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Abstract

Acute Intermittent Porphyria results from hydroxymethylbilane synthase (HMBS) mutations that 
markedly decrease HMBS enzymatic activity. This dominant disease is diagnosed when 
heterozygotes have life-threatening acute attacks, while most heterozygotes remain asymptomatic 
and undiagnosed. Although >400 HMBS mutations have been reported, the prevalence of 
pathogenic HMBS mutations in genomic/exomic databases, and the actual disease penetrance are 
unknown. Thus, we interrogated genomic/exomic databases, identified non-synonymous variants 
(NSVs) and consensus splice-site variants (CSSVs) in various demographic/racial groups, and 
determined the NSV’s pathogenicity by prediction algorithms and in vitro expression assays. 
Caucasians had the most: 58 NSVs and two CSSVs among ~92,000 alleles, a 0.00575 combined 
allele frequency. In silico algorithms predicted 14/58 NSVs as “likely-pathogenic”. In vitro 
expression identified 10/58 NSVs as likely-pathogenic (seven predicted in silico), which together 
with two CSSVs had a combined allele frequency of 0.00056. Notably, six presumably pathogenic 
mutations/NSVs in the Human Gene Mutation Database were benign. Compared to the recent 
prevalence estimate of symptomatic European heterozygotes (~0.000005), the prevalence of 
likely-pathogenic HMBS mutations among Caucasians was >100 times more frequent. Thus, the 
estimated penetrance of acute attacks was ~1% of heterozygotes with likely-pathogenic mutations, 
highlighting the importance of predisposing/protective genes and environmental modifiers that 
precipitate/prevent the attacks.
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Introduction

Current efforts in genomic medicine are focused on determining which non-synonymous 
variants identified by genomic/exomic sequencing are pathogenic or benign. Various 
approaches to evaluate the pathogenicity of these variants include an array of in silico 
prediction programs and for certain proteins functional expression assays. These methods 
allow the assessment of the numerous non-synonymous variants that are discovered for a 
given gene and provide the clinical relevance of these variants as well as information of the 
prevalence of disease causing mutations, some of which may have allele frequencies >0.001 
[Xue et al., 2012; Amendola et al. 2015].

Here, we investigated the pathogenicity of all non-synonymous variants and consensus 
splice-site variants in genomic/exomic databases for autosomal dominant Acute Intermittent 
Porphyria (AIP; MIM# 176000), the most common acute hepatic porphyria [Puy et al., 
2010; Anderson et al., 2014]. AIP is an inborn error of heme biosynthesis resulting from the 
reducedactivity of the heme biosynthetic enzyme, hydroxymethylbilane synthase (HMBS; 
MIM# 609806, EC 4.3.1.8; also known as porphobilinogen deaminase (PBGD)). 
Heterozygotes experience potentially life-threatening acute neurovisceral attacks 
precipitated by certain porphyrinogenic drugs (e.g., P450 inducers), dieting or fasting, and 
hormonal changes which induce the hepatic expression of the first and rate-limiting enzyme 
in the pathway, 5′-aminolevulinic acid synthase (ALAS1; MIM# 125290, EC 2.3.1.37) 
[Granick, 1963; Granick, 1966; Sassa et al., 1970]. Induction of the ALAS1 mRNA is 
regulated in the liver by a negative feedback repression mechanism that depends on the 
amount of free hepatic heme. Due to the increased ALAS1 enzymatic activity, the 
reducedHMBS activity becomes rate-limiting and the neurotoxic porphyrin precursors, 5′-
aminolevulinic acid (ALA) and porphobilinogen (PBG), accumulate systemically and cause 
the acute neurovisceral attacks.

