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Abstract

Sudden cardiac death forms a major cause of mortality. Myocardial ischemia-induced ventricular fibrillation (VF) is frequently the

underlying mechanism. Ventricular arrhythmias arise in two distinct phases during the first hour of ischemia. The first, the 1A phase, has

been extensively studied, and few studies relate to the 1B phase. The latter is associated with intercellular electrical uncoupling, mediated by

decreased conductance of gap junction channels.

Although the relation between gap junctional uncoupling and decreased conduction velocity appears clear under normoxic conditions,

additional factors contribute to conduction slowing during ischemia, and VF occurs preferentially at moderate levels of uncoupling. A

potential mechanism of arrhythmias depends on temporary electrotonic depression of intrinsically viable tissue by the large bulk of the

ischemic zone. This causes conduction slowing and conduction block in the surviving layers, leading to arrhythmias. These arrhythmias then

resolve with progression of uncoupling. It is unknown whether either accelerated uncoupling or maintenance of gap junctional

communication is antiarrhythmic. Ischemic preconditioning postpones both gap junctional uncoupling and occurrence of VF. Given the

burden of sudden death and the large number of casualties in the low-risk population, there is, even in the era of implantable cardiac

defibrillators, need for further understanding the mechanism of ischemia-induced VF.
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1. Introduction

Cardiovascular mortality remains the leading cause of

death in the industrialized world [1,2]. Sudden death, defined

as ‘death outside the hospital,’ ‘dead on arrival,’ or ‘dead in

the emergency department,’ was responsible for almost

300,000 casualties in the United States alone in 1998 [3].

Ventricular arrhythmias, ventricular fibrillation (VF) in par-

ticular, are the cause of cardiac arrest in the majority of cases

[1]. Acute myocardial ischemia is the major cause of sudden

cardiac death [1,4]. Large-scale clinical trials with antiar-

rhythmic drugs have failed to reduce the incidence of sudden

death and even caused an increased mortality in the treated

groups [5–7]. Implantable defibrillators are efficient against
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ventricular arrhythmias [8,9], but risk stratification of sudden

death is only possible in the high-risk population, whereas

most deaths occur in the far larger low-risk population [10].

Therefore, our understanding of the underlying mechanism

of ischemia-induced ventricular arrhythmias appears to be

incomplete. In this review, we will first discuss the mecha-

nism of ventricular arrhythmias and gap junctional closure

during acute myocardial ischemia, then look at the direct

influence of gap junctional uncoupling on conduction ve-

locity and the creation of heterogeneities. After that, we will

review the data supporting the role of gap junctions in the

genesis of ischemia-induced arrhythmias.

1.1. Electrophysiologic mechanism of ventricular

fibrillation

Reentry is the underlying electrophysiological mecha-

nism of ventricular fibrillation [4]. Reentry was first
d by Elsevier B.V. All rights reserved.
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defined by Mines [11] in 1914 as a persisting electrical

impulse that reactivates an area of previously activated

myocardial tissue that is no longer refractory, resulting in a

circus movement of activation. The length of such circle

depends on its wavelength, defined by the mathematical

product of refractory period and conduction velocity (plus

an excitable gap when present) [12]. The requirements for

reentrant activation in the intact heart are a region of

unidirectional block and (regionally) slow-enough conduc-

tion velocity to allow the activation impulse to travel

around the zone of block. It is facilitated by a short

refractory period. The ultimate proof of reentry is its

termination by interruption of the circle [11]. Our under-

standing of reentry has been extended by the introduction

of different concepts of its mechanism such as single rotor

reentry [13] and fibrillatory conduction [14,15] and the

leading circle concept [16], but Mines’ principles apply in

all these forms of ventricular fibrillation.

For an arrhythmia to occur, both a suitable substrate (the

preexisting circumstances that allow perpetuation of the

arrhythmia) and a trigger (the event that sets off the

arrhythmia within the substrate) need to be present [17].

Factors such as catecholamines, [K+]o, pH, and drugs might

modulate both trigger and substrate. During acute myocar-

dial ischemia, the conditions necessary for the initiation of

reentry, both trigger and substrate, occur in concert and,

indeed, ventricular fibrillation is often encountered [4].

