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Introduction: Although acute transverse myelitis (ATM) is a rare neurological condition

(1.34-4.6 cases per million/year) COVID-19-associated ATM cases have occurred during

the pandemic.

Case-finding methods: We report a patient from Panama with SARS-CoV-2 infection

complicated by ATM and present a comprehensive clinical review of 43 patients with

COVID-19-associated ATM from 21 countries published from March 2020 to January

2021. In addition, 3 cases of ATM were reported as serious adverse events during the

clinical trials of the COVID-19 vaccine ChAdOx1 nCoV-19 (AZD1222).

Results: All patients had typical features of ATM with acute onset of paralysis, sensory

level and sphincter deficits due to spinal cord lesions demonstrated by imaging. There

were 23 males (53%) and 20 females (47%) ranging from ages 21- to 73- years-old (mean

age, 49 years), with two peaks at 29 and 58 years, excluding 3 pediatric cases. The main

clinical manifestations were quadriplegia (58%) and paraplegia (42%). MRI reports were

available in 40 patients; localized ATM lesions affected ≤3 cord segments (12 cases, 30%)

at cervical (5 cases) and thoracic cord levels (7 cases); 28 cases (70%) had longitudinally-

extensive ATM (LEATM) involving ≥4 spinal cord segments (cervicothoracic in 18 cases

and thoracolumbar-sacral in 10 patients). Acute disseminated encephalomyelitis (ADEM)

occurred in 8 patients, mainly women (67%) ranging from 27- to 64-years-old. Three ATM

patients also had blindness frommyeloneuritis optica (MNO) and two more also had acute

motor axonal neuropathy (AMAN).
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Conclusions: We found ATM to be an unexpectedly frequent neurological complication

of COVID-19. Most cases (68%) had a latency of 10 days to 6 weeks that may indicate

post-infectious neurological complications mediated by the host’s response to the virus.

In 32% a brief latency (15 hours to 5 days) suggested a direct neurotropic effect of SARS-

CoV-2. The occurrence of 3 reported ATM adverse effects among 11,636 participants in

the AZD1222 vaccine trials is extremely high considering a worldwide incidence of 0.5/

million COVID-19-associated ATM cases found in this report. The pathogenesis of ATM

remains unknown, but it is conceivable that SARS-CoV-2 antigens –perhaps also present

in the AZD1222 COVID-19 vaccine or its chimpanzee adenovirus adjuvant– may induce

immune mechanisms leading to the myelitis.

Keywords: COVID-19, neurological complications, SARS-CoV-2 neurotropism, myelitis, transverse myelitis,

COVID-19 ChAdOx1 nCoV-19 vaccine

INTRODUCTION

Neurological complications of coronavirus disease 2019 (COVID-19)

are well recognized (1–3) and affect both the central nervous system

(CNS) and the peripheral nervous system (PNS). Neurological injury

results from the affinity of the COVID-19 etiological agent, the Severe

Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), for the

angiotensin-converting enzyme 2 (ACE2) receptor present in
neurons and glial cells endowing high neuroinvasive potential to

SARS-CoV-2 compared to previous coronaviruses. The high

frequency of anosmia during the acute infection probably reflects

viral invasion of the olfactory bulbs. Cells with abundant ACE2

receptors are infected first by this coronavirus including nasal

epithelium cells, ciliated bronchial epithelial cells and type II

pneumocytes, explaining the severity of the pulmonary
involvement. Also, the presence of ACE2 receptors for the viral S

protein in endothelial cells correlates with the frequent vascular

complications of COVID-19 resulting from endotheliitis and

microvascular brain injury (4) that induces the host’s immune

response with cytokine storm, hyperinflammation, coagulopathy,

thrombosis and embolism resulting in ischemic and hemorrhagic
strokes and multisystemic complications affecting lungs, heart,

kidneys and liver.

According to Borchers and Gershwin (5), ATM is a rare

neurological condition in adults with an estimated incidence ranging

between 1.34 and 4.6 cases permillion annually with amean age of 35-

40 years. We report a patient with SARS-CoV-2 infection in Panama

who developed acute transverse myelitis (ATM) and we present the
results of a comprehensive review of COVID-19-associated myelitis

that yielded 42 additional cases reported in 21 countries worldwide

(6–44) published from March 2020 to January 2021 during year 1 of

the pandemic (Table 1 and Supplementary Table 1A). Furthermore,

3 ATM serious adverse events were reported with the ChAdOx1

nCoV-19 (AZD1222) vaccine trials (45, 46).

