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ABSTRACT 

A vertex coloring of a graph G is called acyclic if no two adjacent vertices have the same 
color and there is no two-colored cycle in G. The acyclic chromatic number of G ,  denoted 
by A ( G ) ,  is the least number of colors in an acyclic coloring of G. We show that if G has 
maximum degree d, then A ( G )  = O(d413) as d+m. This settles a problem of Erdos who 
conjectured, in 1976, that A ( G )  = o(d2) as d-m. We also show that there are graphs G 
with maximum degree d for which A ( G )  = R(d413/(log d ) l ” ) ;  and that the edges of any 
graph with maximum degree d can be colored by O(d)  colors so that no two adjacent edges 
have the same color and there is no two-colored cycle. All the proofs rely heavily on 
probabilistic arguments. 

1. INTRODUCTION 

All graphs considered here are finite, undirected and have no loops and no 
multiple edges. A vertex coloring of a graph G = (V, E) is acrylic if it is a proper 
vertex coloring (that is, adjacent vertices have distinct colors), and there is no 
cycle in the subgraph induced by the vertices of any two of the colors. The acyclic 
chromatic number of G ,  denoted by A ( G ) ,  is the least number of colors in an 
acyclic coloring of G. 
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Acyclic colorings were introduced by Grunbaum [8] and studied by Albertson 
and Berman [l] and by Borodin [6] amongst others. Most of the published results 
about acyclic colorings consider graphs drawn on some fixed surface. Perhaps for 
any surface the maximum acyclic chromatic number equals the maximum usual 
chromatic number (except for the sphere where the numbers are 5 and 4, 
respectively). This problem was raised in [l] and also by Borodin. A.V. Kostochka 
proved in 1978 in his thesis that it is an NP-complete problem to decide for a 
given G and k if the acyclic chromatic number of G is at most k. 

Let A = A ( G )  denote the maximum degree of a vertex of a graph G .  By 
coloring sequentially the vertices of G ,  where each vertex u,  in its turn, is colored 
by the first color which is not assigned already to a vertex at distance at most two 
from u,  one easily obtains an acyclic coloring of G with at most A’ + 1 colors. For 
d = 1 , 2 , .  . . define 

A ( d )  = max{A(G): A(G) = d }  . 

By the above remarks A ( d )  I d2 + 1. In 1976 Erdos conjectured that A ( d )  = 
o(d2)  as d - , a  (see [l]  and [ l l ,  problem 371). This conjecture is established by 
the following theorem. 

Theorem 1.1. 

The estimate in the above theorem is not far from the truth, as shown by the next 
theorem (We shall use natural logarithms throughout.) 

Theorem 1.2. 

A ( d )  =a( 

It is noted in [l]  that Erdos had showed that A(d)=f l (d4’3- ‘ ) .  From these 
results we know that there are graphs with maximum degree d whose acyclic 
chromatic number is significantly larger than d .  It turns out that such graphs must 
contain certain complete bipartite graphs. Let Ka,b denote the complete bipartite 
graph with vertex classes of sizes a and b. 

Theorem 1.3. Let G be a graph with maximum degree d 2 1 and suppose that for 
some y 2 1, G contains no copy of K2,? + in which the two vertices in the first class 
are nonadjacent. Then 

In particular, if the girth of G is at least 5 ,  then A ( G )  = O ( d ) .  Another 
interesting special case of Theorem 1.3, which follows from the fact that line 
graphs contain no copy of K2,5 in which the two vertices of the first class are 
nonadjacent, is the following. 
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Corollary 1.4. The edges of any graph G with maximum degree d can be colored 
by O ( d )  colors such that no two adjacent edges have the same color and there is no 
cycle in the subgraph containing the edges of any two of the colors. 

The proofs of all the three theorems above rely heavily on probabilistic argu- 
ments. Theorems 1.1 and 1.3 are proved by applying the Erdos-Lovisz local 
lemma first proved in [7] (see also [4] and [lo]). For some recent applications of 
this lemma to various other decomposition problems see [2] and [3]. 

