
ACV: An Arithmetic Circuit Verifier�

Yirng-An Chen Randal E. Bryant
yachen@cs.cmu.edu Randy.Bryant@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract
Based on a hierarchical verification methodology, we present an

arithmetic circuit verifier ACV, in which circuits expressed in a hard-
ware description language, also called ACV, are symbolically verified
using Binary Decision Diagrams for Boolean functions and multi-
plicative Binary Moment Diagrams (*BMDs) for word-level func-
tions. A circuit is described in ACV as a hierarchy of modules. Each
module has a structuraldefinition as an interconnection of logic gates
and other modules. Modules may also have functional descriptions,
declaring the numeric encodings of the inputs and outputs, as well
as specifying their functionality in terms of arithmetic expressions.
Verification then proceeds recursively, proving that each module in
the hierarchy having a functional description, including the top-level
one, realizes its specification. The language and the verifier contain
additional enhancements for overcoming some of the difficulties in
applying *BMD-based verification to circuits computing functions
such as division and square root. ACV has successfully verified a
number of circuits, implementing such functions as multiplication,
division, and square root, with word sizes up to 256 bits.

1 Introduction
The well-known division bug in Intel’s Pentium processor [6] has

illustrated the importance of proving the correctness of arithmetic
circuit designs. It has brought industry and research attention to the
verification of arithmetic circuits.

In an earlier paper [1], we showed that multiplicative Binary
Moment Diagrams (*BMDs) provide a powerful method for verify-
ing arithmetic circuits. *BMDs provide a canonical representation
for “word-level” functions, mapping Boolean variables to numeric
values. They can represent a number of arithmetic functions, such
as multiplication and addition, in compact form. Our hierarchical
methodology exploits the modular structure of arithmetic circuits,
in which complex circuits are constructed from simpler ones, which
themselves compute arithmetic functions. We verify that the in-
dividual modules compute their specified functions, compose these
word-level functions according to the module interconnections, and
verify that these compositions match the overall specification. In this
earlier work, we successfully executed the steps to verify a number
of multiplier circuits with word sizes up to 256 bits. These steps were
directly encoded as a sequence of calls to our *BMD library routines.

In this paper, we describe an arithmetic circuit verifier ACV that
works automatically from a description of the circuit in a hardware
description language. Besidessupporting the hierarchicalverification
methodology described in our earlier paper, ACV implements several
extensions to the methodology, making it possible to verify a wider
range of circuits, including ones for division and square root.

Since ourearlier paper, severalothers havepublishedrelated work.
One drawback of a hierarchical approach is that users must define a
partitioning of the circuit and provide word-level specifications for
the modules. Hamaguchi and his colleagues[5] developed a method
to construct a word-level, *BMD representation directly from a flat,
gate-level circuit by composing the gate functions in reverse topo-
logical order. Their approach works reasonably well for correctly
designed multiplier circuits, although requiring somewhat greater
computing time and memory than ours. A small design error, how-

�This research is sponsored by the Wright Laboratory, Aeronautical Systems Center,
Air Force Materiel Command, USAF, and the Advanced Research Projects Agency
(ARPA) under grant number F33615-93-1-1330.

ever, can easily cause their method to blow up—not a desirable prop-
erty for practical verification tool. Having specifications for both the
overall circuit and the individual components makes it much easier to
pinpoint a discrepancybetween the circuit and its specification. In ad-
dition, for functions, such as divide and square root, our experiments
indicate that the computing time for Hamaguchi’s method grows ex-
ponentially with the word size, whereas our (extended) methodology
can handle these functions.

Clarke, et al [3] extended BMDs to a form they call Hybrid De-
cision Diagrams (HDDs), in which a function may be decomposed
with respect to each variable in one of four ways without edge weight
in their representation. They also extended the symbolic model ver-
ifier(SMV) to handle word-level properties [4]. Using HDDs and
extended SMV, they have verified a variety of circuits, including a
radix-4 SRT divider. Their verifier represents the transition relation
for the circuit using BDDs. Hence, it cannot directly handle circuits
with complex combinational logic, such as array multipliers. A more
recent version of their program [2] allows users to define a partition-
ing of the combinational logic and uses a variant of Hamaguchi’s
method to compose the circuit functions. With this user-specified
partitioning, their method becomes very similar to ours.