In the course of ischemia, gap junctions close. This

may result in electrophysiological effects. Its first results

were noted as early as 1875 and 1879 by Engelmann

[18], who stated that the cells live together but die singly,

and by Burden-Sanderson and Page [19] and De Mello et

al. [20], respectively, who described the phenomenon of

‘healing over’—the reversal of (electrical) signs of myo-

cardial injury following a stab wound of the heart Gap

junctional uncoupling may contribute to attaining condi-

tions favorable for the initiation of reentrant activation

and ventricular fibrillation by slowing of conduction (both

directly and indirectly) and the creation of heterogeneities.

1.2. Closure of gap junctions in ischemia

Tissue impedance, the composite measure of resistance

and reactance and an indirect measure for intercellular

coupling, increases in a biphasic manner following coronary

occlusion [21]. Immediately after interruption of coronary

flow, a first rise of approximately 10–25% occurs, attribut-

ed to collapse of the vasculature [21]. Fleischhauer et al.

[22] showed that the impedance of the perfusion fluids

contributes little to total tissue impedance. However, col-

lapse of the vasculature affects the relation between the

intracellular and extracellular volume and might therefore

affect whole tissue impedance. The second rise in imped-

ance, after approximately 15 min, was attributed to closure

of the gap junctions, and thus to decrease of intercellular

conductance [21].
1.2.1. Ischemia-related factors responsible for closure of

gap junctions during ischemia

Although many factors change simultaneously during

early ischemia, several individual factors that uncouple

gap junctions have been identified. Increase of diastolic

cytoplasmatic [Ca2+] is associated with gap junctional

uncoupling [23,24]. Diastolic [Ca2+] increases between 15

and 25 min of ischemia in rabbits [24] and closely precedes

gap junctional uncoupling, which lasts between 10 min

(rabbit) and 40 min (pig) [25–27] and results in conduction

slowing and conduction block [24].

Ischemia-induced intracellular acidification also decrea-

ses gap junctional conductance [28]. Decreased intracellular

pH also renders gap junctions more sensitive to increased

[Ca2+]i [29].

Lysophosphoglycerides and arachidonic acid metabolites

accumulate in the intercalated disks of ischemic cells after a

few minutes of ischemia and decrease gap junctional con-

ductance [30]. Catecholamines increase cAMP and [Ca2+]i,

which in turn decrease gap junctional conductance [31].

Cx43 proteins dephosphorylate during ischemia [32,33]

and transfer from the intercalated disks to intercellular

pools [33]. The latter reports show a direct link between

energy deprivation as the common pathway leading to

membrane depolarization, Ca2+ overload, anaerobic gly-

colysis leading to decreased pHi, and gap junctional

uncoupling.

1.3. Gap junctions and conduction velocity

Conduction velocity partially depends on intercellular

conductance, the combined resistance of the cytoplasm, and

gap junctions.

The number of available gap junctions is much larger

than needed for propagation of the action potential under

normoxic conditions. Weingart and Maurer [34] showed

action potential propagation within a pair of coupled cells

at gap junctional conductance of >1.3 nS, albeit with a

considerable delay. Rudy and Quan [35] showed in a

computer simulation that conduction velocity decreases

discontinuously at high gap junctional resistance. Indeed,

Jongsma and Wilders [36] confirmed that, under non-

ischemic conditions, approximately 90% decrease of gap

junctions is required to decrease conduction velocity with

50%. In another study, it was demonstrated that the safety

for conduction is much higher when gap junctional cou-

pling is reduced than when INa is decreased [37]. Thus,

slow conduction without conduction block remains possi-

ble even at very low gap junctional conductance. These

simulation studies corroborate studies by Gutstein et al.

[38] in genetically engineered conditional Cx43 �/� mice

where a 90% reduction of Cx43 was associated with a

decrease of approximately 50% in transversal and longi-

tudinal conduction velocity. This is consistent with the

studies of Morley et al. [39] and Thomas et al. [40] who

showed little effect of heterozygous Cx43 reduction on

lar Research 62 (2004) 323–334
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conduction velocity. However, others found that in Cx43

+/� mice, a 50% reduction of Cx43 protein corresponded

to a decrease of conduction velocity of approximately 25%

[41,42].