CASE DESCRIPTION

A previously-healthy 72-year-old man presented to the
emergency department at a hospital in Panama City, Panama,

complaining of sudden difficulty to urinate. The urologist
diagnosed neurogenic bladder and placed a Foley catheter.

Three days later the patient developed dysesthesias in arms

and legs and weakness of all four limbs. Neurologic

examination showed 3+/5 strength in the upper extremities

and 1+/5 in the lower limbs with spastic paraplegia,

generalized hyperreflexia, bilateral Babinski, and spontaneous
pyramidal jerking of both legs; sensory examination disclosed

decreased proprioception in the legs and a tactile sensory level

below Th9. The patient was alert and oriented; higher cortical

functions, cranial nerves and cerebellar examination were

all intact.

He denied fever, headache, ageusia, anosmia, fatigue, diarrhea
or upper respiratory symptoms during the past 3 weeks. Past

medical history was negative except for hypertension controlled

with enalapril. The SARS-CoV-2 RNA PCR nasal swab test was

negative on 2 occasions. His wife was asymptomatic, but her

nasal swab test was positive, and she had SARS-CoV-2

antibodies. The patient’s serology demonstrated recent

infection with SARS-CoV-2 IgG index = 3.53 (normal <1.6)
and IgM index = 5.1 (normal <0.6). Chest X-rays showed mild

cardiomegaly but no evidence of consolidation or pleural

effusion. Chest computerized tomography (CT) scan was

normal. Electrocardiogram showed mild left ventricular

hypertrophy. The patient was afebrile and his general physical

evaluation was normal. Respiratory rate 16 breaths per minute,
oxygen saturation 98% on room air, blood pressure 130/80

mmHg, heart rate 78 beats per minute and temperature 36.8°C.

Laboratory results showed normal white blood cell count

(8,100/mL) with normal hemoglobin (14.7g/dl). Inflammatory

markers showed elevated C-reactive protein at 1.7mg/dl and high

erythrocyte sedimentation rate at 51mm/hr (normal range

0-10mm/hr). Coagulation profile was normal. Protein C,
Protein S, Antithrombin III, and activated Protein C resistance

were within normal limits. Hematology consult found no

associated pathology. Hepatic and thyroid function tests were

normal. VDRL and HIV tests were negative. Autoimmune

immunological screening was negative for lupus anticoagulant,

anti-nuclear antibodies (ANA), anti-neutrophil cytoplasmic
antibodies, rheumatoid factor, anti-cardiolipin, and
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TABLE 1 | Summary of SARS-CoV-2-Associated Myelitis Published Cased from March-2020 until January-2021.

Case Country Sex/Age

years

Myelitis Type Lesion Level Other Clinical Features Ref.

ATM LEATM C CT Th Conus

1 CN M/66 ATM Th10 Zhao (6)

2 IR M/60 LEATM C1-4 Saberi (7)

3 GB M/40 ATM C1-2 ADEM

Brainstem rhombencephalitis

Wong (8)

4 IT W/54 LEATM C2-

Th6

Bulbomedullary lesions Zanin (9)

5 DK W/28 LEATM X X X X Medulla oblongata to conus medullaris Sarma (10)

6 ES W/69 LEATM C7 -

Th1

Medulla to C7- Th1 Sotoca (11)

7 DE M/60 ATM Th9 Late lesions Th3-5 Th9-10 Munz (12)

8 IT W/64 ATM Th8 ADEM – NMO Monoclonal gammopathy CSF

SARS-CoV-2 (+)

Novi (13)

9 IT W/22 ATM X Giorgianni (14)

10 US W/61 LEATM C1-

Th1

AMAN Valiuddin (15)

Maideniuc (16)

11 AE M/32 LEATM C2-Th-

L

Al Ketbi (17)

12 BR W/42 ATM C5 Trigeminal nucleus Barros- Domingues

(18)

13 IR M/21 LEATM C1-Th Zoghi (19)

14 US M/24 LEATM Th7-

12

Durrani (20)

15 CH M/63 ATM Th10 Zachariadis (21)

16 TR M/48 ATM C2-3 ADEM

CSF: SARS- CoV-2 (+)

Otluoglu (22)

17 QA M/52 LEATM Th3-

10

Abdelhady (23)

18 US M/44 LEATM C5-7

Th3-6

conus

medullaris

ADEM Utukuri (24)

19 US W/40 ATM C1 ADEM

Pons, medulla

McCuddy (25)

20 AU M/60 LEATM Th7-

10

Chow (26)

21 US G/3 LEATM C1 to

Th6

Lower medulla to Th6 Kaur (27)

22 MD M/27 LEATM C4-

Th5

HIV (+) Lisnic (28)

