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Abstract: Smart textiles based on actuator materials are of practical interest, but few types have

been commercially exploited. The challenge for researchers has been to bring the concept out of the

laboratory by working out how to build these smart materials on an industrial scale and permanently

incorporate them into textiles. Smart textiles are considered as the next frontline for electronics.

Recent developments in advance technologies have led to the appearance of wearable electronics by

fabricating, miniaturizing and embedding flexible conductive materials into textiles. The combination

of textiles and smart materials have contributed to the development of new capabilities in fabrics with

the potential to change how athletes, patients, soldiers, first responders, and everyday consumers

interact with their clothes and other textile products. Actuating textiles in particular, have the potential

to provide a breakthrough to the area of smart textiles in many ways. The incorporation of actuating

materials in to textiles is a striking approach as a small change in material anisotropy properties

can be converted into significant performance enhancements, due to the densely interconnected

structures. Herein, the most recent advances in smart materials based on actuating textiles are

reviewed. The use of novel emerging twisted synthetic yarns, conducting polymers, hybrid carbon

nanotube and spandex yarn actuators, as well as most of the cutting–edge polymeric actuators which

are deployed as smart textiles are discussed.

Keywords: smart textiles; actuator; wearable technology; carbon nanotubes; conducting polymers;

polymer actuators

1. Introduction

Smart textiles research represents an innovative model for integrating advanced engineering

materials into textiles which will result in new discoveries. Smart textiles are defined as the “textiles

that can sense or react to environmental conditions or stimuli, from mechanical, thermal, magnetic,

chemical, electrical, or other sources in a predetermined way” [1–3]. As a more straightforward

definition, textiles which can perform additional functionalities than the conventional textiles are

described as smart textiles. Smart textiles have been used in numerous applications in the healthcare

industry, military, and as wearable electronics [4–7]. Moreover, smart textiles can be divided in to

three categories; passive, active and very smart textiles [1,8–10]. The passive smart textile is the first

category of smart textiles that can provide additional features in a passive mode, irrespective of the

change in the environment. As examples, anti-microbial, anti-odor, anti-static and bullet proof textiles

are considered to be passive smart textiles [1]. Active smart textiles are a group that can sense and

react to stimuli from the environment. These materials may also be used as sensors and actuators [1].

Very smart textiles are the third category that consists of a unit for recognizing, reasoning and actuating.

This type of textiles sense, react and adapt themselves to environmental conditions or stimuli, such as

space suits and health monitoring systems [11]. Textiles which can find prospective applications in
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energy conversion are important to smart textiles in many ways. Actuators are considered as a group

which can accomplish the conversion of energy to mechanical form with the capability of moving or

controlling a mechanism or a system. Actuators can reversibly contract, expand, or rotate themselves,

due to the presence of an external stimulus, such as voltage, current, temperature, pressure and many

more. These materials can be divided into four major groups depending on their mode of actuation

which are electric field, ion based, pneumatic and thermal actuation, and then further into two major

groups on whether volume or order change dominates [12]. There are several frontier actuating

materials being introduced by researchers, such as carbon nanotubes, conducting polymers, and shape

memory alloys [13–18]. Using actuating materials in smart textiles is an impressive approach as a

small change in material properties can be converted into significant movements, due to the densely

interconnected structures.

The research reported to date on actuating textiles has attempted in force/strain amplifications

and to incorporate smart functionalities into fabrics. Some of the polymer actuators exhibit properties,

such as the long length, high tensile strength, flexibility and durability which are essential parameters

for textile yarns [17]. In addition, polymer fibers have already been used in the textile fabrication

process. Therefore, the feasibility of a textile structure can be established with polymer fiber actuators.

Integration of actuators into the textiles was performed in most studies using traditional textile

fabrication methods, such as weaving, knitting and braiding [13,17,19]. Consequently, materials and

fabrication processes for an actuating textile should be selected with careful consideration for optimum

performance. This paper is mostly focused on critically reviewing and appraising the materials and

processes required to fabricate a high-performance actuating textile. This review further discusses

fundamental actuation mechanisms in brief, material fabrication, properties and actuating materials

already being trailed in textiles.

2. Overview of Different Actuation Mechanisms

Actuator designers have introduced criteria to allow the optimal selection of actuators for a given

application. Power output per mass, per volume and actuator efficiency are the three fundamental

characterizing properties of actuators [20]. Furthermore, stress, strain, strain rate, cycle life and elastic

modulus are some of the other general characteristics considered in the evaluation criteria [20,21].

In addition to the above technical parameters, user friendliness, ease of fabrication and maintenance,

cost and availability of the raw materials are some of the additional requirements to be considered in

selecting actuators for an application. It is also necessary to consider the actuation mechanism which is

as important as the other performance characteristics. Most of the actuators which are being reported

in the literature actuate with one of four different methods—electric field, pneumatic, ionic and thermal.

This section will provide an overview of the actuation mechanisms, and their characteristics.

2.1. Electric Field Actuation.

Electric field actuation is a result of electrostatic interactions between electrodes or molecular

re-organisation within the actuator material structure. These are commonly known as electronic

artificial muscles and are one type of electroactive polymers (EAPs). The electric field actuation is

present in low modulus polymers, such as dielectric elastomers (DEAs) and electrostrictive polymers

where the electric dipoles are arranged by the electric field which result in displacement [22,23].

DEAs are simple in mechanism, construction and able to produce large strains 10% to 100% but can

reach up to 380% with high electric fields [24,25]. These actuators can yield stress up to 7.7 MPa

and 3.2 MPa in silicone and acrylic based actuators, respectively [26]. Due to the large strains these

actuators produce high work per unit volume per cycle with a maximum of 3.4 MJ/m3 [23].

During the actuation of DEAs, electrostatic attraction between two surfaces of elastomer films

induces compressive strains, as shown in Figure 1. Since the elastomer maintains constant volume

contraction in one direction will cause expansion in the other two. Most mechanisms use expansion

perpendicular to the applied field because it will result in large displacements. The electrostrictive
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relaxor ferroelectric polymer actuators have high work density of 1 MJ/m3 and strain up to 7–10%.

These actuators generate high stress, around 45 MPa and frequency up to 100 Hz [27]. In electrostrictive

relaxor ferroelectric actuators, the application of an electric field aligns polarized domains within the

material. When the applied field is removed, the permanent polarization remains. Ferroelectrics are

characterized by a curie point, a temperature above which thermal energy disrupts the permanent

polarization. Field-driven alignment of polar groups produces reversible conformational changes

that are used for actuation. The application of a field perpendicular to the chains leads to a transition

between the non-polar and polar forms. The result is a contraction in the direction of polarization and

an expansion perpendicular to it.
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2.2. Ion Based Actuation

In these material’s actuation is caused by the ion transport within the polymer material and

exchange of ions between the actuator and an electrolyte solution. In common, the ionic EAPs need

relatively low voltage for actuation (1–7 V) but the energies associated with these actuators are high

because of the large amount of charge that needs to be transferred. Ion based actuators are most

commonly fabricated with, conducting polymers (Conjugated polymers) and ionic polymer-metal

composites (IPMC) [28].

Furthermore, IPMC contain an ion-exchange polymer film coated with metal electrodes.

These metal electrodes are composed of platinum or silver nanoparticles. When the voltage is applied

between two electrodes, the mobile cations move toward the oppositely charged electrode. This action

results in swelling near the negative electrode, shrinkage near the positive electrode and bending of

the actuator as can be seen in Figure 2.
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These actuators were reported with maximum actuation strains of 3.3% [26,31], and the stress

of 30 MPa [25,32]. These actuators are actuated up to a frequency of 100 Hz [31]. The actuation

mechanism of conducting polymers will be described in more detail in Section 3.1.1.

2.3. Pneumatic Actuation

The pneumatic artificial muscles (PAMs) are operated by air pressure and contract with inflation.

These actuators consist of a soft membrane covered with a braided or fibrous filament structure.

As the soft membrane is pressurized the volume is increased while expanding in the radial direction

and contracting in the axial direction. The operating mechanism of PAMs can be described in two

categories which are, (1) under a constant load and with varying pressure, and (2) with a constant

gauge pressure and a varying load. As can be seen in Figure 3a the pressure is increased from P0

to P under constant weight of M which results in increasing the volume and decrease in length as

demonstrated in Figure 3b. Actuation under the constant pressure is presented in Figure 3c,d. In this

mode of operation weight is decreased from M to M0 under the constant pressure of P, which an

actuator exhibits the maximum volume with the minimum length. The most widely used type of PAMs

reported to date are the McKibben muscles [33,34]. These pneumatic actuators have high strength,

high power-weight ratio, are economical and display high strength. However, the cycle life of these

actuators is limited, due to the flexible membrane rupturing with stress. Pneumatic actuators have

been reported with 25–30% actuation stroke and with actuation times of less than one second [35].
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is increased and length is decreased, (c) under constant pressure of P the weight is decreased to M0,

(d) resulting in maximum volume and minimum length “Reproduced with permission from [36],

Institute of Electrical and Electronics Engineers (IEEE), 2011”.

2.4. Thermal Actuation

As the name suggests, thermal actuators are operated with the presence of heat. The first

generation thermally actuated materials are shape memory alloys (SMAs), that “remember” their

original shape and they returned to the original shape after being deformed and exposed to

heat. The operating mechanism and fabrication details of SMAs are discussed in Section 3.3.

