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The actuator pattern of an adaptive mirror determines the amplitudes and the fidelities of the mirror
deformations that can be achieved. In this study, we analyze and compare different electrode patterns of
piezoelectric unimorph deformable mirrors using a numerical finite element model. The analysis allows
us to determine the optimum actuator pattern, and it is also applicable to bimorph mirrors. The model is
verified by comparing its predictions with experimental results of our prototype of a novel unimorph
deformable mirror. © 2010 Optical Society of America
OCIS codes: 010.1080, 010.1285, 140.0140, 350.4600, 080.1010, 220.1080.

1. Introduction

Many applications, such as imaging and laser engi-
neering, require the dynamic correction of wavefront
aberrations that can be well characterized by Zernike
modes. In the past, unimorph and bimorph piezo-
electric deformable mirrors have been frequently
used to compensate both dynamic and static aber-
rations [1–4]. Desired features of the deformable
mirrors are a large stroke and a high fidelity of the
mirror deformation. In many cases [5–7], the correc-
tion of aberrations with low spatial frequencies is suf-
ficient because they usually have a higher statistical
weight than the higher frequency terms. This makes
unimorph and bimorph mirrors excellent candidates
because they can generate low-order Zernike modes
without any actuator print-through. Actuator print-
through is typical of mirrors that rely on push–pull-
type actuators. It leads to surface errors of high
spatial frequencies, which scatter light into large
angles. This is detrimental for many applications,
in particular, laser resonators. Typical experimen-
tally observed aberrations with low spatial frequen-
cies consist of only a few low-order Zernike modes.

Zernike modes represent a complete, orthonormal
set of functions. Deformable mirrors can be treated
as linear systems to a good approximation. We there-
fore analyzed and compared different unimorph mir-
rors with respect to the amplitude and the fidelity
with which they can create certain low-order Zernike
modes. For unimorph and bimorphmirrors, these am-
plitudes and fidelities depend critically on their ac-
tuator pattern. A variety of patterns have been used
since the early days of adaptive optics [8]. However, a
systematic study of the merits of the different pat-
terns has not yet been published. In this paper, the
influence of the actuator pattern on the mirror defor-
mation is studied by analytical reasoning and by fi-
nite element modeling (FEM). The various actuator
patterns are analyzed by calculating the mirror’s re-
sponse to the activation of each actuator. From the in-
fluence functions, we can calculate amplitudes and
fidelities of arbitrary Zernike modes [9]. We found
very good agreement of these calculationswith the ex-
perimental results of novel unimorphmirrors that we
developed.

2. Finite Element Model

FEM of complicated piezoelectric structures has al-
ready been used successfully in the past [4,10,11].
Analytical models are also described in the literature
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[12–15], but all analytical models are based on more
or less severe approximations. FEM provides more
precise results. For this study, unimorph mirrors con-
sisting of a piezoelectric disk sandwiched between
two metallic electrodes and bonded to a passive glass
disk are modeled using the commercial FEM
software package COMSOL Multiphysics 3.4. The
diameter of the disks was 10, 20, or 25mm,
depending on the electrode pattern that was se-
lected. For all the mirrors, the deformation across an
optical aperture of 10mm was calculated. This aper-
ture is suitable for intracavity laser applications
where beam diameters are small. The thickness of
the piezo disk is 200 μm, and the thickness of the
glass disk is 100 μm. The mirrors were assumed to
be supported by a 2:5mm wide ring of 300 μm thick
elastomer. We applied fixed boundary conditions for
the outer circumference of this elastomer ring. The
electrode, which is situated between the glass and
the piezo disk, serves as the common ground elec-
trode for all actuators. The other electrode of the
piezo disk is divided into segments that can be acti-
vated separately with different voltages. This forms
the actuator pattern of the mirror. Themirror geome-
try, along with the boundary conditions, is shown in
Fig. 1. Because the investigated electrode patterns
do not have rotational symmetry, three-dimensional
FEM models have been used. The hysteresis of the
piezoceramic, nonlinear effects, and the influence
of the bonding layer are ignored in the present study.
This slightly affects the accuracy of our calculations
but has no influence on the relative comparison of the
electrode patterns. The validity of the FEM calcula-
tions is, however, highly dependent on the shape and
the density of the numerical mesh. It is, therefore,
important to optimize the mesh parameters with re-
spect to the accuracy of the result and the computing
time. In the model, a fine mesh is used in critical
areas, i.e., regions where the solution gradient is
high and the geometry features are small, and a
coarse mesh is used in less critical areas. The mesh
optimization is based on error estimates in the com-
puted solutions and leads to an adaptively refined
mesh that finally converges to approximately
250,000 nodes. The large aspect ratio, i.e., the ratio
of the disks’ diameters to their thicknesses, has been
taken into account by a 25-times higher mesh density
in the z direction, the direction of the disk’s thick-
ness. The mesh of a model built in COMSOL, as well

