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ABSTRACT

Computer Aided Diagnosis (CAD) systems are increasingly utiliz-
ing image analysis and Deep Learning (DL) techniques, due to their
high accuracy in several medical imaging fields, including the de-
tection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL)
from peripheral blood samples. However, no method in the litera-
ture has specifically analyzed the focus quality of ALL images or
proposed a technique for sharpening the samples in an adaptive way
for the purpose of classification. To address this issue, in this pa-
per we propose the first machine learning-based approach able to
enhance blood sample images by an adaptive unsharpening method.
The method uses image processing techniques and DL to normalize
the radius of the cell, estimate the focus quality, adaptively improve
the sharpness of the images, and then perform the classification. We
evaluated the methodology on a public database of ALL images,
considering several state-of-the-art CNNs to perform the classifica-
tion, with results showing the validity of the proposed approach. For
a complete reproducibility of the work, the source code is available
at: http://iebil.di.unimi.it/cnnALL/index.htm.

Index Terms— Deep Learning, CNN, ALL, XAI

1. INTRODUCTION

Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) is re-
ferred to a disease which affects the blood cells and rapidly spreads
throughout the body, resulting in fatal consequences if left untreated.
To ensure a timely detection of ALL (so to increase the chances of
healing), an important step of the diagnosis is done by inspecting
the white cells present in peripheral blood samples. The diagnosis
is usually executed manually by an experienced pathologist who
analyzes the malformations of white cells under the microscope,
to determine the presence of cancer [1]. In particular, the pathol-
ogists examine peripheral blood looking for lymphoblasts, which
are white cells with an altered morphology. Normally, lymphoblasts
are present in the bone marrow, but an increased number of lym-
phoblasts in peripheral blood can be associated with ALL [2].

To help physicians in performing the diagnosis, there is an in-
creasing interest in the development of Computer Aided Diagno-
sis (CAD) systems for ALL detection, which partially automate this
process using image processing and Machine Learning (ML) tech-
niques to detect lymphoblasts [3]. The associated methods can be di-
vided in three main categories: i) handcrafted feature extraction and
shallow ML classifiers; ii) handcrafted feature extraction and Deep
Learning (DL); and iii) pure DL. The majority of the methods be-
long to the first category and process images using a handcrafted fea-
ture extraction step, then apply a shallow ML classifier (e.g., SVM)
[4,5, 6,7, 8]. Methods with respect to the second category use a
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Fig. 1. Examples of white cells [1]: (a,b) normal white cells; (c,d) lym-
phoblasts.
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handcrafted feature extraction step, then apply a deep classifier (e.g.,
CNN) [9, 10, 11, 12]. Finally, methods in the third category use pure
DL techniques without a handcrafted feature extraction step, taking
advantage of their capability of automatically learning data represen-
tations. In some cases, these methods are able to detect lymphoblast
cells with higher accuracy with respect to methods using handcrafted
feature extraction [13, 14, 15, 16, 17, 18].

Currently, the majority of DL-based methods for ALL detection
are focusing on more efficient learning procedures [14, 16, 17] or
original network architectures [13, 15, 18] to improve classification
accuracy and detect lymphoblasts with more precision [3]. However,
no method in the literature has specifically analyzed the focus qual-
ity of the samples or proposed an adaptive preprocessing method to
sharpen the images with the purpose of classification.

In this paper we propose the first novel machine learning-based
method based on image processing and DL for the focus quality
estimation, adaptive unsharpening, and classification of ALL sam-
ples. The method uses novel adaptive image processing techniques
to analyze the focus quality and improve the sharpness of the im-
ages before training the classifier. To tune the parameters of the
unsharpening algorithm, the approach introduces the VAR-PCANet,
a novel shallow CNN based on a feedforward design and trained us-
ing an unsupervised procedure, so that the size of the network and
the filters only depend on statistical analyses of data in the previous
layers. Lastly, the method uses state-of-the-art deep CNNs to pro-
cess the unsharpened images and classify white blood cells in two
classes: normal and lymphoblast, increasing the classification accu-
racy independently of which CNN is used. We evaluate our method
on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB)
[1], with results showing that our approach can increase the lym-
phoblast detection accuracy, independently of which deep CNN is
used in the final classification step.