Thermally actuated liquid crystal elastomers have the same working principles as of SMAs. In brief,

phase changing and changing order alignment of liquid crystalline side chains generate stresses in

the polymer backbone which result in actuation [25]. More importantly, liquid crystal elastomers

display low stiffness. Therefore, a small change in the load can cause large displacements. In addition,

actuation frequencies and loads on liquid crystal elastomers are limited by the tensile strength of these

materials. The latest generation of thermally driven actuators is fabricated from synthetic polymer

fibers with many outstanding properties. These actuators exceed natural muscle performance in

many aspects and are recognized as one of the latest generations of artificial muscle actuators [17].
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The actuation mechanism, fabrication and properties of these actuators are comprehensively described

in Section 3.4.

2.5. Other Actuation Mechanisms

In addition to the more common actuator types listed above there are many other actuation

mechanisms, such as electrochemical [16,37,38], electrostatic [39,40], optical [41], magnetic [42],

hydraulic [43,44] and pH actuation [45,46].

3. Polymer Actuators in Smart Textiles

Some of the actuators described above consist of rigid components, robust operating systems

and material properties which render them unsuitable for assembling into smart textiles. This section

therefore will describe actuators with different mechanisms which have already been demonstrated

in textiles mainly with polymer fiber actuators, such as conducting polymers [47] and shape

memory polymers [48,49].

Helically arranged polymer actuators with amplified actuations have already been described in

the literature. This encouraged researchers to consider these actuators in many further applications.

The researchers employed an ancient technology of twisting which was able to produce highly twisted

or coiled polymer fibers with giant actuations. The fiber types that have shown the capability to

achieve these high actuation levels extended from twisted carbon nanotube (CNT) yarn to inexpensive

commercially available fishing line and sewing threads [16,17,50,51]. This research was able to

demonstrate reversible actuation cycles with high work capacity for the actuators. Therefore, actuating

textile with helically arranged actuators can be further considered as an important approach for

generating optimal force and strain. Hence, this material review is further intended to explore the

properties of twisted and helically arranged actuator configurations, which has been successful with

many materials, such as synthetic polymers and CNTs that have found potential applications in the

area of smart textiles [14,18,38,52,53].

3.1. Conducting Polymers Actuators

The conducting polymers (CP) are also known as conjugated polymers, due to the altering single

or double bonds in the polymer backbone. This is a class of electroactive polymers which are activated

by ion transport [54]. CP actuators are normally actuated chemically or electrochemically and need

electrolyte for their operation. Most of these semiconducting materials are doped with ions by chemical

or electrochemical method.

3.1.1. Actuating Mechanism

The actuation mechanism of CP is very well described in many articles [25,55]. The CP actuators

are operated under the mechanism of a dimensional change of the material which is caused by addition

or removal of charge from the polymer structure.

The dimensional changes of these materials are achieved through the insertion of ions between

polymers. The ion flux which is introduced by an electrolyte can cause swelling or contraction of the

material as described below [25].

There are two major types of CP actuators classified as anionic and cationic driven. The CPs

are produced by an oxidative polymerization process. During the chemical reaction, electrons are

removed, and the monomers are put together by a chemical reaction to form the CP chains. Ionic cross

links are formed with the polymer chains, due to insertion of anions (A-) which cause the material to

be stiff and swollen, as shown in Figure 4a. Crosslinks formed by the bonding between anions and

polarons (caused by the removal of electrons) enhance the inter-polymer bonding. The oxidized state

of CP is reduced by applying a negative voltage either by way of Figure 4b or Figure 4d to the states

Figure 4c or Figure 4e. When a small anion is used, the reduced state is achieved by way of Figure 4b

as the anion is emitted causing the polymer to shrink as indicated in Figure 4c. With the oxidation
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the polymer is swollen from Figure 4c to Figure 4a through the process shown in Figure 4b. Thus,

the mobile ions are anions in this mechanism, the actuators are named as “anion driven” actuators.

The second mechanism takes place with the introduction of large anions during the fabrication of

CP actuators. The immovable large anions are neutralized by inserting cations via process Figure 4d.

This causes the polymer to further swell and achieve the status of Figure 4e. Due to the moving cations

in this mechanism, these types of actuators are defined as “cation driven” actuators [55].
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3.1.2. Fabrication and Properties

CP actuators are typically fabricated through chemical or electrochemical polymerization of

conducting materials. The common materials used for CP actuators are Polypyrrole (PPy), Polyaniline

(PANi), and Poly (3, 4-ethylenedioxythiophene) (PEDOT)/poly styrene sulfonate (PSS). Due to the

aromatic structure of these polymers which are shown in Figure 5, they are stable compared with other

linear conducting polymers.
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The materials that are used to fabricate these actuators have a strong influence over the actuator

performance. PPy is the most popular material used for conducting polymer actuators. Predominantly,

PPy is easily electrodeposited and it is feasible to obtain high conductive and tough films which provide

high strain, force and long-life cycle [14,55,57]. Alternatively, PANi is prepared chemically by oxidative

polymerization in bulk and the strain of actuators made from this material are lower when compared to

PPy [58–61]. PEDOT:PSS is another material that has been used as a conductive coating in fabricating

CP actuators. The fabrication of PEDOT:PSS actuators has been reported in combination with multi

wall carbon nanotube, polyurethane/ionic liquid and Polyvinylidene fluoride [62–64]. CP actuators

have been shown to exhibit both bending and linear movement. Linear actuators are fabricated by

lamination of anionic and cationic driven actuators on a stretchable film. The fabrication of bi-layer and
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tri-layer conducting polymer actuators have also been reported in the literature [65–69]. The solvent

and salts used in deposition and the electrolyte employed during actuation are the three major factors

that play a significant role in determining the properties of these actuators. These actuators have a

high tensile strength which can reach up to 100 MPa and with large stress up to 34 MPa [70]. Moreover,

CP actuators are also able to withstand large stresses up to 34 MPa [71]. The strains of these actuators

are typically 2–7% and the improvement for the CP actuators has been demonstrated even to reach

up to 20% [72]. The strain rates of the CP actuators are low, since they are limited by the internal

resistance of polymers, electrolytes and due to ionic diffusion rates [25]. Performance of CP actuators

is weakened with the evaporation of the solvent during normal operation in air. As a resolution for

evaporation, encapsulation methods were introduced to enhance the life time of these actuators [65,73].

Furthermore, actuators were introduced with internal ion conduction between active polymer layers

instead of the external liquid electrolyte as an improvement. This research was demonstrated with

PEDOT that shows the only deformation on actuation as can be seen in Figure 6 [74]. Consequently,

CPs operated without an external electrolyte may increase their potential for incorporation into

practical applications.
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for use in actuating textiles [47]. A conducting polymer based actuating textile with different textile 
structures is presented in Figure 7. In this research a chemically synthesized PEDOT layer was 
deposited on the yarn/fabric as a “seed layer” to form a highly electrically conductive surface, 
followed by the deposition of the actuating PPy layer. This research verified the force amplification 
of actuators assembled into a woven textile structure and the increased strain by using a knitted 
textile. The research further confirms the mechanical stability of the CP actuators in textile structures 
[47]. This further outlines the different possibilities of a future improvement to the CP based 
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Figure 6. Actuator fabricated with PEDOT to provide deformation, (a) before and (b) after the

application of 2V. The 20 mm length (L) actuator showed 6.5 mm deflection in open air “Reproduced

with permission from [74], Elsevier, 2016”.

Nevertheless, most of the linear CP actuators reported to date need encapsulation for an electrolyte

which is an operational barrier [28]. The efficiency of these actuators is described to be low and their

operational stability can be affected by the environmental conditions.

3.1.3. Conducting Polymer Based Actuating Textiles

The commercial availability of conducting polymer coated yarns makes them a practical option

for use in actuating textiles [47]. A conducting polymer based actuating textile with different textile

structures is presented in Figure 7. In this research a chemically synthesized PEDOT layer was

deposited on the yarn/fabric as a “seed layer” to form a highly electrically conductive surface,

followed by the deposition of the actuating PPy layer. This research verified the force amplification of

actuators assembled into a woven textile structure and the increased strain by using a knitted textile.

The research further confirms the mechanical stability of the CP actuators in textile structures [47].

This further outlines the different possibilities of a future improvement to the CP based actuating

textile with enhanced features, such as conductivity and anisotropic movements.
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fabric, (b) example of a custom weave with spacing (marked) that enables movements of yarns 
within the marked area, (c) a bobbin with industrially manufactured PEDOT-coated yarn, (d) a 
knitwear structure for respiratory monitoring with CP-coated yarns (black yarn) knitted together 
with normal (white) yarn “Reproduced from [47], Science Advances, 2017”. 

3.2. Carbon Nanotube Actuators 

Research into Carbon Nanotubes (CNTs) over the last decade has demonstrated that CNTs 
have the capability to act as an actuating material powered electrochemically, electro thermally, 
electrostatically and/or optically [16,51,75–77]. The performance of CNT actuators has been 
increased with the research progress to improve the mechanical properties of CNT sheets and yarns. 
The following sections cover highlights in CNT actuator research. 
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The actuation of CNTs is achieved by mobile ions of a solvent within a polymer. An applied 
electric field leads to swelling or contraction of the CNT when these ions enter or leave the regions of 
the polymer. This is accomplished by dipping CNT in an electrolyte and applying a voltage (1–7 V) 
between the nanotubes. As the CNTs are electronically conductive, the ions are gathered onto the 
surfaces of the CNTs balancing the electronic charge as the potential has changed. This results in 
reformation of the electronic structure of the CNT which leads to dimensional changes.  

