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ABSTRACT

We prove a structure theorem for triangulated Calabi-Yau categories: an algebraic
2-Calabi—Yau triangulated category over an algebraically closed field is a cluster category
if and only if it contains a cluster-tilting subcategory whose quiver has no oriented cycles.
We prove a similar characterization for higher cluster categories. As an application to com-
mutative algebra, we show that the stable category of maximal Cohen—Macaulay modules
over a certain isolated singularity of dimension 3 is a cluster category. This implies the
classification of the rigid Cohen—Macaulay modules first obtained by Iyama and Yoshino.
As an application to the combinatorics of quiver mutation, we prove the non-acyclicity
of the quivers of endomorphism algebras of cluster-tilting objects in the stable categories
of representation-infinite preprojective algebras. No direct combinatorial proof is known
as yet. In the appendix, Michel Van den Bergh gives an alternative proof of the main
theorem by appealing to the universal property of the triangulated orbit category.

1. Introduction

Cluster algebras were introduced and studied by Fomin and Zelevinsky and Berenstein, Fomin and
Zelevinsky in a series of articles [FZ02, FZ03a, BFZ05, FZ07]. It was the discovery of Marsh, Reineke
and Zelevinsky [MRZ03] that they are closely connected to quiver representations. This link is similar
to the one between quantum groups and quiver representations discovered by Ringel [Rin90] and in-
vestigated by Kashiwara, Lusztig, Nakajima and many others. The link between cluster algebras and
quiver representations becomes especially beautiful if, instead of categories of quiver representations,
one considers certain triangulated categories deduced from them: the so-called cluster categories.
These were introduced in [BMRRTO06] and, for Dynkin quivers of type A, in [CCS06]. They were
shown to be triangulated in [Kel05]. If & is a field and @ a quiver without oriented cycles, the associ-
ated cluster category Cq is the ‘largest’ 2-Calabi-Yau category under the derived category of repre-
sentations of @) over k. It was shown [BMRRT06, BMR06, BMR08, BMRT05, CC06, CK05, CK06]
that this category fully determines the combinatorics of the cluster algebra associated with ) and
carries considerably more information. This was used to prove significant new results on cluster
algebras. For example, if () is a connected acylic quiver, then:

(i) the cluster variables of the associated cluster algebra are in bijection with the almost positive
Schur roots of the associated Kac-Moody Lie algebra (this results from [CK06] by the method
of [IY06, §7]);
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(ii) the mutation class of the quiver @ is finite if and only if the underlying graph of @ has two
vertices, is a Dynkin diagram or is an extended Dynkin diagram of type A, D or E (cf. [BR06]);

(iii) the coefficients appearing in the numerators of the cluster variables are positive integers [CR06],
as conjectured by Fomin and Zelevinsky [FZ02] for arbitrary cluster algebras.

We refer to [FZ03b] and [Zel04] for more background on cluster algebras and to [ABST06], [ABS06],
[BMROS], [BRO5], [BRS07], [BMO07], [DWZ07], [GLS07¢], [GLS06], [Lya05al, [IR06], [Rin07],
[ThoO7], [Wra07] and [Zhu08] for recent developments in the study of their links with represen-
tations of quivers and finite-dimensional algebras.

The question arises as to whether, for a given quiver () without oriented cycles, the cluster
category is the ‘unique model’ of the associated cluster algebra. In other words, if we view the
cluster algebra as a combinatorial invariant associated with the cluster category, is the category
determined by this invariant?

In this paper, we show that, surprisingly, this question has a positive answer. Namely, we prove
that if k is an algebraically closed field and C an algebraic 2-Calabi—Yau category containing a
cluster-tilting object T whose endomorphism algebra has a quiver () without oriented cycles, then C
is triangle-equivalent to the cluster category Cq. Notice that this result is ‘of Morita type’, but much
stronger than typical Morita theorems, since we only need to know the quiver of the endomorphism
algebra, not the algebra itself.

We give several applications. First, we show on an example that cluster categories naturally
appear as stable categories of Cohen—Macaulay modules over certain singularities. This yields an
alternative proof of Iyama and Yoshino’s [IY06] classification of rigid Cohen—Macaulay modules over
a certain isolated singularity. More examples may be obtained from [IR06] and [IY06] (cf. [BIKRO7]).

Secondly, we show that the quivers associated in [GLS07a] with representation-infinite finite-
dimensional preprojective algebras are not mutation-equivalent to quivers without oriented cycles.
This last result was obtained independently by Geiss (private communication). It has been used
in [DWZ07, Example 8.7], to show that the class of rigid quivers with potential is strictly greater
than the class of quivers with potential mutation-equivalent to acyclic ones. An application to the
realization of cluster categories as stable categories of Frobenius categories with finite-dimensional
morphism spaces is given in [BIRS07] and [GLS07b]. In [HJ06a] and [HJ06b], the authors use our
results to determine which stable categories of representation-finite self-injective algebras of type A
and D are higher cluster categories. More generally, in [Ami06], Amiot obtains a classification of
‘most’ triangulated categories with finitely many indecomposables by methods similar to ours.