The paper is structured as follows. Section 2 describes the
methodology. Section 3 presents the experimental results. Finally,
Section 4 concludes the work.

2. METHODOLOGY

The proposed method executes the following steps: A) image regis-
tration for normalizing cell radius; B) focus quality estimation and
adaptive image unsharpening; C) shallow CNNs for tuning of adap-
tive image unsharpening; D) final adaptive image unsharpening;
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Fig. 2. Outline of the proposed methodology. In step E) “Deep CNN Classification”, it is possible to choose among several pre-trained CNNG in the literature,

such as AlexNet, VGG16, VGG19, ResNet, or DenseNet.

E) deep CNN classification. In the rest of the section, we consider
a dataset containing images of white cells (Fig. 1) in which each
image has a binary label (0: normal; 1: lymphoblast). Fig. 2 shows
the outline of the proposed methodology.

2.1. Image Registration for Normalizing Cell Radius
The registration algorithm has the purpose of processing the dataset
to normalize the radius of cells in each image.

First, we apply the color normalization method described in [19]
to image I, convert the resulting image to grayscale, and binarize it
using the Otsu’s method, obtaining Mipresh -

Second, we segment the image by applying a fuzzy C-means
clustering with 3 classes, and discarding the largest class correspond-
ing to the background, obtaining the binary image M ¢cm,.

Third, the algorithm applies a post-processing by computing the
union of the masks M = M;presn U Myem, selecting only the con-
nected component with the largest area, and refining the segmenta-
tion using the active contour method [20] followed by morphological
processing.

Fourth, the method fits an ellipse on the edge coordinates of M,
with center (¢, ¢y) and axes lengths amaz, Gmin-

Lastly, we compute the registered image R by extracting the
region of interest of I centered in (cs,cy), with size 1.5 - amin,
resize the resulting image to W = H = 256 pixels, and apply a
min-max normalization to each image. In the following, we refer to
the set of registered images { R} as DBoriginal-

2.2. Focus Quality Estimation and Adaptive Image Unsharp.
An adaptive preprocessing technique is proposed to improve the
sharpness quality of ALL images. The method is based on estimat-
ing the focus quality of each image, analyzing the relation among
the focus quality and the image label, and on a subsequent process-
ing to increase the sharpness quality in an adaptive way. To estimate
the focus quality and perform the adaptive image unsharpening, we
consider the training subset of the database.

We divide this adaptive approach into the following steps: i) es-
timation of focus quality; ii) estimation of data bias; iii) adaptive
unsharpening.

2.2.1. Estimation of Focus Quality

The method estimates the focus quality f; of each image R;, with
1 < ¢ < N, where N is the number of training images in the
database, obtaining the vector of focus qualities f = [f1, f2,... fn].
To compute the focus quality, we use the FQPath method introduced
in [21], which evaluates the focus quality level of microscopy imag-
ing in the brightfield mode by decomposing the input image using
a visual sensitivity-like FIR filter corresponding to the out-of-focus
lens, and then extracting high order statistical moment features to
quantize the image sharpness level.

2.2.2. Estimation of Data Bias

The method extracts the vector of binary labels 1 = [I1, 12, ...In],
where [; = 1 if R; contains a lymphoblast, and [; = 0 otherwise.
Then, we estimate the data bias b by computing the correlation coef-
ficient between f and 1: b = corrcoeff(f, 1). We observed that, in the
ALL-IDB database, there exist a significant data bias (|b] > 50%),
indicating that the focus quality is correlated with the label and the
images with better quality are mostly associated with lymphoblast
cells.

2.2.3. Adaptive Unsharpening

The approach performs an adaptive unsharpening of the images, with
the purpose of improving the focus quality f; for each image un-
til it reaches thynsharp, Which represents a focus threshold. Such
threshold is unique for the training subset and determines which fo-
cus quality the unsharpened images should have.

