are mainly located in the center of the wake, due to the un-

stable root vortices. As the tip vortices become increasingly unstable with downstream position

the Reynolds stresses in the shear layer located in the annular domain surrounding the blade tips

increase significantly. However, it is clear that, due to the rotation of the wake, the turbulence

generated in the shear layer is not rotationally symmetric within the investigated downstream

positions.

Furthermore, the figures reveal how the thickness of the shear layer formed by the tip vortices

increase due to turbulent diffusion. Evidently, at the final investigated stage the shear layer is

still distinct revealing that most of the turbulence is produced by the shear from the tip vortices

at this point and that the wake is not fully developed.

7.5 Summary

The wake of the Tjæreborg wind turbine operating in a moderately sheared inflow has been

simulated.

Initially, it was shown that while the velocities experienced by the blades as expected varied

significantly during one rotor revolution the induced velocities were rather constant over the ro-

tor disk. Furthermore, it was shown that the loading on the blades revealed very little horizontal

asymmetry, which however most probably is due insufficient grid resolution.

Secondly, it was shown that the vortex instabilities formed downstream of the turbine was quite

similar to those observed in the corresponding uniform inflow case, though as expected the vor-

tex system was clearly skewed due to the velocity shear.

Besides an expected vertical skew of the velocities and the Reynolds stresses in the wake it was

also observed that these quantities were gradually becoming more asymmetric in the horizontal

direction as the wake was transported downstream. This horizontal asymmetry appeared to be a

consequence of the rotation of the wake, which caused low velocity air from the bottom part of

the wake to move upwards on one side and high velocity air from the upper part of the wake to

move downwards on the other side. Moreover, it was shown that the wake due to the presence

of the ground expanded more upwards than downwards and that the ambient flow accelerated

below the rotor and the wake.



Chapter 8

Wind Turbine Wake Aerodynamics in

Turbulent Inflow - Initial Results

The wake of the Tjæreborg wind turbine operating in an atmospheric turbulent inflow without

mean wind shear is simulated and the results are compared to those obtained in laminar inflow

with the objective of studying the overall influence of ambient turbulence on the wake behav-

ior. Besides providing the initial results of the wake characteristics of a turbine operating in a

turbulent inflow this chapter also presents a validation of the method used for imposing inflow

turbulence. The contents of this chapter were originally presented in [82].

8.1 Numerical setup

The computations were carried out in a numerical grid identical to the one used in chapter 4-6.

The atmospheric turbulence was modeled using the method described in 2.3.2 where artificial

turbulent fluctuations from a pre-generated turbulence field are introduced in a plane located

upstream of the rotor.

The turbulence field was generated using the algorithm by Mann [48], [49] assuming a mean

wind speed of V∞ = 10 m/s, a height above ground of y = 60 m and a roughness height

of y0 = 0.05 m. The given parameters correspond to a friction velocity u∗ of 0.54 m and a

turbulence intensity of approximately 0.09. The turbulence field was furthermore fitted to all

three components of the Kaimal spectrum Sk,i, which in its two-sided form is given by [49]:

fSk,x

u2
∗

=
8.5n

(1 + 9.5n)5/3
;

fSk,y

u2
∗

=
1.05n

1 + 5.3n5/3
;

fSk,z

u2
∗

=
52.5n

(1 + 33n)5/3
; (8.1)

Here f is the frequency and n ≡ fy/V∞.

The dimensions of the generated turbulence box was Lx×Ly×Lz = 8R×8R×128R and from

this domain a box of dimensions 4R×4R×128R was extracted to avoid problems related to the

periodicity of the turbulence field as mentioned in section 2.3.2. The number of grid points in

the final turbulence box was 64× 64× 2048 resulting in a grid with a resolution corresponding

to 16 grid point per rotor radii. The turbulence field was introduced in a z-plane located 6 rotor

radii downstream of the inlet (i.e. 1 rotor radius upstream of the rotor) and with its center point

in the center of the domain.

71
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8.2 Inflow turbulence decay

Obviously, with the used method for modeling inflow turbulence the turbulent fluctuations will

decay as they are transported downstream since there is no production to balance the dissipa-

tion.

In order to quantify the rate of turbulence decay the generated turbulence field was initially

imposed in a purely uniform flow field (i.e. without including the wind turbine) and its devel-

opment was studied in a number of downstream sections.
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Figure 8.1: Comparison of the analytical Kaimal spectrum with the spectrum of the introduced

turbulence field. Left: Initial spectra. Right: Downstream development of one

dimensional spectra. a) x-velocity; b) y-velocity; c) z-velocity.

Figure 8.1 compares the theoretical Kaimal spectra with respectively the spectra computed di-

rectly from the input turbulence field produced by the Mann algorithm (left) as well as with the

spectra obtained at three different sections downstream of the turbulence grid (right). Please,

note that the spectra are averages over the entire domain.
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The left figures show the initial spectral characteristics of the turbulence field. As seen the re-

semblance between the theoretical and computed spectra is generally good over most of the

frequency range. The reason that the computed turbulence field has somewhat lower energy at

the highest frequencies is that the turbulence wind field is spatially averaged over each grid cell

[49].

The right plots of figure 8.1 show the evolution of the spectral characteristics with downstream

position. As seen the spectra obtained 1R downstream of the turbulence plane is characterized

by having a rather steep slope in the inertial sub range, however, further downstream the slope

apparently return to the theoretical value. This transient behavior occurs because the input tur-

bulence field is not a solution to the full Navier Stokes equations and hence needs to adapt to

the numerical solver.

From figure 8.1 it appears that the decay of turbulence is rather low but it is somewhat difficult

to see. A clearer plot is obtained by integrating the one dimensional spectra over the entire

frequency range to obtain an estimate of the variance, σ2, of the turbulent velocity, i.e.

σ2
i =

∫ ∞

0

Sidf (8.2)

Figure 8.2 shows the estimated standard deviation of each velocity component as a function of

the distance to the turbulence plane.
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Figure 8.2: Downstream development of the spatially averaged standard deviation of each ve-

locity component

As seen the standard deviation of the axial component, σz decreases continuously with down-

stream position and reaches a level of approximately 80% of the initial value. The component

σx initially drops rapidly and then reaches a rather constant value, whereas the last component

stays nearly constant over the entire region.

The above study verifies that the imposed turbulent fluctuations, though of course decaying,

remain significant throughout the region of interest and hence should be useful for the present

study. It should be appreciated, however, that the method may be problematic in studies on large

wind farms since the turbulence decay in these cases may be significant for turbines placed far

from the turbulence plane.
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8.3 Wake characteristics

This section presents the initial results from the simulation of the wake generated behind the

Tjæreborg wind turbine operating in an unsteady inflow. In the computation the mean wind

speed was V∞ = 10 m/s corresponding to a tip speed ratio of λ = 7.07. The wake of the

turbine operating in laminar inflow at the same tip speed ratio was presented in chapter 4-6 and

thus a comparison can reveal the overall influence of the unsteady inflow on the wake.

Figure 8.3 shows the development of the first 15 rotor radii of the wake by displaying instanta-

neous contours of the absolute vorticity in a slice intersecting the wind turbine center axis.

Figure 8.3: Downstream development of the wake visualized using vorticity contours. The rotor

is located to the left.

Comparing with the corresponding figure for the turbine operating in a uniform inflow (figure

4.4) it is evident that the ambient turbulence causes dramatic changes in the wake development.

The external turbulent fluctuations perturb the vortex system, whereby the wake become unsta-

ble much closer to the rotor. From the visualization it is possible to identify various coherent

flow structures in the wake the largest of which are clearly much larger than the diameter of

the rotor and appears as a meandering of the wake. Organized structures due to the presence of

the tip and root vortices can be distinguished up to approximately 6 rotor radii behind the rotor

but further downstream the interior of the wake seems to be fully turbulent. It is interesting

to observe that at the shown instant there is a region approximately 7 rotor radii downstream

where the wake apparently undergoes a contraction so that the radial extent of the wake at this

point appear smaller than the rotor diameter. The same observation was made in the work of

Binöl et al. [9] and is most likely due to a combination of large scale out of plane motion and

stretching of the wake. The stretching of the wake is more apparent in figure 8.4, which shows

a) b) c)

Figure 8.4: Absolute vorticity contours in sections located respectively 2 (a), 6 (b) and 10 (c)

rotor radii behind the turbine
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vorticity contours at three different downstream cross sections in the wake. From the figure it

is further seen that the tip and root vortices are unstable already 2 rotor radii downstream of the

turbine and that the wake in the section 10 rotor radii downstream clearly has broken down to

small scale turbulence.

In figure 8.5 the development of the axial velocity in the wake is shown and compared to the

corresponding results in uniform inflow. The shown profiles are averaged in both time and in

the circumferential direction.

2 6 10 2 6 10 2 6 10 2 6 10 2 6 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

〈V
z

〉/V
∞

×10

r/
R

0 2 6 10 14
z/R

Figure 8.5: Downstream development of the time and circumferentially averaged axial velocity

deficit for the turbine in respectively a uniform (full line) and a turbulent inflow

(dashed line).

The wake of the rotor in uniform inflow is characterized by having a nearly constant velocity

over most of the radial distance, which indicate a wake governed by the induction of stable tip

and root vortices. On the other hand, the wake of the rotor operating in a turbulent inflow is seen

to undergo a rapid transition into a bell shaped velocity deficit indicating that the wake becomes

dominated by small scale turbulence. However, this wake shape could also be partly attributed

to large scale wake meandering - indeed a sharper wake deficit might be found if the computed

average velocity profiles were based on a point following the center of the wake. This issue is

addressed in more details in the next chapter.

Figure 8.6 shows the azimuthally and temporally averaged normalized tangential velocity pro-

files at various downstream sections for both the tested cases.

The figure clearly reveals that, while swirl in the wake is significant for all downstream sections

in the uniform inflow case, it decays rapidly toward zero when inflow turbulence is present.

Note, that the quantity presented in figure 8.6 is also a measure of the amount of circulation in

the wake. In chapter 5 it was found that circulation is fairly conserved in the wake of a rotor in

uniform inflow as long as viscous phenomena are not too dominant. However, the rapid decay

of the tangential velocity when turbulence is introduced to the inflow indicates that circulation

is generally not well conserved in the wake.
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Figure 8.6: Averaged tangential velocity profiles at different downstream positions for the rotor

operating respectively in uniform inflow (full line) and turbulent inflow (dashed

line).

8.4 Summary

The wake of the Tjæreborg wind turbine operating in an atmospheric turbulent flow without

shear has been simulated and the initial results presented. Through a comparison with a simi-

lar simulation carried out on the same wind turbine subject to uniform inflow the influence of

atmospheric turbulence on the wake dynamics has been studied. The ambient turbulence field

was shown to perturb the tip vortices whereby the wake breaks up much closer to the rotor than

in a laminar inflow. The break down of the vortices causes the wake to undergo a transition into

a fully turbulent state characterized by a bell-shaped mean axial velocity profile and a nearly

negligible mean tangential velocity.

Besides the studies of the wake development an investigation of the decay of the imposed at-

mospheric turbulence in a uniform flow field was also conducted. The study showed that even

though the turbulence, as expected, decays as it is convected downstream it remains significant

throughout the entire region of interest and therefore it was concluded that the method of im-

posing artificial turbulence upstream of the rotor is useful for studying the influence of inflow

turbulence on the wake behavior.