The main difficulty in the proof is the construction of a triangle functor between the cluster
category and the given Calabi-Yau category. Our construction is based on the description [Kel05]
of the cluster category as a stable derived category of a certain differential graded category. This ap-
proach leads to interesting connections between Calabi—Yau categories of dimensions 2 and 3, which
have been further investigated in [Tab07]. It turns out that each algebraic Calabi—Yau category of
dimension 2 containing a cluster-tilting subcategory is equivalent to a stable derived category of a
differential graded category whose perfect derived category is Calabi—Yau of dimension 3.

A more direct approach, based on the universal property of the cluster category [Kel05], has been
discovered by Michel Van den Bergh, who has kindly agreed to include his proof as an appendix to
this paper.

It turns out that the main theorem and its proofs can be generalized almost without effort to
Calabi—Yau categories of any dimension d > 2. However, one has to take into account that, in
the d-cluster category, the self-extensions of the canonical cluster-tilting object vanish in degrees
—d+2,...,—1. This condition therefore has to be added to the hypotheses of the generalized main
theorem.
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2. The main theorem and two applications

2.1 Statement

Let k be a perfect field. Let £ be a k-linear Frobenius category. Recall [Hap88] that this means that
£ is an exact category in the sense of Quillen, that it has enough projectives and enough injectives
and that an object of £ is projective if and only if it is injective. We assume that £ has split
idempotents (i.e. every idempotent morphism admits a kernel in £). The stable category C = £ is
the quotient of € by the ideal of morphisms factoring through a projective object. It is a triangulated
category [Hap88]. We suppose that the stable category C has finite-dimensional Hom-spaces and is
Calabi—Yau of CY-dimension 2, i.e. we have bifunctorial isomorphisms

DC(X,Y) 5 C(Y,58%X), X,Y ec,

where D is the duality functor Homy (7, k) and S the suspension of C.

Let 7 C C be a cluster-tilting subcategory. Recall from [KRO07] that this means that 7 is a
k-linear subcategory which is functorially finite in C and such that an object X of C belongs to 7
if and only if we have Ext!(T,X) = 0 for all objects T of 7. As shown in [KR07], the category
mod 7 of finitely presented 7-modules is then abelian. If it is hereditary (i.e. for all 7-modules L
and M, all extension groups Ext’ ,+(L, M) vanish for i > 2), the cluster category Cr, as defined
in [BMRRTO06], is the orbit category of the bounded derived category D°(mod 7) under the action
of the autoequivalence S? o ¥ !, where S is the suspension and ¥ the Serre functor of D’ (mod 7).

THEOREM. If mod 7 is hereditary, then C is triangle-equivalent to the cluster category Cr.

We will prove the theorem in §3 below. Now assume that k is algebraically closed. Let R be the
radical of 7, i.e. the ideal such that, for two indecomposables X, Y, the space R(X,Y) is formed
by the non-isomorphisms from X to Y. Let (Q be the quiver of 7. Its vertices are the isomorphism
classes of indecomposables of 7 and the number of arrows from the class of an indecomposable X
to an indecomposable Y is the dimension of the vector space R(X,Y)/R*(X,Y).

COROLLARY. If k is algebraically closed and, for each vertex x of ), only finitely many paths start
in z and only finitely many paths end in x, then C is triangle-equivalent to the cluster category Cg.

Note that under the assumptions of the corollary, the projective (right) k@Q-module £Q(?, x) and
the injective k@Q-module DkQ(x,?) are of finite total dimension and that the category mod k@) of
finitely presented k(Q-modules coincides with the category of modules of finite total dimension. We
will prove the corollary in § 3 below.

2.2 Application: Cohen—Macaulay modules

Suppose that k is algebraically closed of characteristic 0. Let the cyclic group G = Z/3Z act on
the power series ring S = E[[X,Y, Z]] such that a generator of G multiplies each indeterminate
by the same primitive third root of unity. Then the fixed point ring R = S¢ is a Gorenstein
ring, cf. e.g. [Wat74], and an isolated singularity of dimension 3 (cf. e.g. [IY06, Corollary 8.2]).
The category CM(R) of maximal Cohen—Macaulay modules is an exact Frobenius category. By
Auslander’s results [Aus78], cf. [Yos90, Lemma 3.10], its stable category C = CM(R) is 2-Calabi—
Yau. By work of Iyama [Iya05b], the module T' = S is a cluster-tilting object in C. The endomorphism
ring of T" over R is the skew group ring S * G. Under the action of GG, the module T" decomposes
into three indecomposable direct factors T = T} @ Tp ® S¢ and we see that its endomorphism ring
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S * (G is isomorphic to the completed path algebra of the quiver

7\

Th 15

subject to all the ‘commutativity relations’ obtained by labelling the three arrows between any
consecutive vertices by X, Y and Z. The stable endomorphism ring of 7" is thus isomorphic to the
path algebra of the following generalized Kronecker quiver.