To perform the adaptive unsharpening, for each image R; €
{R}, we compute the image R’ by applying an unsharp masking
using a Gaussian kernel with standard deviation o;. We chose the
Gaussian kernel to perform the unsharp masking since such kernel
simulates the optical characteristics of the out-of-focus lens [21]. To
obtain a focus quality as close as possible to thynsharp, 0i is cho-
sen separately for each image as the value minimizing the difference
between the focus quality f; and thunsharp:

o; = argmin (f; — thunsharp) -

M

To choose the value of thunsharp, We vary it in the range [0, 10].
Such range corresponds to the possible levels of image sharpness in
medical imaging, (where 0 = “sharp” and 10 = “blurry”), provided
by the FQPath focus quality estimation algorithm [21]. For each
value, we compute the unsharpened images { R’} and estimate the
new focus quality f;. Then, we compute the vector of focus qualities
f' = [f1, f3,--- fn], and the new data bias ' = corrcoeff(f’,1).

We obtain a value of b’ for each possible value of thyunsharp-
It is therefore possible to express the bias as a function of the fo-
cus threshold: b = f(thunsharp). Then, we choose the value of
th, as the one that minimizes the absolute value of the data

unsharp

bias b’ (thunsharp):

th;nsharp = arg min <|b/(thunsharp)|)

hunsh,arp
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2.3. Shallow CNNs for Tuning of Adaptive Image Unsharpening
This section describes the proposed method, based on shallow
CNNes, to perform a machine learning-based tuning of the th.,,, harp
parameter of the adaptive image unsharpening algorithm. Such pa-
rameter is unique for the dataset and is computed considering all
images of the training subset. In particular, we tune the thy,,qparp
parameter by training a shallow CNN on the unsharpened samples
{R'} obtained from the training subset, following the procedure de-

scribed in Section 2.2.3. We consider different values of thy,,, . arp



and choose the value for which we obtain the best classification
accuracy.

In the proposed tuning method, we introduce the VAR-PCANet,
a novel variation of the PCANet, a shallow CNN in which the filters
are computed as the eigenvectors of the PCA on the input images
[22]. We considered the PCANet since it has several properties that
make it suitable to tune the proposed method for adaptive unsharp-
ening: i) it has a feedforward design, in which the filters are derived
from statistical analyses of the data in the previous layers; ii) it ex-
tracts a feature vector which can be analyzed to derive information
about the distribution of the samples in the feature space. For exam-
ple, for a new sample it would be possible to visualize the closest
samples in the feature space; iii) it is possible to use a nearest neigh-
bor classifier with no training, in which the output only depends on
the feature vector and its closest sample in the feature space, to pre-
dict the label. In addition, PCANet represents a high-accuracy base-
line in several computer vision tasks such as object recognition, bio-
metrics, and medical image analysis [23, 24].

The VAR-PCANet extends the PCANet by providing an auto-
matic methodology also to determine the sizing of the network. In
the VAR-PCANet, the number of filters depends solely on the vari-
ance of the input data and is chosen using a learning procedure based
on the PCA of the input images. In the rest of the section, we de-
scribe the procedure for the training of VAR-PCANet, feature extrac-
tion, classification, and parameter tuning. All the steps of the VAR-
PCANet are applied considering the training subset of the database.

2.3.1. Training of VAR-PCANet

The training of the VAR-PCANet is divided in two steps as follows.

Collection of the Local Regions of the Images. After apply-
ing the adaptive image unsharpening, the method extracts from the
images {R'} the local regions p; ; with dimensions of m1 X ma,
centered on each pixel, with: =1,2,... ,Hand 5 =1,2,..., W.
Then, the method reshapes p; ; as H - W vectors p1, p2,...,PHW,
with size m1 X mo, and subtracts the mean value from each vector.
We concatenate the vectors p;, computed from all the N images, to
obtain a matrix P with size mimo X NHW.