Chapter 9

Wind Turbine Wake Aerodynamics in

Turbulent Non-Sheared Inflow -

Turbulence Characteristics

The fundamental turbulence characteristics of the wake of respectively the Tjæreborg and the

NM80 wind turbine operating in atmospheric turbulent inflow without a mean shear are studied

and the results are compared with the aim of extracting general features of wind turbine wake

turbulence. The investigation of the Tjæreborg Turbine is based on the simulation presented in

the previous chapter. The simulation of the NM80 turbine was conducted at V∞ = 10m/s and

using the same numerical mesh as the one used for the Tjæreborg turbine. Hence the numerical

setup in the two computations is identical in every respect except for the characteristics of the

imposed turbulence field.

Most of the contents of the present chapter were presented in [83] and it basically follows the

same steps as shown in chapter 6 for a turbine in laminar inflow, i.e. includes calculation of

Reynolds-stresses, length scales, spectral characteristics and coherence properties as well as

a study of whether the results are consistent with the assumption of self-similarity. Finally,

this chapter presents a POD analysis and in this connection discusses some large scale wake

phenomena.

9.1 Inflow turbulence characteristics

The most relevant characteristics of the inflow turbulence fields in connection with the present

analysis are presented in table 9.1 and 9.2. Note that since the inflow turbulence is spatially

Dir Lk,i/R σi/V∞ [%] Ci,∆x Ci,∆y

x 3.1 7.8 − −
y 1.3 5.8 − −
z 10.8 11.2 9.8 6.1

Table 9.1: Characteristics of inflow turbulence used in the computation on the Tjæreborg tur-

bine

homogeneous the Kaimal length scales, the standard deviation and the coherence decrement, C,

77
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Wind Turbine Wake Aerodynamics in Turbulent Non-Sheared Inflow - Turbulence

Characteristics

Dir Lk,i/R σi/V∞ [%] Ci,∆x Ci,∆y

x 2.3 6.2 − −
y 0.9 4.6 − −
z 8.2 8.8 10.9 6.7

Table 9.2: Characteristics of inflow turbulence used in the computation on the NM80 turbine

is constant and that the results presented in table 11.1 and 11.2 are computed as an average over

the entire cross-section. The subscripts i = {x, y, z} refer to the velocity component and the

subscript, ∆x and ∆y of C refer to separation in respectively x and y direction. Furthermore, it

should be emphasized that the length scales of the two turbulence fields in fact are very similar

the reason for the differences being that they are scaled with two different rotor radiuses.

9.2 Validation - comparison with measurements

Table 9.3 presents the computed thrust coefficient as well as the computed and measured power

coefficient for both wind turbines.

Wind turbine CT (computed) CP (computed) CP (measured)

Tjæreborg 0.8 0.51 0.49
NM80 0.70 0.48 0.47(electrical)

Table 9.3: Thrust and power coefficient for respectively the Tjæreborg and NM80 wind turbine

at a mean wind speed of V∞ = 10m/s.

The table reveals good agreement between measured and computed power coefficient for both

turbines, the differences being most likely due to inaccurate airfoil data.

To further validate the simulations, the computed profiles of respectively the mean axial velocity

and the standard deviation of the axial velocity obtained 5 rotor radii downstream of the NM80

wind turbine was compared with measurements at the same downstream positions. The result

is presented in figure 9.1. Note that for the measured mean velocity data, ambient wind speeds

in the range 9− 11m/s have been considered, reflecting the usual balance, between amount of

available data and the selected bin size [43].

The scatter of the mean velocity measurements is considered mainly to be due to the applied

binning. On the other hand the binning does not influence the scatter of the measured standard

deviation since these are normalized with respect to the actually observed mean wind speed.

The scatter in the measured standard deviation is therefore most likely associated with varying

atmospheric stability conditions.

The simulated results of both mean velocity and standard deviation agree reasonable with the

corresponding measured data, both with respect to shape, expansion and magnitude. The ob-

served discrepancies between measured and simulated results are most likely due to differences

in the inflow conditions. However, in the center of the wake both the mean velocity and stan-

dard deviation are over predicted because the nacelle is not present in the simulation.

It should be appreciated that validating the simulations in terms of a limited set of mean wake

measurements, as the one used here, may be questionable because any observed agreement or

disagreement might be somewhat coincidental.



9.3 Reynolds stresses 79

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

r/R

〈V
z
〉/V

∞

 

 

ACL

Measured

0 0.5 1 1.5 2 2.5
0.06

0.1

0.14

0.18

0.22

r/R

〈v
z
v

z
〉1

/2
/V

∞

 

 

ACL

Measured

Figure 9.1: Computed and measured profiles of respectively a) mean axial velocity and b) axial

turbulence intensity in a section located 5R downstream of the NM80. The ambient

mean wind speed is V∞ = 10m/s and the axial turbulence intensity is 9%.

9.3 Reynolds stresses

Figure 9.2-9.3, presents the radial distribution of the four main components of the Reynolds-

stress tensor at different positions downstream each turbine. All the shown curves are averaged

in the circumferential direction. The two components 〈vrvθ〉 and 〈vθvz〉 are not shown here

since they are zero due to circumferential symmetry [63].
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Figure 9.2: Profiles of the Reynolds-stresses at different sections downstream of the Tjæreborg

turbine. a) z/R = 6; b) z/R = 14

As seen the Reynolds stresses at z/R = 6 generally maximizes in the region of the tip vor-

tices but as the wake move downstream the Reynolds-stress distributions develop toward a bell

shaped form. As in the steady uniform inflow case the transition toward a bell shaped profile

is cf. figure 8.5 observed to be slower for the Reynolds stresses than for the mean velocity

profile revealing that the decay of turbulence is less rapid than the decay of the mean velocity

deficit. However, as expected the development is stronger in the present cases than when the

turbine operates in a laminar inflow because the vortex system breaks up much earlier, when it is

perturbed by the ambient turbulence field. Another important observation is that the Reynolds-

stresses exhibit increasingly isotropy with downstream position, nevertheless the wake is still

rather far from being isotropic at z/R = 14.



80

Wind Turbine Wake Aerodynamics in Turbulent Non-Sheared Inflow - Turbulence

Characteristics

a)
0 0.5 1 1.5 2 2.5 3

−1

0

1

2

3

r/R

<
v

iv
j>

/V
∞2

×1
0

2

<v
r
v

r
>

<v
θ
v

θ
>

<v
z
v

z
>

<v
r
v

z
>

b)
0 0.5 1 1.5 2 2.5 3

−5

0

5

10

15

20

r/R

<
v

iv
j>

/V
∞2

×1
0

3

<v
r
v

r
>

<v
θ
v

θ
>

<v
z
v

z
>

<v
r
v

z
>

Figure 9.3: Profiles of the Reynolds-stresses at different sections downstream of the NM80 tur-

bine. a) z/R = 6; b) z/R = 14

9.4 Self-similarity

Figure 9.4 presents the mean axial velocity profiles in the wake of each turbine in terms of the

scaled velocity variable, fv defined in equation A.24 of appendix A. For comparison the figure

also includes the analytical constant eddy-viscosity solution, which is given by

fv(ξ) = exp(−αξ2) (9.1)

where α = ln 2 and ξ = r/r1/2.
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Figure 9.4: Self-similar velocity profiles downstream of each turbine. a) Tjæreborg; b) NM80

As seen the mean axial velocity can be assumed self-similar approximately 7 and 8 rotor radii

downstream of respectively the Tjæreborg and the NM80 since all scaled profiles after this point

nearly collapse on a single curve. The analytical solution compare very well with the computed

results in the inner part of the wake but differ in the outer part, as expected.

9.5 Spectral characteristics

Figure 9.5-9.6 show the spectral characteristics of the streamwise velocity component at differ-

ent radial and downstream positions for each turbine. All the spectra have been computed using
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spectral averaging in the circumferential direction. The corresponding spectra of the radial and

tangential velocity components are not shown here since these, as for the uniform inflow case,

were found to exhibit a spectral behavior similar to the axial velocity. However, in section 9.6

all spectra will be characterized by the standard deviation σk,i and the characteristic length scale

Lk,i. For comparison the analytical Kaimal spectrum (equation 8.1) of the input turbulence is

also shown in the figures.
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Figure 9.5: Spectra of the axial velocity in the wake of the Tjæreborg turbine at a) z/R = 6
and b) z/R = 14.
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Figure 9.6: Spectra of the axial velocity in the wake of the NM80 turbine at a) z/R = 6 and b)

z/R = 14.

In all cases the shape of the spectra inside the wake is similar to the Kaimal spectrum, though,

as expected, the energy level in the wake is, due to the turbulent mixing of the wind turbine,

higher at the upper frequency range. Comparing spectra, associated with the various radial po-

sitions it is characteristic that the turbulence has the largest energy content in the regions of

highest velocity gradients cf. figure 9.2 and 9.3. Furthermore, it appears that the wake turbu-

lence attenuates and tends to become more spatially homogeneous with increasing downstream

position. Finally, it is noted that none of the spectra show sign of organized structures at distinct

frequencies.

9.6 Characteristic length scales

Figure 9.7 presents the radial and downstream development of respectively the estimated stan-

dard deviations and the Kaimal length scale of each velocity component in the wake of the
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Tjæreborg turbine. The corresponding results for the NM80 turbine are similar and hence are

not shown.
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Figure 9.7: Downstream development of respectively the estimated standard deviations (top fig-

ures) and length scales (bottom figures) in the wake of the Tjæreborg turbine; a)

Radial component; b) Tangential component; c) Axial component

The estimated standard deviations reveal the same features as already presented in figure 9.2

i.e. that the wake generated turbulence has the largest energy level in the regions of largest gra-

dients and that the turbulence attenuates and tend to become more spatial homogeneous with

downstream position.

The radial and tangential length scales show modest variations without a clear trend, whereas

the axial length scale clearly is increasing with radial position. From the figure the wake is

clearly identified as the region of reduced axial length scales compared to the ambient flow

field. Furthermore, it is seen that inside the wake the axial length scale, Lk,z is the dominant

component, attaining approximately 2-4 times larger values than the radial and tangential length

scales.

9.7 Coherence

The coherence properties of the wake turbulence have been studied in terms of the coherence

decrement using the approach described and validated in appendix A.

Figure 9.8-9.9 display the circumferentially averaged coherence decrement, C, as a function of

rm and φm in two sections downstream of respectively the Tjæreborg and the NM80 turbine.

As seen the coherence decrement in the wake is generally increased substantially compared to

the inflow, cf. table 9.1. Furthermore, C is observed to undergo considerable variations inside
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Figure 9.8: Spatial variation of the coherence decrement in the wake of the Tjæreborg turbine;

a) z/R = 6; b) z/R = 14.
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Figure 9.9: Spatial variation of the coherence decrement in the wake of the NM80 turbine; a)

z/R = 6; b) z/R = 14.

the wake showing the inhomogeneous nature of the turbulence. Generally, it appears that C
varies most significantly with the radial position, usually attaining the largest values in the inner

part of the wake, while it seems less sensitive to changes in φm. This behavior suggests that

the turbulence is least correlated in the center of the wake, which is consistent with the length

scales at the same time being smallest here as revealed in figure 9.7. Moreover, there is clear

tendency for both the variations and the mean level of C to decay with downstream position

presumably toward the level of the inflow.

9.8 Large scale dynamics

The Proper Orthogonal Decomposition (POD), described in appendix A, has been applied in

order to extract the dominant flow structures of the wake and to analyze some features of the

large scale dynamics of the wake. The analysis was carried out for both turbines but in the

following the main focus will be on the results obtained for the Tjæreborg turbine and thus

unless otherwise stated this is the turbine used in the present investigation. The analysis was

based on a dataset consisting of N = 709 snapshots of the three velocity components taken in

different planes downstream of the turbine. The snapshots were in all cases sampled at a rate

corresponding to 5.3 times the rotational frequency of the turbine.

In the following representative results from the analysis will be presented.