as the calculated surface deformation under activa-
tion of a single electrode, is presented in Fig. 2.
The material properties are listed in Table 1.

We compared the fidelities of the low-order Zernike
modes of each mirror in open-loop control. In our
approach, the shape of the deformable mirror surface
is modeled as a weighted sum of the deformations
ϕiðx; yÞ contributed by each individual actuator,
where ϕiðx; yÞ is commonly known as the actuator in-
fluence function [3]. The surface shape sðx; yÞ of the
deformable mirror can thus be described by

sðx; yÞ ¼
X

n

i¼1

vi
vtest

· ϕiðx; yÞ; ð1Þ

where n is the number of the actuators, ϕi is the influ-
ence function of the ith actuator describing the
surface of the mirror and has the unit μm, vtest is
the voltage applied for determining the influence
functions, and vi is the voltage to be applied to the
ith actuator. Here we use the simplification that
the influence is a linear function of applied voltage.
In vector form, Eq. (1) can be rewritten as

sðx; yÞ ¼
~vi

vtest
·~ϕðx; yÞT ; ð2Þ

where ~ϕðx; yÞ ¼ ½ϕ1ðx; yÞ;…;ϕiðx; yÞ;…;ϕnðx; yÞ� and
~v ¼ ½v1;…; vi;…; vn�. The influence function of each
actuator was numerically calculated by applying a
test voltage of vtest ¼ 100V to the actuator while set-
ting the voltages of all other actuators to zero. Each
influence function was then approximated by a 90-
dimensional expansion into Zernike polynomials Zj

through a least-squares fit according to

ϕiðx; yÞ

vtest
¼

X

90

j¼1

aij

vtest
Zjðx; yÞ; ð3Þ

Fig. 1. (Color online) Sketch of the unimorphmirror geometry used for modeling. The sketch is not to scale: the thickness (z direction) has
been magnified by almost an order of magnitude.

Fig. 2. (Color online) Optimized FEM mesh with 260,000 ele-
ments (left) and surface deformation of themirror under activation
of a single electrode (right).
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whereZjðx; yÞ are the Zernikemodes (Zernike polyno-
mials) and aij are the corresponding Zernike coeffi-
cients used to fit the influence function. Finding the
best number of Zernike modes to be used for the ex-
pansion is difficult. A small number of modes leads
to a less precise surface fit. On the other hand, a large
number of modes can result in a higher influence of
numerical errors. For our calculations, the best re-
sults have been obtained for 65 or 90 modes, so we
used 90 modes in all the calculations. Again, the pre-
vious equation can be rewritten in vector form as

~ϕðx; yÞT

vtest
¼ IM ·~Zðx; yÞT ; ð4Þ

where ~Zðx; yÞ ¼ ½Z1ðx; yÞ;…;Zjðx; yÞ;…;Z90ðx; yÞ� is
the 1 × 90 Zernike vector and IM ¼ ½aij�=vtest is the n ×
90 influencematrix thatdescribes themirror. Thema-
trix inversion of IM can be carried out by a singular-
value decomposition (SVD) leading to the so-called
control matrix CM ¼ IM�, the pseudoinverse of IM.
Small singular values of the SVD-decomposed influ-
ence matrix IM need to be set to zero before inverting
this matrix, because the corresponding modes are
dominated by numerical errors.