The electrostatic actuation of CNTs is achieved by introducing a high level of charge injection. 
Electrostatic forces are generated, due to the interaction between the charges introduced into the 
CNTs instead of two electrodes as for electric field actuation [25]. The actuation of electrochemically 
powered CNT yarn has been demonstrated with the presence of electrolyte in several publications 
[16,38]. The actuation mechanism of CNT actuators was extensively studied and explained in the 
literature with twisted torsional artificial muscles reported by Foroughi et al. [16]. Moreover, CNT 
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The large a scale actuation is achieved by applying a voltage between a counter electrode and a 
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is due to the volume expansion caused by ion insertion which provides a 1% lengthwise contraction 
with respect to the initial length. A scanning electron microscopic (SEM) image of the twisted 
MWNT symmetrically twist-spun from an MWNT forest is shown in Figure 8a. The actuation 
mechanism in brief can be described as a partial untwist of the yarn during the charge injection 
which is changing the geometrical configuration of the yarn from Figure 8b1 to Figure 8b2. This is 
associated with the yarn volume expansion after the large positive or negative charge insertion 
which results in a lengthwise contraction. This research provides further evidence for twist-spun 
nanotube yarns driven by internal pressure, due to ion insertion [16]. 
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marked area, (c) a bobbin with industrially manufactured PEDOT-coated yarn, (d) a knitwear structure

for respiratory monitoring with CP-coated yarns (black yarn) knitted together with normal (white)

yarn “Reproduced from [47], Science Advances, 2017”.

3.2. Carbon Nanotube Actuators

Research into Carbon Nanotubes (CNTs) over the last decade has demonstrated that CNTs

have the capability to act as an actuating material powered electrochemically, electro thermally,

electrostatically and/or optically [16,51,75–77]. The performance of CNT actuators has been

increased with the research progress to improve the mechanical properties of CNT sheets and yarns.

The following sections cover highlights in CNT actuator research.

3.2.1. Actuating Mechanism

The actuation of CNTs is achieved by mobile ions of a solvent within a polymer. An applied

electric field leads to swelling or contraction of the CNT when these ions enter or leave the regions of

the polymer. This is accomplished by dipping CNT in an electrolyte and applying a voltage (1–7 V)

between the nanotubes. As the CNTs are electronically conductive, the ions are gathered onto the

surfaces of the CNTs balancing the electronic charge as the potential has changed. This results in

reformation of the electronic structure of the CNT which leads to dimensional changes.

The electrostatic actuation of CNTs is achieved by introducing a high level of charge injection.

Electrostatic forces are generated, due to the interaction between the charges introduced into the CNTs

instead of two electrodes as for electric field actuation [25]. The actuation of electrochemically powered

CNT yarn has been demonstrated with the presence of electrolyte in several publications [16,38].

The actuation mechanism of CNT actuators was extensively studied and explained in the literature

with twisted torsional artificial muscles reported by Foroughi et al. [16]. Moreover, CNT actuators

with large torsional actuation at a high rotation rate were also demonstrated in this study. The large

a scale actuation is achieved by applying a voltage between a counter electrode and a twisted multi

wall carbon nanotube (MWNT) in an electrolyte. The contraction of the reported CNT is due to the

volume expansion caused by ion insertion which provides a 1% lengthwise contraction with respect to

the initial length. A scanning electron microscopic (SEM) image of the twisted MWNT symmetrically

twist-spun from an MWNT forest is shown in Figure 8a. The actuation mechanism in brief can be

described as a partial untwist of the yarn during the charge injection which is changing the geometrical

configuration of the yarn from Figure 8b1 to Figure 8b2. This is associated with the yarn volume

expansion after the large positive or negative charge insertion which results in a lengthwise contraction.

This research provides further evidence for twist-spun nanotube yarns driven by internal pressure,

due to ion insertion [16].



Fibers 2019, 7, 21 9 of 24Fibers 2019, 7, 21 9 of 24 

 
Figure 8. (a) SEM of twisted twisted carbon nanotube (CNT) yarn, (b) Schematic of the yarn volume 
expansion during the charge injection “Reproduced with permission from American Association for 
the Advancement of Science [16], 2011“. 

Meanwhile, electrothermally driven CNT actuators were reported in the literature overcoming 
the necessity for the presence of electrolyte for actuation. The electrothermal actuation of CNT was 
achieved through combining with other polymers which have the ability to thermally expand and 
contract, such as phase change materials like paraffin wax [78] or with CNT network in silicone 
polymer elastomer [79]. In general, the electrothermal actuation mechanism of hybrid yarn is driven 
by volume expansion of the guest polymer materials which are merged with the CNT. Nevertheless, 
electro thermally driven hybrid CNT actuators need comparatively high applied voltage compared 
to electrochemically driven actuators [76]. 

3.2.2. Fabrication and Properties 

The electrochemical actuation of CNT was first demonstrated by Baughman et al. for CNT 
sheets [37]. The research was validated with single-walled nanotube (SWNT) sheets which 
generated higher stresses and strain than natural muscles. This study opened up possible new 
dimensions in actuator technology. Thereafter, CNT actuators with un-oriented CNT sheets were 
demonstrated by a group of researchers. These actuators with low modulus and strength generated 
around 0.2% stroke and stress 100 times more than skeletal muscle. This study further demonstrated 
electrostatically driven actuators with 220% stroke [51]. The above research demonstrated actuation 
for CNT in form of sheets. Meanwhile, a process for the continuous production of CNT yarn 
fabrication was introduced. The fabrication of CNT yarn evolved by combining the ancient 
technology of twist insertion during the spinning process. As can be seen in Figure 9a, the CNT yarn 
is drawn from a vertically aligned MWNT forest. Then the CNT yarn is twisted by a spinning 
machine as presented in Figure 9b. The schematic Figure 9c shows the magnified view of yarn 
drawing, twisting and winding during the spinning process. The SEM image in Figure 9d shows the 
CNT yarn was drawn and twisted simultaneously during the fabrication process. This procedure 
was able to produce a high strength, multi plied torque stabilized CNT yarn in which the strengths 
are greater than 460 MPa [50]. Further, the twisted MWNT actuators were demonstrated with high 
torsional actuation per muscle length with high rotation rates which provided a breakthrough for 
many types of helically arranged actuators. The twisted CNT actuator was mainly demonstrated for 
torsional actuation that demonstrated a practical application for a prototype mixer [16].  

Figure 8. (a) SEM of twisted twisted carbon nanotube (CNT) yarn, (b) Schematic of the yarn volume

expansion during the charge injection “Reproduced with permission from American Association for

the Advancement of Science [16], 2011”.

Meanwhile, electrothermally driven CNT actuators were reported in the literature overcoming

the necessity for the presence of electrolyte for actuation. The electrothermal actuation of CNT was

achieved through combining with other polymers which have the ability to thermally expand and

contract, such as phase change materials like paraffin wax [78] or with CNT network in silicone

polymer elastomer [79]. In general, the electrothermal actuation mechanism of hybrid yarn is driven

by volume expansion of the guest polymer materials which are merged with the CNT. Nevertheless,

electro thermally driven hybrid CNT actuators need comparatively high applied voltage compared to

electrochemically driven actuators [76].

3.2.2. Fabrication and Properties

The electrochemical actuation of CNT was first demonstrated by Baughman et al. for CNT

sheets [37]. The research was validated with single-walled nanotube (SWNT) sheets which generated

higher stresses and strain than natural muscles. This study opened up possible new dimensions in

actuator technology. Thereafter, CNT actuators with un-oriented CNT sheets were demonstrated by a

group of researchers. These actuators with low modulus and strength generated around 0.2% stroke

and stress 100 times more than skeletal muscle. This study further demonstrated electrostatically

driven actuators with 220% stroke [51]. The above research demonstrated actuation for CNT in form of

sheets. Meanwhile, a process for the continuous production of CNT yarn fabrication was introduced.

The fabrication of CNT yarn evolved by combining the ancient technology of twist insertion during the

spinning process. As can be seen in Figure 9a, the CNT yarn is drawn from a vertically aligned MWNT

forest. Then the CNT yarn is twisted by a spinning machine as presented in Figure 9b. The schematic

Figure 9c shows the magnified view of yarn drawing, twisting and winding during the spinning

process. The SEM image in Figure 9d shows the CNT yarn was drawn and twisted simultaneously

during the fabrication process. This procedure was able to produce a high strength, multi plied torque

stabilized CNT yarn in which the strengths are greater than 460 MPa [50]. Further, the twisted MWNT

actuators were demonstrated with high torsional actuation per muscle length with high rotation rates

which provided a breakthrough for many types of helically arranged actuators. The twisted CNT

actuator was mainly demonstrated for torsional actuation that demonstrated a practical application

for a prototype mixer [16].

As mentioned above, the torsional or the tensile actuation of CNTs are achieved as a result of a

volume change of the yarn. To accommodate the volume changes, an electrolyte or a guest material

should be introduced into the CNT yarn structure. In contrast, the electrolyte used in electrochemically

driven actuators adds more volume to the actuator system. Therefore, rather than fabricating these

actuators using a sole material, researchers had shown an interest to fabricate CNT hybrid actuators

in solid states. As a result, identical anode and cathode yarns were fabricated by permeating the

electrolyte and electronically insulating the surface of the yarn to prevent any electrical shorting.