Q:1—=2

The theorem now shows that the stable category of Cohen—Macaulay modules CM(R) is triangle-
equivalent to the cluster category Cg.

As a further application, we give an alternative proof of a theorem from [IY06], stating that the
indecomposable non-projective rigid modules in CM(R) are exactly the modules of the form Q(T})
and QY(Ty) for i € Z. For this, note that the indecomposable rigid objects in Cq are exactly the
images of the indecomposable rigid k@Q-modules and the SP, for P an indecomposable projective
kQ-module [BMRRTO06]. So they correspond to the vertices of the component of the AR-quiver
of Cp containing the indecomposable projective k@)-modules. The corresponding component of the
AR-quiver of CM(R) is the one containing 77 and T5. Hence the indecomposable rigid objects in
CM(R) are all 7-shifts of these. Finally, we use that 7 = Q! in this case [Aus78].

Note that this application does not need the full force of the main theorem. For we only use that
the AR-quivers of Cg and CM(R) are isomorphic, with the component of the projective kQ-modules

for Cg corresponding to the component of 77 and T for CM(R), and it is easy to see that this
follows from [KRO07, Proposition 2.1(c) and Lemma 3.5], cf. also [BMRO7].

2.3 Application: non-acyclicity

Let k£ be an algebraically closed field and A the preprojective algebra of a simply laced Dynkin
diagram A. Then A is a finite-dimensional self-injective algebra and the stable category C of finite-
dimensional A-modules is 2-Calabi-Yau, cf. [Cra00], and admits a canonical cluster-tilting sub-
category 7' with finitely many indecomposables, cf. [GLS07a]. Let @’ be its quiver. For example,
by [GLS07a], the quivers @’ corresponding to A = A5 and A = Dy are respectively as shown below.

VAN
VAANVARN S
JAVAVANR VRN

¢} (¢]

o

Part (b) of the following proposition was obtained independently by Geiss (private communication).

PROPOSITION. Suppose that A is representation-infinite.

(a) The stable category C = mod A is not equivalent to the cluster category Cq of a finite quiver
() without oriented cycles.

(b) The quiver Q" of the canonical cluster-tilting subcategory of [GLSO07a] is not mutation-
equivalent to a quiver () without oriented cycles.
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In particular, it follows that the two above quivers are not mutation-equivalent to quivers without
oriented cycles. In the proof of the proposition, we use the main theorem. Let us stress that, as at
the end of §2.2, we do not need its full force but only use the isomorphism of AR-quivers. This
is the variant of the proof also given by Geiss (private communication).

Proof. (a) Recall first that the AR-translation 7 is isomorphic to the suspension in any 2-Calabi-
Yau category, so that it is preserved under triangle equivalences. We know from [AR94] that the
AR-translation 7 of C is periodic of period dividing 6. In particular, we have 76(X) = X for each
indecomposable X of C. But in Cg, for each indecomposable X that is the image of a preprojective
kQ-module, the iterated translates 77"(X), n > 0, are all pairwise non-isomorphic since @ is
representation-infinite.

(b) Suppose that Q" is mutation-equivalent to a quiver ). By one of the main results of [GLS06],
it follows that C contains a cluster-tilting subcategory 7 whose quiver is Q. If 2 does not have
oriented cycles, it follows from the main theorem that C is triangle-equivalent to Cg in contradiction
to part (a). O

3. Proofs

3.1 Proof of the corollary

First recall from [KRO7] that the category mod7 of finitely presented 7-modules is abelian and
Gorenstein of dimension at most 1. It follows from our hypothesis that each object of mod 7 has a
finite composition series all of whose subquotients are simple modules

Sy =T (7, M)/R(?, M)

associated with indecomposables M of 7 and that each of these simple modules is of finite projective
dimension. Thus each object of mod7 is of finite projective dimension so that mod7 has to be
hereditary. Since k is algebraically closed, it follows that mod 7 is equivalent to mod k(@) and the
claim of the corollary follows from the theorem.

3.2 Plan of the proof of the theorem
Our aim is to construct a triangle equivalence C — C7 such that the triangle

C<>\Cf

mod 7T

becomes commutative, where the diagonal functor takes X to C(?7,X)|7. To construct the triangle
equivalence C — Cr, we use the construction of C7 given in [Kel05], namely, the category Cr is the
stable derived category stab(7 @& D7 [—3]) of the differential graded (dg) category whose objects are
the objects of 7 and whose morphism complexes are given by the graded modules

endowed with the vanishing differential (the construction of the stable derived category is recalled
in §3.3 below). Thus, we have to construct an equivalence

C — stab(T @ (DT)[-3)).