Clinically, the life-threatening acute attacks are characterized by excruciating abdominal 
pain, nausea, vomiting, hypertension, tachycardia, and central and peripheral nervous system 
manifestations, including motor/sensory neuropathy and psychiatric symptoms. If untreated 
by infusion of hemin to replenish the hepatic heme pool and down-regulate ALAS1, severe 
attacks can progress to advanced motor neuropathy, respiratory muscle paralysis, and bulbar 
palsy [Puy et al., 2010; Anderson et al., 2014]. Typically, the attacks occur after puberty and 
can be episodic or recurrent and ~90% occurs in women. Affected women may have 
monthly attacks due to hormonal changes in the luteal phase of their menstrual cycles [Hift 
et al., 2005; Innala et al., 2010]. It is estimated that about 10% of AIP heterozygotes have 
acute attacks [McColl et al., 1982]. In fact, most patients are diagnosed during or following 
an acute attack, while most AIP heterozygotes remain asymptomatic throughout their lives.

To date, over 400 presumably pathogenic HMBS mutations have been reported and 
catalogued in the Human Gene Mutation Database (HGMD) [Stenson et al., 2014]. 
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Although there are no documented genotype/phenotype correlations, certain mutations are 
more frequent among patients with multiple or recurrent attacks (e.g. those encoding 
p.R149X, p.R173Q) [von und zu Fraunberg et al., 2005]. A recent estimate of the prevalence 
of AIP, based on newly diagnosed patients in Western European countries who sought 
medical attention for their attack, was ~0.000005 (or ~1 in 200,000) [Elder et al., 2013], 
with the notable exception of the Scandinavian countries where the disease prevalence is 
most frequent due to a founder effect for the mutation encoding p.W198X [Mustajoki et al., 
1976; Lee et al., 1991; Floderus et al., 2002; Mykletun et al., 2014]. To our knowledge, the 
only other systematic study of AIP prevalence was the cross-sectional study of 3,350 French 
healthy blood donors, which identified two unrelated healthy individuals with decreased 
(~50%) erythrocytic HMBS activity [Nordmann et al., 1997], who were then confirmed to 
have known HMBS pathogenic mutations encoding p.D178N and p.L244fs for a frequency 
of ~0.0006 (1 in 1,675). Thus, these findings indicate a marked discrepancy in the estimated 
prevalence of HMBS heterozygotes and the occurrence of acute attacks in AIP patients, the 
penetrance, in the general Caucasian population.

To address this discrepancy, we interrogated genomic/exomic databases with a combined 
total of 45,955 Caucasians to identify non-synonymous and consensus splice site variants. 
We used in silico pathogenicity prediction programs and in vitro enzyme expression studies 
to assess if these HMBS variants were likely pathogenic or benign.

Materials and Methods

Database Variant Collection

The nomenclature of the HMBS variants reported is based on the cDNA sequence 
NM_000190.3 and in accordance with the standards of the Human Genome Variation 
Society (HGVS; http://www.HGVS.org/varnomen). Nucleotide numbering uses +1 as the A 
of the ATG translation initiation codon in the reference sequence. Non-synonymous variants 
and consensus splice site HMBS mutations in various demographic and racial/ethnic groups 
including Caucasian or Western European populations were identified in public genomic/
exomic databases using primarily the Diseases Variant Store (DIVAS) as the portal to other 
databases (Disease Variant Store, https://rvs.u.hpc.mssm.edu/divas/) [Cheng et al., 2016]. 
The DIVAS contains five major databases that include population ethnicity and allele 
frequencies: the 1000 Genomes Project [Genomes Project C et al., 2015], the NHLBI 
Exome Sequencing Project (ESP) (Exome Variant Server, http://evs.gs.washington.edu/
EVS/), the Exome Aggregation Consortium (ExAC) (http://exac.broadinstitute.org), UK10K 
(http://www.uk10k.org/) and the Scripps Wellderly Cohort (https://genomics.scripps.edu/
browser/) [Erikson et al., 2016]. Reported presumably pathogenic HMBS mutations causing 
AIP were obtained in the Human Gene Mutation Database (HGMD Professional 2016.1, 
https://portal.biobase-international.com/hgmd/pro/search_gene.php), which listed 403 
mutations [Stenson et al., 2014].