The paper is organized as follows. In Section 2 we consider graphs with 
maximum degree d and prove Theorems 1.1 and 1.2. Section 3 contains the proof 
of Theorem 1.3 (and that of Corollary 1.4). The final Section 4 contains some 
concluding remarks and open problems. 

2. GRAPHS WITH MAXIMUM DEGREE d 

In order to prove Theorem 1.1 we need the Erdos-Lovfisz local lemma (in its 
nonsymmetric form), which is the following. 

Lemma 2.1 ([7], see also [lo]). Let A,, A,, . . . ,A, ,  be events in an arbitrary 
probability space. Let the graph H = (V, E) on the nodes {1,2, . . . , n }  be a 
dependency graph for the events Ai;  that is, assume that for each i, A i  is 
independent of the family of events {A : { i, j }  $Z E }  . If there are reals 0 5 yi  < 1 
such that for  all i 

then 
n 

P r ( n  Ai)rn ( l - y i ) > o ,  
i i = l  

so that with positive probability no event Ai occurs. rn 

We actually prove the following explicit version of Theorem 1.1. 

Proposition 2.2. Let G = (V, E )  be a graph with maximum degree d. Then 
A(G) I [50d4l31. 

Remark 2.3. The constant 50 can be easily improved. We make no attempt to 
optimize the constants here, and throughout the article. 

Proof of Proposition 2.2. Put x = r50d4/’], and let f :  V-, {1,2, . . . , x }  be a 
random vertex-coloring of G, where for each vertex u E V independently, the 
color f ( u )  E {1,2,  . . . , x }  is chosen randomly according to a uniform distribution 
on {1,2, . . . , x } .  In order to complete the proof it suffices to show that with 
positive probability f is an acyclic coloring of G. To this end we define a family of 
events, apply the local lemma to show that with positive probability none of them 
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occurs, and observe that if none of them occurs then f is acyclic. The events we 
consider are of the following four types. 

a) Type I: For each pair of adjacent vertices u and u of G, let A,,,,, be the 
event that f(u) = f ( u ) .  

b) TypeII: For each induced path of length four uoulu2u3u4 in 
G, let B ( U o , " , , U * , U 3 , U 4 ,  be the event that f ( u o )  = f ( u 2 )  =f(u4) 
and =f(v,)* 

A air of nonadjacent vertices of G is called a special pair if they have more than 
d common neighbors. 2F: 

c) Type 111: For each induced 4-cycle uIu2u3u4 in G, in which neither { u l ,  u 3 }  
nor { u 2 ,  u4) is a special pair, let C,U1.U2.U3.U4) be the event that 

d) Type IV: For each special pair of vertices u, w in G let D,,,,, be the event 
f(v1) = f(v3) and f ( U 2 )  = f ( V 4 ) .  

that f( u )  = f( w). 

Now suppose that none of the events of the four types above occurs. We claim 
that f must be an acyclic coloring. Indeed since no events of type I occur, f is a 
proper coloring. Therefore every odd cycle of G contains vertices of at least three 
distinct colors. What about the possibility of having an even cycle 

c = UoU1U2U3 * * * U 2 k - I U * k  = uo 

in G in which f(uo) = f ( u z )  = - * * = f ( ~ ~ ~ - ~ )  and f(ul) = . f (u, , - , )?  We may 
restrict our attention to induced cycles, since if we have a diagonal then either we 
have an odd cycle and hence three colors must occur or we have a smaller 
two-colored even cycle. Now, induced two-colored 4-cycles do not exist, since no 
event of type 111 or IV occurs. Induced two-colored even cycles of length at least 
six do not exist, since no event of type I1 occurs. Therefore, if none of the events 
of types I, 11, 111, or IV occurs, then f is acyclic, as claimed. 