We proceed in three steps:
(1) We construct a dg category A and a triangle functor

C — stab(A).
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We show moreover that the subcategory of indecomposables of the homology H*A is isomorphic to
T @ (DT)[-3].
(2) Using the fact that k is perfect we show that the dg category A is formal, i.e. linked to its
homology by a chain of quasi-isomorphisms. This yields the required triangle functor
C — stab(A) = stab(H*A) = stab(7 @ (DT)[-3]) = Cr.

(3) In a final step, we show that the composed functor C — Cr is fully faithful and that its
image generates Cr.

3.3 The proof

Let M C & be the preimage of 7 under the projection functor. In particular, M contains the
subcategory P of the projective-injective objects in M. Note that 7 equals the quotient M of M
by the ideal of morphisms factoring through a projective-injective. For each object M of 7', choose
an E-acyclic complex Ajs of the form

0— M — My—P— M — 0,

where P is E-projective and My and M; are in M, cf. [KRO7]. Note that, if QM denotes the kernel
of P — M, the induced morphism My — QM is automatically a right M-approximation of QM.
Let A be the dg subcategory of the dg category C(€)q4g of complexes over £ whose objects are these
acyclic complexes. Thus, for two objects A;, and Ay of A, we have

Hn.A(AL, AM) = HOHng(AL, AM[n]),
where HE denotes the homotopy category of complexes over £. To compute this space, let G1 be the
functor & — Mod M taking an object X to £(?, X)|M. The image of Aj; under G is a projective
resolution of the M-module M = £(?, M'). Thus we have
Homye (A[n Apm [n]) — ('DM)(L, M[n]) = EXtZL\/l (Lﬂ M)?
where DM denotes the (unbounded) derived category of Mod M. Notice that by the Yoneda lemma,
for each object N of M, we have a canonical isomorphism
Homp(G1N,M) = M(N)=E(N,M) =C(N,M).
Using this we see that the vector space Ext’y((L, M) is the homology in degree n of the complex
0—C(L,M)—0—C(Ly,M)— C(Li,M)— 0.
Clearly it is isomorphic to C(L, M) for n = 0. Using the triangle
S™L — Ly — Ly — S7'L

and the fact that C(S™'Lg, M) = 0 and C(S~'L, M) = 0, we see that the homology is isomorphic
to C(S™2L, M) = DC(M, L) for n = 3 and vanishes for all other n # 0. More precisely, we see that
the map M +— Ajps extends to an equivalence whose target is the (additive) graded category H*.A
and whose source is the graded category 7 @ (D7 )[—3] whose objects are those of 7 and whose
morphisms are given by

T(L,M) & (DT (M,L))[-3].
In particular, we have a faithful functor 7 — H*A that yields an equivalence from 7 to H°A. We
denote by D’(A) the full subcategory of the derived category D.A whose objects are the dg modules
X such that the restriction of the sum of the H" X, n € Z, to 7 lies in the category mod 7 of finitely

presented 7-modules (by [KRO7, Proposition 2.1(a)] this category is abelian). In particular, each
representable A-module lies in D?(A) (by [KR07, Proposition 2.1(b)]) and thus the perfect derived
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category per(A) is contained in DP(A). We denote by stab(A) the triangle quotient D°(A)/ per(A).
Recall from [KV87] and [Ric89] that we have a triangle equivalence

£ = DYE)/D(P).
Let G : H*(E) — DA be the functor that takes a bounded complex X over £ to the functor

AM — Hom'g(AM, X),
where Hom®¢ is the complex whose nth component is formed by the morphisms of graded objects,
homogeneous of degree n, and the differential is the supercommutator with the differentials of Ap;
and X. We will show that G takes D°(P) to zero, and that it maps H’(£) to D’(A) and the
subcategory of acyclic complexes to per(A). Thus it will induce a triangle functor
D*(€)/D"(P) — D(A)/ per(A)

and we will obtain the required functor as the composition

E 5 DVE)/DY(P) — DP(A)/ per(A) = stab(A).

First recall that, if A is an acyclic complex and I a left bounded complex of injectives, then each
morphism from A to I is nullhomotopic. In particular, the complex Hom®¢( Az, P) is nullhomotopic
for each P in H®(P). Thus G takes H’(P) to zero. Now, we would like to show that G takes values
in D(A) and that the image of each bounded acyclic complex is in per(A). For this, we need to
compute

(GX)(AL) = Hom®¢ (AL, X)
for L in M and X in H®(&). To show that the restriction of the sum of the homologies of GX lies in

mod 7, it suffices to show that this holds if X is concentrated in one degree. Moreover, if we have
a conflation

0—-M — My— X —0
of & with M; in M, it induces a short exact sequence of complexes

0— GM,— GMy— GX — 0.