We want to evaluate how well a mirror can gener-
ate a certain Zernike mode Zj, which we call the “tar-
get Zernike mode.” Therefore, the control matrix CM

is used to calculate the vector of control voltages ~v
required to produce a mirror shape that is the best

fit of the desired jth Zernike mode. ~v is expressed
in terms of the “Zernike coefficient target vector”
~atarget;Zj

:

~v ¼ CM ·~aT
targetZj

: ð5Þ

The Zernike coefficient target vector has a single
nonzero element if the mirror is supposed to create
a pure Zernike mode. The amplitude of each Zernike
coefficient target vector ~atargetZj

was increased until
the first actuator reached the voltage limit of −60V
or þ100V. These voltage limits of −60V and þ100V
were calculated from the piezo disk thickness and the
maximum allowed electric field strengths of the
piezoelectric material, limited by reverse poling
and electric breakthrough, respectively. A second, in-
dependent limit for the maximum amplitude of the
Zernike mode was set by the fidelity of the mirror
surface. We define fidelity as the inverse of the rms
deviation σΔs of the actual mirror surface from the
target surface

σ2Δs ¼
1

A

ZZ

A

½sactualZj
− stargetZj

�2dxdy

¼
1

A

ZZ

A

�

Σ
90

j¼1

ðaactualZj
− atargetZj

Þ · Zjðx; yÞ

�

2

dxdy;

ð6Þ

where A is the area of the beam footprint. We call the
area of the beam footprint on the mirror the “active
area” of the mirror. It is a circle of 10mm diameter in
all mirrors we analyzed. σΔs was allowed to increase
up to the Maréchal criterion λ=14 [16] as the ampli-
tude of the target Zernike mode was gradually
cranked up. Therefore, the maximum Zernike ampli-
tude that a mirror can produce can be limited by
either the maximum allowed actuator voltage
(“actuator saturation”) or by the surface fidelity.

OurFEManalysis revealed that, for some electrode
patterns, the amplitudes of several Zernikemodes are
limitedbysaturationofoneor severalactuators,while
the surface fidelity is still much better than theMaré-
chal criterion. Theperformance of these electrode pat-
terns might be underestimated, because leaving the
saturated actuator’s voltage constant while increas-
ing all other voltages could result in a larger ampli-
tude of the Zernike mode while still maintaining the
Maréchal criterion. In order to determine the maxi-
mum amplitude within the limit of the Maréchal cri-
terion, we used an iterative control scheme proposed
by Bonora and Poletto [17]. At first, the required
voltage vector~v is calculated usingEq. (5). This vector
is subdivided into a vector ~v0 ¼ fvi ∈~vjvi < vmaxg,
consisting of all unsaturated actuators and a vector
v
~″

¼ fvi ∈~vjvi ≥ vmaxg consisting of the saturated
actuators. The influence matrix is divided into the
submatrices IM0 ¼ fIMijvi < vmaxg and IM″ ¼
fIMijvi ≥ vmaxg. Now we can calculate better voltage
values~v0 of the unsaturated actuators, according to

Table 1. Material Properties and Dimensions Used in Numerical

Models—Also Relevant Data for Unimorph Mirrors We Manufactured

Component Property Value

Piezo disk Material PIC255
Disk thickness (μm) 200
Disk diameter (mm) 10–25
Maximum voltage (V) −60=þ 100

Poisson ratio vp 0.36
Young’s modulus Ep (GPa) 62.9
Piezoelectric strain constant
d31ðmV−1Þ