The microscopic images of the CNT solid state actuators are presented in Figure 10. As shown in the

figure, all solid state actuators were fabricated by plying anode and cathode yarns together [76].
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Figure 10. Twisted multi wall carbon nanotube (MWNT) yarn structures, (a) Scanning electron

microscopic images of single yarn, (b) two ply yarns, and (c) Single coiled yarn and (d) plied coiled
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3.2.3. CNT Based Actuating Textile

MWNT yarns largely retain the twist when yarn ends are released compared to conventional

textile yarns. Studies have found that these yarns can retain their twist up to the breaking point [50].

Accordingly, highly twisted yarns were demonstrated for plying, knitting and knotting, as well as

shown in Figure 11 [50].

Moreover, electrochemically driven plied actuators were reported by Lee et al. [75]. These actuators

provided a tensile contraction of 11.6% and 5% for parallel and braided muscles respectively,

which were driven electrochemically without a liquid electrolyte. This research further progressed to

produce an energy conserving actuator with 16.5% contraction which is the highest reported to date.

Theses actuators eliminate the electrolyte bath by replacing it with an ionically conducting gel, as shown

in Figure 12b. The gel insulates the anode and cathode yarns while providing ionic conduction [75].
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Figure 12. Optical microscopic images of parallel arranged actuators (a) before, (b) after coating

with gel electrolyte to accommodate ion conduction“ Reproduced with permission from [75],
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Even though these studies demonstrated technical feasibility, the cost of CNT yarns can be the

major drawback in the production of a CNT based actuating textile.

3.3. Shape Memory Alloy (SMA) Actuators

Thermally actuated shape memory alloys (SMAs) are a class of materials that can “remember”

their original shape. SMA actuators with both linear or rotary motions are reported in the literature

that provided a great impact for thermally driven actuator technology [80].

3.3.1. Actuating Mechanism

The operating mechanism of SMA actuators has not been fully verified, since direct observation

of their dynamic behavior in a wide range of temperature is difficult. The actuation of SMA occurs

due to a change in the atomic structure between two phases: The low temperature (martensite) and

high temperature (austenite), as shown in Figure 13. The actuating mechanism of SMA is achieved by

training the material to remember a definite shape at high temperature. Both phases are identical in

chemical composition, but when the material is deformed at low temperature the residual strain can

be recovered by heating it to the austenite state. This type of SMAs can only remember the parent high

temperature phase, and so are referred to as SMAs with one-way shape memory effect. The actuators

with two way shape memory effect can perform in two stable phases, i.e., both in high temperature

and low temperature [25]. Two way SMAs can provide tensile force much lower than the contraction

force and the strain exhibited is half of that can be seen in one way type [81].
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A limited number of raw materials were used to fabricate SMA actuators in the literature. The 
Nitinol (Ni-Ti) is the most widely used SMA although Copper and iron based SMAs are also 
employed in some applications. The material selections for SMAs are highly dependent on their 
transformation temperature. Relatively, Ni-Ti is expensive and copper alloys are less costly but not 
as widely used, due to the lower fatigue tolerance and thermomechanical instability [83]. The 
attractive properties of SMA actuators, such as low operating voltage, clean, silent and having a long 
actuation cycle life have enabled them to be used in many applications [82]. SMAs exhibit a high 
energy (work) density which is around 1000 KJ/m3. These actuators operate at very high strain rates 
(around 300% per second) responsive and exhibit large deformations (around 5%) [26]. Furthermore, 
SMAs are very responsive and can deliver large strokes. The operating frequencies of these actuators 
are dependent upon the rate of cooling and heating of SMA to promote phase change. Conversely, 
exhibiting energy loss during phase transformation can cause a hysteretic behavior to the SMA 
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commercial applications [84]. 
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A limited number of raw materials were used to fabricate SMA actuators in the literature.

The Nitinol (Ni-Ti) is the most widely used SMA although Copper and iron based SMAs are also

employed in some applications. The material selections for SMAs are highly dependent on their

transformation temperature. Relatively, Ni-Ti is expensive and copper alloys are less costly but not as
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including nonlinear actuation, parameter uncertainties and their relative costs restrict their use in

commercial applications [84].
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in Figure 14b. This research further highlights the successful combination of Ni-Ti wires in a woven
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Further, an analytical model using SMA in a garter knit structure was presented by Juliana

et al. [51]. A prototype knit textile was fabricated and tested within the range of forces as a

characterisation of the textile. The knitted textile fabricated from Flexinol actuators was able to achieve

larger strains (around 51%) at moderate forces and usable strains (around 4.1%) at the enhanced force

of 12 N, compared to the single actuator alone with 4% strain at 5.8 N [49].

3.4. Twisted and Coiled Synthetic Fibre Actuators

Synthetic fibers are designated as “man-made fibers”. These are popular in many practical

applications, due to interesting properties, such as high tensile strength, high modulus and shear

stability [85]. The precursor fibers used to fabricate coiled actuators are readily being used in high

strength applications, such as fishing, apparel and sewing. The high degree of polymer alignment

of these fibers provides them with high strength. Moreover, forming these fibers in a twisted

fashion and arranging the polymer chains helically provides for a thermally persuaded length change

during untwisting. The phenomenon for actuation of these materials will further be described in the

section below.

3.4.1. Actuating Mechanism

Synthetic fibers are produced from a process called “polymerization” followed by fiber drawing.

Upon drawing, the crystalline blocks of the polymer become increasingly aligned along the draw

direction. The drawn polymers will consist of an amorphous region, tie molecules and inter crystalline

bridges, as shown in Figure 15. The amorphous region contains floating chains and polymer chains

which are attached to the crystalline region at one end and loops, which starts and end at the same

crystalline region. The tie molecules joining one crystalline block to another block increases with both

number and steadiness by increasing draw ratio. The crystalline regions of polymer fibers have a

small degree of negative thermal expansion. Fiber direction aligned polymer chains in non-crystalline

regions are less constrained and thus they can cause larger reversible contractions when heated.

This reversible contraction is amplified by inserting twists and coiling the yarns.

Fibers 2019, 7, 21 13 of 24 

 
Figure 14. The Ni-Ti embedded fabric (a) crushed and (b) self-recovered “Reproduced with 
permission from [48], IOS Press, 2004”. 

Further, an analytical model using SMA in a garter knit structure was presented by Juliana et al. 
[51]. A prototype knit textile was fabricated and tested within the range of forces as a 
characterisation of the textile. The knitted textile fabricated from Flexinol actuators was able to 
achieve larger strains (around 51%) at moderate forces and usable strains (around 4.1%) at the 
enhanced force of 12 N, compared to the single actuator alone with 4% strain at 5.8 N [49]. 

3.4. Twisted and Coiled Synthetic Fibre Actuators 

Synthetic fibers are designated as “man-made fibers”. These are popular in many practical 
applications, due to interesting properties, such as high tensile strength, high modulus and shear 
stability [85]. The precursor fibers used to fabricate coiled actuators are readily being used in high 
strength applications, such as fishing, apparel and sewing. The high degree of polymer alignment of 
these fibers provides them with high strength. Moreover, forming these fibers in a twisted fashion 
and arranging the polymer chains helically provides for a thermally persuaded length change 
during untwisting. The phenomenon for actuation of these materials will further be described in the 
section below.  

3.4.1. Actuating Mechanism 

Synthetic fibers are produced from a process called “polymerization” followed by fiber 
drawing. Upon drawing, the crystalline blocks of the polymer become increasingly aligned along the 
draw direction. The drawn polymers will consist of an amorphous region, tie molecules and inter 
crystalline bridges, as shown in Figure 15. The amorphous region contains floating chains and 
polymer chains which are attached to the crystalline region at one end and loops, which starts and 
end at the same crystalline region. The tie molecules joining one crystalline block to another block 
increases with both number and steadiness by increasing draw ratio. The crystalline regions of 
polymer fibers have a small degree of negative thermal expansion. Fiber direction aligned polymer 
chains in non-crystalline regions are less constrained and thus they can cause larger reversible 
contractions when heated. This reversible contraction is amplified by inserting twists and coiling the 
yarns. 

 
Figure 15. Schematic diagram showing the structure of a highly oriented semi crystalline polymer.

(C) crystalline region; (B) bridges; (A) amorphous region; (TM) tie-molecules “Reproduced with

permission from [86], John Wiley and Sons, 1981”.

The giant actuation of these actuators is achieved through partial untwisting of the twisted

fibers [17]. The untwisting of twisted fibers provides an expansion in the radial direction which leads

to a contraction in the fiber axis direction.

3.4.2. Fabrication and Properties

High strength polymer fibers, such as nylon, polyester and polyethylene, are anisotropic materials

and considered as raw materials for these actuators. The fabrication procedure of these actuators was
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fully described in research work by Carter S. Haines et al. [17]. The precursor fibers (Figure 16a) were

twisted until they get coiled, as shown in Figure 16b or they can be fabricated by wrapping the twisted

fiber around a mandrel as can be seen in Figure 16e. The actuator structure was set using an annealing

procedure to retain the helical shape. Furthermore, actuators can be tailor made to achieve the desired

actuation based on fundamental studies.
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Figure 17 shows the bulk-produced coiled actuators manufactured by a continuous process

where (a1) is a spool of the non-conductive actuator and (a2) is a spool of the conductive actuator.

The conductive actuator is fabricated by wrapping with insulated copper wire for electrothermal

heating. The continuous production possibility of these actuators will further enhance the feasibility of

fabricating them into textiles.