So we may suppose that X is an object of M considered as a complex concentrated in degree 0.
Then one computes that the space

Hompye(Ar, X[n])
is isomorphic to the homology in degree n of the complex
0—-C(L,X)—0—C(Ly,X)—C(L1,X) — 0,
where C(L, X) is in degree 0. For n = 0, we find that the homology is C(L, X). Using the triangle
STPL— Ly — Ly— S'L
and the vanishing of C(S™'L,X) and C(S™'Lg, X), we see that the homology in degree n is
C(L,S%X) for n = 3 and vanishes for all other n # 0. This shows that the restriction of the

sum of the homologies of GX to 7 lies in mod 7 since the restriction of £(7,Y") to 7 lies in mod 7
for each Y in &.

Now we have to show that G takes acyclic bounded complexes to perfect dg .A-modules. For
this, we first observe that we have a factorization of G as the composition

H(E) s DM~ DA,

where G sends X to Hom®(?, X)|M and G5 sends Y to the dg module
AL = Hom'(GlAL,Y).
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Clearly the functor G; sends £-acyclic bounded complexes to bounded complexes whose homology
modules are in mod M. Since mod M lies in per M, it follows that G sends bounded acyclic
complexes to objects of per,,(M). Under the functor Gy, the module M(7, L) is sent to A7, and
G» restricted to the triangulated subcategory generated by the M (7, L) is fully faithful. We claim
that this subcategory equals per,,(M). Indeed, each object in per,,(M) is an iterated extension
of its homology objects placed in their respective degrees. So it suffices to show that each object
concentrated in degree 0 is the cone over a morphism between objects M(?, L), L € M. But this
is clear since mod M is equivalent to mod 7, which is hereditary. It follows that Go induces an
equivalence from per (M) to per A and thus G = G2G; sends bounded acyclic complexes to per A.
Thus, we obtain the required triangle functor F : C — stab(.A).

In §3.4 below, we will show that A is formal. Thus we get an isomorphism
T @ (DT)[-3] = A
in the homotopy category of small dg categories. This yields an equivalence
Cr = stab(7 @ (DT)[-3]) = stab(A).
By construction, it takes each object T' of 7 to the module T = 7 (?,T) in C7. Since 7 generates
C and the T, T € T, generate Cr, it is enough to show that F is fully faithful. We thank Michel
Van den Bergh for simplifying our original argument: For each object X of C, we have a triangle
T — Ty — X — ST,
with Tp,T1 in 7. Thus, to conclude that F' induces a bijection
C(T,X)—Cr(FT,FX)
for each T' € T, it suffices to show that I’ induces bijections
C(T,T'[i]) = C7(FT, FT'[])
for T,7" in 7 and 0 < 7 < 1. This is clear for 7 = 1 and not hard to see for ¢ = 0. We conclude
that, for each Y of C, F' induces bijections
C(T',Y[i]) = Cr(FT', FYTi])
for all 7"in 7 and all Y in C and i € Z. By the above triangle, it follows that F' induces bijections
C(X,)Y)—=Cr(FX,FY)
for all X,Y in C.

3.4 Formality

For categories 7 given by ‘small enough’ quivers @, one can use the argument of Seidel and Thomas
[ST01, Lemma 4.21] to show that the category 7 & (D7 )[—3] is intrinsically formal and thus A is
formal. We thank Van den Bergh for pointing out that, for general categories 7 with hereditary
module categories, the Seidel and Thomas argument cannot be adapted. Instead, we show directly
that A is formal (we do not know if 7 & (D7 )[—3] is intrinsically formal). Of course, it suffices to
show that the full subcategory A’ whose objects are the Ay; with indecomposable M is formal.

Since k is perfect, the category of bimodules over a semi-simple k-category is still semi-simple.
From this, one deduces that the category 7 is equivalent to the tensor category of a bimodule over
the semi-simplification of 7 (cf. [Ben98, Proposition 4.2.5]). Using this we can construct a lift of the
functor ind 7 — H%(A’) to a functor ind 7 — Z°(A’), where ind 7 denotes the full subcategory of
7T formed by a set of representatives of the isomorphism classes of the indecomposables. We define
a 7-bimodule by

X(L,M) = Hom®*s(Ar, M), L,M € M,
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https://doi.org/10.1112/50010437X08003540 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003540

B. KELLER AND I. REITEN

where we consider M as a subcomplex of Ay;. Note that X is a right ideal in the category A’, that
it is a kQ@-subbimodule of (L, M) — A'(Ar, Apr) and that we have fg = 0 for all homogeneous
elements f, g of X of degree greater than 0. The computation made above in the proof that G
takes H®(E) to D°(A) shows that X has homology only in degree 3 and that we have a bimodule
isomorphism