23 IN W/59 ATM Th6-7 Chakraborty (29)

24 IR M/63 LEATM C7-

Th12

Hazrati (30)

25 BR W/51 LETM Th6-

10

Lumbar radiculitis Corrêa (31)

26 IT W/70 ATM C7-

Th1

AMAN

Anti-GD1b IgM

Masuccio (32)

27 IR W/53 ATM Th8-

10

Baghbanian (33)

28 IT M/64 ATM Rifino (34)

29 IT M/64 ATM Rifino (34)

30 ES M/50 ATM C5-C6 Águila- Gordo (35)

31 TR G/14 LEATM C2-5 Güler (36)

32 MX M/73 LEATM C1 -

C3-6

Atlas to C3-C6 cervical spondylotic myelopathy Guadarrama - Ortiz

(37)

33 US M/26 LEATM C4-7

Th5-8

Edema optic nerves

MOG-IgG-mediated NMOSD

Zhou (38)

34 ID W/45 ATM Th3-4 Munir (39)

35 GB W/33 LEATM C1-7

Th2

ADEM

Brain & pontomedullary

Paterson (40)

36 GB W/27 ATM Conus

medullaris

ADEM

diffuse T2 white matter and corticospinal lesions

Paterson (40)

(Continued)
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complement C3, C4. Rheumatology consult found no underlying

disease. Aquaporin-4 antibody (anti-AQP4) and myelin

oligodendrocyte glycoprotein antibody IgG (anti-MOG-IgG) in
serum were both negative (Quest diagnostics Nichols

Institute, CA).

Gadolinium-enhanced magnetic resonance imaging (MRI) of

the brain was normal. MRI of the spinal cord revealed mild

cervical and thoracic cord enlargement and swelling with diffuse

hyperintensities. On the axial projections, cord hyperintensities
at C4-C5 and Th3-Th4 were observed with irregular patchy

imaging but without contrast enhancement consistent with

ATM (Figure 1). No apparent hemorrhagic components were

present, and the conus medullaris had normal appearance.

Cerebrospinal fluid (CSF) showed no cells, hyperproteinorraquia

of 76mg/dl and normal glucose. Meningitis CSF panel was negative

for bacteria, yeast and viruses. Gram, acid-fast bacilli and fungus
stains were negative. CSF oligoclonal bands (IgG) demonstrated 3

well-defined gamma restriction bands thatwere not present in serum

(Quest diagnostics Nichols Institute, CA).

The patient was treated with a pulse dose of IV

methylprednisolone 1g/d for 5 days, enoxaparin 40 mg daily,

followed by IV gamma-globulin (IVIG) 30g/day for five days.
Oral prednisone was prescribed for the next 30 days. He

recovered partial strength in his upper limbs (4+/5) but the

severe spastic paraplegia (1+/5) and the neurogenic bladder

remained unchanged. He is undergoing physical therapy and

rehabilitation treatment.

CASE-FINDING REVIEW

We performed a comprehensive search of the literature using

PubMed, Medline, Scopus, Web of Science, EMBASE, and

Google Scholar up to January 5, 2021. For PubMed we used

the following key search terms: (“Myelitis, Transverse” [MeSH]

OR “Myelitis” [All Fields] OR “Myelitis, Acute” [All Fields] OR

“Encephalomyelitis” [All Fields] OR “Neuromyelitis Optica”
[MeSH] OR “Mye loneuropa thy ” [A l l F i e ld s ] OR

“Encephalomyelitis, Acute Disseminated” [MeSH] OR “Acute

Disseminated Encephalomyelitis” [All Fields]) AND (“COVID-

19” [MeSH Term] OR “SARS-CoV-2” [MeSH Term] OR

“coronavirus” [All Fields]). Table 1 and Supplementary Table

1A list the total 43 patients reported in 21 countries worldwide,
as follows: 7 cases from Iran (IR), 6 each from Italy (IT) and the

United States of America (US), 4 from the United Kingdom

(GB), 2 cases each from Brazil (BR), Spain (ES), and Turkey

(TR), plus single case reports from Australia (AU), Belgium (BE),

China (CN), Denmark (DK), Germany (DE), India (IN),

Indonesia (ID), Mexico (MX), Moldova (MD), Panama (PA),

Pakistan (PK), Qatar (QA), Switzerland (CH), and the United
Arab Emirates (AE). Patient 10 from the US was published twice

(15, 16).