Filter Tuning. The method performs the filter tuning using a
PCA-based procedure. First, we select the V first eigenvectors of
PPT, as e,, with v = 1,2,...,V. Then, we select the V filters
of the VAR-PCANet by reshaping each eigenvector e, into a matrix
with size m1 X me. Differently than the PCANet, in which V' is
chosen according to experimental evaluation, in the VAR-PCANet,
V' is chosen to preserve the th,q- percentage of the input data, with
0 < thyer < 1. In particular, we chose V' as the number of fil-
ters for which the difference between the sum of the corresponding
eigenvalues A, and thyq, is minimum:

v
V = arg mi Mo | — thear | 3
() ) 0
where 2V

»—1 v represents the percentage of the variance of the in-
put data encoded by the first V' eigenvectors.

2.3.2. Feature Extraction and Classification

First, we perform the feature extraction step by applying the trained
VAR-PCANEet on each image R’ of the training subset and encod-
ing the result as a feature vector, using a procedure based on image
filtering, binary encoding, and histogram computation [22].

To classify the obtained feature vector, we use a k-NN classifier,
with £ = 1, based on the Euclidean distance (1-NN). We chose the
1-NN classifier since it does not require training nor parameters to
tune and its accuracy only depends on the discriminant capability of

the feature vectors. We consider the classification accuracy as the
percentage of correctly classified samples.

2.3.3. Parameter Tuning

We tune the value of th;nsharp by following a procedure in two

steps. First, we apply the method described in Section 2.2 to choose
thynsharp DY minimizing the data bias [b|, following the Eqn. 2.
Then, we perform a sensitivity analysis by considering thgnshmp =
thensharp £ 10% and using the value of th.;,, .44, for which VAR-
PCANet gives the best classification accuracy over the training sub-

set, based on the procedure described in Section 2.3.2.

2.4. Final Adaptive Image Unsharpening

We apply the adaptive unsharpening method described in Section 2.2
separately on all images of the dataset (both training and testing sub-
sets), using the obtained value of th,,,.j,q.,. We refer to the set of
preprocessed images { R’} as DBunsharp-

2.5. Deep CNN Classification

To perform the classification, we consider a pre-trained deep CNN,
since they often represent the state of the art for classification in sev-
eral fields, especially in the cases for which only a limited number
of samples is available [14, 29]. To classify the blood samples, we
perform a fine tuning of the deep CNN by modifying the last fully
connected layer, which is configured for the 1000 classes of the Im-
ageNet database, into a layer configured for a binary classification
(0: normal; 1: lymphoblast). Then, we train the deep CNN on the
training subset of the database, following the procedure described in
Section 3.2. Lastly, we apply the trained deep CNN separately on
each image of the testing subset to obtain the classification output.

3. EXPERIMENTAL RESULTS

For the experimental evaluation, we consider the ALL-IDB2 dataset
[1], which contains 260 images of white cells cropped to show only
aregion of interest around the cell (Fig. 1). Each image has a binary
label (0: normal; 1: lymphoblast).

3.1. Evaluation Procedure
To evaluate the accuracy of the proposed methodology, we consider
a n-fold cross-validation, with n = 2, repeated 10 times. At each
repetition, the training and testing subsets contain = 50% of the
samples, selected randomly.

For each repetition, we apply the proposed methodology only
on the training subset to perform the focus quality estimation and
train the VAR-PCANet to tune the parameters of the adaptive image
unsharpening algorithm. Then, we perform the final adaptive image
unsharpening on all the dataset and classify the samples using the
deep CNNs, trained using the procedure described in Section 3.2.
The results are then averaged over the 10 repetitions.

3.2. Parameters Used and Deep CNN Training

We use a VAR-PCANet with 1 stage, with value thyq, = 0.92, cho-
sen by varying it in the range [0, 1]. We choose the values m1, m2 by
considering the range [1, W] and selecting the values corresponding
to the best classification accuracy, obtaining mi = mg = 15.