Fibers 2019, 7, 21 14 of 24 

Figure 15. Schematic diagram showing the structure of a highly oriented semi crystalline polymer. 
(C) crystalline region; (B) bridges; (A) amorphous region; (TM) tie-molecules “Reproduced with 
permission from [86], John Wiley and Sons, 1981“. 

The giant actuation of these actuators is achieved through partial untwisting of the twisted 
fibers [17]. The untwisting of twisted fibers provides an expansion in the radial direction which 
leads to a contraction in the fiber axis direction.  

3.4.2. Fabrication and Properties 

High strength polymer fibers, such as nylon, polyester and polyethylene, are anisotropic 
materials and considered as raw materials for these actuators. The fabrication procedure of these 
actuators was fully described in research work by Carter S. Haines et al. [17]. The precursor fibers 
(Figure 16a) were twisted until they get coiled, as shown in Figure 16b or they can be fabricated by 
wrapping the twisted fiber around a mandrel as can be seen in Figure 16e. The actuator structure 
was set using an annealing procedure to retain the helical shape. Furthermore, actuators can be tailor 
made to achieve the desired actuation based on fundamental studies.  

Figure 17 shows the bulk-produced coiled actuators manufactured by a continuous process 
where (a1) is a spool of the non-conductive actuator and (a2) is a spool of the conductive actuator. 
The conductive actuator is fabricated by wrapping with insulated copper wire for electrothermal 
heating. The continuous production possibility of these actuators will further enhance the feasibility 
of fabricating them into textiles. 

 
Figure 16. The actuators (a) a non-twisted monofilament, (b) after coiling the monofilament, (c) a two 
–ply muscle formed from the coil, (d) a braid formed from 2-ply muscles, (e) a coil formed by 
inserting a twist “Reproduced with permission from [17], American Association for the 
Advancement of Science, 2014“.  

 
Figure 17. Coiled polymer actuators produced by a continuous process, (a1) spool of non-conductive

actuator and the optical image of non-conductive actuator is shown in (b1), (a2) spool of conductive

actuators produced by wrapping with an insulated copper wire, as shown in optical image (b2)

“Reproduced from [19], Proceedings of the National Academy of Sciences, 2016”.

These coiled synthetic polymer actuators exhibited a 49% maximum lengthwise contraction.

Furthermore, these actuators were able to lift loads over 100 times heavier than a human muscle of the

same length and weight. In addition, they can generate 5.3 kW/kg of mechanical work, (similar to that

produced by a jet engine) with the highest operating frequency of 7.5 Hz reported to date. The low

cost, less-hysteretic behavior, ease of handling, high tensile strength and other exhibited performance
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characteristics are some additional favorable properties of these actuators [17]. Further research of

synthetic polymer actuators was published by Cater S. Haines et al., which discussed the practical

opportunities and challenges of artificial muscles. This research highlights the limiting factors of the

tensile actuation and the further improved spiral shape actuator which was fabricated with 200%

tensile actuation [19]. Thus, the coiled actuators have been widely investigated by researchers for

textile fabrication.

3.4.3. Twisted Polymer based Actuating Textiles

Twisting and coil formation of polymers offer high-performance actuators which provide

promising materials in designing a high-performance actuating textile. A model textile has been

demonstrated for the first time in the literature from the twisted actuators with nylon fishing line,

as shown in Figure 18 [17]. The textile was weaved from silver-plated nylon for electrothermal heating

(brown in color) and polyester, cotton yarns (white and yellow in color) in the weft direction and nylon

coiled actuators were used as the warp yarn.
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The textile actuation was achieved via heating the textile electrically which provides a gateway

for fabricating novel actuating textiles. Thereafter, actuating textiles were formed using traditional

textile fabrication methods with the recent research of Hanes et al., as shown in Figure 19 [19].

This research successfully combined the actuators in woven, stitched and knitted textile structures.

These textiles were fabricated with non-electrically conductive actuators. The researchers have

recommended these textiles in applications, such as porosity changing textiles and breathable curtains.Fibers 2019, 7, 21 16 of 24 
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Furthermore, nylon actuators were recently demonstrated in a bionic bra developed to minimize

breast discomfort during exercise [87]. The woven actuators were used as active materials to control

the breast movement, as shown in Figure 20.
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able to generate around 0.6 N force following heating to 75 ◦C and a woven textile actuator with the

nine, parallel actuating fibers was able to generate around 3 N force heating to the same temperature.

3.5. Knitted CNT/Spandex Yarn as Smart Textiles

More interestingly, an electrothermally activated “clever yarn” was invented by overcoming the

technical obstacles by Foroughi et al., as shown in Figure 21 [13]. A highly stretchable, actuatable

textile was produced by wrapping spandex filaments (SPX) with CNT yarns to give the actuating

performance and conductivity respectively. This knitted textile structure exhibits 33% contraction

and mechanical work output of 1.28 kW/kg which exceeds that of skeletal muscle. This research

presents adjusted electrical conductivities by changing the SPX/CNT ratio and hysteresis free resistance

was obtained by changing the tensile strain. A hybrid SPX/CNT based actuating textile opened a

new dimension into manufacturing actuating textiles using an existing textile fabrication method.

Further, this was recommended for applications where it was required to apply force or pressure

to the wearer [13]. The actuating textile was heated by applying a voltage of 12 V and current of

0.25 A. Further, this research demonstrated the feasibility of using coiled synthetic fiber actuators in

smart textiles.Fibers 2019, 7, 21 17 of 24 
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(4) a circular knitting machine, and (5) a knitted CNT/SPX textile. A CNT ribbon drawn from a CNT

forest was wrapped around SPX fibers and knitted in the knitting machine to produce the circular

knitted textile, shown in (b) and (c). “Reproduced with permission from [13], American Chemical

Society, 2016”.



Fibers 2019, 7, 21 17 of 24

4. Overview in Different Actuation Mechanism for Smart Textiles

The actuating mechanism should be selected with a major emphasis on end user requirement.

This section is focused to discuss the suitability of different actuation mechanisms for an actuating

textile for high tech applications including biomedical, soft robotics and apparel. Herein, we are

appraising above described popular actuation mechanisms; electric field, ion based, pneumatic and

thermal means for a workable textile fabrication.

Electric field actuation is caused by electrostatic attraction. Therefore, it requires two surfaces

or alignment of polarized domains which need voltages as high as 1 kV. Generally, there is need of

an amplifier to convert line or battery voltages up to kV potentials, which adds cost and consumes

volume. Thus, the cost, size and safety measures may prohibit electric field actuators for applications

in small portable (e.g., handheld) devices. All these limitations can be a concern in smart textiles,

as well as in bio medical and toy applications [25,26].

Ion based actuation requires electrolyte to be presented in the polymer structure. Therefore,

assembling them in a smart textile would need a configuration to retain the electrolyte medium.

Actuator arrangements described in the literature without the liquid electrolyte need sophisticated

manufacturing procedures and actuation mechanisms which add more cost and operating barriers

to the system. Moreover, low efficiencies are one of the key disadvantages of these actuator types.

The main disadvantages of pneumatic actuators, such as McKibben, are that, they need a compressor

or pump and their dynamic behavior is nonlinear. Consequently, they are difficult to make into a

textile, and a robust control mechanism is needed to achieve the desired motion [88,89]. Therefore,

the feasibility of incorporating actuators with these major actuating mechanisms into smart textile will

present many challenges.

In contrast, most of the research has focused on the use of thermally driven actuators in smart

textiles [13,17,19,48,49,87]. This may be mainly due to the utilization of electrothermal heating as

a reliable and clean source of energy. Many studies have been reported for textiles combined with

different types of electrical conductors for smart textiles and electrothermal heating applications [90–95].

Furthermore, the outstanding properties of thermally driven actuators make them an attractive

prospect in high end future applications. Thermally driven synthetic coiled actuators show 49%

contraction which will enable them to be used in a highly contractible actuating textile. This high

contractibility is able to generate a high pressure which makes it an attractive proposition in many

applications. Since, it will produce a textile structure which is generating high work output per unit

area. The cost of raw materials and cost of processing sets the final price limit for the textile. The use

of inexpensive synthetic polymers will be advantages for producing an actuating textile at low cost

which will increase affordability and market demand. Moreover, the durability and demonstrated

operating consistency will increase the feasibility for their use in applications, such as bio- medical

where reliability is paramount. The high tensile strength and the reversible actuation over one million

cycles enables the production of a durable textile with less damage to the actuator system during

operation. Additionally, the low hysteresis behavior of synthetic polymer coils increases the possibility

of producing an easily controllable textile which will exhibit a consistent actuation in heating and

cooling cycles. These outstanding properties point to exciting prospects for the use of coiled synthetic

actuators in future high-performance actuating textiles. Table 1 provides a summary of the properties

of different actuating mechanisms, actuators, their advantages and drawbacks.
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Table 1. The summary of different actuators with their actuating mechanisms, actuator properties,

advantages and disadvantages.