DT (M,L) = H*X(L,M), L,M € M.
Thus we have an isomorphism
DT[-3] = X
in the derived category of 7-bimodules. We choose a projective bimodule resolution P of D7 [—3]

whose non-zero components are concentrated in degrees 1, 2 and 3 (note that this is possible since
the bimodule category is of global dimension 2). We obtain a morphism of complexes of bimodules

P—X

inducing an isomorphism in homology. We compose it with the inclusion X — A’. All products of
elements in the image of P vanish since they all lie in components of degree greater than 0 of X.
Thus we obtain a morphism of dg categories

ToP— A

inducing an isomorphism in homology. This clearly shows that A’ is formal.

4. A generalization to higher dimensions

4.1 Negative extension groups

Let k be a field and H a finite-dimensional hereditary k-algebra. We write v for the Serre functor

of the bounded derived category D = D’(mod H) and S for its suspension functor. Let d > 2 be

an integer. Let C = Cgl) be the d-cluster category, i.e. the orbit category of D under the action of

the automorphism v ~1S% and 7 : D — C the canonical projection functor. We know from [Kel05]
that C is canonically triangulated and d-Calabi—Yau and that 7 is a triangle functor. Moreover, the
image 7(H) of H in C is a d-cluster-tilting object, cf. e.g. [KRO7]. The fact that the module H is
projective and concentrated in degree 0 yields vanishing properties for the negative self-extension
groups of m(H) if d > 3.

LEMMA. We have
Hom(n(H), S 'r(H)) =0
forl<i<d—2.

Proof. Put T = H. For p € Z, let D¢, and D, be the (—p)th suspensions of the canonical left,
respectively right, aisles of D (cf. [KV88]). We have to show that the groups

Hom(T, vPSP4=T)
vanish for all p € Z and all 1 <7 < d — 2. Suppose that p = —¢q for some ¢ > 0. Then we have
Hom (T, v~PSP4=4T) = Hom(T, v4S~%47'T)

and the last group vanishes since 7' lies in D¢y and 95 —99=T lies in D> 4(d—1)+i and we have
q(d—1) 414 > 0. Now suppose that p > 1. Then we have

Hom(T, v~ PSP~*T) = Hom(vPT, SP*~'T) = Hom(v? 1 (vT'), SP*~°T)
and this group vanishes since we have v?~'(vT) € Dxp1 (because vT = vH is in mod H) and
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Spd_iTE Dg—(pd—i) and
(pd—i)—(p—1)=pd—1)—i+1>d—1—i+1>d—i>2. O

4.2 A characterization of higher cluster categories

Let d > 2 be an integer, k an algebraically closed field and C a Hom-finite algebraic d-Calabi—Yau
category containing a d-cluster-tilting object T.

THEOREM. Suppose that Hom(T,S™'T) =0 for 1 <i < d — 2. If H = End(T) is hereditary, then,
with the notation of § 4.1, there is a triangle equ1va]ence c = Cf*{) taking T' to w(H).

Notice that, by the lemma above, the assumption on the vanishing of the negative extension
groups is necessary. These assumptions imply that the endomorphism algebra is Gorenstein of
dimension at most d — 1, as we show in the lemma in §4.6 below. For d > 3, this does not, of course,
imply that the endomorphism algebra is hereditary if its quiver does not have oriented cycles, but
it implies that the global dimension is at most d — 1.

We will prove the theorem below in §4.4. In [IY06, Theorem 1.3], the reader will find an example
from the study of rigid Cohen—Macaulay modules which shows that the vanishing of the negative
extension groups does not follow from the other hypotheses. The following simple example, based
on an idea of Van den Bergh, is similar in spirit.

4.3 Example

Let H be the path algebra of a quiver with underlying graph Ag and alternating orlentatlon Put
D= Db(mod H ) and let C be the orbit category of D under the automorphism F = 7 (where

7 = S~!v). Then C is 3-Calabi-Yau. Indeed, one checks that F? = 77152 in D, which clearly yields
v = 83 in C. The following diagram shows a piece of the Auslander-Reiten quiver of D which is a
‘fundamental domain’ for F'. To obtain the Auslander—Reiten quiver of C, we identify the left and

NN N
VANV

FPy

NN N NN
NN NS NS
ANV ANV AN AN

Using the mesh category of this quiver, it is not hard to check that the sum of the images of the
indecomposable projectives P, P», P3 in C is a 3-cluster-tilting object whose endomorphism ring
H is the path algebra on the full subquiver with the corresponding three vertices. On the other
hand, the image of P3 in C has a one-dimensional space of (—1)-extensions. Note that C = D JF is
nevertheless an orbit category and admits the 3-cluster category

B _ /2
¢ =D/F

Py

Ps

as a ‘2-sheeted covering’.