RESULTS

Early reports of neurological complications of COVID-19 from

China (2) and France (3) included no cases of ATM. Therefore, it

was unexpected to collect 43 cases of COVID-19-associated
myelitis in a period of 10 months around the world. Given a

total of 86 million COVID-19 cases as of 5 January 2021

(coronavirus.jhu.edu) the incidence of myelitis is 0.5 per

million. Based on a single hospital COVID-19 series with 1760

patients from Italy (34), SARS-CoV-2-associated ATM may

represent 1.2% of all neurological complications of COVID-19.
COVID-19-associated ATM was reported in 23 males (53%)

and 20 females (47%) ranging in age from 21 to 73 years (mean

age 49 years) excluding children. There were three age groups: (i)

TABLE 1 | Continued

Case Country Sex/Age

years

Myelitis Type Lesion Level Other Clinical Features Ref.

ATM LEATM C CT Th Conus

37 GB M/48 LEATM Th5-6

Th10-

11

Conus

medullaris

Paterson (40)

38 IR M/47 LEATM C2-

Th2

Advani (41)

39 IR W/67 LEATM C3-C6 Advani (41)

40 PK M/56 LEATM Th4-

Th8

Ali (42)

41 IR G/11 LEATM Th3-

Th6

Nejad- Biglari (43)

42 BE W/38 LETM C3-

Th4

Fumery (44)

43 PA M/72 LEATM C2-

Th9

Román-Gracia (this

report)

Names of Countries: Australia = AU, Belgium = BE, Brazil = BR, China = CN, Denmark = DK, Germany = DE, India = IN, Indonesia = ID, Iran = IR, Italy = IT, Mexico = MX, Moldova = MD,

Panama = PA, Pakistan = PK, Qatar = QA, Spain = ES, Switzerland = CH, Turkey = TR, United Arab Emirates = AE, United Kingdom = GB, United States of America = US.

ADEM, acute disseminated encephalomyelitis; AMAN, acute motor axonal neuropathy; ANA, antinuclear antibodies; AQP4, aquaporin-4; ATM, acute transverse myelitis; (C, cervical; CSF,

cerebrospinal fluid; G, girl; HIV, human immunodeficiency virus; LEATM, Iongitudinally-extensive acute transverse myelitis; M, man; MOG-IgG, myelin oligodendrocyte

glycoprotein antibody-immune globulin G; NMOSD, neuromyelitis optica spectrum disorder; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2, Th, thoracic; W, woman.
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Pediatric cases: Patient 21, a 3-year-old Navajo girl in the USA

(27), Patient 31, a 14-year-old girl in Turkey (36), and Patient 41,

an 11-year-old girl from Iran (43). (ii) Young adult cases: 13

patients, 7 men and 6 women, ages 21-42 years with mean age of

29 years. (iii): Older adults: 27 patients, 18 men and 9 women,
ranging from 44-73 years (mean age 58 years).

The main manifestations of the spinal cord lesions based on

clinical examination included two major groups, quadriplegia

and paraplegia. There were 27/40 patients (58%) with

tetraparesis/quadriplegia resulting from cervical cord-upper

thoracic cord lesions compared with 15/40 (42%) with acute

paraparesis/paraplegia from thoracic cord lesions. The
anatomical distribution of the spinal cord lesions by MRI

imag ing was repor t ed in 40 case s (Table 1 and

Supplementary Table 1A). Localized ATM lesions affected

≤3 cord segments in 12 cases (30%) at cervical (5 cases) and

thoracic cord (7 cases) levels, and 28 cases (70%) had

longitudinally-extensive ATM (LEATM) involving ≥4

spinal cord segments in cervicothoracic (18 cases) and
thoracolumbar-sacral regions (10 cases). In 3 case reports the

lesions are described as ‘myelitis’ without further clinical

information. Cervical cord lesions extended in some cases to

the brainstem causing rhombencephalitis (8), as well as

involvement of pons and medulla oblongata. Patient 4 from

Denmark (10) had the most extensive lesions reported affecting

the entire spinal cord from the medulla oblongata to the conus
medullaris. Patients 18, 36 and 37 had lesions affecting the

conus medullaris.

FIGURE 1 | Spinal cord MRI. (A) Sagittal Short-T1 Inversion Recovery: Mild cervical cord thickening and diffuse hyperintensities in cervical and dorsal cord (red

arrows). (B) Sagittal T1 + gadolinium. No contrast enhancement. (C, D) Axial T2 (C4-5 and T3-4 levels) showing diffuse cord hyperintensities (red arrows).
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The latency period from the onset of COVID-19 symptoms

to the first neurological manifestations followed a dual

distribution: (i) Short latency: 15 hours to 5 days in 11/34

patients (32%) and (ii) Long latency: 10 days to 6 weeks in 68%

(Table 1 and Supplementary Table 1A). The shorter latency

period may indicate a direct neurotropic effect of SARS-CoV-
2 during the initial infection causing para-infectious myelitis.