Theorem provers can also be used to verify circuits hierarchically
[7]. Compared with our approach, they must use much deeper hi-
erarchies. For example, while verifying an adder, they first verify a
one-bit adder cell and then verify the whole adder. This process can
be quite tedious, especially when the circuit employs performance
enhancements such as lookahead carry chains. Our approach can
verify such components as adders directly.

Our verifier requires that both the circuit and its specification be
given in a hardware description language, also called ACV, specif-
ically tailored to the needs of our verification methodology. This
language supports hierarchical definitions, where each module is
composed structurally from other modules and gate-level primitives.
In addition, a module can have a word-level specification, consisting
of definitions of the numeric encodings of the inputs and outputs, as
well as arithmetic expressions defining the functionality. Additional
enhancements, described later in this paper, support extensions to
our verifier for overcoming some of the limitations of *BMD-based
verification. In particular, the language allows shifting the roles of
inputs and outputs in the module hierarchy, introduction of auxiliary
“pseudo”-inputs,specifying range constraints among module I/O sig-
nals, and cutting signals within modules to simplify their word-level
representations.

The choice of whether to extend an existing HDL, e.g., by adding
annotations to VHDL, or to design an entirely new language involve
a variety of technical and sociological trade-offs. For this project,
where we are more concerned with pushing the horizons of formal
verification than with verifying existing circuits, we have followed
the latter course. As future research, we are considering several
techniques for working with more standardized circuit descriptions.

In the remainder of this paper we first give an overview of the
ACV language and how it supports hierarchical verification. Then
we describe several enhancements, using an SRT radix-4 divider
circuit as a case study. Next, we show experimental results for a
number of arithmetic circuits. We conclude with a brief discussion
of future work.

1ICCAD ’96
1063-6757/96 $5.00 (c) 1996 IEEE

add_step_0 add_step_1 add_step_2 add_step_3

bit_mult adder

mult_4_4

Transition
Layer

AND OR XOR

Figure 1: Module hierarchy of 4�4 multiplier. Each module in
the transition layer is the last module with word-level specifications
on the path down from the root.

2 Hierarchical Verification with ACV
In our earlier paper[1], we proposed *BMD-based hierarchical

verification for verifying arithmetic circuits such as multipliers. Hi-
erarchical verification is based on the principle that functions and
circuits can be divided into sub-functions and sub-circuits which can
be verified independently. Applying a divide-and-conquermethod to
verification, we first verify that the individual modules compute their
specified functions, compose these word-level functions according
to the module interconnections, and verify that these compositions
match the overall specification.

To support this approach, we devised a hardware description lan-
guage, called ACV, to describe circuits and their specifications in
a hierarchical manner. Each module is composed structurally from
other modules and primitive logic gates. In addition, a module can
be given the word-level specification consisting of definitions of the
numeric encodings of inputs and outputs, as well as the module func-
tionality in terms of arithmetic expressions relating input and output
values.

We use a 4�4 array multiplier to illustrate the ACV language and
system. This multiplier can be represented by the module hierarchy
shown in Figure 1. Readers can reference our earlier paper[1] for the
detailed circuit design. We define the “transition layer”, shown as the
shaded box in Figure 1, as the collection of modules which are the
last modules with word-level specifications on the paths down from
the root. Modules in or above the transition layer must declare their
word-level specifications, as well as their structural definitions. Mod-
ules below the transition layer just declare their structural definitions.
Modules in the transition layer abstract from the bit-level, where the
structure consists of logic gates (sub-module will be evaluated recur-
sively), to a word-level representation, where the structure consists
of blocks interconnected by bit-vectors encoding numeric values.