4.4 Proof

The proof of the theorem follows the lines of the one in §3.3. Let 7 be the full subcategory of C
whose objects are the direct sums of direct factors of T'. Let M be an object of 7. We construct an
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E-acyclic complex Ajs
0— Mgy — Mg — -+ — My — My — 0,
which yields a resolution of the M-module
E(?, M) : M°P — Mod k
as in [KRO7, Theorem 5.4(b)], Thus we can take My = M and the morphism M; — M is a deflation
with projective M. Each morphism

M; — Zi_1 = ker(M;—1 — M;_3), i>2,

yields a 7-approximation in C. Our vanishing assumption then implies that M,,..., My 1 are

projective. As in §3.3, we let A be the dg subcategory of the dg category C(£)qy of complexes over

& whose objects are these acyclic complexes. Thus, for two objects A;, and Aps of A, we have
Hn.A(AL, AM) = HOHng(AL, AM[n])

One computes that this vector space is isomorphic to C(L, M) for n =0, to C(L,XM) = DC(M, L)
for n = d + 1 and vanishes for all other n. Here we use again our vanishing hypothesis. We see that
the map M — Ajs extends to an equivalence whose target is the (additive) graded category H*.A
and whose source is the graded category 7 @ (DT )[—(d + 1)] whose objects are those of 7 and
whose morphisms are given by

T(L,M)® (DT(M,L))[—(d+1)].

Now the proof proceeds as in §3.3 and we obtain a triangle functor F' : C — Cr taking the
subcategory 7 to add w(H) and whose restriction to 7 is an equivalence. By Lemma 4.5 below, F'
is an equivalence.

4.5 Equivalences between d-Calabi—Yau categories

Let d > 2 be an integer, k a field and C and C’ k-linear triangulated categories which are d-Calabi—~
Yau. Let 7 C C and 7’ C C' be d-cluster-tilting subcategories. Suppose that ' : C — (' is a triangle
functor taking 7 to 7'.

LEMMA. The triangle functor F' is an equivalence if and only if the restriction of F to 7T is an
equivalence.

Proof. 1t follows from [KRO7, Proposition 5.5(a)], cf. also [IY06, Theorem 3.1, part (1)], that C
equals its subcategory

T+ ST %---% 8411

and similarly for C’. Suppose that the restriction of F' to 7 is an equivalence. Let T € 7. By
induction, we see that, for each 1 <i < d — 1, the map

C(T,Y)— C'(FT,FY)
is bijective for each Y € 7 * ST * --- x 7. Thus the map
C(S'T,Y) — C'(S'FT,FY)
is bijective for all j € Z and Y in C. Then it follows that the map
C(X,Y)—C(FX,FY)

is bijective for all X,Y in C. Thus F is fully faithful. Since 7’ generates C’, the functor F' is an
equivalence. Conversely, if F' is an equivalence and takes 7 to 7', then the image of 7 has to be 7’
since F'7 is maximal (d — 1)-orthogonal in C'. O
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4.6 The Gorenstein property for certain d-Calabi—Yau categories

Let d > 2 be an integer, k a field and C a k-linear triangulated category which is d-Calabi—Yau. Let
T C C be a d-cluster-tilting subcategory such that we have

C(T,S7'T") =0
foralll <i<d—2andall T, T" of 7.
LEMMA. The category mod 7 is Gorenstein of dimension less than or equal to d — 1.

Proof. As in [KRO7], one sees that the functor Hom(7', ?) induces an equivalence from the category
ST to the category of injectives of mod 7. So we have to show that the 7-module Hom(?, ST
is of projective dimension at most d — 1 for each T in 7. Put Y = ST. We proceed as in [KR07,
§5.5]. Let Ty — Y be a right 7-approximation of Y. We define an object Zy by the triangle

Zy — Ty —Y — SZy.
Now we choose a right 7-approximation 77 — Z3 and define Z; by the triangle
Z1— Ty — Zy — SZ;.
We continue inductively constructing triangles
Zi =Ty, — Zi1 — SZ;
for 1 < i< d—2. By [KRO7, Proposition 5.5, the object Z;_5 belongs to 7. We obtain a complex
0—=Zj9—Tygo— - —T1 —>Ty—Y —0.

We claim that its image under the functor F': C — mod 7 taking an object X of C to C(?, X)|7 is
a projective resolution of F'Y . Indeed, by induction one checks that the object Z; belongs to

ST s ST T ST T ST T % T

Thus, for each T' € T, we have C(T, S~!Z;) = 0 by our vanishing assumptions. Moreover, the maps
FT;1 1 — FZ; are surjective, by construction. Therefore, the triangle

S Zin— Zi =Ty — Zi
induces a short exact sequence
0—FZ;,— FT; — FZ; —0
for each 0 <7 < d— 2, where Z_; =Y. This implies the assertion. O

Appendix. An alternative proof of the main theorem

Michel Van den Bergh

In this appendix we give a proof of Theorem 2.1 that is based on the universal property of orbit
categories [Kel05]. We use the same notation as in the main text, but for the purposes of exposition
we will assume that 7 consists of a single object T" such that B = C(T,T) = k@ where @ is a
(necessarily finite) quiver. The extension to more general 7 is routine.