The former observations are further supported by stud-

ies demonstrating conduction slowing (more prominent in

transverse than in longitudinal conduction) upon adminis-

tration of heptanol or palmitoleic acid [43–46]. Increase of

gap junctional resistance with palmitoleic acid decreased

conduction velocity to such an extent in cultured neonatal

cells that activation fronts could propagate around the

perimeter of a single cell [47]. Gap junctional conductance

depends in a dynamic manner on transjunctional voltage

[48,49] and effect that is larger when there are less gap

junctions [49]. Most data on conduction slowing through

gap junctional uncoupling relate to normoxic conditions. In

the acutely ischemic intact heart, very slow conduction has

not been demonstrated. Whether this is because gap

junctional coupling remains sufficient for propagation

and other factors are responsible for conduction slowing,

or whether conduction block occurs before gap junctions

uncouple is not exactly known.

1.4. Unmasking of heterogeneities

Gap junctions allow intercellular exchange of ions and

small molecules (with a molecular weight of up to 1000

Da [50]) and current, and cause equilibration of ionic

concentrations [51,52] and energy-rich phosphates and

propagation of the action potential. Their closure, by

either pharmacological interventions or by pathological

circumstances such as acute ischemia, might create an

intercellular gradient in both nutrients and metabolites as

in ions. Han and Moe became aware of this equilibrating

effect. It was hypothesized that when two adjacent cells

have a very different duration of the action potential, the

current flowing from the cell with the longer action

potential towards the cell with the shorter action potential

during the plateau phase would allow the latter cell to

depolarize and to generate a premature beat. Mendez et

al. argued that this could not be the case between well-

coupled cells because the current flowing from the cell

with the longer action potential would prolong the short

one and would itself shorten the longer action potential

[53]. This would lead to an equilibration of action

potential durations between adjacent cells. Thus, for a

voltage gradient between cells to occur, partial gap

junctional uncoupling is required. Indeed, closure of gap

junctions causes gradients that are large enough to pro-

duce arrhythmias [51].

However, it appears that gap junctional conductance

does not decrease to such an extent during ischemia, at

least not while cells are excitable. In coupled cell pairs

subjected to simulated ischemia, gap junctional coupling

remained large enough to equilibrate action potential

duration between the paired cells up to the moment of
inexcitability [54]. Moreover, the moment of ‘ischemia’-

induced rigor was exactly the same in two paired cells,

whereas there was a large variation in a group of single

myocytes [54]. Thus, gap junctional coupling remains

sufficient to equilibrate action potential duration and mo-

ment of ischemia-induced rigor in cell pairs, suggesting

that intercellular communication remains intact and pre-

vents intercellular gradients on a cellular level. In support

of the above, gap junctions were still permeable for

sodium ions, on one hand, causing calcium overload via

the Na+/Ca2+ exchanger [52], and for luciferine yellow, on

the other hand [55], at the moment rigor occurred. It

remains to be determined what degree of uncoupling is

required to cause physiologically significant heterogene-

ities in intact hearts.

In addition to the potential generalized effect of

uncoupling on the unmasking of heterogeneities, gap

junctional uncoupling is not equally distributed within

the ischemic tissue. The increase in tissue impedance

was significantly smaller in the ischemic border zone

than in the central zone, although the time course of rise

was identical [27]. Hence, ischemic and nonischemic

myocardium interdigitate at the ischemic border [56]