Figure 2 shows the ACV description of the top module of a 4�4
array multiplier. The definition of a module is encompassed be-

MODULE mult 4 4(x;y; p)
VAR p[8],x[4],y[4];
ENCODING P = (unsigned) p;

X = (unsigned)x;
Y = (unsigned)y;

FUNCTION P == X*Y ;
VERIFY P == X*Y ;
ORDERING x,y;
INTERNAL s1[4],s2[6],s3[7];
STRUCTURE add step 0(y[0],X ,s1);

add step 1(y[1],X ,s1,s2);
add step 2(y[2],X ,s2,s3);
add step 3(y[3],X ,s3,p);

ENDMODULE

Figure 2: ACV code for Module mult 4 4 of a 4�4 multiplier.

tween keywords “MODULE” and “ENDMODULE”. First, the mod-
ule name and the names of signals visible from outside of this module
must be given as shown in the first line of Figure 2. The module is
declared as mult 4 4 with three signals x, y, and p. Then, the width
of these signals are declared in the VAR section. Both x and y are
declared as 4 bits wide, and p are 8 bits.

For each module, section INTERNAL and STRUCTURE define
the circuit connections among logic gates and sub-modules. The IN-
TERNAL section declares the names and widths of internal vector
signals used in the STRUCTURE section to connect the circuit. Vec-
tor s1, s2 and s3 are declared as 4, 6 and 7 bits, respectively. There
are two types of statements in the STRUCTURE section. First, the
assignment statements, shown in lines 1, 2, 4, 5 and 6 in the STRUC-
TURE section of Figure 4, are used to rename part of a signal vector,
or to connect the output of a primitive logic gate. Second, the mod-
ule instantiation statements, shown in the STRUCTURE section of
Figure 2, declare which signals are connected to the referenced mod-
ules. Note that we do not distinguish inputs from outputs in module
instantiation statements and module definitions. As we shall see, it
is often advantageous to shift the roles of inputs and outputs as we
move up in the module hierarchy. The ACV program will distinguish
them during the verification process based on the information given
in the specification sections.

To give the word-level specification for a module, sections EN-
CODING, FUNCTION, VERIFY and ORDERING are required in
the module definition. The ENCODING section gives the numeric
encodings of the signals declared in the VAR section. For example,
vectorp is declared as having an unsignedencodingand its word-level
value is denoted by P . The allowed encoding types are: unsigned,
two’s complement, one’s complement, and sign-magnitude. The
FUNCTION section gives the word-level arithmetic expressions for
how this module should be viewed by modules higher in the hierar-
chy. For example, if module mult 4 4 were used by a higher level
module, its function would be to compute outputP as the product of
inputs X and Y . In general, the variable on the left side of “==” will
be treated as output and the variables on the right side will be treated
as inputs. The VERIFY section declares the specification which will
be verified against its circuit implementation. In the multiplier ex-
ample, the module specification is the same as its function. In other
cases, such as the SRT divider example in next section, these two
may differ to allow a shifting of viewpoints as we move up in the
hierarchy. The ORDERING section not only specifies the BDD vari-
able ordering for the inputs but also defines which signals should be
treated as inputs during the verification of this module. The variable
ordering is very important to verification, because our program does
not currently do dynamic variable reordering.

The ACV program proceeds recursively beginning with the top-
level module. It performs four tasks for each module. First, it verifies
the sub-modules if they have word-level specifications. Second, it
evaluates the statements in the STRUCTURE section in the order of
their appearance to compute the output functions. For a module in
the transition layer, this involves first computing a BDD representa-
tion of the individual module output bits by recursively evaluating
the sub-module’s statements given in their STRUCTURE sections.
These BDDs are then converted to a vector of bit-level *BMDs, and
then a single word-level *BMD is derived by applying the declared
output encoding. For a module above the transition layer, evaluation
involves composing the submodule functions given in their FUNC-
TION sections. Third, ACV checks whether the module specification
given in the VERIFY section is satisfied, Finally, it checks whether
the specification given in the VERIFY section implies the module
function given in the FUNCTION section. A flag is maintained for
each module indicating whether this module has been verified. Thus,
even if a module is instantiated multiple times in the hierarchy, it will
be verified only once.