In Silico Prediction of Variant Pathogenicity

All 58 HMBS non-synonymous variants in Caucasian and Western European populations 
were assessed to determine if they were deleterious or benign using 16 algorithms evaluating 
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each variant. These programs (in Supp. Table S1) included: CADD [Kircher et al., 2014], 

CONDEL [Gonzalez-Perez et al., 2011], I-Mutant [Capriotti et al., 2005], MAPP [Stone et 
al., 2005], MutationAssessor [Reva et al., 2011], MutPred [Li et al., 2009], nsSNPAnalyzer 
[Bao et al., 2005], PANTHER [Tang et al., 2016], PhD-SNP [Capriotti et al., 2006], 
PolyPhen-2 [Adzhubei et al., 2010], PON-P2 [Niroula et al., 2015], PoPMuSiC [Dehouck et 
al., 2011], PredictSNP [Bendl et al., 2014], PROVEAN [Choi et al., 2015], SIFT [Kumar et 
al., 2009], and SNAP2 [Hecht et al., 2015]. For CADD, deleterious was defined as a CADD 
Phred score >25 (The Phred quality score (Q) is logarithmically related to the error 
probability (E). Q=−10logE). For I-Mutant and PoPMuSiC, a variant was considered 
deleterious when it decreased the structural stability. For MutationAssessor, a Functional 
Impact (FI) score >2.0 was considered deleterious. For MutPred, a variant with probability 
of deleterious mutation >0.8 was considered deleterious. For PANTHER, Pdeleterious >0.8 
was considered deleterious. For SNAP2, a score >10 and expected accuracy >70% were 
considered deleterious. For all other tools, the recommended default setting was used for 
calling deleterious/pathogenic lesions. For each variant, the “Consensus Deleterious Score” 
was the ratio of the number of programs predicting “deleterious” over the total number of 
programs with a predicted result, (i.e. predicting deleterious/total number of predictions). 
This approach of “Consensus Deleterious Score” from all 16 in silico prediction algorithms 
was used since it has been shown that combining multiple tools tends to provide a more 
reliable prediction of the “likely pathogenicity” [Polikar, 2006]. “Unknown” was not 
considered a prediction. Arbitrary cutoffs of <25% and >75% for deleterious were used to 
define each variant as “likely benign” and “likely pathogenic”, respectively, and as 
“ambiguous”, if the score fell between 25–75%.

In Vitro Expression Studies: Activity and Thermostability

HMBS cDNA constructs for each of the 58 HMBS non-synonymous variants were 
individually generated using the QuikChange Lightning Single-Site Mutagenesis kit 
(Agilent Genomics, Santa Clara, CA) to alter the HMBS wild-type (WT) cDNA in the 
pKK223 vector [Chen et al., 1994]. All constructs were re-sequenced to confirm their 
respective authenticities. Since HMBS is a cytosolic enzyme that does not undergo any post-
translational modifications, WT and mutant constructs were each expressed in E. coli strain 
BL21(DE3)pLysS (Promega, Madison, WI), which had low endogenous HMBS background 
activity and produced large quantity of the recombinant human enzyme as used previously 
for mutational and crystalization analyses [Chen et al., 1994; Gill et al., 2009; Song et al., 
2009]. The enzymatic activity of each mutant enzyme in the lysate was calculated as the 
percent of the expressed WT activity, which was expressed in the same experiment, as 
described previously [Chen et al., 1994]. All results are presented as the mean activities and 
standard deviations of at least three independent experiments. For the enzyme 
thermostability studies, the expressed recombinant enzyme in the lysate was assayed for 
HMBS activity after incubation at 65°C for 90 min at pH 8.0. The mean thermostability of 
each mutant HMBS enzyme was calculated as the percent of the initial expressed WT 
activity after heat treatment and was based on at least three independent experiments.
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Results