Longer latency periods may indicate a post-infectious

neurological complication resulting from the host response

to the virus. No particular geographic origin, distribution by

sex or age group, nor clinical picture were associated with

shorter or longer latency periods. Treatments included
steroids in most patients, along with IVIg in a few instances;

some patients also received respiratory support. There were 2

deaths reported (Patient 17 from Qatar and Patient 23 from

India). SARS-CoV-2 RNA PCR in the CSF was positive in 2

cases (18, 24).

ATM AND OTHER
NEUROINFLAMMATORY SYNDROMES

According to Hartung and Aktas (47) a number of

neuroimmunological disorders affecting CNS and PNS are

expected to occur during COVID-19. Although the immune

mechanisms causing ATM remain unknown other neurological

disorders of neuroimmune nature were reported concurrently

with the myelitis (Table 1 and Supplementary Table 1A). These
included acute disseminated encephalomyelitis (ADEM),

neuromyelitis optica (NMO) and acute motor axonal

neuropathy (AMAN).

ACUTE DISSEMINATED
ENCEPHALOMYELITIS (ADEM)

Reichard et al. (48) reported the neuropathological findings,

extensive vascular lesions and perivenous demyelination of
ADEM in association with COVID-19. Myelitis as part of

ADEM was diagnosed in 8/40 patients (20%) summarized in

Table 1 and Supplementary Table 1A. In contrast with the

overall male preponderance in this series, ADEM with ATM

affected predominantly women (67%) ranging in age from 27-

64 years (mean age 43 years). Lesions revealed by spinal cord
MRI included LEATM from medulla oblongata and cervico-

thoracic cord (Th6) in Patient 3 (8); cervicothoracic spinal

cord lesions down to the conus medullaris in Patient 18 (24);

C1-7-Th2 in Patient 35 (40); and, Th5-6 and Th10-11 down to

the conus medullaris in Patient 37 (40). ATM at Th8 level

occurred in Patient 8 (13); at C2-3 level in Patient 16 (22); pons

and medulla-cord junction in Patient 19 (25); and,
intramedullary lesion of the conus medullaris in Patient 36

(40). Brain MRI lesions consistent with ADEM included

among others, multiple T1 post-Gd enhancing white matter

lesions plus bilateral edema of the optic nerves; hyperintense

FLAIR lesions in the medial temporal lobe; bilateral lesions

involving cerebral white matter, corpus callosum and

brainstem including pons and medulla-cord junction.

NEUROMYELITIS OPTICA (NMO) AND
NMO SPECTRUM DISORDERS (NMOSD)

NMO and NMOSD are relatively common conditions in
neuroimmunology (49–51) previously reported after SARS-

CoV-2 infection (52). We found 3 patients with myelitis and

visual loss due to optic nerve edema diagnosed with NMO.

Patient 8 (13), is a 64-year-old woman with ATM and visual

loss. Patient 33 (38), is a 26-year-old Hispanic man from the

USA with positive MOG-IgG antibodies who developed
papilledema, blindness and dysesthesias of the upper

extremities due to bilateral optic neuritis and LEATM cord

lesions from C4-Th2. Patient 25, from Rio de Janeiro, Brazil

(31) is a 51-year-old Caucasian woman, with a 2-week history

of COVID-19 who developed band-like dysesthesias at the

Th6-10 dermatomes, urinary retention, leg numbness and

paraparesis. Brain MRI showed enhancing T2/FLAIR lesions
in anterior fornix and subfornical organ. Spinal cord

MRI demonstrated LEATM at Th6-10 with lumbar

radiculitis. Serum ANA was positive (1:320). Anti-AQP4

ant ibodies were pos i t ive in serum and CSF. This

encephalomyeloradiculitis is probably a form of COVID-19-

associated NMOSD. According to Jarius et al. (53) NMO and
NMOSD are caused in >80% of cases by pathogenetic IgG

autoantibodies to AQP4 but only 1 case was positive in this

cohort. A 15-year-old Caucasian boy with SARS-CoV-2-

associated NMO reported by de Ruijter at al (52). had

blindness without myelitis but with positive anti-MOG-

IgG antibodies.

ACUTE MOTOR AXONAL NEUROPATHY
(AMAN)

AMAN may be found in patients with clinical Guillain-Barré

s y n d r om e (GB S ) , a n a c u t e immun e -m e d i a t e d

polyradiculoneuropathy reported as the most common form of

peripheral nerve lesion in patients with COVID-19 (54, 55).