For example, the verification of the 4-bit array multiplier in Figure
2 begins with the verification of the fouradd stepmodules. For each

(a) (b) (c)

QO P

PD

i+1 i+1

i

d p
i

p
i+1

qo
i+1

srt_stagepd_table

multiply

adder

left_shift_2

d p
i

p
i+1

qo
i+1

srt_stagepd_table

multiply

adder

left_shift_2

q1 P =

 4*(P -QO *D)

i+1

i+1i

Figure 3: Block level representation of SRT divider stage from
different perspectives. (a) The original circuit design. (b) The
abstract view of the module, while verifying it. (c) The abstract view
of the module, when it is referenced.

one, the structural definition as well as the structural definitions it
references are evaluated recursively using BDDs to derive a bit-level
representation of the module output. These BDDs are converted to
*BMDs, and then a word-level *BMD is derived by computing the
weighted sum of the bits. ACV checks whether the circuit matches
the specification given in its VERIFY section. The specification of
add step module i is Out = In+ 2i � y �X , where In is a partial
sum input (0 for i=0), y is a bit of the multiplier andOut is the output
of the module.

Assuming the four add step modules are verified correctly, ACV
derives a *BMD representation of the multiplier output. It first creates
*BMD variables for the bit vectors x and y (4 each), and computes
*BMD representations of X and Y by computing weighted sums
of these bits. It evaluates the add step instantiations to derive a
word-level representation of module output. First, it computes s1
by evaluating the FUNCTION statement Out = y � X of module
add step 0 for the bindings y = y0 and X = X . Then it computes
s2 by evaluating the FUNCTION statementOut = In+2�y�X of
module add step 1 for the bindings In = s1, y = y1, and X = X.
This process continues for the other two modules, yielding a *BMD
for P equivalent to P = (((y0 �X) + 2 � y1 �X) + 22 � y2 �X) +
23 � y3 � X . Note that whether a module argument is an input or
an output is determined by whether it has a binding at the time of
module instantiation. ACV then compares the *BMD for P to the
one computed by evaluating X � Y and finds that they are identical.
Finally, checking whether the specification in the VERIFY section
implies the functionality given in the FUNCTION section is trivial
for this case, since they are identical.

3 Additional Methodologies
We use radix-4 SRT division as an example to illustrate the use

of the ACV language, and to explain several additional verification
methodologies.

A divider basedon the radix-4 SRT algorithm is an iterative design
maintaining two words of state: a partial remainder and a partial
quotient, initialized to the dividend and 0, respectively. Each iteration
extracts two bits worth of quotient, subtracts the correspondingly
weighted value of the divider from the partial remainder, and shifts
the partial remainder left by 2 bit positions. The logic implementing
one iteration is shown in Figure 3.a, where we do not show two
registers storing partial remainder and partial quotient. The inputs
are divisor ~d and partial remainder~pi, and the outputs are the extracted
quotient digit ~qoi+1 (ranging from -2 to 2) and the updated partial
remainder ~pi+1. The PD table, used to look up the quotient digits
based on the truncated values of the divisor and the partial remainder,
is implemented in logic gates derived from a sum of products form.
After the iterations, the set of obtained quotient digits is converted
into the actual quotient by a quotient conversion circuit.

First, we prove the correctness of one iteration of the circuit.
The specification is given in [6] and is shown as Equation 1. This
specification states that for all legal inputs (i.e., satisfying the range
constraint) the outputs also satisfy the range constraint, and that the
inputs and outputs are properly related. This specification captures
the essence of the SRT algorithm.