Actuating
Mechanism

Actuator Type Strain
Stress
(Mpa)

Work
Capacity

Advantages Disadvantages References

Electric Field
Actuation

Dielectric
elastomeric
actuators

10–380% 7.7 150 kJ/m3

Simple in
mechanism

and
construction

High voltages -

Large strains
Cost and consumes

volume
-

High
efficiencies

(30%)
- [22,23]

High
bandwidths

-
Low current

Low cost

Electrostrictive
polymers 7% 45 320 kJ/m3

High work
density High voltages cycle

life is unclear
[26,27]

High Stress

Ion based
Actuation

Conducting
polymer 12% 34 100 kJ/m3

Low Voltage Need encapsulation
Low Efficiencies

[25,70,72]

High Stress -

High work
density

-

Ionic Polymer
Metal

Composites
3.30% 30 5.5 kJ/m3 Low Voltage Need encapsulation [25,26,31,32]

Pneumatic
Actuation

Mckibben 25–30% - -

Fast Difficulty to control -

High strain
Bulky operating

method
[35]

Thermal
Actuation

Shape
Memory
Alloys

8% 200
1000

kJ/m3

High stress
Low Voltage
High work

density

Difficult to control
Large currents

Low efficiencies
[26,84]

Twisted
Synthetic

Fibers
49% - 2.48 kJ/kg

High Strain

Limited Operating
temperatures (250 ◦C)

[17]

High work
output per kg
Inexpensive

Light weight

Flexible -

Electrochemical
Carbon

Nanotubes
Yarns

16% 2 2 kJ/m3

High Stress Expensive -

Low Voltage - [26,75]

High
temperature

range
-

5. Future Outlook

An electrically operated high-performance actuating textile with high strain and force will benefit

many future applications. However, the fabrication of conductive textiles is limited by many technical

and nontechnical parameters and it is important to analyze the contests associated with fabrication.

The processes of weaving or knitting electrically conductive actuators for electrothermal heating

are normally associated with several challenges, such as an increase of electrical resistance with

tensile strain and changes in the conductive path ways of textile yarns or fabrics. In addition,

the weaving of conductive yarns/wires involves high strains, process constrains, and long-term

stability of intersection points are some of the other limitations of bulk manufacturing of actuating

textiles. Electrical shorting between two yarns at their mechanical intersection is another key limitation
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in establishing electrical links [96]. Damaging of electrical connections during washing, and other

activities performed by the user are some other challenges in smart textile applications. As a result,

some researchers have investigated the used of surface modified conductive textile yarns for their

hydrophobicity and electrical encapsulation. As examples, the textile cables can be coated with silicone

substrates with improved mechanical properties which will minimize the conductivity and electrical

shorting limitations described above [97]. Further, a method of encapsulation for washable, reliable

and wearable electronics was demonstrated by Tao et al. which was focused on two types of silicone

where the devices were able to perform after washing [98]. Moreover, the actuation frequency can

be lowered with cooling in normal air. Therefore, incorporating cooling material is important to

maintain a consistent frequency during operation [99]. Heating might be another limiting factor as the

human body can only tolerate a certain temperature range. This temperature range will differ with

the application type and the area of the body exposed to the textile. Hence, the limiting factors of

electro thermally driven textiles need to be well controlled in order to produce a high-performance

actuating textile.

6. Conclusions

Development of materials for the preparation of actuating materials is an important enabling

step towards their application, particularly in smart textiles. We have summarized the history of

the emergence of actuating materials, categories, and preparation and fabrication methods for the

recent development of smart textiles, as well as their current/future of applications. Smart textiles

based on different actuating mechanisms and a comprehensive study on polymer actuators has been

reviewed. The compatibility of diverse actuating mechanisms in actuating textile was showed that the

thermally driven actuators can be considered as a potential actuator type to incorporate into actuating

textiles. Moreover, thermally driven twisted synthetic fiber actuators with high actuation strain and

work capacity will provide extraordinary features to a high-performance actuating textile. Thermally

operating actuators are fabricated based on man-made fibers, such as nylon, polyester, and spandex

which can be manufactured using conventional textile processing. In addition, the thermal energy

for actuation can be harvested from electric power as a reliable method of operation. The electrical

Joule heating method for textile can be achieved by incorporating conductive materials to the textile

structure. The processes and materials described above need to be evaluated when considering the

fabrication of electrically operated actuating textiles. The introduction of guest materials to achieve

desired application properties is also a key area to be considered during fabrication. Most importantly,

thermally driven actuators should be evaluated for the most efficient and even means of heating.

Actuators heated electrically by connecting with a conductive yarn or conductive coatings are some

of the technically stable methods which have enormous potential. Furthermore, the possibility of

using contractile polymers in an artificial heart has been investigated and there is a high possibility of

employing an electrically operated actuating material structure in biomedical applications [100–102].

A well fabricated actuating textile will find multiple applications possibilities, such as biomedical,

prosthetics, soft robotics, and smart apparel which can make a significant impact in many areas.

Although recent development in smart textiles appears extremely promising, there still remain

challenges to improve their properties and performance to become adequate for a practical and

commercial application.

Author Contributions: Both authors have involved with the same contributions to this work.

Funding: The Australian Research Council under Discovery Early Career Researcher award, funding number:
DE130100517, Javad Foroughi.

Acknowledgments: The authors would like to thank the Australian Research Council under Discovery Early
Career Researcher award (J. Foroughi DE130100517). This research has been conducted with the support of the
Australian Government Research Training Program Scholarship.

Conflicts of Interest: The authors declare no conflict of interest.



Fibers 2019, 7, 21 20 of 24

References

1. Syduzzaman, M.; Patwary, S.U.; Farhana, K.; Ahmed, S. Smart Textiles and Nano-Technology: A General

Overview. J. Text. Sci. Eng. 2015, 5, 181. [CrossRef]

2. Van Langenhove, L.; Hertleer, C. Smart clothing: A new life. Int. J. Cloth. Sci. Technol. 2004, 16, 63–72.

[CrossRef]

3. Foroughi, J.; Spinks, G.M.; Wallace, G.G. Conducting Polymer Fibers. In Handbook of Smart Textiles; Tao, X.,

Ed.; Springer: Singapore, 2015; pp. 31–62.

4. Park, S. Smart Textiles: Wearable Electronic Systems. MRS Bull. 2003, 28, 585–591. [CrossRef]

5. Sahin, O.; Kayacan, O.; Bulgun, E.Y. Smart textiles for soldier of the future. Def. Sci. J. 2005, 55, 195–205.

[CrossRef]

6. Ramdayal; Balasubramanian, K. Advancement in Textile Technology for Defence Application. Def. Sci. J.

2013, 63, 331–339.

7. Krishnan, M.; Kannan, G. Polygon Shaped 3G Mobile Band Antennas for High Tech Military Uniforms.

Adv. Electromagn. 2016, 5, 7–13. [CrossRef]

8. Zhang, X.; Tao, X. Smart textiles: Passive smart. Text. Asia 2001, 32, 45–49.

9. Zhang, X.; Tao, X. Smart textiles: Very smart. Text. Asia 2001, 35–37.

10. Zhang, X.; Tao, X. Smart textiles: Active smart. Text. Asia 2001, 49–52.

11. Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14,

11957–11992. [CrossRef]

12. Stoychev, G.V.; Ionov, L. Actuating Fibers: Design and Applications. ACS Appl. Mater. Interfaces 2016, 8,

24281–24294. [CrossRef] [PubMed]

13. Foroughi, J.; Spinks, G.M.; Aziz, S.; Mirabedini, A.; Jeiranikhameneh, A.; Wallace, G.G.; Kozlov, M.E.;

Baughman, R.H. Knitted Carbon-Nanotube-Sheath/Spandex-Core Elastomeric Yarns for Artificial Muscles

and Strain Sensing. ACS Nano 2016, 10, 9129–9135. [CrossRef] [PubMed]

14. Foroughi, J.; Spinks, G.M.; Wallace, G.G. High strain electromechanical actuators based on electrodeposited

polypyrrole doped with di-(2-ethylhexyl)sulfosuccinate. Sens. Actuators B Chem. 2011, 155, 278–284.

[CrossRef]

15. Foroughi, J.; Spinks, G.M.; Wallace, G.G. A reactive wet spinning approach to polypyrrole fibres.

J. Mater. Chem. 2011, 21, 6421–6426. [CrossRef]

16. Foroughi, J.; Spinks, G.M.; Wallace, G.G.; Oh, J.; Kozlov, M.E.; Fang, S.; Mirfakhrai, T.; Madden, J.D.W.;

Shin, M.K.; Kim, S.J.; et al. Torsional Carbon Nanotube Artificial Muscles. Science 2011, 334, 494–497.

[CrossRef] [PubMed]

17. Haines, C.S.; Lima, M.D.; Li, N.; Spinks, G.M.; Foroughi, J.; Madden, J.D.W.; Kim, S.H.; Fang, S.; Jung de

Andrade, M.; Göktepe, F.; et al. Artificial Muscles from Fishing Line and Sewing Thread. Science 2014, 343,

868–872. [CrossRef] [PubMed]

18. Lima, M.D.; Li, N.; de Andrade, M.J.; Fang, S.; Oh, J.; Spinks, G.M.; Kozlov, M.E.; Haines, C.S.; Suh, D.;

Foroughi, J.; et al. Electrically, Chemically, and Photonically Powered Torsional and Tensile Actuation of

Hybrid Carbon Nanotube Yarn Muscles. Science 2012, 338, 928–932. [CrossRef] [PubMed]

19. Haines, C.S. New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 2016, 113, 11709–11716. [CrossRef]

[PubMed]

20. Tondu, B. Artificial muscles for humanoid robots. In Humanoid Robots, Human-Like Machines; InTech: London,

UK, 2007.

21. Huber, J.E.; Fleck, N.A.; Ashby, M.F. The selection of mechanical actuators based on performance indices.

Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 1997, 453, 2185–2205. [CrossRef]

22. Bar-Cohen, Y. Current and future developments in artificial muscles using electroactive polymers. Expert Rev.

Med. Devices 2005, 2, 731–740. [CrossRef]

23. Vincenzini, P.; Bar-Cohen, Y.; Carpi, F.; Vincenzini, P. Actuators Using Electroactive Polymers: Actuators Using

Electroactive Polymers: Cimtec 2008; Trans Tech Publications, Limited: Durnten, Switzerland, 2008.