Figure 9.10, shows the relative energy of the first 25 POD modes compared to the total energy
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of the dataset.
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Figure 9.10: Relative energy of the first 25 POD modes in the wake of the Tjæreborg turbine.

The curve decays rapidly in the beginning but becomes less steep with increasing mode number.

Note that the first modes, containing the most energy, represent the dominant structures of the

wake, while the lower energy levels indicate smaller flow structures.

Figure 9.11 show the velocity field associated with respectively POD mode 1, 2, 4 and 8. These

modes represent 12%, 7.8%, 3.2% and 1.8% of the total turbulent energy, respectively. Note

that the view is from downwind, i.e. the azimuth position corresponding to 0o is to the right in

the plots.
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Figure 9.11: From left to right: POD modes 1, 2, 4 and 8 in the wake of the Tjæreborg turbine.

The first two modes are characterized by large regions with significant out-of-plane motion,

which roughly divides them into two regions of opposite sign whereas no common trend is

observed for the in-plane motion. It should be mentioned that the POD coefficients associated
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with the shown modes are alternating between positive and negative values and hence the sign

of the out-of-plane motion is not constant. Thus for the shown downstream position the POD

analysis reveals significant large scale oscillations, which may be interpreted as a meandering

of the wake. For increasing mode number the size of the coherent structures decrease and the

level of detail in each mode increase.

To evaluate the dynamics of the wake the POD coefficients associated with each mode have

been computed and their temporal behavior was compared to the corresponding coefficients for

the inflow. For the POD analysis of the inflow turbulence field a dataset consisting of 1024

snapshots was extracted at a rate corresponding to 7.1 times per rotor revolution.

In Figure 9.12 the fluctuating part of the first mode of respectively the inflow and the wake is

plotted as a function of time. It should be noted, that due to the spatial displacement between the

input turbulence plane and the investigated wake section the two signals of the modes are not in

phase and therefore, for clarity, the shown time signal of the wake mode has been phase-shifted

to fit the signal of the inflow mode.
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Figure 9.12: Temporal variation of the first mode of respectively the wake and the inflow. The

signal of the wake mode has been phase-shifted to fit the signal of the inflow mode.

As seen there is a high degree of correlation between the two modes revealing that the large

scale dynamics of the wake is strongly governed by the large scale lateral and vertical velocity

components of the ambient turbulence.

To elaborate more on this observation the correlation between each mode of the wake and the

corresponding mode of the inflow was studied in terms of the correlation coefficient

ρi,i =

〈

a
(w)
i (t+ t0)a

(in)
i (t)

〉

[〈

a
(w)
i (t)2

〉〈

a
(in)
i (t)2

〉]1/2
(9.2)

Here, 〈〉 denote ensemble averaging, t0 is the phase-shift giving the optimal correlation between

the i′th mode of the inflow and the i′th mode of the wake while the superscripts w and in refers

to respectively wake and inflow modes.

In figure 9.13 the correlation coefficient is plotted as a function of mode number. The figure

clearly shows how the most energetic modes of the wake are correlated with the corresponding

modes of the inflow and that the correlation coefficient, as expected, is decreasing for increasing

mode number.



86

Wind Turbine Wake Aerodynamics in Turbulent Non-Sheared Inflow - Turbulence

Characteristics

0 5 10 15 20 25
0.2

0.4

0.6

0.8

1

mode index

ρ i,
i

Figure 9.13: Correlation coefficient between respective modes of the wake and the inflow.

As described in appendix A, the original flow field can be reconstructed from the POD modes

and their corresponding coefficients using equation A.23. Having accepted that the most ener-

getic modes of the wake are due to the meandering of the wake the reconstructed velocity field

may be divided into three parts

V rec(x, t
(n)) = v(1)(x, t(n)) + v(2)(x, t(n)) + 〈V (x)〉

=

i0
∑

i=1

a
(n)
i φ(x) +

m
∑

i=i0+1

a
(n)
i φ(x) +

1

N

N
∑

j=1

V j (9.3)

where the first term, v(1)(x, t(n)), represents the large scale wake meandering, the second term,

v(2)(x, t(n)), represents the turbulence field in the meandering frame of reference and the last

term is the mean velocity field.

From figure 9.13 it is seen that there is a significant correlation between the first three modes of

the inflow and the wake and hence i0 was set to i0 = 3.

Initially, the velocity field was reconstructed without including the term v(2)(x, t(n)) in order

to get a representation of the wake meandering. From this low dimensional field a wake center

was computed from the axial induction factor a
(1)
z = 1 − (〈Vz〉 + v

(1)
z )/V∞ using an approach

similar to that presented in chapter 6, i.e.

Rc(z, t) = (xc(z, t), yc(z, t)) =

∑

i |a
(1)
z (xi, yi, z, t)|ri

∑

i |az(xi, yi, z, t)|
, ri = (xi, yi) (9.4)

where the summation is carried out over all grid cell at the given downstream position.

It should be appreciated that the wake center coordinates predicted from equation 9.4, as ex-

pected, are nearly identical to the predictions of equation 6.3 where the small scale turbulence

is not neglected.

Figure 9.14 shows the temporal variation of the coordinates of the wake center at a section

located 10 rotor radii downstream of the Tjæreborg turbine. As seen the variability of the x-

coordinate is larger than the y-coordinate, which is in agreement with the turbulent scales of the

atmosphere being larger in the horizontal direction than in the vertical direction.
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Figure 9.14: Temporal variation of wake center coordinates in a section located 10R down-

stream of the Tjæreborg turbine

Figure 9.15 shows the ensemble averaged axial velocity profile computed around the dynamic

wake center in a section located 10 rotor radii downstream of the rotor and the result is compared

to the corresponding profile in the fixed frame of reference. Both profiles have been averaged

in the circumferential direction.
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Figure 9.15: Comparison of time and circumferentially averaged axial velocity profile in a fixed

and a meandering frame of reference.

As seen the mean velocity profile in the moving frame of reference is characterized by a deeper

deficit and a smaller radial extent compared to the profile computed in the fixed frame. The

nearly bell shaped velocity profile obtained in the moving frame of reference is indicative of a

turbulence field governed by small scale turbulence.

Secondly, the velocity field v(2)(x, t(n)) was studied in order to characterize the turbulence de-

scribed in a meandering frame of reference.

The radial distribution of the azimuthally averaged components of the Reynolds stress tensor

in the meandering frame of reference has been computed and as representative examples figure

9.16 shows the result obtained 10 rotor radii downstream of both the Tjæreborg and the NM80

turbine. The result for the other downstream positions show similar behavior and hence are not

shown here. Comparing the shown distributions with figure 9.2 it is evident that the behavior

of the turbulence is much closer to being isotropic in the meandering frame of reference than in

the fixed frame of reference. This is an important observation and reveals that the main source

of the anisotropy in the wake is due to the nature of the ambient turbulence field.
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Figure 9.16: Components of the Reynolds stress tensor computed in a meandering frame of

reference; a) Tjæreborg; b) NM80

In figure 9.17, the radial and downstream development of the estimated Kaimal length scales of

the turbulence in the meandering frame of reference is presented.

6

8

10

12

14 0
0.5

1
1.5

0.1

0.2

0.3

0.4

r/R
z/R

L
k
,r
/R

6

8

10

12

14 0
0.5

1
1.5

0.2

0.3

0.4

0.5

r/R
z/R

L
k
,θ

/R

6

8

10

12

14 0
0.5

1
1.5

0.5

0.75

1

1.25

r/R
z/R

L
k
,z

/R

a) b) c)

Figure 9.17: Radial and downstream development of the Kaimal length scales in the meander-

ing frame of reference; a) Radial component; b) Tangential component; c) Axial

component

The surface plots clearly reveal that the turbulence in the meandering frame of reference is char-

acterized by smaller length scales than those found in the fixed frame of reference. Moreover, it

is observed that even though the axial length scale still is larger than the two other components

the difference between them is now much smaller.

Finally figure 9.18 display the downstream development of the coherence decrement in the

moving frame of reference.

From the figure it is seen that compared to the turbulence expressed in a fixed frame the coher-

ence decrement is generally undergoing more moderate variations. Another interesting obser-

vation is that the overall level of the coherence decrement of the turbulence in the meandering

frame of reference, in contrast to the length scales, is fairly unaltered compared to the coherence

decrement in the fixed frame.
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Figure 9.18: Spatial variation of C in the meandering frame of reference; a) z/R = 6; b)

z/R = 14

9.9 Summary

A thorough study of the turbulence properties of the wake of respectively the Tjæreborg and the

NM80 turbine operating in a turbulent non-sheared flow have been presented.

The chapter initially showed some general features of wind turbine wakes including the devel-

opment of the Reynolds stresses, turbulent length scales, spectral contents and coherence. This

investigation revealed an inhomogeneous and anisotropic wake characterized by having consid-

erably smaller length scales than the ambient flow field.

Furthermore, it was shown that the axial velocity in the wake can be considered self-similar

about 7 − 8 rotor radii downstream of the rotor.

Secondly, a POD analysis was conducted in order to study the large scale dynamics of the wake.

By studying the temporal variation of the most energetic POD modes it was clearly shown that

the large scale dynamics of the wake correlates significantly with the large scale motions of the

ambient turbulence field.

The results from the POD analysis was subsequently used to reconstruct the original turbulence

flow field and divide it into two parts: one representing the large scale meandering and one

representing the turbulence in the meandering frame of reference. From the first part a wake

center was computed and its temporal evolution was studied. From this analysis it was found

that the wake undergoes significant meandering. Thereafter, the mean axial velocity deficit in

the meandering frame of reference was computed and found to be deeper and narrower than the

corresponding deficit in the fixed frame.

The analysis of the second part of the reconstructed turbulence field revealed that the turbulence

in the meandering frame of reference is characterized by being much more isotropic than in the

fixed frame of reference, thereby suggesting that the main source of anisotropy in the wake is

the ambient turbulence field.



Chapter 10

Wind Turbine Wake Aerodynamics in

Atmospheric Sheared and Turbulent

Inflow

The wake of the Tjæreborg turbine operating in an atmospheric turbulent inflow with a standard

mean shear is studied. The numerical setup of the simulation used for the investigation is in

every aspect identical to the one used in chapter 7 except that a turbulence field with charac-

teristics given in table 9.1 is now added to the inflow. Hence the mean inflow velocity at hub

height is V∞ = 10m/s and the power law exponent is α = 0.2.

The objective is to document the overall development of the wake and to study how the turbu-

lence characteristics of the wake is affected by the combined effect of wind shear and inflow

turbulence.

10.1 Overall wake characteristics

As in the previous chapters a qualitative impression of the flow field is initially given by showing

contours of the instantaneous absolute vorticity in a vertical section along the wind turbine

center axis.

Figure 10.1: Vorticity contours of the first 15 rotor radii of the wake. Regions of high vorticity

appear as light colors. The rotor is located to the left.

Comparing with the corresponding development where the inflow is laminar (figure 7.6) it is

evident that the wake in the present case breaks up much closer to the rotor, as expected.

The inflow shear is apparent by the larger pitch of the tip vortices in the top position than in

90
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the bottom position. Otherwise, by comparing with figure 8.3, it appears that the flow field has

many similarities to the corresponding non-sheared case.

In order to give an impression of the full three-dimensional behavior of the wake figure 10.2

shows the development of the mean velocity field at different downstream positions. The view

is from downwind, i.e. the azimuth angle θ = 0o is to the right in the plots.
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Figure 10.2: Contours of the mean axial velocity field in the wake. The view is from downwind

and the mean in-plane velocity is presented as vectors. From left to right: 1R, 2R,

4R, 6R, 10R and 14R downstream of the turbine.