−174 × 10−12

Piezoelectricity eðCm−2Þ

(stress-charge form)
e31 ¼ −7:15

e33 ¼ 13:7
e15 ¼ 11:90

Relative permittivity εr εT;11 ¼ 1649

εT;33 ¼ 1750

Compliance Sðm2 N−1Þ sE;11 ¼ 1:590

sE;33 ¼ 2:097
sE;55 ¼ 4:492
sE;12 ¼ −5:699

sE;13 ¼ −7:376
sE;44 ¼ 4:492

sE;66 ¼ 4:319
Elastic
support ring

Material Polyurethane
Width (mm) 2.5
Thickness (μm) ∼300

Young’s modulus EeðGPaÞ ∼0:6

Passive glass
disk

Material BK10
Disk thickness (μm) 100
Disk diameter (mm) 10..25
Poisson ratio vg 0.208
Young’s modulus EgðGPaÞ 72
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v
~0

¼ CM0½~aT
targetZj

− IM″ ·~v″�; ð7Þ

whereCM0 is the pseudoinverse of the submatrix IM0.
The new voltage vector is given by~v ¼~v0∪~v″. This pro-
cedure is repeated iteratively until all actuators are
saturated or the rms deviation σΔs of the actual sur-
face from the target surface reaches the Maréchal
limit.

If a Zernike mode is identical or nearly identical to
one of the mechanical eigenmodes of the mirror, the
mirror is easily deformed into this Zernike mode and
several actuators are saturated when the maximum
amplitude of this Zernike mode is reached. In this
case, the voltage range is the limiting factor and the
procedure proposed by Bonora yields considerably in-
creased amplitudes. However, a Zernike mode that
has little or no similarity to one of the eigenmodes
of the mirror quickly exceeds the Maréchal limit.
For such a Zernike mode, which in some sense is
“orthogonal” to the eigenmodes of the mirror, the op-
timization routine remains without effect. How close
a Zernike mode is to an eigenmode or a superposition
of eigenmodes of a mirror can be quantified by the so-
called purity, as reported by Bonora and Poletto [17].
The purity is defined as the projection of the normal-
ized, actual Zernike vector ~̂aactual;Zj

on the target
Zernike unit vector ~̂atarget;Zj

. The normalization of
these vectors is denoted by the ^ symbol:

pj ¼ ~̂atarget; Zj
•

^~aT
actual;Zj

: ð8Þ

If the mirror is able to perfectly reproduce a required
Zernike mode, the purity value for this mode is 1.

Our analysis consists of five steps: (i) setup of the
FEMmodel, (ii) calculation of the influence functions
and the control matrix, (iii) calculation of the control
voltages required for the generation of each target
Zernike mode, (iv) evaluation of the calculated sur-
face shapes (calculation of σΔs), and (v) increasing
the control voltages and iteration from steps (iv)
to (v).

3. Electrode Geometries

Our aim is to find the electrode pattern that can gen-
erate certain low-order Zernike terms with the high-
est amplitudes and the highest fidelities (i.e., the
lowest rms deviation σΔs). Generally, the number
of electrodes directly corresponds to the available de-
grees of freedom. Therefore, a higher number of elec-
trodes allows us to generate higher order Zernike
modes with good fidelity, so wavefront distortions
with higher spatial frequency can be corrected in
an adaptive optics system. However, the appropriate
maximum number of electrodes is also determined
by physical and technical limitations. If one applies
different voltages to two adjacent electrodes, the re-
sultant field strength in the gap between both elec-
trodes has to stay below the depolarization field
strength. This condition results in a minimum elec-
trode spacing of approximately 150 μm for the max-
imum voltage of 100V that can be safely applied to

the 200 μm thick piezo disks that we used in our FEM
models. Increasing the number of electrodes thus re-
duces the ratio of the area covered by electrodes to
the total area of the mirror. This decreases the am-
plitude of low-order Zernike modes, for which many
neighboring electrodes have similar voltages, due to
the smaller effective electrode area. The dimension of
each electrode should also be larger than the thick-
ness of the piezoelectric material, so that the influ-
ence of the stray field on the adjacent electrodes
remains negligible.