24. Kornbluh, R.D.; Pelrine, R.; Pei, Q.; Oh, S.; Joseph, J. Ultrahigh strain response of field-actuated elastomeric

polymers. In Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structures and

Materials, Beach, CA, USA, 6–9 March 2000; p. 14.

http://dx.doi.org/10.4172/2165-8064.1000181
http://dx.doi.org/10.1108/09556220410520360
http://dx.doi.org/10.1557/mrs2003.170
http://dx.doi.org/10.14429/dsj.55.1982
http://dx.doi.org/10.7716/aem.v5i3.365
http://dx.doi.org/10.3390/s140711957
http://dx.doi.org/10.1021/acsami.6b07374
http://www.ncbi.nlm.nih.gov/pubmed/27571481
http://dx.doi.org/10.1021/acsnano.6b04125
http://www.ncbi.nlm.nih.gov/pubmed/27607843
http://dx.doi.org/10.1016/j.snb.2010.12.035
http://dx.doi.org/10.1039/c0jm04406g
http://dx.doi.org/10.1126/science.1211220
http://www.ncbi.nlm.nih.gov/pubmed/21998253
http://dx.doi.org/10.1126/science.1246906
http://www.ncbi.nlm.nih.gov/pubmed/24558156
http://dx.doi.org/10.1126/science.1226762
http://www.ncbi.nlm.nih.gov/pubmed/23161994
http://dx.doi.org/10.1073/pnas.1605273113
http://www.ncbi.nlm.nih.gov/pubmed/27671626
http://dx.doi.org/10.1098/rspa.1997.0117
http://dx.doi.org/10.1586/17434440.2.6.731


Fibers 2019, 7, 21 21 of 24

25. Mirfakhrai, T.; Madden, J.D.W.; Baughman, R.H. Polymer artificial muscles. Mater. Today 2007, 10, 30–38.

[CrossRef]

26. Madden, J.D.; Vandesteeg, N.A.; Anquetil, P.A.; Madden, P.G.; Takshi, A.; Pytel, R.Z.; Lafontaine, S.R.;

Wieringa, P.A.; Hunter, I.W. Technology: Physical principles and naval prospects. IEEE J. Ocean. Eng. 2004,

29, 706–728. [CrossRef]

27. Wallmersperger, T.; Kröplin, B.; Gülch, R. Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality,

Potential, and Challenges; Modelling and Analysis of Chemistry and Electromechanics; Spie Press: Bellingham,

WA, USA, 2004; Volume PM 136.

28. Kim, K.J. Biomimetic Robotic Artificial Muscles. [Electronic Resource]; World Scientific: Singapore; Hackensack,

NJ, USA, 2013.

29. Tang, Y.; Xue, Z.; Xie, X.; Zhou, X. Ionic polymer–metal composite actuator based on sulfonated poly (ether

ether ketone) with different degrees of sulfonation. Sens. Actuators A Phys. 2016, 238, 167–176. [CrossRef]

30. Park, I.-S.; Jung, K.; Kim, D.; Kim, S.-M.; Kim, K.J. Physical principles of ionic polymer–metal composites as

electroactive actuators and sensors. MRS Bull. 2008, 33, 190–195. [CrossRef]

31. Nemat-Nasser, S.; Wu, Y. Comparative experimental study of ionic polymer–metal composites with different

backbone ionomers and in various cation forms. J. Appl. Phys. 2003, 93, 5255–5267. [CrossRef]

32. Shahinpoor, M.; Kim, K.J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 2001, 10,

819–833. [CrossRef]

33. Laksanacharoen, S. Artificial Muscle Construction Using Natural Rubber Latex in Thailand. In Proceedings

of the 3rd Thailand and Material Science and Technology Conference, Bangkok, Thailand, 10–11 August

2004; pp. 1–3.

34. Agerholm, M. The “artificial muscle” of mckibben. Lancet 1961, 277, 660–661. [CrossRef]

35. Sangian, D. New Types of McKibben Artificial Muscles. Ph.D. Thesis, School of Mechanical, Materials and

Mechatronic Engineering, University of Wollongong, Wollongong, Australia, 2016.

36. Kelasidi, E.; Andrikopoulos, G.; Nikolakopoulos, G.; Manesis, S. A survey on pneumatic muscle actuators

modeling. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics (ISIE), Gdansk,

Poland, 27–30 June 2011; pp. 1263–1269.

37. Baughman, R.H. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [CrossRef] [PubMed]

38. Mirfakhrai, T.; Jiyoung, O.; Kozlov, M.; Fok, E.C.W.; Mei, Z.; Shaoli, F.; Baughman, R.H.; Madden, J.D.W.

Electrochemical actuation of carbon nanotube yarns. Smart Mater. Struct. 2007, 16. [CrossRef]

39. Lange, N.; Wippermann, F.; Leitel, R.; Bruchmann, C.; Beckert, E.; Eberhardt, R.; Tünnermann, A. First results

on electrostatic polymer actuators based on uv replication. In Proceedings of the Micromachining and

Microfabrication Process Technology XVI: SPIE Photonics West, San Francisco, CA, USA, 22–27 January

2011; p. 792609.

40. Johnstone, R.W.; Parameswaran, M. Electrostatic Actuators. In An Introduction to Surface-Micromachining;

Springer: Boston, MA, USA, 2004; pp. 135–152.

41. Jones, B.E.; McKenzie, J.S. A review of optical actuators and the impact of micromachining. Sens. Actuators

A Phys. 1993, 37–38, 202–207. [CrossRef]

42. Howe, D. Magnetic actuators. Sens. Actuators A Phys. 2000, 81, 268–274. [CrossRef]

43. Tiwari, R.; Meller, M.A.; Wajcs, K.B.; Moses, C.; Reveles, I.; Garcia, E. Hydraulic artificial muscles. J. Intell.

Mater. Syst. Struct. 2012, 23, 301–312. [CrossRef]

44. Solano, B.; Laloy, J.; Rotinat-Libersa, C. Compact and lightweight hydraulic actuation system for high

performance millimeter scale robotic applications: Modeling and experiments. In Proceedings of the ASME

2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, PA, USA,

28 September–1 October 2010; pp. 405–411.

45. Tondu, B.; Emirkhanian, R.; Mathé, S.; Ricard, A. A pH-activated using the McKibben-type braided structure.

Sens. Actuators A Phys. 2009, 150, 124–130. [CrossRef]

46. Schreyer, H.B.; Gebhart, N.; Kim, K.J.; Shahinpoor, M. Electrical Activation of Artificial Muscles Containing

Polyacrylonitrile Gel Fibers. Biomacromolecules 2000, 1, 642–647. [CrossRef]

47. Maziz, A.; Concas, A.; Khaldi, A.; Stålhand, J.; Persson, N.-K.; Jager, E.W.H. Knitting and weaving artificial

muscles. Sci. Adv. 2017, 3. [CrossRef] [PubMed]

48. Carosio, S.; Monero, A. Smart and hybrid materials: Perspectives for their use in textile structures for better

health care. Stud. Health Technol. Inform. 2004, 108, 335–343. [PubMed]

http://dx.doi.org/10.1016/S1369-7021(07)70048-2
http://dx.doi.org/10.1109/JOE.2004.833135
http://dx.doi.org/10.1016/j.sna.2015.12.015
http://dx.doi.org/10.1557/mrs2008.44
http://dx.doi.org/10.1063/1.1563300
http://dx.doi.org/10.1088/0964-1726/10/4/327
http://dx.doi.org/10.1016/S0140-6736(61)91676-2
http://dx.doi.org/10.1126/science.284.5418.1340
http://www.ncbi.nlm.nih.gov/pubmed/10334985
http://dx.doi.org/10.1088/0964-1726/16/2/S07
http://dx.doi.org/10.1016/0924-4247(93)80035-F
http://dx.doi.org/10.1016/S0924-4247(99)00174-0
http://dx.doi.org/10.1177/1045389X12438627
http://dx.doi.org/10.1016/j.sna.2008.12.011
http://dx.doi.org/10.1021/bm005557l
http://dx.doi.org/10.1126/sciadv.1600327
http://www.ncbi.nlm.nih.gov/pubmed/28138542
http://www.ncbi.nlm.nih.gov/pubmed/15718664


Fibers 2019, 7, 21 22 of 24

49. Abel, J.; Luntz, J.; Brei, D. A two-dimensional analytical model and experimental validation of garter stitch

knitted shape memory alloy actuator architecture. Smart Mater. Struct. 2012, 21, 085011. [CrossRef]

50. Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional Carbon Nanotube Yarns by Downsizing an

Ancient Technology. Science 2004, 306, 1358–1361. [CrossRef]

51. Li, D.; Paxton, W.F.; Baughman, R.H.; Huang, T.J.; Stoddart, J.F.; Weiss, P.S. Molecular, supramolecular,

and macromolecular motors and artificial muscles. MRS Bull. 2009, 34, 671–681. [CrossRef]

52. Mirvakili, S.M. Niobium Nanowire Yarns and their Application as Artificial Muscles. Adv. Funct. Mater.

2013, 23, 4311–4316. [CrossRef]

53. Peining, C.; Yifan, X.; Sisi, H.; Xuemei, S.; Shaowu, P.; Jue, D.; Daoyong, C.; Huisheng, P. Hierarchically

arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 2015, 10, 1077–1083.