The figure reveals many of the same features as was observed in the corresponding laminar

inflow case (chapter 7), the most apparent being that the rotation of the wake creates a horizontal

asymmetry of the velocity deficit. However, as the wake breaks up into small scale turbulence,

it appears that the mean rotational speed goes toward zero and thus the horizontal asymmetry

gradually diminishes.

Figure 10.3 presents the downstream development of the mean axial velocity in a vertical plane

going through the rotor center axis (x/R = 0) and the result is compared with the corresponding

development in the laminar inflow case. Also included in the figure is the mean inlet velocity

profile in order to provide an impression of the induction.

Similarly to what was observed for a non-sheared turbulent inflow (chapter 8) the induction

on the rotor itself is more or less unchanged but the ambient turbulence field causes the wake

to undergo a more rapid transition into a bell shaped form than when the inflow is laminar.

Furthermore, it appears that the maximum deficit is located slightly above the wind turbine

center axes, which is a reminiscent from the near wake, where the induction is largest in the

upper part of the wake.
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Figure 10.3: Downstream development of the averaged axial velocity in the wake of the Tjære-

borg turbine operating in respectively a turbulent (full line) and a laminar inflow

(dashed line) with a mean shear.

10.2 Self-similarity

In chapter 6 and 9 it was shown that the axial velocity in the far wake of a turbine operating in

uniform mean flow is self-similar and may be fairly well described by a constant eddy viscosity

solution (equation A.27). However, it is not obvious that the property of self-similarity also is

true when the wake development is influenced by the presence of the ground and the velocity

shear. Therefore, it is of interest to study whether the far wake in the present case can be con-

sidered self-similar.

Due to the sheared inflow the wake is not rotationally symmetric and therefore the scaled ve-

locity variable fv defined in equation A.24 will now also be a function of the azimuth position,

i.e.

fv(ξ) =
V0(r, θ) − 〈Vz(r, θ, z)〉

Vs(z)
, ξ = r/r1/2(θ, z) (10.1)

Where V0 is the mean inflow velocity, which as mentioned in the beginning of the chapter is

defined by a power law profile, with V∞ = 10m/s and α = 0.2

V0(r, θ) = V∞

( y

H

)α

= V∞

(

r sin θ +H

H

)α

(10.2)

The characteristic velocity difference Vs and the wake half width, r1/2 is defined as in the ax-

isymmetric case (equation A.25 and A.26) except that r1/2 now also is a function of the azimuth

position, i.e.

〈Vz(r1/2, θ, z)〉 = V0(r, θ) −
1

2
Vs(z) (10.3)

Figure 10.4 shows the self-similar axial velocity profiles at different downstream positions for

four distinct azimuth positions as indicated in the figure caption. As seen the scaled velocity

profile collapse fairly closely on a single curve in the inner part of the wake, which seems to



10.3 Characteristic length scales 93

suggest self-similarity. However, in the outer part of the wake the scaled velocity becomes

more scattered and it appears that the self-similarity condition especially in the lower region

(θ = 2700) is not fulfilled. The analytical constant eddy viscosity solution (equation A.27 is as

in the uniform inflow cases observed to capture the inner part of the wake fairly well but over

predicts in the outer part.

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

r/r
1/2

f v

Figure 10.4: Self-similar axial velocity profiles at different azimuth and downstream positions

in the wake. Blue: z/R = 9, Green: z/R = 13, Red: z/R = 15. Circles: θ = 0o,

Squares: θ = 90o, Diamonds: θ = 180o, Triangles: θ = 270o. Solid line constant

eddy viscosity solution (equation A.27)

10.3 Characteristic length scales

The radial distributions of the Kaimal length scales, Lk,i and the corresponding standard devi-

ations σk,i of each velocity component have been estimated using the method described in ap-

pendix A and the result is shown in figure 10.5 and 10.6 for different downstream and azimuthal

positions in the wake. Please note that the shown distributions of σk,i may be interpreted indi-

rectly as measures of the normal stresses in the wake.

Similarly to what was observed in the sheared non-turbulent inflow case there are considerable

azimuth variations of the estimated standard deviations in the wake with the largest values oc-

curring in the upper part of the wake. However, by comparing with figure 7.11-7.13 it appears

that the difference between the estimated standard deviations at 0o and 180o is smaller in the

present case than when the inflow is laminar.
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Figure 10.5: Estimated standard deviations (top figures) and Kaimal length scales (bottom fig-

ures) in a section located 6R downstream of the Tjæreborg turbine; a) Radial

component; b) Tangential component; c) Axial component
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Figure 10.6: Estimated standard deviations (top figures) and Kaimal length scales (bottom fig-

ures) in a section located 14R downstream of the Tjæreborg turbine; a) Radial

component; b) Tangential component; c) Axial component
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The distributions of Lk,i in the wake have many similarities to the non-sheared turbulent inflow

case (figure 9.7): The axial length scales is clearly smallest in the interior of the wake and tend

to increase with increasing radial position. Furthermore, the radial and tangential length scales

are generally smaller than the axial length scales and are undergoing variations without a clear

trend.

Even though the azimuthal variation of Lk,i is less pronounced than that of the standard devi-

ations, it is clear that the turbulent length scales typically are smallest in the lower part of the

wake.

10.4 Coherence

In figure 10.7 and 10.8 the spatial variation of the coherence decrement, C, defined from equa-

tion A.17, is displayed for two different downstream positions at azimuth angles of respectively

0o, 90o, 180o and 270o. Note that as the flow field is no more rotationally symmetric results are

presented for the angle φm in the range [0o; 180o].
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Figure 10.7: Spatial variation of the coherence decrement 6R downstream of the Tjæreborg

turbine operating in a sheared and turbulent inflow. From left to right: θ = 0o,

θ = 90o, θ = 180o and θ = 270o

The figures reveal many of the same features as was observed in the turbulent non-sheared case

(figure 9.8-9.9).

The coherence decrement is generally increased considerably compared to the ambient flow

field and tends to decrease with downstream position. Furthermore, C is typically largest in the

inner part of the wake and is most sensitive to variations in the radial position. However, in the

present case it appears that the angle φm has greater significance on the coherence decrement

than in uniform inflow. In particular it is observed that the coherence decrement in the present
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Figure 10.8: Spatial variation of the coherence decrement 14R downstream of the Tjæreborg

turbine operating in a sheared and turbulent inflow. From left to right: θ = 0o,

θ = 90o, θ = 180o and θ = 270o

case is not constant at rm = 0 due to the rotational asymmetry caused by the inflow shear. How-

ever, it should be noted that the azimuthal variations of the coherence decrement for both tested

downstream positions are rather moderate, which suggests limited rotational asymmetry.

10.5 Large scale dynamics

In order to elucidate the large scale dynamics of the flow field a well as the turbulence charac-

teristics in the meandering frame of reference a POD analysis has been conducted in a cross-

section located 10 rotor radii downstream of the rotor. The reason that the present investigation

only is carried out for a single downstream position is partly that the axial development was ex-

pected to be similar to that observed in the non-sheared case (chapter 9) and partly because the

main objective of this section is to study the degree of azimuthal asymmetry of the turbulence

properties in the meandering frame of reference. The POD analysis was based on a dataset con-

sisting of 1158 snapshots of the velocity field sampled at a rate corresponding to 5.1 times the

rotational frequency.

An analysis of the POD modes revealed significant correlation between the first 3 modes of the

wake and the inflow and therefore in analogy to chapter 9 it was deduced that these modes con-

stitute the meandering of the wake, while the remaining higher modes represent the turbulence

described in the meandering frame of reference.
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Figure 10.9 shows the radial distribution of respectively Lk,i and σk,i in the meandering frame

of reference at azimuth positions of respectively 0o, 90o, 180o, 270o.

As expected the length scales in the meandering frame of reference are generally smaller than

those determined in the fixed frame of reference (figure 10.5-10.6) and also their size seems

to be closer to each other in agreement with an increasingly isotropic flow. Furthermore, it is

observed that the characteristic length scales are rather insensitive to changes in the azimuth

positions, but that the axial length scales still varies somewhat with radial position and thus

generally maximizes in the outer part of the wake.

The corresponding standard deviations, σk,i reveal that the turbulence in the meandering frame

of reference is much closer to being isotropic and that it can be considered more spatial homo-

geneous, however there are still some variations in the wake as a function of radial position.
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Figure 10.9: Estimated standard deviations (top figures) and Kaimal length scales (bottom fig-

ures) in the meandering frame of reference; a) Radial component; b) Tangential

component; c) Axial component

Figure 10.10 presents the coherence properties in the meandering frame of reference at different

azimuth positions. The variation of the coherence decrement does not show a clear trend but, as

expected, it is generally increased compared to the turbulence field described in the fixed frame

of reference.
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Figure 10.10: Spatial variation of the coherence decrement in the meandering frame of refer-

ence. From left to right: θ = 0o, θ = 90o, θ = 180o and θ = 270o

10.6 Summary

The wake of the Tjæreborg wind turbine operating in a sheared and turbulent inflow has been

studied.

Initially a qualitative description was provided by showing contours of vorticity as well as the

mean axial velocity. Besides a vertical skew caused by the inflow shear, the wake was also

shown to become horizontally asymmetric due to wake rotation in the same manner as was ob-

served in the corresponding laminar inflow case. However, as the wake broke up and became

increasingly turbulent it appeared that the asymmetry gradually diminished.

Secondly, a study showed that the axial velocity could be considered fairly self-similar in the

inner part of the wake, whereas this condition generally was not well fulfilled in the outer and

especially the lower part of the wake.

Thereafter, the development of the turbulence characteristics was studied in terms of the stan-

dard deviations, turbulent length scales and spectral coherence. The turbulence was, as in the

wake of a turbine operating in a non-sheared turbulent inflow, shown to be inhomogeneous,

anisotropic and characterized by having smaller length scales than the ambient flow field. It

was, however, shown that both the length scales and the coherence properties varied rather mod-

erately with azimuth position, which suggested limited rotational asymmetry of these quantities.

Finally, a POD analysis was carried out in a section located 10 rotor radii downstream of the

rotor and the results were used to reconstruct the velocity field without including the 3 most

energetic modes, thereby obtaining a representation of the turbulence in a meandering frame of

reference. A subsequent analysis showed that the standard deviations of the turbulence in the

meandering frame of reference exhibited much more isotropic behavior than the corresponding

field in a fixed frame of reference.



Chapter 11

Wake Interaction between a Row of 3

Turbines

The wakes of 3 Tjæreborg wind turbines placed in a row is simulated in a case where the wind is

in line with their common axis. The mutual distance between the rotors is 5 diameters and they

are operating in a uniform mean free-stream velocity of V∞ = 10m/s. Simulations are carried

out both for laminar and turbulent inflow conditions and the results are compared with the aim

of studying the influence of the ambient turbulence on the wake behavior. The characteristics

of the imposed turbulent inflow are given in table 9.1.

11.1 Mesh configuration

The computations were carried out in a Cartesian computational domain as sketched in figure

2.5a and 2.5c. The dimensions of the grid was (Lx, Ly, Lz) = (18R, 18R, 35.3R), where the

z-coordinate is in the flow direction.

The actuator lines were rotating in the z-plane and their point of rotation was in the center of

the domain. The most upstream rotor was located 7 rotor radii downstream of the inlet and the

other two rotors were positioned respectively 10 and 20 rotor radii further downstream.

The height and width of the near domain was 2.6R and it extended from 1.3R upstream of the

first turbine to 3R downstream of the third turbine.

The grid was divided into 48 blocks (2 in the x and y direction respectively and 12 in the z-

direction) with 64 grid points in each direction. Thus, the used mesh contained 128×128×768
grid cells corresponding to a total of approximately 12.6 · 106.