We perform the fine tuning of each pre-trained deep CNNs by
changing the last fully connected layer according to the procedure
described in Section 2.5, then we train the deep CNN for 100 epochs,
with a batch size = 20, using a learning rate of 1~* for all layers,
except for the last fully connected layer in which we use a learning
rate of 273, We use a data augmentation procedure on the training
subset, by randomly flipping the image along the x and y axes and
applying random rotations in the range of [—180, 180] degrees.



Table 1. Quantitative evaluation: error measures on ALL-IDB2,,;gina; and ALL-IDB2,,,, sharp, Obtained using deep CNNs with fine tuning. For each of
the CNNs separately, the ALL-IDB2,,,,55.4.p database enables to obtain a greater classification accuracy.

~ Acc. Err. Sens. Spec. TP ™ FP FN
Ref. Deep CNN ‘ (%) (Meangyq)
‘ ALLADB2, i ginal
25] AlexNet 93.762 06 6.239 06 96.765 10 90.764 592 48.381 05 45.389 26 4.612 26 1.611 o5
[26] VGG16 95.305 52 4.693 52 96.765 94 93.844 35 48.387 47 46.925 17 3.075.17 1.617 47
[26] VGG19 95.385 05 4.615 05 96.761 .52 94.004 88 48.38(. 76 47.005 47 3.005 47 1.610. 76
[27] ResNet8 96.00] o1 4.007.01 95.235 45 96.761 .84 47.617 o5 48.38(.92 1.610.92 2.381 oo
[27] ResNet50 96.007 43 4.007 48 97.531 .80 94.465 g5 48.76(. 90 47.237 .4 2.761 .41 1.230 90
[27] ResNet101 95.53] g7 4.461 g7 96.617 .89 94.464 17 48.30(. 94 47.235 08 2.765 08 1.690 94
[28] DenseNet201 96.767 48 3.23] 48 95.233°11 98.307 .52 47.617 55 49.15( . 7¢ 0.84¢.7¢ 2.381 55
ALL-IDB2y, hsharp
25] AlexNet 95.071 85 4.921 g5 96.929 g0 93.239 91 48.467 40 46.617 45 3.381 45 1.5371 .40
[26] VGG16 96.847 o7 3.157 o7 97.53]1 g0 96.155 73 48.769 90 48.071 3¢ 1.927 3¢ 1.239 90
[26] VGG19 95.531 57 4.461 57 94.763 95 96.305 g3 47.381 g2 48.157 31 1.847 371 2.611 g2
27] ResNet18 96.007 13 4.007 13 94.769 g2 97.239 oo 47.387 41 48.6171 o1 1.381.01 2.617 41
271 ResNet50 96.697 .49 3.301 49 97.387 45 96.005 53 48.69( 72 48.007 2g 2.007 26 1.300 72
[27] ResNet101 96.007 g7 4.007 g7 95.845 18 96.153 9o 47.921 g9 48.071 .96 1.921 gg 2.071.09
28] DenseNet201 96.691 14 3.3071 .14 95.079 27 98.309 34 47.5371 .13 49.157 17 0.841 17 2.461 13
Notes. Acc. = Accuracy; Err. = Error; Sens. = Sensitivity: Spec. = Sp ity; TP = True Positives; TN = True Negatives; FP = False Positives; FN = False Negatives.

3.3. Quantitative Evaluation

First, we perform a fine tuning of the deep CNNs on ALL-IDB2,;ginat

and ALL-IDB2,sharp separately, we perform the classification,
and compute the error measures, as described in Section 3.1.
As CNNs, we compare the results obtained using AlexNet [25],
VGG16, VGG19 [26], ResNet [27], and DenseNet [28]. These
CNNs are among the most widely used in the literature [29]. Table 1
shows the error measures obtained using different deep CNNs with
fine tuning, on both ALL-IDB2.,igina: and ALL-IDB2,nsharp.
For all methods, we report the mean and standard deviation, fol-
lowing the reporting procedure described in [1]. From the table, it
is possible to observe that, for each CNN separately, using ALL-
IDB2ynsharp €nables to obtain a greater classification accuracy and
therefore a lower classification error, showing the validity of the
proposed methodology. In particular, using the VGG16 fine tuned
on ALL-IDB2,,sharp permits to obtain the greatest classification
accuracy among the considered methods (96.84%).