and ischemic tissue impedance increases, whereas non-

ischemic tissue impedance remains normal. Also, subepi-

cardium and subendocardium are relatively unaffected by

the ischemic burden through diffusion of oxygen and

nutrients from surrounding tissues [57,58]. Irreversibly

damaged cells will eventually die and reversibly chal-

lenged myocytes will dissociate from irreversibly dam-

aged cells and survive ischemia (healing over) [19]. The

ischemic myocardium that uncouples from the rest of the

heart can therefore functionally no longer contribute to

arrhythmogenesis.
2. Arrhythmogenesis during myocardial ischemia

2.1. Two phases of arrhythmias

Arrhythmias occur in two distinct phases during the first

hour of coronary occlusion [4,59,60] The first phase, called

immediate ventricular arrhythmias by Kaplinsky et al. [59],

later referred to as 1A [60] arrhythmias, lasts from 2 to 8 min

of ischemia in the dog. After a relative arrhythmia-free

interval, a second, delayed phase, now referred to as 1B

[60], occurs from 15 to 45 min of coronary occlusion in

dogs and pigs [25–27,59]. This phase has remained rela-

tively poorly studied but appears to be more arrhythmogenic

than the 1A phase [25,59]. The 1B phase of arrhythmias

coincides with the increase of tissue impedance and there-

fore was thought to be causally related with gap junctional

uncoupling [21]. Fig. 1, derived from the work of Smith et

al. [25], shows the distribution of arrhythmic events in nine

open-chested pigs. Arrhythmias occurred at the start of the

rise of the tissue impedance. However, others have shown



Fig. 1. Incidence of ventricular arrhythmias in regionally ischemic open-chested pig hearts (dashed area). Black line denotes percentage of animals with VF.

The open circles indicate average rise in tissue impedance in all animals. The black line indicates the time course and number of animals with VF (reproduced

with permission from Ref. [25]).
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that the peak of 1B arrhythmias is of shorter duration than

the duration of tissue impedance rise [26,59].

Both the ischemia-induced rise in tissue impedance and

phase 1B ventricular arrhythmias can be successfully post-

poned after ischemic preconditioning [26]. Fig. 2 shows the

distribution of PVCs during 4 h of regional ischemia in pigs

without (upper panel) and with ischemic preconditioning

(lower panel).

The two phases of arrhythmias have been described in

dogs [59,61], pigs [25,26], sheep [62], and rats [63]. The

bimodal distribution is less clear in cats [64] and rabbits [65],

and may differ in individual animals [66]. It is unclear

whether a similar distribution of ischemia-induced arrhyth-

mias exists in man, as this is obviously extremely difficult to

study.

2.2. Arrhythmogenic triggers

In case of ischemia-induced VF (both 1A and 1B), the

trigger exists most often from a timely administrated or

spontaneous premature ventricular complexes (PVCs) [4]

that can be reentrant or nonreentrant in origin [67–69]. The

mechanical stretch exerted by the viable myocardium on the

rigid ischemic zone may result in PVCs arising preferentially

from the ischemic border during the 1B phase [70]. Indeed,

the number of PVCs was larger in working hearts than in

isolated nonworking hearts, the triggers are initiated at the

interface between the ischemic and the viable tissue, and

premature beats occur preferentially following potentiated

contractions in the viable myocardium [70]. However, a

recent study has shown that gadolinium, a blocker of

stretch-sensitive channels, did not abate the 1B phase of

arrhythmias [71].
2.3. Arrhythmogenic substrates

2.3.1. Role of functional changes in gap junctional coupling

The mechanism by which gap junctional uncoupling

causes conduction slowing and arrhythmias in the regionally

ischemic heart has not completely been elucidated. Recent-

ly, a novel hypothesis was put forward involving the

heterogeneity of the myocardium and the evolution of a

surviving subepicardial and subendocardial layer [27]. Con-

duction slowing in the surviving tissue is caused by elec-

trotonic interaction between the large mass of depolarized–

dying–intramural cells and nonischemic subepicardial and

subendocardial cells [72]. It has been established that a rim

of subepicardial and subendocardial tissue survives ische-

mia and infarction [27,57] and that intramural sites become

electrically inexcitable during prolonged ischemia, whereas

subepicardial cells remain activated [25]. If the viable

myocytes are electronically depressed by electrotonic inter-

action, slow conduction in the intrinsically viable layer

would ensue, which would recover with progression of

gap junctional uncoupling (decrease of electrotonic interac-

tion), concomitant with the decrease of arrhythmias.

Several observations support this hypothesis: (1) between

two coupled cells, electrical depression of one cell can be

transmitted via reduced gap junctional coupling to the other,

provided that the mass of the depressant is large enough

[72]; (2) VF could be induced with programmed stimulation

between 14 and 53 min of ischemia [27]. Thereafter, the

same induction protocol failed to induce VF [27]. Fig. 3

shows electrograms of VF inducibility in a typical isolated

regionally ischemic pig heart. The number of PVCs to

induce VF decreases from three during control to one at

32 min of ischemia, after which more PVC are required to



Fig. 2. Incidence of ventricular arrhythmias in regionally ischemic pig hearts without (upper panel) and with ischemic preconditioning (lower panel). The peak

of arrhythmogenesis associated with the 1B phase of ischemia is postponed in the preconditioned group (reproduced with permission from Ref. [26]).
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induce VF. The right panel shows the rise in tissue imped-

ance in the same experiment. Fig. 4 shows overall data.