11.2 Qualitative wake characteristics

Figure 11.1 depicts iso-vorticity contours in a cross-section along the common axis of the ro-

tors. When the incoming wind is laminar the wake behind the upstream turbine is seen to be

dominated by organized tip and root vortices, whereas the flow undergoes massive separation

over the second rotor, causing the most downstream rotor to operate in a completely separated

flow. It should be mentioned that the highly separated flow partly is a result of the rotors being

forced to operate at the same rotational speed, whereby the tip speed ratio and thus also the drag

becomes very high for the downstream rotors.

99
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a)

b)

Figure 11.1: Visualization of flow field between the rotors using vorticity contours. Regions of

high vorticity appear as light colors. The rotors are indicated as black lines; a)

Laminar inflow b) Turbulent inflow

When ambient turbulence is introduced to the inflow the wake characteristics are significantly

altered especially behind the first and second turbine. The ambient turbulent fluctuations perturb

the vortex system generated by the upstream turbine, whereby the wake breaks up and as a

consequence the second rotor then operates in a flow characterized by broad band turbulence.

Although, the influence of the two downstream rotors on the wake immediately downstream is

visible it is clear that the flow field is fully turbulent. Furthermore, it is seen that the ambient

turbulence field causes a large scale wake meandering, which is significantly larger than the

diameter of the rotors.

11.3 Mean Wake Characteristics

Figure 11.2 compares the azimuthally and time averaged profiles of the axial velocity in the

wake of the three rotors with and without ambient turbulence included.

In the laminar inflow case the profiles in the wake of the first turbine are nearly constant over

most of the radial distance, which as mentioned in chapter 4, is indicative of a wake dominated

by the induction of distinct tip vortices. In the velocity profile obtained at the second rotor the

presence of two systems of tip vortices originating from respectively the first and the second

turbine is clearly seen, which is consistent with the vorticity contours shown in figure 11.1.

In between the second and the third rotor the flow field is observed to undergo a rather rapid

transition into a bell shaped profile, indicating that the wake becomes dominated by small scale

turbulence. The flow field is redistributed as it passes through the third rotor but the strong un-

steady mixing causes the deficit to develop rapidly back to the bell shaped form.

When ambient turbulence is introduced to the inflow the mean velocity profiles in the wake of

the first turbine becomes bell shaped prior to impacting the second turbine. This transition into

a bell shape form is as mentioned in chapter 8 partly due to the break up of the vortex system

and partly due to the large scale meandering of the wake deficit. The unsteady nature of the up-

stream wake and the accompanied tendency toward recovery of the velocity deficit causes the

induction over the second rotor to be reduced compared to that obtained in the laminar inflow

case. Furthermore, it is evident from the velocity profiles obtained between the second and third
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Figure 11.2: Computed profiles of the averaged axial velocity at different downstream positions.

rotor that the development of the wake deficit in this region is stronger when ambient turbulence

is included than when the inflow is laminar. In the vicinity of the third rotor and downstream

of it the influence of the ambient turbulence field on the mean velocity profiles appear less vis-

ible, which suggests that the flow field here is dominated by wake generated turbulence, i.e.

turbulence originating from the bound vorticity of the blades and the velocity shear of the wake

deficit.

In Figure 11.3 the corresponding downstream development of the tangential velocity profiles

are compared.
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Figure 11.3: Computed profiles of the averaged tangential velocity at different downstream po-

sitions.

When the inflow is laminar the profiles of the normalized swirl velocity in the wake of the first

turbine remains nearly uniform until impact with the second turbine, whereas the profile decays

rapidly toward zero in the turbulent inflow case. In both the tested cases the tangential velocity

is rather marginal downstream of the second and the third rotor and thus it can be concluded
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that circulation is far from being conserved.

Figure 11.4 and 11.5 present the radial distribution of the four main components of the

Reynolds-stress tensor at different positions downstream each turbine. All the shown curves

are averaged in the circumferential direction. The two components 〈vrvθ〉 and 〈vθvz〉 are, as

mentioned in chapter 6, zero due to circumferential symmetry and they are therefore not shown

in the figures.
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Figure 11.4: Radial distributions of Reynolds stresses at different sections downstream of the

first rotor in laminar inflow. The second and third rotor is located respectively 10

and 20 rotor radii downstream. a) z/R = 8; b) z/R = 12; c) z/R = 18; d)

z/R = 23

In the laminar inflow case the Reynolds stresses are generally largest in the annular region sur-

rounding the tips indicating that turbulence primarily is generated by the shear from the tip

vortices.

In the turbulent inflow case the Reynolds stresses are as expected observed to develop faster

toward a bell shaped form. However, also in this case the presence of the tip vortices are clearly

seen immediately downstream of the rotors as a local maximum of the Reynolds stresses in the

wake periphery. It should be noted that the distributions of the Reynolds stresses downstream

of the third rotor are quite similar in the two tested cases, which is consistent with the flow field

being dominated by the small scale wake generated turbulence. Furthermore, it is observed that

there is a tendency for the wake to become increasingly isotropic, however, in both the tested

cases the axial normal stresses are generally larger than the other components.

Finally, similarly to what was observed in chapter 9 in connection with the analysis of an iso-

lated wind turbine, the development of the velocity deficit is much faster than the Reynolds
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stresses, which in agreement with several field measurements [10] shows that the turbulence is

more persistent than the velocity deficit.
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Figure 11.5: Radial distributions of Reynolds stresses at different sections downstream of the

first rotor in turbulent inflow. The second and third rotor is located respectively

10 and 20 rotor radii downstream. a) z/R = 8; b) z/R = 12; c) z/R = 18; d)

z/R = 23

11.4 Rotor loading

In order to quantify the effect of the inflow turbulence on the rotor loading a rainflow count of the

yaw moments of each turbine were carried out and the corresponding equivalent moments, M̂y

were computed assuming a non-dimensional equivalent load frequencies of f0 = f ·R/V∞ = 1
and a Wöhler exponent of m = 6 .

Figure 11.6 shows the computed equivalent yaw moments along the row of turbines for respec-

tively laminar and turbulent inflow. It should be noted that the corresponding results for Wöhler

exponents of 3 and 9 gives more or less the same overall trend as in figure 11.6.

When the inflow is laminar the equivalent yaw moment increases almost linearly along the row,

which seems to indicate that some large scale wake meandering takes place.

In the turbulent inflow case the yaw loads on the downstream turbines are, due to the wake me-

andering, also significantly larger than on the first turbine but here the loading levels out such

that the yaw loads on the third turbine is somewhat lower than on the second turbine.

At a first glance it might be surprising that the equivalent yaw moment on the third turbine is
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Figure 11.6: Equivalent yaw moments acting on the row of rotors for respectively laminar and

turbulent inflow

larger when the inflow is laminar than when it is turbulent since the wake meandering is more

significant in the latter than in the former case. An investigation of the wake center coordinates

(equation 6.3) in a section located 2R upstream of the third rotor revealed a standard deviation

of the x and y coordinates of respectively 0.28 and 0.18 in the turbulent inflow case, while the

corresponding values in the laminar inflow case only was 0.05 and 0.05. The reason for this ap-

parent contradiction can, however, be explained from figure 11.7 which, for both inflow cases,

shows the azimuthally averaged axial velocity profile at the same downstream position.
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Figure 11.7: Comparison of mean wake deficit computed 2R upstream of the third rotor in

respectively laminar and turbulent inflow

As seen the wake deficit encountered by the third turbine is both much deeper and steeper when

the inflow is laminar than when it is turbulent and therefore the effect of the large scale wake

meandering is felt most severely in the former case.

The above analysis is important since it shows that besides the meandering of the wakes also

the shape of the deficit has a significant effect on the yaw loads of downstream turbines.

11.5 Summary

A row of three Tjæreborg turbines spaced 5 diameters apart from each other has been simulated

in a case where the wind is directed along their common axis. Both laminar and turbulent inflow
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conditions were considered.

The simulations revealed that the wake development in the laminar and the turbulent inflow

case is very different both in terms of mean velocity and Reynolds stress distributions. The

main influence of the ambient turbulence field is to perturb the otherwise stable vortex system

generated downstream of the first turbine, whereby the wake becomes unstable and breaks up

prior to impacting the second turbine. The break up of the wake and transition into small scale

turbulence causes an increased exchange of flow from the exterior, whereby the second rotor

experiences higher mean velocities than in the corresponding laminar case.

Moreover, visualization of the wake behavior together with an inspection of the wake center

coordinates showed that wake meandering is significant in the turbulent inflow case and less so

in laminar inflow. Despite these observations it was found that the equivalent yaw loads on the

downstream rotors in laminar inflow was quite large in particular for the third turbine, which

experienced higher yaw loads than the corresponding turbine when the inflow was turbulent.

The reason for this was argued to be due to the deeper wake deficit when the inflow is laminar.



Chapter 12

Wake Interaction between 2 Turbines in

Strongly Sheared and Low Turbulent

Atmospheric Flow

Two NM80 turbines operating in an atmospheric boundary layer characterized by strong shear

and low ambient turbulence are simulated in a case where the downstream turbine operates

partly in the wake of the upstream one. The numerical setup of the simulation corresponds to

conditions measured during night at the Tjæreborg wind farm site in Denmark as presented in

[46]. The results from the present actuator line simulations were used to tune various param-

eters in the new Dynamic Wake Meandering (DWM) model [43]. The results from the tuned

DWM model were later compared to measurements [47] and fair agreement was achieved. Un-

fortunately, the measurements could not be used for a direct comparison with the actuator line

computations because the experimental conditions were complicated by the wake from the up-

stream turbine for some reason being deflected downwards hence only occurring on the lower

part of the downstream rotor [46].

12.1 Mesh configuration and numerical setup

The computation was carried out in a Cartesian computational domain as sketched in figure

2.5b and 2.5c. The dimensions of the grid was (Lx, Ly, Lz) = (20R, 24R, 28R), where the

z-coordinate is in the flow direction.

The upstream rotor was positioned 9.5R downstream of the inlet and having its point of rotation

located H = 1.4R above ground corresponding to the actual hub height of the NM80 turbine.

The second rotor was located 6.6R further downstream and in order to obtain partial wake oper-

ation the centers of the two turbines were placed 1.6R apart in the x-direction. The downstream

turbine was furthermore yawed an angle of 15o compared to the mean flow direction.

The height and width of the near domain was 3.6R and it extended from approximately 1R
upstream of the first turbine to approximately 4R downstream of the second turbine.

The grid was divided into 72 blocks (3 in the x and y direction respectively and 8 in the z-

direction) with 48 grid points in each direction. Thus, the used mesh contained 144×144×384
grid points corresponding to a total of approximately 8.0·106 and a resolution in the near domain

of 30 grid points per rotor radius.
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12.2 Atmospheric boundary layer modeling

The mean wind shear of the atmospheric boundary layer was modeled according to a power law

profile

Vz(y) =







V∞
(

y
H

)α
, y ≤ 8R

V∞
(

8R
H

)α
, y > 8R

(12.1)

Where the exponent α was set to 0.75 and the mean velocity in hub height was set to V∞ =
5.75 m/s. The turbulence intensity of the ambient turbulence field was set to about 3-4%,

which, along with the strong shear, is in agreement with stable atmospheric conditions typically

experienced at night.