(�8D � 3Pi � 8D)!

f(�8D � 3Pi+1 � 8D) ^ [Pi+1 == 4(P �QOi+1 �D)]g (1)

This specification contains word-level function comparisons such as
� and == as well as Boolean connectives^ and!. In [3], a branch-
and-bound algorithm is proposed to do word-level comparison oper-
ations for HDDs. It takes two word-level functions and generates a
BDD representing the set of assignments satisfying the comparison
operation. We adapted their algorithm for *BMDs to allow ACV to
perform the word-level comparisons. Once these “predicates” are
converted to BDDs, we use BDD operations to evaluate the logic
expression.

If Equation 1 is used to verify this module, the running time will
grow exponentially with the word size, because the time to convert
output ~pi+1 in Figure 3(a) from a vector of Boolean functions into
a word-level function grows exponentially with the word size. The
reason is that ~pi+1 depends on output vector ~qoi+1 which itself has
a complex function. We overcome this problem by cutting off the
dependence of ~pi+1 on ~qoi+1 by introducing an auxiliary vector of

variables ~q1, shown in Figure 3(b). One can view this as a cutting of
the connection from the PD table to the multiply component in the
circuit design. Now, the task of verifying this module becomes to
prove that Equation 2 holds:

(�8D � 3Pi � 8D ^QOi+1 == Q1)!
f(�8D � 3Pi+1 � 8D) ^ [Pi+1 == 4(P �Q1 �D)]g (2)

In the actual design, the requirement that QOi+1 == Q1 is guaran-
teed by the circuit structure. Hence Equation 2 is simply an alternate
definition of the module behavior. By this methodology, the comput-
ing time of verifying this specification is reduced dramatically with
a little overhead (the computing time of performing QOi+1 == Q1
and an extra AND operation). The major difference between this
cutting methodology and the hierarchical partitioning is that the lat-
ter decomposes the specification into several sub-specifications, but
the former only introduces auxiliary variables to simplify the com-
putation. We can also apply this methodology to verify the iteration
stage of such similar circuits as restoring division, restoring square
root and radix-4 SRT square root.

Module srt stage, shown in Figure 4, implements the function
of one SRT iteration for a 6�6 divider using the ACV language.
Vector variables, p, d, qo and p1 in Figure 4, represent signal vectors,
~pi, ~d, ~qoi+1 and ~pi+1 in Figure 3(a), respectively. Their encoding
and ordering information is given in the relevant sections. Modules
shifter and negater implements module multiply in Figure 4(a).
Since *BMDs can only represent integers, we must scale all numbers
so that binary point is at the right. We specify one additional condition
in the specification: that the most significant bit of the divider must
be 1, by the term D � 2**5.

Thesupport for our “cutting” methodologyarises in severalplaces.
First, vector q1 is declared in the VAR and ORDERING sections with
the same size as qo, and is therefore treated as a “pseudo input”, i.e.,
an input invisible to the outside. Then, the equivalence of signals qo
and q1 is declared in the EQUIVALENT section. The original signal
qo must appear first in the pair. While evaluating the statements
in the STRUCTURE section, ACV automatically uses q1’s value
instead of qo’s value for signal qo once signal qo has been assigned
its value. For example, all appearancesof signalqo after the pd table
instantiation in Figure 4 will use q1’s value (a *BMD Q1 using three
Boolean variables) instead of its original value (a *BMD function

MODULE srt stage(p; d; qo; p1)
VAR qo[3],q1[3],p[9],d[6],p1[9];
EQUIVALENT (qo,q1);
ENCODING P = (twocomp) p;

P1 = (twocomp)p1;
D = (unsigned)d;
QO = (signmag)qo;
Q1 = (signmag)q1;

FUNCTION P1 == 4*(P -QO*D);
VERIFY

(3*P � 8*D & 3*P � -8*D & Q1 == QO & D � 2**5)
! (3*P1 � 8*D & 3*P1 � -8*D & P1 == 4*(P -Q1*D));

ORDERING q1,p,d;
INTERNAL ph[7],dh[4],t[9],nqd[9],r[10];
STRUCTURE ph = p[2 .. 8];

dh = d[1 .. 4];
pd table(ph; dh; qo);
w1 = qo[0];
w2 = qo[1];
neg = not(qo[2]);
shifter(d;w1; w2; t);
negater(t; neg; nqd);
adder(p; nqd; neg; r);
left shift 2(r; p1);

ENDMODULE

Figure 4: ACV code for Module srt stage.

of inputs P and D) when evaluating these statements. Finally, the
encoding method of q1 is declared the same as q0 and Equation 2 is
used in the VERIFY section instead of Equation 1.