Thus, by providing the necessary triggers for VF, these

experiments indicate that the substrate for VF is evolving

during the 1B phase, and that the optimum substrate is

present when uncoupling is moderate; (3) spontaneous VF

occurred at increase of tissue impedance of <50% in a study

by Smith et al. [25]; (4) a decrease followed by an increase

in dV/dt of the subepicardial unipolar extracellular intrinsic

deflection coincided with a relative rise in tissue impedance

of more than 40% of its final value and with inability to

induce VF with programmed stimulation in regionally

ischemic pig hearts [27]; and (5) in a computer simulation

of a multicellular fiber with 1B-like properties, premature

beats induced sustained arrhythmias only within a limited

window of moderately decreased gap junctional conduc-

tance [73]. Strong gap junctional coupling suppressed

formation of delayed after depolarizations through hyper-

polarization and increased coupling charge, but low gap
junctional conductance prevented conduction of ectopic

activity to the nonischemic tissue [73].

An alternative hypothesis includes the occurrence of

microreentry due to very slow conduction induced by gap

junctional uncoupling [21,47]. Although in cultured myo-

cytes exposed to palmitoleic acid very slow conduction was

observed [47], microreentry is unlikely to be the underlying

mechanism of 1B VF for the following reasons: (1) the

reduction of INa through prolonged recovery of inactivation

rather than gap junctional uncoupling might play an impor-

tant role in conduction slowing because tissue impedance

has only increased moderately during the 1B phase; (2) very

slow conduction has been shown in vitro [34,46,47] and in

silico [36,37], but not in regionally ischemic intact hearts;

(3) tissue anisotropy prevents the occurrence of conduction

block at critical gap junctional coupling [74]. Gap junctional

uncoupling increases anisotropy by decreasing transversal

rather than longitudinal conduction velocity [38,43,44]; (4)

paradoxical restoration of conduction was observed with



Fig. 3. Panel A: Unipolar electrograms of premature stimulation in a

regionally ischemic pig heart. Arrows denote stimulation artifacts. Three

PVC did not induce VF before ischemia. The number of PVC decreased

from three to one at 32 min of ischemia, after which more stimuli are

needed to induce VF. Panel B: Corresponding rise in tissue impedance in

the same experiment as in panel A. Letters indicate when electrograms in

panel A were recorded (reproduced with permission from Ref. [27]).
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progressing gap junctional uncoupling [46]; (5) VF occurred

or could be induced at a window of moderate uncoupling

only [25,27,73]; (6) epicardial mapping of 1B ventricular

arrhythmias showed reentrant circuits with wavelengths in

the order of magnitude of centimeters [27] and VF could not

be induced in isolated left ventricular preparations up to 9 g

and macroreentry around slim lines of activation block was
observed [75]; and (7) Ruiz-Meana et al. [52] showed

persistent dye coupling after ischemia-induced rigor, dem-

onstrating open gap junctions.

2.3.2. Role of structural changes in gap junctional coupling

As a consequence of tissue anisotropy (more gap

junctions along the fiber than perpendicular to fiber

direction), conduction velocity and safety for conduction

differ in longitudinal and transversal directions, and block-

ade of conduction in either transversal or longitudinal

direction might have differential effects on arrhythmogen-

esis [46,76,77].

In Cx43 +/� mice, significantly more spontaneous and

induced arrhythmias were observed during 1 h of regional

ischemia [42]. Fig. 5 shows the incidence of arrhythmias in

regionally ischemic wild-type versus Cx43 +/� mice. Both

spontaneous and induced VT are more frequent in the Cx43

+/� animals. The hearts of these animals were morpholog-

ically normal and conduction velocity under normoxic

circumstances was only marginally reduced; therefore, the

increased arrhythmogenicity resulted from the interplay

between acute ischemia and the genetic background of

reduced gap junctional coupling [42]. Thomas et al. [40]

showed in cultured Cx43 +/� cells that despite a 43%

reduction in expressed level of Cx43 protein, no reduction

of conduction velocity was observed.