The mirrors we analyzed were designed for an ac-
tive area of 10mm diameter, the beam footprint.
Using the previous reasoning, this results in approxi-
mately 24 electrodes under the beam footprint.
Figure 3 shows the first 12 Zernike modes, with the
exception of the piston term. The Zernike modes are
numbered, using the single-index notation of Wyant
andCreath [16]. Inaddition, the cumulative inflection
lines of all previous Zernike modes up to the Zernike
mode that is shown in false shades are shown in each
graph. The last inflection line pattern can be used as a
first starting point for sectioning the electrodes be-
cause inflection lines of the mirror surface can only
be induced by neighboring electrodes with different
signs of the applied voltage. The cumulative inflection
lines of all Zernikemodes up toZ12 in Fig. 3would cre-
ate already 48 electrodes (16 azimuthal segments
times 3 radial segments). However, the middle ring
is very narrow; its width is of the order of the piezo
thickness. It is therefore reasonable to abandon this
ring and make only one radial segmentation instead
of two.Wehave selected the radial inflection line ofZ8,
see Fig. 3, which has a radius of r1 ¼ 2:7mm, for our
active area of 10mmdiameter. This radius is found by
solving

∂2Z8

∂r2
¼ 0; ð9Þ

for a disk with simplified free boundary conditions,
i.e., no circumferential stresses. The optimum radial
and angular segmentation of the electrodes can be de-
termined more precisely by the FEM simulation,
taking into account the real boundary conditions.
For the optimization of the radial segmentation, we
have modeled a mirror without any azimuthal seg-
mentation. The variable parameters for the optimiza-
tion have been the voltages V1 and V2 of the two
electrodes and the radius r1 of the electrode segmen-
tation. The optimum radius r1 is then determined by
searching for the parameter triple (V1, V2, r1) corre-
sponding to the surface shape with the least residual
rms deviation σΔs from the Zernike surface Z8, which
represents spherical aberration. The resultant opti-
mum radial electrode segmentation is r1 ¼ 2:85mm,
slightly larger than our analytical result of 2:7mm.
By making just one radial segmentation, we have re-
duced the number of electrodes to 32, still more than
24.We further reduced thenumber of electrodes bydi-
viding thecircularareawithin r1 intoonly8azimuthal
segments of 45° each instead of the 16 azimuthal
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segments shown in Z12 of Fig. 3. We again justify this
by the fact that otherwise exceedingly small electro-
des would be created. The cumulative inflection line
pattern of Z12 in Fig. 3 would create a segmentation
of the second ring into 30° and 15° segments. For com-
parison, we also made FEM simulations of a mirror
that has 16 azimuthal segments of 22:5° each. To de-
monstrate the improvement in Zernike mode fidelity
and amplitude due to the radius optimization, we
have simulated another mirror with 22:5° segments
and a nonoptimized radial segmentation at r1 ¼
3:25mm for comparison.

Various other electrode patterns have been used
and published in the past. For example, an additional
ring of electrodes could be used that is outside the
active area. In the following text, we call this ring
an “out-of-aperture ring.” This would allow better
control of the slope at the circumference of the active
area. Such a design is, for example, used for bimorph
mirrors manufactured by AOptix Technologies [3]. To
study the influence of the width of the additional
out-of-aperture ring, we simulated such electrode
patterns with an outer diameter of the additional
out-of-aperture electrode ring of 20 and 25mm, while
maintaining the diameter of the active area of
10mm. In some cases, the out-of-aperture electrode

ring is separated from the electrodes of the active
area by an additional inactive ring called the guard
ring. The purpose of the guard ring is to smooth out
the transition from the out-of-aperture ring to the ac-
tive area. In Ref. [18] the authors conclude that mir-
rors that can be described by a biharmonic equation,
e.g., deformable mirrors with push–pull actuators,
two out-of-aperture electrode rings are needed to
generate low-order Zernike modes with high ampli-
tude and high fidelity. Furthermore, the authors
state that, for unimorph and bimorph mirrors that
can be described by a Poisson equation, one out-of-
aperture ring is sufficient to achieve the best ampli-
tudes and fidelities. To verify this result, we have
simulated a design with two out-of-aperture rings.