Figure 5(a) shows the block level representation of a 6�6 SRT di-
vider. Since module srt stage performs a cycle of SRT division, we
instantiate it multiple times, effectively unrolling the sequential SRT
division into a combinational one, and compose them with another
moduleConversion which takes the set of quotient digits generated
from the stages and converts them into a quotient vector with an un-
signed binary representation. The divider takes two inputsP and D,
goes through 3 srt stage and 1Conversionmodules, and generates
the outputs Q and R. Module Conversion takes a set of quotient
digits, generated from the srt stages, and converts them into a vec-
tor in the unsigned binary form. Assume moduleConversion takes
inputs ~q0, ..., ~qn , and produces the output ~q. The specification of this
module is Q = Qn + 4 �Qn�1 + :::+ 4n �Q0, where Q andQi are
the word-level representations of ~q and ~qi , 0 � i � n.

With the partitioning shown in Figure 5(a), we cannot directly ap-

(a) (b)

C
o
n
v
e
r
s
i
o
n

srt_stage

srt_stage

srt_stage

Q R

P D

C
o
n
v
e
r
s
i
o
n

srt_stage

srt_stage

srt_stage

Q R

P D

Q2

Q1

Q0
Q0

Q1

Q2

Figure 5: Block level representation of a 6�6 SRT divider from
two different perspectives. (a) The original circuit design. (b) the
abstract view of the module, while verifying it.

MODULE srt div 6 6(p; d; q; r)
VAR p[6], d[6], q[6], r[9],q0[3],q1[3], q2[3];
ENCODING P = (unsigned) p;

D = (unsigned) d;
Q = (unsigned) q;
R = (twocomp) r;
Q0 = (signmag) q0;
Q1 = (signmag) q1;
Q2 = (signmag) q2;

FUNCTION R == 2**6 * P - 4*D*Q;
VERIFY (3*P � 8*D & 3*P � -8*D & D � 2**5)!

((2**6 * P) == 4*D*Q + R);
ORDERING p; d; q2; q1; q0;
INTERNAL p0[9],p1[9],p2[9];
STRUCTURE p0[0 .. 5]= p;

p0[6 .. 8]= 0;
srt stage(p0; d; q0; p1);
srt stage(p1; d; q1; p2);
srt stage(p2; d; q2; r);
Conversion(q; q0; q1; q2);

ENDMODULE

Figure 6: ACV description of Module srt div 6 6.

ply hierarchical verification, becausethe outputs of modulesrt stage
do not have unique functional definitions. The redundant encoding
of the quotient digits in the SRT algorithm allows, in several cases, a
choice of values for the quotient digits. Fortunately, we do know the
relation between inputs and outputs: Pi+1 = 4 � (Pi�QOi+1 �D).
We exploit the fact that the correctness of the overall circuit behavior
does not depend on the individual output functions, but rather on their
relation. Therefore we can apply a technique similar to one used to
verify circuits with carry-save adders[1] treating the quotient output
as an input when this module is instantiated. Figure 3(c) shows this
abstract view of the srt stage module when it is referenced. The
abstract view of the SRT divider is then changed as shown in Figure
5(b), and described in ACV as shown in Figure 6. The quotient output
vectors ~q2, ~q1 and ~q0 (denoted by Q2, Q1 andQ0 for the word-level
representation) of three srt stage modules are changed to pseudo
inputs by declaring them in the VAR, ENCODING and ORDERING
sections. With this additional information, the circuit is effectively
changed from Figure 5(a) to Figure 5(b) without modifying the phys-
ical connections.