Identification and Characterization of HMBS Variants in Genomic Databases

Genomic databases that included 69,530 individuals from various demographic and ethnic/
racial groups, including 45,955 Caucasians, were interrogated for HMBS non-synonymous 
and consensus splice-site variants (Table 1). All 101 identified HMBS variants (98 non-
synonymous and three consensus splice-site variants) are listed in Supplementary Materials 
(Supp. Table S2) by demographic/racial group. The consensus splice-site variants c.
422+1G>A and c.652-2delAwere identified only in Caucasians, and c.613-1G>Awas present 
only in Africans (Table 1). Overall, a high total allele frequency of non-synonymous HMBS 
variants was found in each demographic/racial group (Table 1): 58 non-synonymous and two 
consensus splice-site variants with a total allele frequency of ~0.00575 (~1/174) for 
Caucasians (Figure 1); 16 non-synonymous variants with a total allele frequency of 
~0.00271 (~1/369) for Latinos; 20 non-synonymous and one consensus splice-site variant 
with a total allele frequency of ~0.00634 (~1/157) for Africans; 20 non-synonymous variants 
with a total allele frequency of ~0.007 (~1/140) for South Asians; 10 non-synonymous 
variants with a total allele frequency of ~0.00176 (~1/568) for East Asians. Notably, only 
one variant (encoding p.R321H) occurred in all five groups, ranging from 0.00012 in East 
Asians to 0.00192 in Caucasians. The variant encoding p.R246C was present in four groups, 
variants encoding p.P127Q and p.R225Q were shared by three groups, and 16 others were 
present in two groups (see Supp. Table S2). Of the 20 non-synonymous variants shared 
among two or more groups, 9 (45%) were at CpG dinucleotides, hotspots for mutation 
[Cooper et al., 1988] (Supp. Table S2).

To determine the predicted pathogenicity of the 58 non-synonymous HMBS variants in 
Caucasians, as a relevant group for an estimate of AIP prevalence, each non-synonymous 
variant was evaluated by in silico pathogenicity prediction programs and by in vitro 
expression assays. Most (95%) of the Caucasian variants had an allele frequency 0.0002 or 
less, while three variants encoding p.S45L, p.E86V, p.R321H, had allele frequencies of 
0.0004, 0.001 and 0.0019, respectively.

Predicted Pathogenicity of the Caucasian HMBS Non-Synonymous Variants

The functional impact of each of the 58 non-synonymous variants on HMBS activity and 
stability was assessed by 16 different in silico pathogenicity prediction programs (Supp. 
Table S1) and the results were combined to generate a “Consensus Deleterious Score” or 
“CDS.” Based on the CDS, each variant was classified as likely “deleterious”, “benign” or, 
if most results were unknown or could not assess the variant, they were classified as 
“ambiguous”. Supplementary Table 3 (Supp. Table S3) summarizes the results of each 
prediction program for each variant. Of the 58 variants, 12 were previously listed in HGMD 
as causing AIP, and five were predicted as “deleterious” (variants encoding p.R167W, 
p.R167Q, p.R195C, p.R225Q and p.A331V), while seven were considered “ambiguous”
(Table 2). Of the remaining 46 non-synonymous variants, 9 were predicted as “deleterious” 
(variants encoding p.R22C, p.D65H, p.I71T, p.G72R, p.A122P, p.L161P, p.R251S, p.V282L 
and p.R355W), 12 were “benign”, and the remaining 25 were designated as “ambiguous” 
and classified as unknown (Table 2).

Chen et al. Page 5

Hum Mutat. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Vitro Activity and Thermostability of HMBS Variant Enzymes

All 58 non-synonymous variants were expressed in vitro and their enzymatic activities and 
thermostabilities were determined (Table 2). Of the 12 variants listed in HGMD as 
pathogenic, only four (encoding p.M1I, p.R167W, p.R167Q and p.R195C) had enzymatic 
activities of ≤3% of the expressed WT activity. Notably, the eight variants encoding p.T59I, 
p.E86V, p.R225Q, p.D230Y, p.A252V, p.R321H, p.A331V and p.D359N listed in HGMD all 
had ~60–100% of the expressed WT activity. Of the remaining 46 variants in genomic/
exomic databases, three encoding p.A122P, p.L161P and p.R251S had expressed enzymatic 
activities of ≤2% of expressed WT activity (but have not been reported in AIP patients to 
date) and 41 had normal or near normal enzymatic activities (62–130% of expressed WT 
activity), while the variants encoding p.G3V and p.G3S had ~35% and ~200% of expressed 
WT activity, respectively (Table 2).