Another prominent example of electrode patterns
is a honeycomb pattern of equal-area hexagonal elec-
trodes that is frequently used for membrane mirrors.
We therefore investigated honeycomb layouts with
19 and 37 electrodes.

Electrode patterns derived from Voronoi diagrams
are not considered in this work. Such electrode pat-
terns are better suited for larger mirrors with a
higher number of actuators.

Figure 4 shows the 11 different electrode patterns
for which we will report the results of our FEM

Fig. 3. (Color online) Low-order Zernike modes. The cumulated inflection lines of all previous Zernike modes up to the Zernike mode
shown in false shades are indicated.
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simulation in the next paragraph of this paper. The
patterns can be described as follows:

a. thirty-five-actuator keystone layout with one
out-of-aperture ring and a guard ring similar to
the design used by AOptix,

b. forty-actuator keystone layout with one out-
of-aperture ring, a guard ring, and azimuthally
symmetrical electrodes,

c. fifty-six-actuator keystone layout with two out-
of-aperture rings and a guard ring,

d. forty-actuator keystone layout with one out-of-
aperture ring,

e. forty-actuator keystone layout with one wider
out-of-aperture ring,

f. seventeen-actuator keystone layout of our un-
imorph prototype mirror, the contact from the ground
electrode on the back side is wrapped around and
visible at the six o’clock position,

g. twenty-four-actuator keystone layout with a
22:5° angular segmentation of the second ring with
a first radial segmentation at r1 ¼ 2:85mm,

h. twenty-four-actuator keystone layout with a
22:5° angular segmentation of the second ring with
a first radial segmentation at r1 ¼ 3:25mm (not op-
timized),

i. twenty-four-actuator keystone layout with an
alternating 30° and 15° angular segmentation of the
second ring,

j. nineteen hexagonal actuators arranged in a
honeycomb pattern, and

k. thirty-seven hexagonal actuators arranged in
a honeycomb pattern.

4. Results

In order to validate the numerical model, a prototype
mirror has been constructed consisting of a 10mm
diameter, 0:2mm thick PIC255 piezoelectric ceramic
disk bonded to a 10mm diameter, 0:1mm thick BK10
glass substrate. The electrode is segmented into one

central pad surrounded by two concentric rings with
45° subdivisions [see pattern (f) in Fig. 4]. The elec-
trode patterning was done by laser ablation with a
Q-switched Nd:YAG marking laser. To measure the
influence functions of the prototype mirror, a phase-
shifting interferometer has been used. The measured
influence functions of the mirror were found to be in
good agreement with the numerical predictions, as
can be seen in Figs. 5 and 6. This is proof that our
numerical FEM analysis is sufficiently accurate.
As expected for a unimorph deformable mirror, the
maximum amplitude of the Zernike mode is observed
to be approximately proportional to the inverse
square of the mode’s radial order [19].

Figures 7 and 8 show the comparison of the ampli-
tudes and purities of all 11 electrode patterns and
represent the main result of this paper. The figures
indicate that keystone designs with circular symme-
try, such as those depicted in Figs. 4(a)–4(i), are espe-
cially suited for the generation of low-order Zernike
modes. Moreover, the calculations show that elec-
trode patterns with one out-of-aperture electrode
ring can generate much larger amplitudes for some
Zernike modes, as shown in Fig. 7. Only the ampli-
tude of the defocus mode is reduced by approximately
25%. This can be explained by the fact that the best
approximation of the defocus mode is achieved by ap-
plying the maximum allowed voltage to all electrodes
in the active area and by applying voltages with an
opposite sign to the out-of-aperture ring electrodes
calculated by Eq. (5). In this way, the out-of-aperture
electrodes compensate for the influence of the bound-
ary conditions imposed by the elastomer. In case of
the defocus mode, the optimization routine Eq. (7)
proposed by Bonora cannot lead to an improvement
because the voltages of all electrodes inside the ac-
tive are already saturated and increasing the elec-
trode voltages of the outer ring further reduces the
amplitude. To further improve the achievable
amplitude of the defocus mode, an evolutionary algo-