Assume both srt stage and conversion modules are verified.
During verification of module srt div 6 6, when ACV evaluates the
first srt stage statement, vector ~q0 has its word value Q0 and is
treated as an input to module srt stage to compute the value of
vector p1. Therefore, the value of vector ~p1 is 4 � (P � Q0 � D)
and this becomes an input to the second srt stage. ACV repeats
the same procedure for the other srt stage statements to compute
the value of R which now depends on P , D, Q0, Q1 and Q2.
It also computes the value of Q, which depends on Q0, Q1 and
Q2, from module Conversion. The specification of this 6�6 SRT
Radix-4 divider we verified is: (�8D � 3P � 8D ^D � 25) !
(P � 26 == 4 � Q �D + R). The constraints , �8D � 3P � 8D
and D � 25, required for the first srt stage, specify the input
range constraints. Under these input constraints, the circuit performs
the division, specified by the relation P � 26 = 4 � Q � D + R.
Since Q0, Q1 and Q2 can be arbitrary values, we cannot verify the
divider’s output range constraint: �8D � 3R � 8D. It can be
deduced manually from the initial condition and the input and output
constraints of the srt stage modules.

When the output of one module is connected to an input of another,

Sizes 16x16 32x32 64x64 128x128 256x256
CSA 4.68(sec) 20.08 78.55 351.18 1474.55

0.83(MB) 1.19 2.31 6.34 21.41
Booth 2.37 8.18 27.47 128.87 535.18

0.77 1.09 2.12 5.94 20.41
BitPair 1.90 5.76 15.43 69.68 288.70

0.74 0.93 1.53 3.56 11.12
Seq 1.08 2.41 5.30 14.35 36.13

0.70 0.76 0.96 1.41 2.75

Table 1: Verification Results of Multipliers. Results are shown in
seconds and Mega Bytes.

ACV does not currently check that the constraints of outputs in the
former module implies the constraints on the inputs in the latter.
These constraints are specified in the VERIFY section. For example,
the output constraint of the first srt stage should imply the input
constraints of the second srt stage. Our future work will include
the automation of this conformance checking.

4 Experimental Results
All of our results were executed on a Sun Sparc Station 10. Per-

formance is expressed as the number of CPU seconds and the peak
number of megabytes (MB) of memory required.

Table 1 shows the results of verifying a number of multiplier
circuits with different word sizes. Observe that the computational
requirements grow quadratically, caused by quadratical growth of
the circuit size, except Design “seq” which is linear. The design
labeled “CSA” is based on the logic design of ISCAS’85 benchmark
C6288 which is a 16-bit version of the circuit. Our verification
of this circuit requires only 4.68 seconds. Compared with other
multipliers, the verification of CSA multiplier is slower, because the
verification of a carry-save adder is slower than a carry-propagate
adder. The designs labeled “Booth” and “BitPair” are based on the
Booth and the modified Booth algorithms, respectively. Verifying
the BitPair circuits takes less time than the Booth circuits, because
it has only half the stages. Comparing these results with the results
given in [1], we achieve around 3 to 4 times speedup, because we
exploited the sharing in the module hierarchy. For a 64�64multiplier,
Hamaguchi et al.[5] reported 22,340 seconds of CPU time on Sun
Sparc 10/51 machine, but ACV only requires 27.47 seconds. In [2],
Chen et al. reported 508 seconds to verify a 64 bit multiplier on a
HP 9000 workstation with 256MB, which is at least 2.5 times faster
than Sun Sparc 10, using HDDs and extended SMV with a variant
of Hamaguchi’s method. In general, compared with approaches with
Hamaguchi’s backward substitution method, our approach achieves
greater speedup for the larger circuits. Design “Seq” is an unrolled
sequential multiplier obtained by defining a module corresponding
to one cycle of operation and then instantiating this module multiple
times. The performance of Design “Seq” is another example to
demonstrate the advantageof sharing in ourverification methodology.
The complexity of verifying this multiplier is linear in the word size,
since the same stage is repeated many times.