[CrossRef]

54. Harun, M.H.; Saion, E.; Kassim, A.; Yahya, N.; Mahmud, E. Conjugated conducting polymers: A brief

overview. UCSI Acad. J. J. Adv. Sci. Arts 2007, 2, 63–68.

55. Kaneto, K. Research Trends of Soft Actuators based on Electroactive Polymers and Conducting Polymers.

J. Phys. Conf. Ser. 2016, 704, 012004. [CrossRef]

56. Foroughi, J. Development of Novel Nanostructured Conducting Polypyrrole Fibres; Intelligent Polymer Research

Institute, Faculty of Engineering: Wollongong, Australia, 2009.

57. Madden, J. Creep and cycle life in polypyrrole actuators. Sens. Actuators A Phys. 2007, 133, 210–217.

[CrossRef]

58. Kim, J. Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators.

Polym. Int. 2007, 56, 1530–1536. [CrossRef]

59. Xie, J. Fabrication and characterization of solid state conducting polymer actuators. Proc. SPIE 2004, 5385,

406–412. [CrossRef]

60. De Rossi, D.; Mazzoldi, A. Linear Fully Dry Polymer Actuators; Place of Publication: Newport Beach, CA,

USA, 1999; pp. 35–44.

61. Takashima, W. The electrochemical actuator using electrochemically-deposited poly-aniline film. Synth. Met.

1995, 71, 2265–2266. [CrossRef]

62. Simaite, A. Towards inkjet printable conducting polymer artificial muscles. Sens. Actuators B Chem. 2016,

229, 425–433. [CrossRef]

63. Okuzaki, H. Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators.

Sens. Actuators B Chem. 2014, 194, 59–63. [CrossRef]

64. Wang, G. Actuator and Generator Based on Moisture-Responsive PEDOT: PSS/PVDF composite film.

Sens. Actuators B Chem. 2018, 255, 1415–1421. [CrossRef]

65. Naficy, S. Evaluation of encapsulating coatings on the performance of polypyrrole actuators.

Smart Mater. Struct. 2013, 22, 075005. [CrossRef]

66. Fengel, C.V.; Bradshaw, N.P.; Severt, S.Y.; Murphy, A.R.; Leger, J.M. Biocompatible silk-conducting polymer

composite trilayer actuators. Smart Mater. Struct. 2017, 26, 055004. [CrossRef]

67. Khaldi, A.; Maziz, A.; Alici, G.; Spinks, G.M.; Jager, E.W.H. Bottom-up microfabrication process for

individually controlled conjugated polymer actuators. Sens. Actuators B Chem. 2016, 230, 818–824. [CrossRef]

68. Burriss, E.T.; Alici, G.; Spinks, G.M.; McGovern, S. Modelling and Performance Enhancement of a Linear

Actuation Mechanism Using Conducting Polymers. Inf. Control Autom. Rob. 2011, 85, 63–78.

69. Spinks, G.; Binbin, X.; Campbell, T.; Whitten, P.; Mottaghitalab, V.; Samani, M.B.; Wallace, G.G. In pursuit of

high-force/high-stroke conducting polymer actuators. In Proceedings of the Volume 5759, Smart Structures

and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 6 May

2005; pp. 314–321.

70. Baughman, R.H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339–353. [CrossRef]

71. Madden, J.D.; Madden, P.G.; Anquetil, P.A.; Hunter, I.W. Load and time dependence of displacement in a

conducting polymer actuator. Mat. Res. Soc. Symp. Proc. 2002, 698, 137–144.

72. Anquetil, P.A.; Rinderknecht, D.; Vandesteeg, N.A.; Madden, J.D.; Hunter, I.W. Large strain actuation in

polypyrrole actuators. In Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer

Actuators and Devices (EAPAD), San Diego, CA, USA, 27 July 2004; pp. 380–387.

73. Madden, J.D. Encapsulated polypyrrole actuators. Synth. Met. 1999, 105, 61–64. [CrossRef]

http://dx.doi.org/10.1088/0964-1726/21/8/085011
http://dx.doi.org/10.1126/science.1104276
http://dx.doi.org/10.1557/mrs2009.179
http://dx.doi.org/10.1002/adfm.201203808
http://dx.doi.org/10.1038/nnano.2015.198
http://dx.doi.org/10.1088/1742-6596/704/1/012004
http://dx.doi.org/10.1016/j.sna.2006.03.016
http://dx.doi.org/10.1002/pi.2297
http://dx.doi.org/10.1117/12.537978
http://dx.doi.org/10.1016/0379-6779(94)03252-2
http://dx.doi.org/10.1016/j.snb.2016.01.142
http://dx.doi.org/10.1016/j.snb.2013.12.059
http://dx.doi.org/10.1016/j.snb.2017.08.125
http://dx.doi.org/10.1088/0964-1726/22/7/075005
http://dx.doi.org/10.1088/1361-665X/aa65c4
http://dx.doi.org/10.1016/j.snb.2016.02.140
http://dx.doi.org/10.1016/0379-6779(96)80158-5
http://dx.doi.org/10.1016/S0379-6779(99)00034-X


Fibers 2019, 7, 21 23 of 24

74. Farajollahi, M.; Woehling, V.; Plesse, C.; Nguyen, G.T.M.; Vidal, F.; Sassani, F.; Yang, V.X.D.; Madden, J.D.W.

Self-contained tubular bending actuator driven by conducting polymers. Sens. Actuators A Phys. 2016,

249, 45–56. [CrossRef]

75. Lee, J.A.; Li, N.; Haines, C.S.; Kim, K.J.; Lepró, X.; Ovalle-Robles, R.; Kim, S.J.; Baughman, R.H.

Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles. Adv. Mater. 2017,

29, 1700870. [CrossRef]

76. Lee, J.A.; Kim, Y.T.; Spinks, G.M.; Suh, D.; Lepró, X.; Lima, M.D.; Baughman, R.H.; Kim, S.J. All-Solid-State

Carbon Nanotube Torsional and Tensile Artificial Muscles. Nano Lett. 2014, 14, 2664–2669. [CrossRef]

77. Chu, H.-Y. Microsystems. “CNT-Polymer” Composite-Film as a Material for Microactuators. In Proceedings

of the IEEE Transducers 2007 International Solid-State Sensors, Actuators and Microsystems Conference,

Lyon, France, 10–14 June 2007; pp. 1549–1552.

78. Dang, D.X.; Truong, T.K.; Lim, S.C.; Suh, D. Multi-dimensional actuation measurement method for tensile

actuation of paraffin-infiltrated multi-wall carbon nanotube yarns. Rev. Sci. Instrum. 2017, 88, 075001.

[CrossRef]

79. Chen, L.Z.; Liu, C.H.; Hu, C.H.; Fan, S.S. Electrothermal actuation based on carbon nanotube network in

silicone elastomer. Appl. Phys. Lett. 2008, 92, 263104. [CrossRef]

80. Srivastava, S.; Bhalla, S.; Madan, A. A review of rotary actuators based on shape memory alloys. J. Intell.

Mater. Syst. Struct. 2017, 28, 1863–1885. [CrossRef]

81. Lan, C.-C.; Wang, J.-H.; Fan, C.-H. Optimal design of rotary manipulators using shape memory alloy wire

actuated flexures. Sens. Actuators A Phys. 2009, 153, 258–266. [CrossRef]

82. Andrianesis, K.; Koveos, Y.; Nikolakopoulos, G.; Tzes, A. Experimental study of a shape memory alloy

actuation system for a novel prosthetic hand. In Shape Memory Alloys; InTech: London, UK, 2010.

83. Mohd Jani, J.; Leary, M.; Subic, A. Designing shape memory alloy linear actuators: A review. J. Intell. Mater.

Syst. Struct. 2017, 28, 1699–1718. [CrossRef]

84. Luo, H.; Liao, Y.; Abel, E.; Wang, Z.; Liu, X. Hysteresis behaviour and modeling of SMA actuators. In Shape

Memory Alloys; InTech: London, UK, 2010.

85. Stegmaier, T.; Mavely, J.; Schneider, P. CHAPTER 6: High-Performance and High-Functional Fibres and

Textiles. In Textiles in Sports; Elsevier: Amsterdam, The Netherlands; pp. 89–119.

86. Choy, C.L.; Chen, F.C.; Young, K. Negative thermal expansion in oriented crystalline polymers. J. Polym. Sci.

Polym. Phys. Ed. 1981, 19, 335–352. [CrossRef]

87. Steele, J.R.; Gho, S.A.; Campbell, T.E.; Richards, C.J.; Beirne, S.; Spinks, G.M.; Wallace, G.G. The Bionic

Bra: Using electromaterials to sense and modify breast support to enhance active living. J. Rehabil. Assist.

Technol. Eng. 2018, 5. [CrossRef]

88. Sárosi, J.; Csikós, S.; Asztalos, I.; Gyeviki, J.; Véha, A. Accurate Positioning of Spring Returned Pneumatic

Using Sliding-mode Control. In Proceedings of the 1st Regional Conference—Mechatronics in Practice and

Education MECH (CONF 2011), Subotica, Serbia, 8–10 December 2011.

89. Klute, G.K.; Czerniecki, J.M.; Hannaford, B. Artificial muscles: Actuators for biorobotic systems. Int. J.

Robot. Res. 2002, 21, 295–309. [CrossRef]
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