The number of gap junctions decreases and lateralization

occurs in failing hearts [78]. Therefore, load mismatches

that cause either slow conduction, conduction block, or

changed restitution of conduction velocity might arise.

Derksen et al. [80] demonstrated that pathologic conduction

curves, associated with high vulnerability of VF [79], occur

in hearts with interstitial fibrosis and result from load

mismatch. Interstitial fibrosis causes cellular uncoupling

through insulation of myocardial fibers, and is associated

with increased activation delay dependent on the type and

amount [81]. Structural remodeling of gap junctions does

not occur during the immediate phase of acute ischemia. It is

conceivable, however, that arrhythmogenesis in the 1B

phase of acute ischemia in hearts of patients with heart

failure is more severe because of the preexisting morpho-

logical changes. Indeed, the progression of ischemia-in-

duced changes is different in these hearts compared to

normal hearts [82]. It has, moreover, been shown that gap

junctional uncoupling decreases defibrillation success—a

finding of particular importance for the growing population

of patients with internal defibrillator [83].

2.4. Modulation of ischemia-induced arrhythmias

2.4.1. Preconditioning

Ischemic preconditioning delayed both gap junctional

uncoupling and the occurrence of 1B VF in pigs [26] and

was associated with decreased infarct size. Preconditioning

may act through various pathways: (1) postponing the

increase in [Ca2+]i and the closely associated rise in tissue
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preconditioned hearts is likely related to diminished dephos-

phorylation and intracellular redistribution of Cx43 during

prolonged ischemia [33,84]; (3) preconditioning is abol-
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ished with glibenclamide, a blocker of the KATP channel

[85]; (4) opening of the KATP channel postponed the second

rise in [K+]o and the decreased catecholamine release from

ischemic nerve endings in the isolated rabbit heart, but the

decrease in ventricular arrhythmias did not reach statistical

significance [86]. The role of closure of gap junctions as a

preconditioning factor is unclear. Preconditioning preserved

phosphorylation of Cx43, suggesting that the gap junctions

remain opened [84,87]. Closure of gap junctions with

heptanol in concentrations of 0.5 mM abolished the infarct

size reduction by ischemic preconditioning [88], but at a

concentration of 1 mM, heptanol was cardioprotective [89].

2.4.2. Reduction of wall stress

Arrhythmogenic triggers during the 1B phase are ex-

pected to decrease in occurrence when the wall tension on

the ischemic border is lowered [70]. Indeed, unloading the

heart with nitroprusside was effective in reducing sudden

cardiac death [90].

2.4.3. Autonomic nervous system

Catecholamines, noradrenaline in particular, are released

from the ischemic nerve endings with a time course similar to

the onset of gap junctional uncoupling [86,91–93] and

increase [Ca2+]i via a G-protein-dependent pathway. Gap

junctional conductance increases upon catecholamine-in-

duced increase in intracellular cAMP concentration [31,94].

Consequently, conduction velocity increased and dV/dt max

did not change [94]. Parasympathetic stimulation has the

opposite effect and decreases gap junctional coupling via a

cGMP-dependent pathway [31]. Adrenergic blockade

decreases ventricular arrhythmias, but in many studies, heart

rate and blood pressure are altered as well [95,96] and the

beneficiary effect appeared more prominent on phase-1A

than on phase-1B arrhythmias [60,97]. Beta blockade during

acute ischemia reduces mortality, partly because of reduction

of ventricular rupture.

2.4.4. Other factors

Fatty acid metabolites accumulate in the proximity of

intercalated disks and decrease gap junctional conductance,

and may modulate arrhythmogenesis [30,98,99]. Prelimi-

nary studies with carbenoxolone, an ancient antiulcer drug

that can be used as a specific blocker of gap junctions in

cardiac muscles [100], showed that infusion in the ischemic

zone just prior to coronary occlusion resulted in decreased

transversal, but not longitudinal, conduction velocity com-
Fig. 4. Panel A: Percentage of VF inducibility in isolated pig hearts during

90 min of regional ischemia. VF is inducible with one (white bars), two

(grey bars), or three premature stimuli (black bars) between 10 and 50 min

of ischemia, after which the number of animals in which VF could be

induced declined. Panel B: VF inducibility related to relative rise in tissue

impedance. VF could be induced up to 40% of relative rise in tissue

impedance; at higher degrees of uncoupling, inducibility declined

(reproduced with permission from Ref. [27]).