12.3 Blade loading

Figure 12.1-12.2 show the azimuth variation of respectively the ensemble averaged normal

velocity and its standard deviation at various radial positions along the blade for each wind

turbine.
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Figure 12.1: Normal velocity and its standard deviation binned on azimuth position for various

spanwise stations along the blade of the upstream turbine.
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Figure 12.2: Normal velocity and its standard deviation binned on azimuth position for various

spanwise stations along the blade of the upstream turbine.
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For the upstream turbine the variation appears sinusoidal and the standard deviations are as

expected at a level comparable to that of the ambient flow. For the downstream turbine the

influence of the wake from the upstream turbine is clearly seen as a substantial increase in the

standard deviations and a decrease in the velocities in the azimuth range from 300o to 60o, i.e.

the situation corresponds to 1/3 wake operation.

In order to illustrate the variation of the blade forces the spanwise distribution of respectively the

normal and tangential forces are depicted in figure 12.3-12.4 for four distinct azimuth positions

for each turbine.
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Figure 12.3: Ensemble averaged normal and tangential force along the blade at four azimuth

positions for the upstream rotor.
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Figure 12.4: Ensemble averaged normal and tangential force along the blade at four azimuth

positions for the downstream rotor.

From the figures it is evident that the blade forces vary significantly during a rotor revolution.

As expected the loading is generally highest when the blade is oriented vertically upwards (90o)

and lowest when it is pointing downwards (270o). For the upstream rotor the blade loading at the

two horizontal positions 0o and 180o is nearly the same hence indicating almost no hysteresis.

As mentioned in chapter 7, a CFD study by Zahle and Sørensen [93] on two different wind

turbines operating in shear flow showed that this hysteresis, though generally being modest, can

be more significant especially at the inner part of the blade where the local reduced frequency

of the blade section (k = cω/(2Vrel)) is high due to the larger chord and lower relative velocity.

The reason that the horizontal asymmetry is not observed to the same degree here could, as
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mentioned in chapter 7, be due to a combination of limited grid resolution and use of steady 2D
airfoil data in the attached region. However, since the hysteresis for a typical MW wind turbine

operating in strong shear flow [93] normally is rather small the limited phase-lag in the actuator

line computations was not considered a major issue.

When the blade of the downstream rotor is oriented horizontally at 0o the blade loading is as

expected low because the blade in this case is partly immersed in the wake of the upstream

rotor. It is evident from figure 12.4 that this rotor besides a large tilt moment also experiences a

significant yaw moment.

12.4 Wake Characteristics

In figure 12.5 the flow field between the rotors is visualized in terms of respectively the in-

stantaneous contours of the streamwise velocity and the absolute vorticity in a horizontal plane

located at hub height. Please note that the view is from above and hence the azimuth angle

corresponding to 0o is upwards in the figures.
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Figure 12.5: Visualization of flow field in a horizontal plane located in hub height. The rotors

are indicated as black lines. a) Streamwise velocity; b) Vorticity (regions of high

vorticity appear as light colors)

As seen the wake of the upstream turbine is characterized by significant asymmetry with the

largest velocity deficit occurring at the side corresponding to an azimuth angle of 180o, i.e.

the part of the wake which is located closest to the downstream rotor. Furthermore, the figure

reveals a very inhomogeneous turbulence field inside the wake. At the side of the wake cor-

responding to an azimuth angle of 0o the tip vortex sheet, though becoming unstable, remains

coherent until about two rotor radii downstream of the second turbine. On the other side of

the wake (i.e. at θ = 180o) the instability of the tip vortices is strong and causes rather large

organized structures to form, which shortly after coalesce with the root vortices where after this
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side of the wake approaches a state dominated by small scale turbulence.

From the contours of the streamwise velocity it is evident that the asymmetry of the wake is a

feature that gradually builds up with downstream position and is apparently not occurring im-

mediately downstream of the rotor, which is consistent with the very low degree of horizontal

asymmetry observed on the blade loading. Recall from chapter 7 and 10 that the same feature

was observed for the Tjæreborg turbine operating in a more moderately sheared inflow. The

horizontal asymmetry of the wake deficit is, as also shown in the aforementioned chapters, due

to the rotation of the wake, which causes low velocity air from the bottom part of the wake to

surge upwards and being entrained. This is more clearly shown in figure 12.6, which presents

the development of the mean velocity field at various distances downstream of the rotor. Note

that the view is from downwind, i.e. the azimuth position 0o is to the right in the plots.
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Figure 12.6: Mean velocity field at different positions downstream of the first turbine. The con-

tours refer to the streamwise velocity component. a) z/R = 1; b) z/R = 2; c)

z/R = 4; d) z/R = 6

From the figure it is evident that the wake deficit rotates in the opposite direction to the wind

turbine as it is convected downstream, thereby creating a horizontal asymmetry in the wake. It

is interesting to observe that the upwards movement of the air is accompanied with a significant

flow of ambient air into the lower part of the wake. This behavior is in good qualitative agree-

ment with the CFD study of Zahle and Sørensen [93].

Figure 12.7 shows the streamwise velocity profiles in a vertical plane going through the center of

the upstream turbine. The wake develops rapidly with downstream position as a consequence

of the break down of the vortex system. Furthermore, it is observed that the presence of the

ground causes both the flow to be accelerated significantly below the rotor and to expand more
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upwards than downwards. The nearly constant velocity profile observed respectively 8 and 10
rotor radii downstream of the rotor is indicative of a high degree of turbulent mixing. However

at these positions the flow field is also significantly influenced by the wake of the downstream

turbine.
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Figure 12.7: Time averaged streamwise velocity shear profiles through the center axis of the

upstream rotor at various downstream positions.
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Figure 12.8: Streamwise normal stress, 〈vzvz〉, at different positions downstream of the first

turbine. a) z/R = 1; b) z/R = 2; c) z/R = 4; d) z/R = 6
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Figure 12.8, displays the downstream development of the streamwise turbulence intensity in

the wake of the first turbine. Comparing figure 12.8 and 12.6 a general characteristic is that

the turbulence intensity is largest in the regions of highest velocity gradients. From the figure

it is appears that the main mechanism for generating turbulence is provided by the develop-

ment of the tip vortices which due to the rotation of the wake eventually maximizes in the area

corresponding to an azimuth angle of approximately 135o.

12.5 Summary

The wakes of two NM80 turbines operating in a severe sheared flow have been simulated in a

case where one of the turbines operated partly in the wake of the other.

Initially, the loading on the two rotors was investigated. The individual blade forces on the

upstream rotor was as expected varying significantly over a rotor revolution but was nearly

horizontally symmetric. The corresponding forces on the downstream rotor was undergoing a

substantial drop when the blades were at azimuth positions where they were partly immersed in

the wake of the upstream turbine. The azimuth positions where the blades of the downstream

turbine were inside the wake of the first turbine were clearly identified as a significant increase

of the turbulence intensity of the flow field experienced by the blades.

Secondly, in agreement with the findings of chapter 7 and 10, it was shown that the wake of the

upstream turbine reveals increasingly horizontal asymmetry as it is transported downstream be-

cause the rotation of the wake causes low velocity air from the bottom part of the wake to move

upwards on one side and high velocity air from the upper part of the wake to move downwards

on the other side. Furthermore, it was shown that the wake due to the presence of the ground

expands more upwards than downwards.

Finally, a study of the axial normal stresses in the wake showed that turbulence is mainly gen-

erated by the shear layer formed by the tip vortices.



Chapter 13

Conclusion

The wake flow of wind turbine rotors subject to various flow conditions have been simulated

using the three-dimensional incompressible Navier Stokes solver EllipSys3D and the actuator

line technique combined with refined modelling of wind shear and elegant inclusion of ambient

turbulence using the Mann turbulence model. Comprehensive numerical results have been

presented both for an isolated turbine operating in a flow field of systematically increased

complexity and for interacting wakes between rows of turbines.

Numerical simulations of a wind turbine operating in a uniform inflow at various tip speed

ratios revealed very different wake developments ranging from a completely stable wake

governed by the induction of the tip and root vortices to a fully turbulent wake characterized by

broad band turbulence.

A comparison between the measured and predicted power coefficient showed good agreement

in the entire operational regime. The rather slight discrepancies between measurements and

computations were mainly attributed to inaccurate airfoil data.

A thorough analysis of the wake characteristics was carried out including a study of the vortex

properties and a characterization of the turbulence properties.

Simulations of an isolated turbine subject to a moderately sheared inflow showed that the

non-symmetric loading on the rotor caused a skewed wake development, which was felt

throughout the entire downstream region. In particular it was shown that the velocity deficit

and the Reynolds stresses, as a consequence of wake rotation, are redistributed such that they

become increasingly horizontally asymmetric with downstream position. It was argued that

this effect, where low velocity air from the bottom part of the wake is moving upwards on

one side and high velocity air from the upper part of the wake is moving downwards on the

other side, could be responsible for the asymmetric development of the wake, which have been

observed in several field experiments.

Computations on stand alone turbines subject to a non-sheared turbulent inflow revealed a

significantly altered wake development compared to that observed in the laminar inflow case.

The near wake was shown to interact with the atmospheric turbulence, which perturbs the

helical vortex system whereby the wake breaks up in a chaotic process resulting in increased

turbulence levels inside the wake.

A comparison between computations and measurements yielded fair agreement in terms of
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mean wake deficit and turbulence intensity at a given downstream section.

Analysis of the spectral characteristics and coherence properties revealed an inhomogeneous

and anisotropic wake characterized by having considerably smaller length scales than the

ambient flow field.

It was furthermore shown that the main driver governing wake meandering clearly is the large

scale coherent structures of the ambient turbulence.

The characteristics of the far wake turbulence field described in a meandering frame of

reference was analyzed and it was found to be much more isotropic than in a fixed frame, thus

suggesting that the main source of the anisotropy of the wake turbulence is the ambient flow

field.

As a final study on isolated wind turbines a simulation was conducted on a turbine operating in

a combined sheared and turbulent inflow. Compared to a laminar inflow the wake was found to

break up much closer to the rotor, as expected. Besides a vertical skew caused by the inflow

shear the wake also become horizontally asymmetric due to wake rotation in the same manner

as was observed in the laminar sheared inflow case. However, as the wake breaks up and

becomes increasingly turbulent it appears that the asymmetry gradually diminishes.

Analysis of the mean axial velocity deficit revealed that the wake, if properly scaled, may be

considered fairly self-similar in the inner part of the wake, but that self-similarity in the outer

and especially the lower part of the wake is questionable.

The development of the turbulence characteristics was studied in terms of the standard

deviations, turbulent length scales and spectral coherence. The turbulence was, as in the

wake of a turbine operating in a non-sheared turbulent inflow, shown to be inhomogeneous,

anisotropic and characterized by having smaller length scales than the ambient flow field.

The non-symmetric development of the turbulence was clearly visible as an circumferential

variation of the normal stresses, whereas the length scales and coherence properties apparently

were less sensitive to azimuth position. Still, however, the wake turbulence was very inhomo-

geneous, as all turbulence quantities were shown to be sensitive to the radial and downstream

position.

Simulations on three turbines placed in a row along the mean wind direction showed very

different wake behavior depending on whether the inflow was laminar or turbulent. The main

influence of the ambient turbulence field is to perturb the otherwise stable vortex system of the

first turbine, which thereby breaks up prior to impacting the second turbine. The break up of

the wake causes an increased exchange of flow from the exterior, whereby the second and third

rotor experiences higher mean velocities than in the corresponding laminar case.

It was furthermore shown that, wake meandering is clearly most significant in the turbulent

inflow case, as expected. Despite this it was found that the equivalent yaw loads occurring

on the downstream rotors in laminar inflow was quite large in particular for the third turbine,

which experienced higher yaw loads than the corresponding turbine in turbulent inflow. The

reason for this observation was argued to be due to the deeper wake deficit when the inflow is

laminar.