Based on electrophysiological features GBS can be classified into
several subtypes including acute inflammatory demyelinating

polyneuropathy (AIDP), acute motor and sensory axonal

neuropathy (AMSAN), and AMAN (54, 56).

We found reports of 2 patients that presented concurrently

AMAN with ATM indicating simultaneous involvement of

CNS and PNS. Patient 10, a 61-year-old woman from the US

(15, 16) developed quadriparesis due to LEATM affecting C1-
Th1 and concurrent AMAN with negative anti-MOG-IgG and

anti-AQP4-IgG antibodies. Patient 26, a 70-year-old woman

from Italy (32) developed quadriparesis from ATM at C7-Th1
and AMAN with positive anti-GD1b IgM antibodies.

Román et al. Acute Transverse Myelitis and COVID-19

Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6537866

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


OTHER IMMUNE/INFLAMMATORY
FACTORS

In addition to the above patients other immune or inflammatory
mechanismsmay have contributed toCOVID-19-associatedATM.

Patient 22 is a 27-year-old HIV-positive man from Moldova (28)

whodevelopedparaplegiadue toLEATMinvolvingC4-Th5. Patient

32 is a 72-year-oldman fromMexico (37) with preexisting cervical

spondylotic myelopathy that evolved to tetraparesis after SARS-

CoV-2 infection due to ATM at the C1-C3-C6 levels.

DISCUSSION

Theneurotropismof the coronaviruses ingeneral andSARS-CoV-2

in particular has been well demonstrated (57–60). Moreover, the
numerous neurological complications of COVID-19 are well

recognized (1–4, 34, 40, 47, 48, 54, 55, 57, 61). Symptoms

reflecting central nervous system involvement include headache,

anosmia and dysgeusia, agitation, delirium, and impaired

consciousness (1, 61). Stroke is common, probably reflecting the

endoteliitis (62) and small-vessel brain lesions (4) causing brain

hemorrhages, arterial and venous thromboses, and subarachnoid
hemorrhage, as well as rare cases of acute hemorrhagic necrotizing

encephalopathy (48, 61). Neuropathological examination of fatal

adult cases of COVID-19 (63–65) showed in addition to vascular

lesions (4) low-grade localized encephalitis affecting brainstem

respiratory and cardiovascular centers (63).

According to Paterson et al. (40) the postulated mechanisms
causing ATM and the various neurological syndromes associated

with SARS-CoV-2 include, either individually or in combination,

direct viral neuronal injury (57–60) and the host’s secondary

hyperinflammation syndrome (61, 66, 67). SARS-CoV-2 enables

interleukin (IL)-1 synthesis and release (68) leading to

inflammasome activation. Also, IL-6, a proinflammatory

mediator, is elevated in COVID-19 and induces CNS immune
responses (68). Type I interferon (IFN) is dysregulated in

COVID-19 and can affect innate and acquired immunity (69).

COVID-19 patients exhibit increased circulating levels of IL-2,

IL-8, IL-17, granulocyte colony-stimulating factor, granulocyte-

macrophage colony-stimulating factor, interferon gamma-

induced protein 10, and monocyte chemoattractant protein 1
(69, 70). IFN release can result in inflammation and immune

system suppression (70). These immune factors may lead to the

so-called “cytokine storm” syndrome that triggers coagulopathy

and thrombosis (71). Also, of critical importance during

COVID-19 are the para- and post-infectious inflammatory or

immune-mediated neurological disorders (72–75), also observed

after vaccination (76, 77), that affect both the CNS and the PNS
causing GBS, ADEM, NMOSD, and ATM, among others.

ACUTE TRANSVERSE MYELITIS (ATM)

Definition and Differential Diagnosis
The term ATM is used here to identify patients with myelitis

described during COVID-19. Most COVID-19-associated ATM

cases reported here fulfill the strict definition of the Transverse

Myelitis Consortium Working Group (78) requiring clinical

evidence of bilateral sensory, motor, or autonomic dysfunction

referable to the spinal cord, and confirmed by MRI images.

ATM is different from acute flaccid myelitis or AFM (79) the

predominantly pediatric form of acute flaccid paralysis with
anterior myelitis or “polio-like syndrome” with spinal cord

gray matter lesions. Epidemiological data for pediatric cases of

AFM from a national surveillance program in the US (80)

reported as of July 2020 a total of 633 cases of AFM with a

median age of 5.3 years with peaks in 2014, 2016 and 2018. Non-

polio enteroviruses, including EV-D68 and EV-A71, are the most
frequent etiological agents (81). Children are relatively

unaffected by SARS-CoV-2, probably because of low ACE2

receptors in the olfactory mucosa (82) and there has been no

increase in cases of AFM up to July 2020. Patient 21 (27), a

3-year-old Navajo girl, is the youngest pediatric case of SARS-

CoV-2-associated ATM reported in this series. Three weeks after
an asymptomatic COVID-19 infection she developed a flaccid

quadriparesis as a result of LEATM extending from the lower

medulla and C1 to the Th6 spinal cord segments. These lesions

are clearly different from those of pediatric AFM (83).