Fig. 4. (Color online) Analyzed electrode patterns. The active optical aperture is shaded red/gray.
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rithm could be used to determine the best voltage
pattern.

The out-of-aperture electrodes also result in signif-
icantly higher purity values for all Zernike modes ex-
cept for the defocus mode. An example is shown in
Fig. 9. The out-of-aperture electrodes are increasing
the amplitude of the astigmatism Zernike mode Z4

from 1:1 μm to 3 μm. At the same time, fidelity is in-
creased as well, as can be seen from the calculated
interferograms in Fig. 9. This is also reflected in
the purity of 1.0 for the pattern with out-of-aperture
electrodes, compared to the purity of 0.94 for the
same pattern without the out-of-aperture electrodes.
Especially the Zernike terms Zm

n with n ¼ jmj, where
Zm
n is the double-index Zernike polynomial with the

radial order n and azimuthal order �m, i.e., tip/tilt,
astigmatism, and trefoil, benefit from the additional
out-of-aperture electrodes. This is in good agreement
with the analytical calculations presented in [18].
The comparison of the results obtained for the elec-
trode patterns (b), (d), and (e) shows that the achiev-
able peak-to-valley amplitudes of these Zernike
modes are proportional to the out-of-aperture ring’s
width, whereas the influence of the out-of-aperture

ring’s width on the other Zernike terms remains neg-
ligible. The radial subdivision of the out-of-aperture
ring into two rings does not lead to any further im-
provement, as can be seen by comparing the results
for pattern (b) and (c). The amplitudes of the design
with two out-of-aperture rings are generally slightly
smaller than the amplitudes of the design with only
one out-of-aperture ring. The biggest difference oc-
curs for the spherical aberration term where the
amplitude is decreased by 7%. As a result, one seg-
mented out-of-aperture electrode ring outside is suf-
ficient to generate low-order Zernike modes with
high fidelity and high amplitude.

The optimization of the first radial segmentation
improves the fidelity and amplitude of the spherical
aberration and the secondary astigmatism Zernike
terms Z8, Z11, and Z12. This can be seen in Fig. 7,
where the nonoptimized radial segmentation of the
electrode pattern (h) and the prototype mirror elec-
trode pattern (f) result in lower amplitudes compared
to the optimized keystone designs (g) and (i). As sta-
ted in Section 3, the cumulative inflection line pat-
tern suggests a segmentation of the second ring in
30° and 15° segments. However, the comparison of

Fig. 5. (Color online) (a) Prototype mirror, (b) experimentally measured influence functions of the mirror, and (c) FEM simulation of the
influence functions. Shown is the deformation generated by a single electrode activated with a voltage of 100V. The false-shading elevation
plots that represent the deformation of the whole mirror are plotted at a position that corresponds to the electrode that is being activated.

Fig. 6. (Color online) Comparison of the calculated and experimentallymeasured amplitudes of the prototypemirror for different Zernike
modes.
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patterns (i) and (g) in Fig. 7 delivers nearly identical
results for this pattern and the symmetrical segmen-
tation in 22:5° sectors. The only difference is a
slightly different voltage pattern. The calculations

also reveal that the purity of the Zernike surfaces
is almost not noticeably affected by the implementa-
tion of a guard ring, as can be seen by comparing pat-
terns (b) and (d) in Fig. 8. Figure 7 shows that the

Fig. 7. (Color online) Maximum peak-to-valley Zernike amplitudes for different actuator patterns. The Zernike amplitudes are limited by
theMaréchal criterion for the RMS deviation σΔs or the voltage limits of the piezoceramic. The 11bars for each Zernike mode correspond to
the 11 electrode patterns shown at the top of the figure.