Table 2 shows the computing time and memory requirement of
verifying divider and square root circuits for a variety of sizes. We
have verified divider circuits based on a restoring method and the
radix-4 SRT method. For the radix-4 SRT divider, the computing
time grows quadratically, because we exploit the sharing property
of the design and apply hierarchical verification as much as we can.
Chen et al. [2] reported 194 seconds and 18.8MBytes to verify a 64-
bit sequential divider using extended SMV. Our result is better than
their’s, because we use edge weights in our *BMD representation,
whereas HDDs do not. For both restoring divide and square root, the
computing time grows cubically in the word size. This complexity
is caused by verifying the subtracter. While converting the vector
of BDD functions into word-level *BMD function for the output

Sizes 16x16 32x32 64x64 128x128 256x256
srt-div 16.25(sec) 23.58 40.40 109.63 398.68

1.16(MB) 1.47 2.19 4.47 10.47
r-div 5.53 26.02 153.13 1131.82 8927.18

0.71 0.89 1.56 4.22 15.34
r-sqrt 8.35 54.85 320.60 2623.11 20991.35

0.77 1.12 3.12 14.97 98.31

Table 2: Verification Results of Dividers and Square Roots. Re-
sults are shown in seconds and Mega Bytes.
of the subtracter, the intermediate *BMD size and operations grow
cubically, although, the size of final *BMD function is linear.

5 Conclusions and Future Work
We have presented a system to automatically verify arithmetic

circuits described in a hardware description language. We also il-
lustrated techniques to overcome problems of verifying circuits such
as a radix-4 SRT divider. These methodologies are also applicable
to other circuits such as restoring division and restoring square root.
The experimental results demonstrate that ACV can efficiently han-
dle a variety of circuits with large word sizes. We can replicate the
Intel Pentium division bug and successfully verify the circuit with
the correct PD table. Currently, we are working on the verification of
a square root circuit based on the radix-4 SRT algorithm. We believe
it can be verified by ACV.

As mentioned within the paper, there are several aspects of the
ACV program that should be improved. Rather than requiring the
user to specify a variable ordering for each module at or above the
transition layer, we would like ACV to automatically choosean initial
ordering from the specification given in the VERIFY section, and
then improve this ordering dynamically. We must also automate the
checking of input and output constraints among modules, and be able
to deduce output range constraints by composing the constraints for
the sub-modules. Finally, we plan to improve our ACV system to
accept circuits with explicit registers, rather than requiring users to
supply unrolled versions of sequential circuits.

References
[1] R. E. Bryant, and Y.-A. Chen, “Verification of arithmetic cir-

cuits with binary moment diagrams,” 32nd Design Automation
Conference, 1995.

[2] Y.-A. Chen, E. M. Clarke, P.-H. Ho, Y. Hoskote, T. Kam, M.
Khaira, J. O’Leary and X. Zhao, “Verification of all circuits in
a floating-point unit using word-level model checking” Proc. of
The International Conference on FormalMethods in Computer-
Aided Design, 1996.

[3] E. M. Clarke, M. Fujita, and X. Zhao, “Hybrid Decision Di-
agrams Overcoming the limitations of MTBDDs and BMDs”
Proc. of International Conference on CAD, 1995, pp. 159-163.

[4] E. M. Clarke, M. Khaira, and X. Zhao, “Word level model
checking - Avoiding the Pentium FDIV Error,” 33nd Design
Automation Conference, 1996.

[5] K. Hamaguchi, A. Morita, and S. Yajima, “Efficient construc-
tion of binary moment diagrams for verifying arithmetic cir-
cuits,” Proc. of International Conference on CAD, 1995, pp. 78-
82.

[6] H. P. Sharangpani, M. L. Barton, “Statistical analysis of floating
point flaw in the Pentium processor(1994),” Intel Technical
Report, Nov. 30, 1994.

[7] D. Verkest, L. Claesen, and H. DeMan, “A proof of the
nonrestoring division algorithm and its implementation on an
ALU,” Formal Methods in System Design, Vol. 4, No. 1, Jan-
uary, 1994, pp. 5-32.