It remains to show that with positive probability none of these events happen. 
To prove this we apply the local lemma. Let us construct a graph H whose nodes 
are all the events of all the four types, in which two nodes X, and Y ,  (where 
X, Y E  { A ,  B, C, D}) are adjacent if and only if S n T # 4. Since the occurrence 
of each event X, (for XE { A ,  B, C, D } )  depends only on the color of the 
vertices in S, H is a dependency graph for our events, because even if the colors 
of all vertices of G but those in S are known, the probability of X, remains 
unchanged. Let us call a node of H a type i node, where i E { I ,  ZZ, ZZZ, N}, if it 
corresponds to an event of type i. In order to apply the local lemma we need an 
estimate for the number of nodes of each type in H which are adjacent to any 
given node. This estimate is given in the following two simple lemmas. 

Lemma 2.4. Let u be an arbitrary vertex of the graph G = (V, E ) .  Then the 
following four statements hold. 

(i) u belongs to at most d edges of G .  
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I 
I1 

I11 
IV 

M: 

(ii) u belongs to at most 3d4 induced paths of length 4 in G. 
(iii) The number of induced 4-cycles in G containing u in which no opposite 

(iv) The number of special pairs of vertices containing u is at most d"'. 
pair of vertices is a special pair is at most dsI3. 

2d 6d4 2d8I3 2d4I3 
5d 15d4 5d8 I3  5d4I3 
4d 12d4 4ds13 4d4I3 
2d 6d4 2de13 2d413 

Proof. Part (i) is trivial, since A(G) = d. 
Part (ii) follows from the fact that since A(G) = d the number of paths of 

length 4 in which u is an end-vertex is at most d(d - 1)3 5 d4, the number of paths 
of length 4 in which u is the middle vertex is at most ( i ) ( d  - 1)' 5 d4, and the 
number of paths of length 4 in which u is a second or fourth vertex is at most 

To prove (iii) observe that there are at most d(d - 1) 5 d' induced paths of 
length two uulu2 starting at u.  Each induced four-cycle containing u must contain 
such a path (in fact, it must contain two of them), and if { u ,  u2}  is not a special 
pair, then there are at most d2I3 four-c cles containing the path uu1u2. Thus, 
altogether, there are at most d 7 < d induced 4-cycles containing u ,  in which 
no pair of opposite vertices is special. 

Part (iv) follows from the fact that there are at most d(d - 1) 5 d2 induced 
paths of length 2 starting at u and more than d2I3 of them lead to any vertex u for 
which is a special pair. Thus the number of such vertices u is at most 

d(d - l)(d - 1)' I d4. 

2 d2/3 8/? 

u u 
d2= d2/3 d ( 1 ;  . 8 

Lemma 2.5. For i, j E {I, IZ, 111, N} the (i, j )  entry of the matrix M given below 
is an upper bound on the number of nodes of type j in the dependency graph H 
which are adjacent to a node of type i in H .  

I I I I1 I I11 I IV 

Proof. Let us prove, for example, that the first row of M gives upper bounds for 
the number of nodes of each type which are adjacent to a type I node. The proofs 
for the other rows are analogous. Let A,,,, ,  be an event of type I corresponding 
to a type I node of H .  By the definition of H A , , , , ,  is adjacent in H to all type I 
nodes where either u E {z, t }  or w E {z, t}. By Lemma 2.4, part (i) there are 
at most 2d such nodes. Similarly, A,,, , ,  is adjacent in H to all type I1 nodes 
B,Uo,U,,U2,Vs.U4, where either u E { u,, . . . , u4}  or w E {u,, . . . , u 4 } .  By Lemma 2.4, 
part (ii), there are at most 6d4 such type I1 nodes. In the same way, Lemma 2.4 
part (iii) implies that at most 2d813 type I11 nodes are adjacent in H to A ,,,,, and 
Lemma 2.4 part (iv) gives that at most 2d4I3 type IV nodes are adjacent to 
44 W ) '  

Recall that f : V-, {1,2, . . . , x }  is a random vertex-coloring of G, where 
x = [50d4131. The following statement is obvious. 
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Fact 2.6. 