According to West and colleagues (84), ATM remains a rare

immune-mediated neurological condition with an estimated

incidence of up to 3 per 100,000 patient years (0.003%). ATM
can be caused by autoimmune, inflammatory, and infectious

agents but the main differential diagnosis is with multiple

sclerosis. Clinical features and imaging usually eliminate from

the differential diagnosis of ATM other noninflammatory

conditions such as traumatic, compressive, neoplastic or

vascular lesions (84).

Pathogenesis of COVID-19-Associated ATM
The latency period between SARS-CoV-2 infection and onset of

the neurological symptoms was unknown in many instances

because of asymptomatic COVID-19. In most cases (68%) the

latency period ranged from 10 days to 6 weeks; in the remaining

32% (11/34 cases) the latency period ranged from hours to 5

days; the shortest period was 15 hours for Patient 22, the HIV-
positive man from Moldova (28). Very short latency periods of

respectively 2 and 3 days occurred for Patient 11 from UAE (17)

and Patient 17 from Qatar (23). It is unknown if these two

patients had been previously infected with the Middle East

Respiratory Syndrome coronavirus (MERS-CoV).

The neurological complications of viral infections can be
either para-infectious, i.e., due to direct viral neurotropism, or

post-infectious, i.e., resulting from immune-mediated reactions

against the virus (48, 57–59, 61–68). Except for the three para-

infectious cases mentioned above, most cases of SARS-CoV-2-

associated myelitis had longer latency periods suggesting a post-

infectious origin.

According to Blackburn and Wang (72), the proposed
mechanisms of post-infectious neurological disorders include

molecular mimicry, epitope spreading, bystander activation and

polyclonal B-cell activation. Molecular mimicry is due to the

presence in microorganisms of epitopes that share marked

similarity in peptide sequence or three-dimensional structure
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to host’s antigens. Therefore, lymphocytes activated by the

infection may cross-react with self-antigens. In epitope

spreading the specific initial response to an antigen is

broadened to include other different epitopes. Also, during the

immune response to a highly virulent pathogen autoreactive

lymphocytes may be activated during the inflammatory cascade
resulting in autoimmunity by “bystander activation.” Finally,

polyclonal B-cell activation may occur with chronic viral

infections that persist in the host such as herpesviruses.

Molecular mimicry and bystander activation appear to be the

most likely mechanisms explaining SARS-CoV-2-associated

ATM. The antibodies reported in patients with COVID-19-
associated ATM included 3 cases of positive anti-MOG-IgG

antibodies and single cases of positive anti-GD1b IgM

antibodies, ANA, and anti-AQP4 antibodies in serum and CSF.

POST-VACCINATION ATM

Neurological complications of vaccination were first recognized

in 1885 with Pasteur’s rabies vaccine obtained from rabbits’
spinal cords. More recently, in 1977, we reported 21 cases of GBS

and brain demyelination (77) resulting from the use in Colombia

of the suckling mouse brain (SMB) rabies vaccine containing

neural tissue antigens causing neurological complications that

included GBS, ADEM, chronic leukoencephalitis, and myelitis

(77). Concurrent involvement of CNS and PNS occurs in post-

viral infections such as Zika (75). These lesions resemble those of
experimental autoimmune encephalomyelitis induced in animals

with the use of myelin antigens and Freund’s adjuvant (74, 76,

84). Current rabies vaccine obtained from tissue culture of

human diploid cells eliminated this problem.

The US national vaccination campaign in 1976 against the A

New Jersey “swine flu” influenza using the A/NJ/1976/H1N1
vaccine was associated with increased incidence of GBS (85).

Nachamkin et al. (86) postulated that Campylobacter jejuni

antigens that mimic human gangliosides capable of inducing

an anti-GM1 antibody response could have caused GBS.

Campylobacter antigens were not present in any of the

vaccines examined. However, these authors demonstrated that
the 1976, 1991-1992, 2004-2005 influenza vaccines induced IgG

and IgM anti-GM1 antibodies in mice. Recent cases of ATM

following H1N1 vaccination have been reported (87–90)

indicating that influenza vaccines may induce immune

mechanisms targeting the spinal cord. It may be important to

notice that the COVID-19 ChAdOx1 nCoV-1 vaccine

(AZD1222) contains chimpanzee adenovirus antigens
as adjuvant.