Finally, simulations of two turbines operating in an atmospheric boundary layer characterized

by strong shear and low ambient turbulence was presented in a case where the downstream tur-

bine operated partly in the wake of the upstream one.
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A study of the rotor loads revealed that the individual blade loading on each turbine varied con-

siderably during a rotor revolution especially for the downstream turbine which in addition to a

tilt moment caused by the extreme wind shear also experienced severe yaw moments due to the

partial impact of the upstream rotor wake.

A subsequent investigation of the wake behavior showed that because of the low ambient tur-

bulence the wake of the upstream turbine did not completely break up prior to impacting the

downstream turbine and therefore, this turbine operated in a complex inflow which in part was

undisturbed and in part governed by organized flow structures originating from the tip vortices.



Appendix A

Basic concepts of turbulence applied to

wind turbine wakes

This appendix gives a brief review of some of the most basic quantities in turbulence analysis

and how they are applied here in the study of wind turbine wakes.

A.1 Turbulence statistics

One of the most useful statistical quantities in the study of turbulent flows is the two-point

correlation tensor

Ri,j(x,x
′, t, t′) = 〈vi(x, t)vj(x

′, t′)〉 (A.1)

where 〈〉 denote ensemble averaging and vi(x, t) = Vi(x, t)−〈Vi(x, t)〉 represents a component

of the fluctuating velocity.

For x = x′ and t = t′, R is the well-known Reynolds stress tensor, 〈vivj〉, which is of great

importance because its elements represent the apparent normal and shear stresses arising from

the fluctuating velocity field. The diagonal elements of the Reynolds stress tensor are the square

of the standard deviation of each velocity component, i.e.

σ2
i = 〈vivi〉 (A.2)

where σ is the standard deviation (rms) and the index i denotes the considered velocity compo-

nent (no summation implied).

A.2 Correlation and scales of turbulence

From the two-point correlation tensor, R, it is common to define respectively temporal and

spatial correlations. For a fixed position in space the time correlation coefficients are defined as

ρi,j(x, s) =
〈vi(x, t)vj(x, t+ s)〉

[〈vi(x, t)2〉〈vj(x, t)2〉]1/2
(A.3)

Several different time correlations can be considered but the most important is perhaps the

autocorrelation, ρi,i(x, s), which indicates the length of time a process correlates with itself. For
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a random variable (such as a turbulent velocity) the autocorrelation coefficient has the property

that it equals 1 at zero time-separation and approaches zero as the time-separation goes towards

infinity.

A frequently used definition of a characteristic time scale of turbulence is the integral time scale

computed by integrating the autocorrelation coefficient from zero to infinity

τi(x) =

∫ ∞

0

ρi,i(x, s)ds, (A.4)

Physically, this quantity represents the memory of the flow or equally the average length of

time it takes for a flow structure to pass a given point. The integral time scale is an important

measure since it gives information about how large the time between two successive samples

of a turbulent flow should be in order to be uncorrelated. Therefore, it plays a central role

when analysing the statistics of turbulent flows because such analysis require many statistically

independent samples.

The above concepts also applies for multi-point statistics, the most common being the two-point

correlation coefficients, which here are defined as

Bi,j(x, s) =
〈vi(x + 1

2
s)vj(x − 1

2
s)〉

[〈vi(x + 1
2
s)2〉〈vj(x − 1

2
s)2〉]1/2

(A.5)

with the corresponding integral length scales defined by

L
(k)
i,j (x) =

∫ ∞

0

Bi,j(x, s)dx (A.6)

where the index k, indicate the direction of integration.

The integral length scales characterize the distance over which the turbulent fluctuations are

correlated in a given direction and hence may be interpreted as the characteristic length scale of

the coherent structures at the position in question.

The integral scales are easy to interpret but may be problematic to use in studies of wake tur-

bulence which are characterized by rather large time scales and hence require long time series

to obtain good estimates of the two point correlations. To illustrate this consider the wake of

a wind turbine with a diameter of D = 80 m operating at a wind speed of V∞ = 10 m/s. If

it is assumed that a typical length scale of the wake is in the order of 1 rotor radius and Tay-

lor’s frozen turbulence hypothesis is adopted then the integral time scale should be in the order

of τ = R/V∞, i.e. about 4 seconds. If the turbulent fluctuations in the wake are further as-

sumed to behave as Gaussian distributed random variables it can be shown that the square of

the variability of the estimator of the variance is given by [8]

ǫ2var,N =
2

N
(A.7)

where N is the number of independent realizations used in the estimation. Hence, if an

accuracy of say 5% is wanted in the estimate of the variance then N = 800 independent

samples are required. In order to obtain independent data the time between successive samples

should be twice the integral time scale and hence the length of the time series required to get
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an accuracy of 5% in the estimation of the variance is T = 2τN = 6400 s ≈ 107min.

Even though the required length of time may be reduced in case of a rotationally symmetric

flow by averaging in the circumferential direction, the above example clearly show that

generally rather long time series are needed to establish good estimate of the second order

statistics and hence also the integral scales. In practice analysis of the wind is normally based

on a sufficient number of 10 minute measurements to establish proper statistics. However such

measurements rarely exist in the form of synchronized two-point measurements from which the

integral length scales could be deduced. Characteristic length scales could also be estimated

from the integral time scale through the Taylor hypothesis, which is quite accurate when

v/V∞ ≪ 1, but may fail in some free shear flows [63]. On the other hand, though numerical

studies provide the necessary spatial resolution they are often too computational demanding to

establish the required time length.

An alternative way of establishing characteristic turbulent length scales, presented in [43], is

by fitting the one-dimensional spectra obtained in the wake with a generic spectrum. In the

following, the Kaimal spectrum is used for this purpose since this spectrum often is applied as

a basis for wind field simulation in connection with wind turbine design. The Kaimal spectrum,

Sk, is defined in a number of different but equivalent ways in the literature and here the definition

adopted in the IEC standard [34] is used

Sk,i = 4σ2
k,i

Lk,i/V∞
(1 + 6fLk,i/V∞)5/3

(A.8)

where σk,i is the standard deviation, f is the frequency, Lk,i is a characteristic length scale,

referred to as the Kaimal length scale and the index i refer to the velocity component in

question. In order to obtain Lk,i the above expression is fitted to the spectra obtained in the

wake by simultaneously adjusting σk as well as Lk to obtain the optimal agreement in a least

square sense. For this purpose the non-linear Levenberg-Marquardt [64] method has been used.

Even though the derived length scales Lk,i may be more difficult to interpret than the integral

length scale its definition is convenient since a characteristic eddy size can be defined from

measurement in only one point. However, it is clear that the method only makes sense when

the used generic spectrum at least to some degree resembles the spectra actually obtained in

the wake. That is, when using the Kaimal spectrum the method only applies at positions in the

wake where the turbulence is fully developed.

Furthermore, since the method relies on estimates of the spectra, the accuracy of the spectral

estimator should be addressed. Generally, the spectra are estimated by dividing the time series

into a number of equally sized segments, which are overlapping each other with one half of

their length, and computing the spectrum as the ensemble average of the absolute square of

the Fourier transform of each segment. The advantage of using a 50% overlap of the segments

is that the variance of the spectral estimator is smaller than when using non-overlapping

segments. Denoting the number of segments by N and assuming the time series sufficiently

long the variance of the spectral estimator when using non-overlapping segments is in the order

N−1. Even though the corresponding reduction in the variance is only approximately 11/(9N)
[64] when using 50% overlap the overall reduction is significantly reduced in this case because

the total number of segments is nearly doubled compared to using non-overlapping segments.
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The ability of the algorithm used to extract Lk and σk from a given turbulence field was tested

by applying it to a discrete velocity signal with spectral characteristics given by equation A.8,

where V∞ = 1, Lk = 1 and σk = 0.15. The length of the time series was 1024 seconds and

the time step between two samples was 0.125 seconds. The spectral estimate of the signal was

estimated according to the above described method with the time series divided into a number

of segments with a 50% overlap.

Table A.1 presents examples of the estimated Lk and σk for different numbers of segments.

As seen the method is rather robust and is capable of predicting the correct Lk and σk with an

accuracy, which is within the relative standard deviation of the spectral estimator.

The reason that the algorithm generally overestimates the true standard deviation is that the

Kaimal spectrum (equation A.8) is defined for the entire frequency range from zero to infinity.

Since the variance, σ2, is the integral under the spectrum, this implies that the estimated variance

includes contributions from the parts of the Kaimal spectrum, which are outside the frequency

limits of the actual finite spectrum.

N 7 17 31 63
Lk 0.98 1.01 1.03 1.00
σk 0.159 0.159 0.160 0.161

Table A.1: Predicted Lk and σk for different N . The true standard deviation and length scale

are respectively σk = 0.15 and Lk = 1

In order to further validate the method figure A.1 shows an example where equation A.8 has

been fitted to a spectrum obtained in the wake of the Tjæreborg turbine operating in a uniform

inflow velocity of V∞ = 6m/s. Note that the highest frequency range of the spectrum is

excluded in the fitting procedure because this part is influenced by numerical diffusion. As seen

the correlation between the two curves is generally very good, hence indicating that the Kaimal

spectrum is a suitable generic spectrum in this case.
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Figure A.1: Example of a Kaimal spectrum fitted to the spectrum observed at r/R = 0 and

z/R = 14 for V∞ = 6m/s. (See chapter 5)

Above, it has been described how characteristic turbulent length scales can be computed either

from the two-point correlations, the Kaimal spectrum or from the integral time scales. Even

though the three definitions of the length scales are not expected to yield exactly the same results

they should at least be correlated. To verify this, the azimuthally averaged radial distribution of
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each length scale was computed in the far wake of the M80 turbine and the results are compared

in the left plot of figure A.2. As seen the resemblance of the three types of length scales is

generally good, which suggests that their physical significance is connected. In the right plot of

figure A.2 the corresponding distribution of the actual and the estimated standard deviation in

the wake is compared and it is evident that these also compare well both in terms of level and

shape.
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Figure A.2: Comparison of radial distribution of a) different types of characteristic length

scales and b) actual and predicted standard deviation in the wake of the NM80

turbine at z/R = 6 and V∞ = 10m/s (see chapter 9)

The above discussion and comparison seems to verify that the method of estimating length

scales from the Kaimal spectrum is useful and therefore it was decided to use the Kaimal length

scale, Lk,i, as a measure of the characteristic length scale of the flow in the present thesis.

A.3 Coherence

The turbulent velocity fluctuations between two points in space will be correlated to varying

degrees depending on their location as well as the characteristic length and time scales of the

turbulence.

Typically, the spectral coherence is used as a frequency dependent measure of the amount of

correlation between the turbulent velocities in two points pi and pj . Here, the spectral coherence

is defined as

coh =
|Si,j(f)|2

Si,i(f)Sj,j(f)
(A.9)

where, Si,j is the cross-spectrum between the two points and Si,i and Sj,j are the one-

dimensional spectra of the turbulent velocity in each point.

Due to the use of limited datasets the estimates of the coherence have unavoidable statistical

errors, which should be assessed. Obviously, if the definition in equation A.9 is applied to com-

pute the coherence function using only a single realization of two random processes the result

will become identical unity since the cross-spectrum, Si,j = C+ iQ, is a vector of size |Si,iSj,j|
and direction θ.

This source of distortion can only be prevented if the cospectrum, C, and the quadrature spec-

trum, Q, are averaged over a number of time series. Thus, if the time series are completely
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uncorrelated at a given frequency, this implies that ∆θ is distributed randomly and that both C
and Q on averaging becomes zero (if the number of time series is large).