Fig. 5. Incidence of spontaneous and induced VT in wild-type (open bars) and Cx43 +/� mice (closed bars) subjected to regional ischemia. Panel A shows all

occasions of VT, panel B and C show spontaneous and pacing induced VT respectively. More arrhythmias were observed in the Cx43 +/� group (reproduced

with permission from Ref. [42]).
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pared to untreated ischemic hearts, but no reduction in VF

(J.R. de Groot, unpublished observation). An increased

anisotropic ratio after partial gap junctional uncoupling

has been reported previously [41,43,44].

It appears that commonly used antiarrhythmic drugs have

little or no effect on gap junctional conductance [101].
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3. Clinical relevance

3.1. Lack of studies in humans

The natural time course of ischemia-induced arrhyth-

mias as well as the presence of a 1B phase of arrhythmias

and its potential contribution to mortality are unknown in

man. It appeared that 30% of sudden cardiac death during

the first 24 h of infarction occurred within the first 60

min [102]. This large percentage suggests that at least

some of the victims succumb during the 1B phase of

arrhythmias. Electrophysiological changes associated with

the 1A phase in animals occur much more rapidly in

patients undergoing thoracotomy subjected to regional

ischemia of short duration [103]. It can be speculated

therefore that because 1A changes occur more rapidly, the

time window during which 1A arrhythmias can occur is

restricted, and 1A arrhythmias occur less frequently in

man than in the known animal models. This speculation

might contrast with data of out-of-hospital cardiac resus-

citation where sudden collapse without prior symptoms is

frequently encountered [104]. The number of 1B events

in the study by Waalewijn et al. might be underestimated

by the patients who where able to seek help and expe-

rienced their cardiac arrest in the hospital. However, given

the paucity of human data, these scenarios remain highly

speculative.
3.2. Can we affect the course of ischemia-induced

arrhythmogenesis?

A moderate degree of gap junctional uncoupling is

associated with ventricular arrhythmias [27], whereas more

advanced uncoupling is antiarrhythmic. Pharmacologic

uncoupling therefore may present as a novel target in

antiarrhythmic therapy. Pharmacological uncoupling might

be selective to the ischemic tissue by the preferential effect

of uncoupling on already poorly coupled tissue: the same

degree of uncoupling leads to a more pronounced decrease

of conduction velocity in poorly coupled than in normally

coupled tissue [36]. No clinical trials have, to our knowl-

edge, tested the antiarrhythmic effect of uncoupling agents.

Carbenoxolone, a saponin derivative, has been shown to

selectively block gap junctions in cardiac tissue with no

effect on the major transmembrane currents [100]. Its

administration to isolated perfused healthy rabbit hearts

did cause a small decrease in conduction velocity. In

ischemic tissue, it does not decrease VF inducibility (J.R.

de Groot, unpublished observation).

On the other hand, increased gap junctional coupling

might be antiarrhythmic by maintaining conduction velocity

during acute ischemia for a longer time. However, a large

increase in gap junctional conductance could paradoxically

cause conduction block through decreased safety for con-

duction because the current generated by a cell is insuffi-

cient to activate the many cells it is coupled to (current sink

is too large). There are several agents that increase gap

junctional coupling, including agents that increase intracel-

lular cAMP [31,94]. Certain endogenous and synthetic

peptides have been reported to decrease dispersion in

refractoriness. Indeed, Dhein et al. [105] showed that

AAP10 reduced dispersion of activation recovery intervals

in a dose-dependent manner up to 10 nmol/l in regionally
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ischemic rabbit hearts. It was shown that AAP10 increases

gap junctional conductance [106] via a PKC-dependent

mechanism [107] and prevents conduction slowing in hyp-

oxic papillary muscles [108]. However, there was no sig-

nificant reduction in VT or VF by AAP10 [105] nor by HP-

5 in regionally ischemic rabbit hearts [109]. A recent study

showed that another peptide, ZP123, an AAP analog with a

longer plasma half-life compared to AAP10, increased gap

junctional conductance with 69% [110]. ZP123 reversed

conduction block and decreased the inducibility of reentrant

monomorphic VT 1–4 h after coronary occlusion in open

chest dogs [110]. The effects of ZP123 were restricted to

ischemia, with no change in conduction velocity before

ischemia. In summary, what these peptides have in common

is that they reduce dispersion of action potential duration

and maintain conduction velocity, but their use against acute

ischemia-induced VF has not yet been shown convincingly.