The 51 variants with residual HMBS activities >10% of expressed WT activity were 
subjected to heat inactivation at 65°C, pH 8.0 for 90 min. While 48 variants were relatively 
thermostable compared to the expressed WT enzyme (Table 2), three encoding p.N118K, 
p.A252V and p.A331V had markedly reduced enzyme activities after heat inactivation (2%, 
10% and 12% of initial expressed WT activity, respectively), indicating that their respective 
amino acid substitutions destabilized the HMBS mutant protein, and suggesting that they 
may be pathogenic. Of note, variants encoding p.A252V and p.A331V were found in AIP 
patients and listed in HGMD as pathogenic.

Thus, the likely pathogenic non-synonymous variants with <3% of expressed WT activity 
included four variants listed in HGMD, and three novel non-synonymous variants from the 
genomic/exomic databases with a combined allele frequency of ~0.000477. The addition of 
the two consensus splice-site variants increased the likely pathogenic HMBS allele 
frequency to ~0.000504. Finally, when the three variants with markedly decreased 
thermostabilities were included, the total likely pathogenic allele frequency, or prevalence of 
autosomal dominant AIP, was ~0.00056 or 1 in ~1,782 (Table 3).

Discussion

The acute hepatic and erythropoietic porphyrias are among a unique group of monogenic 
disorders (e.g. G6PD deficiency, malignant hyperthermia, dihydropyrimidine dehydrogenase 
deficiency) that require additional genetic and/or environmental triggering factors (e.g., 
drugs, metabolites, etc.) for their clinical expression, which has led to their being referred to 
as pharmacogenetic and/or ecogenetic disorders [Meyer, 2004; van Kuilenburg, 2004; 
Stowell, 2008; Puy et al., 2010; Anderson et al., 2014]. For AIP and the other acute hepatic 
porphyrias, the potentially life-threatening acute attacks are precipitated by porphyrinogenic 
drugs (typically P450 inducers), dieting/fasting or hormonal changes. Because of these 
triggering factors, most probands are diagnosed only during or after an acute attack, while 
the disease remains clinically asymptomatic and undiagnosed in most heterozygotes. Thus, 
the actual incidence, prevalence, and penetrance of autosomal dominant AIP remain 
unknown.
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To date, the estimated prevalence of AIP in Western European countries, based on the 
frequency of newly diagnosed symptomatic patients was at ~0.000005 or 1 in ~200,000 
individuals [Elder et al., 2013]. Estimates of the penetrance of AIP range from ~10% in 
Western Europe to 30–50% in Scandinavia [Andersson et al., 2000, Schuurmans et al., 2001; 
Bylesjö et al., 2009; Mykletun et al., 2014]. But since the prevalence of all individuals 
carrying a pathogenic mutation for AIP has not been determined, the penetrance of the 
disease remains unknown. Therefore, we determined the prevalence of pathogenic HMBS 
mutations by interrogating the non-synonymous and consensus splice-site variants in 
genomic/exomic databases that included ~46,000 Caucasians and assessed which were 
likely pathogenic. A total of 58 HMBS non-synonymous variants were identified with a 
combined allele frequency of ~0.00575 (1 in ~174 individuals). In vitro expression of each 
variant identified only seven with expressed activities that were <3% of expressed WT 
activity. In addition, there were two pathogenic consensus splice-site variants and three 
thermolabile non-synonymous variants, yielding a combined allele frequency, or prevalence 
of autosomal dominant AIP, of ~0.00056 or 1 in ~1,782. Interestingly, the estimated 
prevalence of healthy French blood donors (3,350 individuals) with reducedHMBS activity 
was similar, 1 in 1675 [Nordmann et al., 1997].

Over 400 reported HMBS mutations causing AIP patients have been listed in HGMD, 
including 162 (~40.2%) non-synonymous (missense) mutations [Stenson et al., 2014]. Of 
particular note, 12 of the 162 non-synonymous variants listed in HGMD were present in 
genomic/exomic databases. However, only six of these had <3% of WT expressed activity or 
reduced thermostability. Review of the original reports for the other six variants identified 13 
reportedly symptomatic AIP patients who had variants encoding p.T59I [Schneider-Yin et 
al., 2008], p.E86V [Floderus et al., 2002], p.R225Q [Floderus et al., 2002; von Brasch et al., 
2004], or p.R321H [Schuurmans et al., 2001; von Brasch et al., 2004; Anyaegbu et al., 2012; 
Cerbino et al., 2015]. However, the pathogenicity of most of these patients was not verified 
by elevated urinary ALA or PBG levels with the exception of (1) three patients with 
p.R321H who also had a second and pathogenic HMBS mutation [von Brasch et al., 2004; 
Cerbino et al., 2015]; and (2) one patient with p.R321H who had significantly increased 
urinary ALA or PBG concentrations, suggesting the presence of an unidentified second and 
pathogenic mutation [Anyaegbu et al., 2012] (Supp. Table S4).