In 2003, an experimental vaccine (AN1792) containing

synthetic aggregated Ab42 fragments with QS-21 as adjuvant

targeting the amyloid precursor protein with the aim of

preventing the development of Alzheimer’s disease resulted in

meningoencephalitis in 6% of the vaccinated patients (91). The
trial was discontinued and neuropathology studies (92)

confirmed the presence of meningoencephalitis with strong

MCH class I immunoreactivity in collapsed amyloid plaques

and multinucleated giant cells suggesting that a fragment of b-
amyloid was the possible origin of the post-vaccination reaction.

Numerous other vaccines have caused neurological post-

vaccination complications including diphtheria-tetanus-polio,

measles, mumps, rubella, Japanese B encephalitis, and

pertussis. According to Karussis and Petrou (76), the most
recent cases of CNS demyelination after vaccination include

vaccines against influenza, human papilloma virus, hepatitis A

or B, measles, rubella, yellow fever, anthrax, meningococcus and

tetanus. Other than GBS, ATM, and ADEM, other post-

vaccination reactions include neuromyelitis optica (NMOSD),

isolated ophthalmoplegia, brachial neuritis and other
mononeuropathies. Post-vaccination reactions have declined

with the use of recombinant proteins, rather than in vivo

infected animal tissue (73). Recent research on the

immunopathogenesis of ATM (93) has emphasized the role of

interleukins IL-6 and IL-17. In myelitis, IL-6 is elevated in the

CSF and predicts disability (94). Production of both IL-6 and IL-
17 by peripheral blood mononuclear cells is increased in ATM

(94). IL-17 regulates cytokines (TNFa, IL-1b and IL-6) to

stimulate IL-6 production by astrocytes. The role of adjuvants

as contributing factors to the immune and inflammatory

reactions to vaccines has also been emphasized (95).

ChAdOx1 nCoV-19 Vaccine (AZD1222) Trials
The ChAdOx1 nCoV-19 vaccine (AZD1222) consists of a

replication-deficient chimpanzee adenoviral ChAdOx1
containing the SARS-CoV-2 structural surface vector

glycoprotein antigen (spike protein; nCoV-19) gene (45). The

safety and efficacy report of four randomized controlled trials

conducted in Brazil, South Africa and Great Britain for the

AZD1222 COVID-19 vaccine informed the occurrence of three

cases of ATM as serious adverse events (45, 46).

One participant developed ATM 14 days after ChAdOx1
nCoV-19 booster vaccination and was diagnosed as idiopathic,

short segment, spinal cord demyelination possibly related to

vaccination (45, 46). The second participant developed ATM 10

days after a first vaccination with ChAdOx1 nCoV-19. It was

initially assessed as possibly vaccine-related but later considered

unlikely when further investigation revealed pre-existing, but
previously unrecognised, multiple sclerosis (45, 46). The third

patient with ATM occurred in a control subject 68 days after

receiving the meningococcal conjugate (MenACWY) vaccine.

Initially considered possibly related, it was finally considered

unlikely to be vaccine-related by neurological experts (45, 46).

However, no information was provided regarding COVID-19

infection in this unvaccinated subject. These three ATM serious
adverse events resulted in temporarily halting of the vaccine trial

until the affected participants began to show signs of recovery.

The occurrence of three reported ATM cases among 11,636

participating subjects is extremely high considering the

worldwide incidence of 0.5/million COVID-19-associated

ATM cases found in this report during year 1 of the pandemic.
Moreover, Agmon-Levin et al. (96) in a systematic review (1970–

2009) fund in 39 years only 37 reported cases of ATM in

association with several different vaccines.

Román et al. Acute Transverse Myelitis and COVID-19

Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6537868

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


CONCLUSION

This review confirms that ATM is not uncommon as a

neurological complication associated with COVID-19 infection
around the world, responsible perhaps for 1.2% of all

neurological complications caused by this coronavirus. It

occurs acutely in a small number of patients as a para-

infectious manifestation but most cases of SARS-CoV-2-

associated ATM have longer latency periods suggesting a post-

infectious origin. These facts suggest probable viral antigen(s) in
SARS-CoV-2 target the spinal cord –perhaps also present in the

COVID-19 vaccine AZD1222 or its chimpanzee adenovirus

adjuvant– and may induce immune mechanisms leading to

ATM. Research to identify the responsible antigen(s) and the

immunopathogenesis of COVID-19-associated ATM must

be encouraged.
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