The statistical errors associated with the coherence estimate are discussed in [48], [50] and

[42]. For N independent segments of two time series Kristensen and Kirkegaard [42] derived

the following analytical expressions of respectively the bias and the variance of the coherence

estimator, cohN

Bias(cohN) = α1 − coh (A.10)

V ar(cohN) = α2 − α2
1 (A.11)

Here coh denote the true coherence between two time series, while α1 and α2 are given by

respectively

α1 = 1 − N − 1

N
(1 − coh)N

2F1(N,N ;N + 1; coh) (A.12)

α2 = 1 − (1 − coh)N(N − 1)

×
[

N

N + 1
2F1(N + 1, N ;N + 2; coh)

−N − 2

N
2F1(N,N ;N + 1; coh)

]

(A.13)

where 2F1 is the hypergeometric function

In figure A.3 these expressions are plotted as a function of the true coherence for different

number of segments.
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Figure A.3: Bias and variance of the coherence esitmator, cohN as a function of the true coher-

ence for various choices of N

As seen the coherence is systematically overestimated but the difference reduces with increasing

number of segments. Likewise, it is seen that the variance of the coherence estimator is reduced

when the number of segments is increased. However, it should be appreciated that choosing

a large number of segments from a finite dataset reduces the accuracy of the estimator in the

low frequency region where the coherence is large. Therefore, the number of segments should

generally be chosen to limit statistical error, without compromising the accuracy of the estimate

in the low frequency region.
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To overcome this difficulty a practical approach was adopted in the present work whereby the

coherence function, for each pair of time series, was estimated for different numbers of 50%
overlapping segments. These estimates were then combined in a suitable manner to obtain a

single optimal representation of the coherence function, which benefits from both low spectral

distortion and limited bias.

Since the turbulence in a wind turbine wake generally is spatially inhomogeneous the coherence

will vary in space and therefore the coherence between two points is governed by 7 parameters

coh = coh(ri, rj, θ,∆θ, zi, zj, f) (A.14)

where r, θ and z is respectively the radial, azimuthal and axial position and ∆θ denote the

angular displacement between the two points.

The dominant parameter governing the coherence function is expected to be the displacement

between the two points and therefore it is convenient to express the function in terms of this

parameter instead of the angular displacement.

In order to achieve this consider two points pi and pj located at the same downstream position

as sketched in figure A.4. The two points are spaced a distance d apart and the line connecting

them has a midpoint, m, which is located rm from the centre axis at an azimuthal position of θ.

The angle φm and the separation length d now define the position of the points compared to the

midpoint m.
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Figure A.4: Sketch used to define the coordinates rm, d and φm

The present work is restricted to only considering in-plane coherence, i.e. zi = zj and therefore

the coherence function can be expressed as

coh = coh(rm, φm, θ, d, f) (A.15)

For rotationally symmetric flows it follows that it is sufficient to consider the mutual location of

the points compared to a given azimuth direction and that only φm ∈ [0o; 90o] is relevant. Thus,

for axisymmetric flows the functional form of the coherence may be further reduced to

coh = coh(rm, φm, d, f) (A.16)

Based on the simple exponential model commonly used for representing atmospheric turbulence

(see e.g. [34]) it will be assumed that the spectral coherence in the wake may be expressed on
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the form

coh = exp

(

−C(rm, φm, θ)
f · d
V∞

)

= exp (−C(rm, φm, θ)fr) (A.17)

where C(rm, φm, θ) is the coherence decrement and fr is the reduced frequency, which ex-

presses the relation between the separation length and a characteristic eddy size connected to

the frequency. For homogeneous turbulence C(rm, φm, θ) is obviously a constant and the co-

herence is then solely governed by the reduced frequency.

A consequence of the above assumption is that the coherence, for fixed values of rm, φm and

θ should be insensitive to changes in, d, when plotted against fr. That this is probably a fair

assumption is verified in figure A.5, where the coherence for fixed values of rm, φm and θ,

is seen to nearly collapse on a single curve when plotted against the reduced frequency for

various displacements.
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Figure A.5: Comparison of coherence functions computed for various displacements in the

wake of the Tjæreborg turbine at V∞ = 10m/s, rm = 0.6, φm = 0 and z/R = 14
(see chapter 9). Also shown is the average of all curves as well as the fitted curve

using equation A.17 with optimal choice of C

Having accepted equation A.17 as suitable for modelling the coherence it only remains to

determine C(rm, φm, θ). This is done by, at each combination of rm, φm and θ, making a

least-square fit of equation A.17 to the curve obtained by averaging the coherence curves over

the different displacements (the blue curve in figure A.5).

The algorithm developed for extracting the coherence decrement was validated by applying it

to a synthetic 3D turbulence field with known spectral characteristics and coherence properties.

The turbulence field was generated using the algorithm presented in [84], which uses Fourier

analysis to create a number of correlated time series from the power spectrum and a coherence

function. In the test the spectrum was defined from equation A.8, with V∞ = 1, Lk = 1 and

σk = 0.15, while the coherence function was given by equation A.17 with C = 20. Correlated

time series were generated in 25 equally spaced points. The length of each time series was 128

seconds and the time step between two samples was 1/16. The coherence function between

two points was then estimated for different spacing using the method outlined above. Note that

the homogeneity of the turbulence field was utilized in the estimation and thus the coherence

function was computed as the average over all points having the same distance. Table A.2
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presents the coherence decrement obtained by fitting equation A.17 to the coherence function

for various displacements between points.

d 0.05 0.1 0.2 0.4
C 19.3 19.6 19.5 19.3

Table A.2: Estimated coherence decrement for different spacings between two points. The true

coherence decrement is 20

The coherence decrement is as expected from the theoretical considerations systematically

slightly underestimated but appears to be fairly insensitive to changes in the distance between

the two points.

A.4 Proper orthogonal decomposition (POD)

In order to analyze the dynamics of the dominant coherent structures of the studied wakes use

has been made of the Proper orthogonal decomposition (POD) technique. Several versions of

the POD technique have been developed and in the present work the so-called snapshot version

is applied. A good description of the POD technique is presented in Holmes et al. [33] and in the

following only a brief outline will be made. The idea of the proper orthogonal decomposition

is, like for any other orthogonal decomposition, to represent the turbulent flow on the form

v(x, t) =
m
∑

i=1

ai(t)φi(x) (A.18)

where φi is a set of real orthogonal basis functions (modes) and ai are the random basis function

coefficients. There are infinitely many choices of the basis function, the most well known being

the Fourier modes, however, a defining property of the POD is that the basis functions are

chosen to maximize the energy contained in the investigated domain.

In the snapshot POD a given discrete dataset consisting of N snapshots of the velocity (each

with l×m data points) are arranged in vectors U n =
[

V 1
x . . . V

lm
x , V 1

y . . . V
lm
y , V 1

z . . . V
lm
z

]

and

the ensemble average is subtracted thereby obtaining vectors, un, containing the fluctuating part

of the velocity.

un = Un − 1

N

N
∑

i=1

U i, n = 1 . . . N (A.19)

From these vectors the N ×N covariance matrix is constructed

Cij = ui · uj (A.20)

Solving the eigenvalue problem for C gives the eigenvectors, gk from which the normalized

orthogonal basis functions, also referred to as modes, can be determined

φk =

∑n
i=1 g

k
i ui

∥

∥

∑n
i=1 g

k
i ui

∥

∥

(A.21)
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where gk
i is the i′th component of the normalized eigenvector corresponding to the k ′th eigen-

value, λk.

It can be shown that the eigenvalue λk corresponding to the eigenvectors gk represent the

energy contained in the corresponding mode. Therefore, by ordering the eigenvalues as

λ1 > λ1 > . . . > λm > 0 the first modes represents the most energetic and dominant co-

herent structures in the flow.

The time varying amplitudes of the POD modes can be found by projection of the velocity field

on the basis modes

A = ΦT V (A.22)

where A,Φ and V are matrices containing respectively the ak, φk and uk vectors arranged

columnwise.

Having established the amplitude coefficients of each mode a given snapshot can be recon-

structed as follows

Un ≈
m
∑

i=1

φian
i +

1

N

N
∑

j=1

U j (A.23)

where m denotes the number of modes included in the reconstruction of the flow.

Evidently the size of the eigenvalue problem depends on the number of snapshots (rank(C) =
N ) and therefore the snapshot POD seems attractive when analysing sets of data with a high

spatial and a low temporal resolution. Nevertheless, it is also clear that knowledge about the

two-point correlation is essential in a POD analysis and therefore the analysis should be based

on sufficient statistically independent data to establish good estimates of the second order statis-

tics. However, as shown in section A.2 obtaining good estimates of the full two-point correlation

of a typical wind turbine wake is very demanding and in practice the POD analysis presented in

this thesis are not based on dataset with completely converged second-order statistics. However,

for the current work this is not expected to have a significant impact on the results because the

POD technique here only is used to analyze the large scale dynamics of given datasets and not

to establish general low dimensional models for the wake.

In order to validate the implementation of the snapshot POD figure A.6, for a position 10 rotor

radii downstream of the NM80 turbine, compares a given snapshot of the axial velocity fluctu-

ations with the corresponding reconstructed field determined from equation A.23. The shown

reconstructed field contains 90% of the total energy and for this reason should resemble the

snapshot well. As seen this is also the case and therefore it was concluded that the method was

properly implemented.
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Figure A.6: a) Snapshot of axial fluctuating velocity and b) Corresponding reconstructed ve-

locity field containing approximately 90% of the energy

.

A.5 Self-similarity

The concept of self-similarity is frequently used in the study of turbulent free shear flows and

is also the basis of many kinematic models for the far wake of wind turbines.

Self-similarity implies that a given flow field after a developing region reaches a stage where

the shape of the mean profile of a given quantity (such as the velocity) stay unchanged with

downstream position and hence if scaled properly these profiles collapse on a single curve. It

is well known from experiments [63] that some of the most commonly studied turbulent free

shear flows (e.g. jets) become self-similar after a certain downstream position.

For an axisymmetric wake such as formed behind a disk the scaled self-similar velocity profile

is defined as

fv(ξ) =
V∞ − 〈Vz(r, z)〉

Vs(z)
(A.24)

Here the characteristic velocity difference, Vs is defined as

Vs(z) = V∞ − 〈Vz(0, z)〉 (A.25)

and ξ = r/r1/2 is the radial coordinate scaled with the wake half width, r1/2 defined from

〈Vz(r1/2, z)〉 = V∞ − 1

2
Vs(z) (A.26)

Actually, as mentioned in [63] the axisymmetric wake is not exactly self-similar; however, it

approaches this stage asymptotically in the far wake as Vs/V∞ goes toward zero. In practice

self-similarity is observed for Vs/V∞ less than about 0.1.

Introducing the turbulent viscosity concept and assuming a constant turbulent viscosity in the

wake it can be shown that the self-similar velocity profile in the axisymmetric wake is given by

[63]

fv(ξ) = exp(−αξ2) (A.27)

where α = ln 2.



A.6 Summary 127

A.6 Summary

This appendix has provided a description of some important concepts in the study of turbulent

flows.

Initially, the concept of characteristic scales of turbulence was presented and some issues re-

lated to their application in the study of wind turbine wakes were discussed. It was argued that

the use of integral length scales, computed from the two-point correlations, may be inaccurate

in the study of wake turbulence due to insufficient temporal resolution and instead it was pro-

posed to use a method where the characteristic length scales are estimated by fitting a generic

spectrum to the spectra obtained in the wake.

Secondly, the idea of spectral coherence was described with a special focus on how it can be

applied for studying wind turbine wakes. In this connection it was shown that an extended for-

mulation of the exponential expression commonly used to describe coherence of the fluctuating

velocity in the atmosphere also seems to be suitable for wind turbine wakes.

Following this the snapshot version of the Proper Orthogonal Decomposition method was

briefly outlined and finally the concept of self-similarity for axisymmetric free-shear flows was

described.
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