3.3. Need of understanding VF in the internal cardiac

defibrillator era

The absolute number of sudden deaths in the low-risk

population is much larger than that in the high-risk popu-

lation because the low-risk population is so much larger

[10]. With this in mind, there is certainly a need for better

understanding the mechanism of VF in normal hearts. The

observation that ischemic and pharmacological precondi-

tioning postpones both gap junctional uncoupling and the

1B VF is promising [26]. First, it creates a larger window

during which the reversibly damaged myocardium can be

salvaged. Second, there is more time to find medical

assistance and to reach a hospital, ambulance, or defibrilla-

tor. However, the sequence of ischemia and reperfusion

appears pivotal for ischemic preconditioning and, to the best

of our knowledge, there are no drugs that precondition the

heart once ischemia has already started.

From the hypothesis that arrhythmias are caused by a

temporal electrotonic effect, mediated via residual gap

junctional coupling, it follows that rapid uncoupling of the

ischemic tissue would prove antiarrhythmic. This would

narrow the arrhythmogenic time window. At this point,

however, gap junctional uncoupling therapy is a pure

theoretical speculation because there are no drugs that act

preferentially within the ischemic zone without affecting the

rest of the heart and the rest of the body. Moreover,

experimental evidence that increased gap junctional uncou-

pling is antiarrhythmic is lacking. Once the unanswered

questions about this issue are addressed, novel targets in

medical therapy may contribute substantially to a decrease

of sudden cardiac death in the population at large.
4. Conclusions

Gap junctions are essential for normal propagation of the

activation impulse in the heart, and disruption of gap
junctional coupling results in discontinuous conduction

and arrhythmias. Several factors that modulate gap junc-

tional resistance and affect conduction velocity in vivo and

in vitro have been identified.

Myocardial ischemia causes depletion of high-energy

phosphates, decreased pHi, and rise of [Ca2+]i. These factors

are associated with dephosphorylation of gap junction

proteins and the rise of tissue impedance, a hallmark of

intercellular uncoupling. Gap junctional uncoupling causes

conduction slowing and therefore provides circumstances

leading to reentry, but its exact mechanisms during ischemia

are unknown. VF occurs at the start of rise of tissue

impedance [25].

Very slow conduction caused by gap junctional uncou-

pling, as has been demonstrated in vitro [34,46,47] and in

silico [36,37], has never been shown in intact hearts, making

microreentry an unlikely mechanism. Cx43 +/� mice have

slower conduction velocities under normal circumstances

and increased arrhythmogenesis during ischemia [42].

The concept of residual coupling between ischemic and

nonischemic tissue, whereby the ischemic inexcitable cells

electrotonically depress the intrinsically viable tissue, may

form an arrhythmogenic mechanism for gap junction

uncoupling related to arrhythmias [72]. Indeed, VF induc-

ibility was restricted to the first 40% of tissue impedance

rise [27] and gap junctional coupling remains intact longer

than excitability [54]. These experimental findings are

supported by simulations that provide a mechanism explain-

ing why arrhythmias only occur at modest but not complete

uncoupling [73]. However, the evidence for temporary

electrotonic interaction between viable and irreversibly

damaged myocardium remains circumstantial, and the

change in gap junctional conductance between the ischemic

subepicardium and the midmyocardium is unknown.

Thus, although many studies have improved our under-

standing of the role of gap junctional uncoupling in the

occurrence of arrhythmias in the regionally ischemic heart,

the picture is yet far from complete. The main question that

needs to be answered is: Can we locally and specifically

modulate gap junctional coupling, either by reducing or by

increasing it, and thereby suppress or even prevent lethal

arrhythmias during the 1B phase of myocardial ischemia?
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