Fig. 8. (Color online) Calculated purity values for the investigated electrode patterns. The purity indicates howwell themirror can create
a Zernike mode.
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inactive area of the guard ring leads to significantly
reduced amplitudes for some Zernike modes, e.g., Z4,
Z5, Z9, and Z10. Besides the results given in this
study, the simulations have shown that relaxing the
rms deviation σΔs of the target surface beyond the
Maréchal limit of λ=14 results in smaller differences
between the electrode patterns with and without an
additional out-of-aperture ring. This is explained by
the fact that mirror designs with an out-of-aperture
ring are mainly limited by actuator saturation,
whereas designs without an out-of-aperture ring are
mainly restricted by the limit of the rms-deviation
σΔs. Accordingly, the use of piezoelectric materials
with higher depolarization field strengths (corre-
sponding to higher voltage limits) would result in
higher amplitudes for the most Zernike modes if an
out-of-aperture ring of electrodes is employed. How
important it is to optimize the electrode pattern
can be seen, for example, by comparing the ampli-
tudes of the astigmatism Zernike modes Z4 and Z5

for the hexagonal pattern (k) and the keystone pat-
tern (e). The amplitude of the hexagonal pattern of
0:69 μm is only 13% of the amplitude achieved by
the keystone layout with one outer ring, which is
4:99 μm.

5. Discussion and Conclusion

We have presented a procedure that leads to opti-
mum actuator patterns for unimorph or bimorph
mirrors. Analytical reasoning regarding the inflec-
tion lines of Zernike modes and the maximum num-

ber of electrodes was used to establish a starting
pattern. This pattern was then optimized using ex-
tensive, experimentally validated, FEM computa-
tions with high spatial resolution. We computed and
compared 11 different actuator patterns. About 500
hours of CPU computing time on a fast PC was re-
quired for the FEM computations of this study.

Obviously, deformable mirrors for different tasks
will have different optimum actuator patterns. We
searchedspecifically fortheoptimumactuatorpattern
for a unimorph mirror of 10mm active area, 0:3mm
thickness, and Zernike modes up to Z14 (secondary
coma).Wefoundthatourpattern (e)achieves thehigh-
est amplitudes for all Zernikemodes except for the de-
focus mode. For this mode, patterns (g) to (i) achieve
about 25%more stroke, but for all other modes, these
patterns are much worse than pattern (e).

Even though ournumericalFEMcomputations had
to be performed for specific mirror dimensions and for
a specific set of Zernikemodes,we can draw some gen-
eral conclusions. One ring of actuators that is outside
the beam footprint on themirror increases the ampli-
tude of all Zernike modes with an azimuthal order
identical to that of the radial order. This outer ring
of electrodes has no drawbacks for the other Zernike
modes, only the defocus mode suffers slightly. Honey-
comb patterns of hexagonal actuators, which have
been widely used for micromachined membrane mir-
rors, are not very suitable for unimorph and bimorph
mirrors.

Fig. 9. (Color online) Astigmatism Zernike amplitudes and purities of the 22:5° electrode pattern with and without an additional outer
ring outside of the active optical area. The surface deformation, the corresponding interferogram, and the applied voltages are plotted from
top to bottom.
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The general procedure we have outlined for deter-
mining the optimum actuator pattern can readily be
applied to any deformable mirror. Input data for the
procedure are the mirror geometry and the required
amplitudes of the Zernike modes, which have to be
derived from the application.

The authors gratefully acknowledge support for
the work presented by the German Ministry for Edu-
cation and Research under contract 1726X09 and by
Thorlabs GmbH.
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