A.1 The dualizing module

For use below we recall a version of the Gorensteinness result from [KR07]. Assume that C is a
two-dimensional Ext-finite Krull-Schmidt Calabi—Yau category with a cluster-tilting object T'. Let
B =C(T,T).

1343

https://doi.org/10.1112/50010437X08003540 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003540

B. KELLER AND I. REITEN

For a finitely generated projective right B-module we define P®p T in the obvious way. For any
M € C, there is a distinguished triangle (e.g. [KR07])

P'opT S Q @pT — M — .
Now we apply this with M = T'[2]. Consider a distinguished triangle
P'opT—Q"@pT —T[2] — .
Applying the long exact sequence for Home (T, —) we obtain a corresponding projective resolution
as right module of the dualizing module of B:
0—P'"—Q"— DB —0. (A1)
If we choose any other right module resolution of DB,
0—-P —-Q % DB —0, (A2)
then it is equal to (A1) up to contractible summands. Hence we obtain a distinguished triangle
PopT —Q opT T2 — . (A3)

Changing, if necessary, o’ by a unit in B = End(7'[2]) we may and we will assume that Hom(7', /) =
a (under the canonical identifications Home (T, Q'®@pr) = Q' and Home (T, T[2]) = DB).

A.2 The proof

We now let C be as in the main text. By [Kel94, Theorem 4.3] we may assume that C is a strict (=
closed under isomorphism) triangulated subcategory of a derived category D(.A) for some dg cate-
gory A. We denote by pC the full subcategory of D(B ® A) whose objects are differential graded
B ® A-modules which are in C when considered as A-modules. Clearly gC is triangulated.

LEMMA A.2.1. Assume that B = k(@). Then the following hold:
(a) T may be lifted to an object in pC, also denoted by T'; and

L
(b) there is an isomorphism in gC: DB ®@p T = T[2].

Proof. We may assume that 7" is a homotopy projective A-module containing a summand for each
of the vertices of . Then we may lift the action of the arrows in @) to an action of k@ on T'. Hence
part (a) holds.

To prove part (b), we choose a resolution of B-bimodules,
0—-P —-Q % DB—0,

where P’ and @’ are projective on the right. Such a resolution may be obtained by suitably truncating
a projective bimodule resolution of DB. Derived tensoring this resolution on the right by 7" and
comparing with (A3) we find an isomorphism in C,

L
c:DBepT =TI2|, (A4)

between objects in gC. Note that c satisfies co a = .

We claim that ¢ in (A4) is compatible with the left B-actions in C on both sides. Let b € B.
Then we have the following commutative diagram of right B-modules.

0 P Q' DB 0
b- l b- l b l (A5)
0 P Q' DB 0
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Tensoring on the right by 7' we obtain the following morphism of triangles in C, where b/ = co (b®

ldT) oc 1

PogT —Q &pT-2—T[2
bl b-l b~l
PogT—Q @pT-2—T[2

We need to prove that o = b under the identification B = End¢(7[2]). This follows easily by
applying the functor Home (7', —) and comparing to (A5) (using the fact that Hom(7, o) = «).

The proof of part (b) can now be completed by invoking the following lemma. O
LEMMA A.2.2. Assume that B has Hochschild dimension 1. Let M, N € gC. Then the map
Hom ,¢(M, N) — Home (M, N)B
is surjective (where (—)® denotes the B-centralizer).

Proof. Replacing M by a homotopy projective and N by a homotopy injective B ® A-module, one
easily obtains the identity

RHompg (M, N) = RHompge(B,RHom 4(M, N)),
which yields a spectral sequence
EST: Extl. (B,Extd(M,N)) = Ext” (M, N).
Using the fact that B has projective dimension 1 as bimodule, this yields a short exact sequence
0 — Extge (B, Ext,' (M, N)) — Hom,¢(M, N) — Hompe (B, Home (M, N)) — 0,
which gives in particular what we wanted to show. U

We can now finish the proof of the main theorem. By Lemma A.2.1(a) we have a functor

F:—éBT:Db(B)HC,
which by Lemma A.2.1(b) satisfies
FoX[-2]|=Fo(—®p DB[-2]) 2 F.
By the universal property of orbit categories [Kel05], we obtain an exact functor
D(B)/z[-2] - C,

which sends B to T'. This functor is then an equivalence by the lemma in §4.5, which finishes the
proof.
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