As a comparison, we considered a traditional unsharpening
method, with a fixed value of o; for all images, chosen in the range
[1,5]. Beyond this range, the corresponding focus quality level f;
did not change significantly. However, a fixed value of o; did not
allow to increase the classification accuracy in all cases. Moreover,
the optimal value of o; would need to be chosen separately for
each CNN using an experimental procedure. In contrast, our method
automatically tunes o; using a procedure based on machine learning.
3.4. Qualitative Evaluation
To perform a qualitative evaluation of the proposed methodology, we
apply the Grad-CAM technique [30] on the VGG16 trained with fine
tuning on the ALL-IDB2y,5harp, as described in Section 2.5. We
chose the Grad-CAM since it allows to observe which regions of the
image contribute more to the result of the classification. With respect
to other similar methods such as LIME [31] or SHAP [32], Grad-
CAM can output a finer-grained map describing how each region of
the image contributes to the final classification.

To evaluate in an qualitative way the improvement in the ac-
curacy obtained using ALL-IDB2,,sharp With respect to ALL-
IDB2,iginal, We extract the pairs of corresponding images (R;, R;),
where R; € ALL-IDB2,,;gina: and R; € ALL-IDB2ypsharp, With
i = 1,..., M, where M is the size of the dataset. Then, we
compare the results of the Grad-CAM on R, and R, for each i.
Fig. 3 shows some examples of the Grad-CAM applied on images
of ALL-IDB2,igina; and ALL-IDB2y,sharp. The regions in red
correspond to the parts of the image that contribute more to the
classification output. From the figures, it is possible to observe how,
in the images R; € ALL-IDB2.snarp, the tegions with higher

ALL-IDB2
Grad-CAM
original (R;)

Images

original (R;) uns:ha'rp (R

unsharp (R )

& e
( ?. 01

Fig. 3. Qualitative evaluation: examples of corresponding images of ALL-
IDB2,iginai (left column) and ALL-IDB2,,;,5pqrp (right column), with
the application of the Grad-CAM technique [30] on the results obtained using
VGG16 with fine tuning. It is possible to observe that, in the images in ALL-
IDB25, sharp, the regions that contribute more to the classification output
(in red) are more centered on the white cells, with respect to using ALL-
IDB2,;iginat, showing that proposed method increases the level of detail
and allows CNNs to learn features focused more on the details on the cell.
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intensity (in red) are more centered on the white cells, with respect
to the images R; € ALL-IDB2,,;ginai. This is caused by the fact
that, in the case of ALL-IDB2,,,sharp, the features of the cell have
a greater influence on the result of the classification, with respect
to the images in ALL-IDB2,,;ginqi- This simply implies how the
proposed method is able to increase the accuracy of the classification
by increasing the level of detail and allows CNNs to learn features
focused more on the details on the cell, and not on the background.

4. CONCLUSION

In this paper, we proposed the first machine learning-based method-
ology based on Deep Learning (DL) for the focus quality estimation,
adaptive unsharpening, and classification of Acute Lymphoblastic
Leukemia (ALL) blood samples as normal vs lymphoblast. Our
method uses innovative adaptive image processing techniques to im-
prove the image sharpness level prior to training and shallow CNNs
to tune the parameters of the unsharpening algorithm. The proposed
approach increases the details of the images by estimating their fo-
cus quality and adaptively reducing the bias in the data between the
quality of the images and their class. Experiments on public ALL
databases show that deep CNNss trained using the images unsharp-
ened with the proposed method increase the lymphoblast detection
accuracy, independently of which CNN is used. Future works should
consider different DL architectures and databases with more sam-
ples.
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