Major sources of DNA sequence variations are replication errors and deamination at CpG 
dinucleotides, the latter being hotspots for mutation [Cooper et al., 1988]. Of the 58 HMBS 
non-synonymous genomic/exomic variants in Caucasians, 18 (~31%) occurred at CpG 
dinucleotides, including the most common benign variants p.R321H (allele frequency = 
0.0019). Of the HMBS 1,086 base-pair coding sequence, there are 31 CpG dinucleotides. 
Interestingly, among the pathogenic variants causing biochemically confirmed AIP, the most 
common non-synonymous variants in unrelated probands occurred at CpG dinucleotides that 
encoded p.R167, p.R173, p.R225 and p.R325, representing ~27% of all identified HMBS 
mutations causing AIP (unpublished data, Desnick, RJ and Doheny, D, Mount Sinai 
Porphyria Diagnostic Laboratory).

A current focus of human genomics is to identify which non-synonymous variants in each 
disease-causing gene are pathogenic or benign. Many genomicists use in silico predictive 
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tools to evaluate pathogenicity, as Whately and Badminton previously did to identify four 
putative pathogenic non-synonymous HMBS variants in the 1,092 individuals of all ethnic/
demographic groups from the 1000 Genomes Project [Whatley and Badminton, 2013]. 
Although the in silico approach has proven useful to predict if a missense variant is 
damaging, several studies have demonstrated their limitations when used as stand-alone 
tools [e.g., Dorfman et al., 2010; van der Velde et al., 2015]. Specifically, a performance 
plateau of ~80% in their success rates [Riera et al. 2014] has been noted, a value below that 
required for clinical use [Richards et al., 2015]. In addition, in silico predictability may be 
gene/disease-specific [e.g., Leong et al., 2015; Adebali et al., 2016]. To circumvent these 
limitations, various studies suggest that prediction performance can be improved by 
combining the predictions of a number of tools [e.g., Chan et al., 2007; Konig et al., 2016]. 
Here sixteen predictive tools were employed to evaluate the HMBS non-synonymous 
variants. The “consensus deleterious score” predicted 14 variants to be deleterious, and 12 to 
be benign, but was unable to classify 32 variants, which were designated as “ambiguous” or 
“unknown.” Of the 14 variants classified as deleterious, only 6 (43%) had <3% expressed 
enzyme activities, while three (considered ambiguous) had markedly decreased 
thermostability in vitro. Based on these results, the functional in vitro expression and 
thermostability studies were more predictive of variant pathogenicity than the combined in 
silico analyses and should be used when appropriate to validate all new non-synonymous 
variants in patients with or without biochemical evidence of AIP.

In conclusion, our studies using genomic/exomic sequencing data from 45,955 Caucasians 
identified 10 non-synonymous and two consensus splice-site pathogenic variants for a 
combined prevalence of ~0.00056. Since the estimated prevalence of acute attacks is 
~0.000005, and the estimated frequency of clinical pathogenic variants is ~0.00056, the 
penetrance of AIP is a surprising low 1% of all AIP heterozygotes. As AIP is a monogenic 
disorder, this extremely low penetrance suggests a critical role for modifying factors 
(environmental and/or genetic) in predisposing heterozygotes to acute attacks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

HMBS Non-Synonymous & Consensus Splice-Site Variants Identified in Caucasians in 
Genomic/Exomic Databases. Variants in the upper panel have been listed in HGMD as 
causing AIP. Variants in the lower panel are novel and identified only in the genomic/exomic 
databases.
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