(i) For each type I event A, Pr(A) = 4 .  
(ii) For each type I1 event B, Pr(B) = 5 

(iii) For each type I11 event C ,  Pr(C) = 5 
(iv) For each type IV event D, Pr(D) = $. rn 

The only ingredient that is still missing for applying the local lemma is the 
definition of the weights yi. We define the weight y of each event to be twice its 
probability, i.e., 2 for events of type I and IV, 3 for events of type I1 and 5 for 
events of type 111. By the local lemma (Lemma 2.1) and by Lemma 2.5 and Fact 
2.6, in order to conclude that with positive probability none of the forbidden 
events hold it suffices to verify the following three inequalities. 

Sd+Sd4I3 lSd4 2 Sd8I3 ? I T ( 1 - ; )  1 2  (1-4) (l-i) 
X X X 

1 2  
x x  X X 

(3) 

(Inequality (1) corresponds to events of type I and IV, inequality (2) to events of 
type 11, and inequality (3) to events of type 111.) Clearly, the validity of inequality 
(2) implies that of the other two, and this inequality is valid, since 

Sd +Sd4” 

2 (1 - -)(1- 20d413 7)(1 30d4 - C) 
X X 2  

Therefore, with positive probability, f is an acyclic coloring of G. This completes 

Next we prove Theorem 1.2, which shows that the estimate in Theorem 1.1 is 
the proof of Proposition 2.2 (and hence that of Theorem 1.1). rn 

not far from being best possible. 

Proof of Theorem 1.2. Let V =  {1,2, . . . , n} be a set of n labelled vertices, 
where 4 divides n. Put 

114 log n 

where c>O is a constant, independent of n, to be chosen later, and let 
G = Gn,p = (V, E) be a random graph on V obtained by choosing each pair of 
distinct members of V independently to be.an edge with probability p. Let d be 
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the maximum degree on G. By standard estimates on binomial distributions (or 
by well known results about the degrees of random graphs-see, for example, [4]) 

Pr{d 5 2~n ' /~( log  n)1/4} + 1 as n+ a~ . 

To complete the proof we show that (for an appropriate choice of c) 

To show this we first prove: 

Claim 2.7. For any fixed partition of V into r I 9 disjoint color classes, the 

probability that this partition is an acyclic coloring of G is at most (1 - p4{  ). (In 

fact, with probability 1 - (1 - p4)(n'4)  there is a two-colored 4-cycle in G. )  

n / 4  

Proof of Claim 2.7. Let V,, V,, . . . , V, be the parts of the partition. By omitting 
a point from each Vj of odd cardinality we obtain at least n - r 2 4 vertices that lie 
in disjoint even parts. By partitioning each of these even parts of size >2 vertices 
into disjoint parts of size 2 we obtain k = pairwise disjoint subsets U ,  . . . U, of 
V, each of cardinality 2, and each a subset of some color class in the original 
partition. For each 1 I i < j 5 k ,  the four edges joining a vertex of Ui to a vertex 
of Uj would form a 4-cycle. The probability that this 4-cycle is not in G is 1 - p 4  
and since all these ( 'L4) events are mutually independent, as the corresponding 

Returning to the proof of the theorem, observe that there are less than n" 
partitions of V. Therefore, the probability that there is an acyclic vertex-coloring 
with at most 5 colors does not exceed 

4-cycles are edge-disjoint, the assertion of the claim follows. rn 

= exp{ n log n - (":4)c4(iog n ) / n ] .  

This probability is o( 1) (as n + a~) for any fixed c satisfying c4 > 32 (e.g., c = 3 will 
do). This completes the proof. rn 

3. GRAPH WITH NO K2,.y+, 

In this section we prove Theorem 1.3, in the following explicit form. 

Proposition 3.1. Let G be a graph with maximum degree d 2 1 and suppose that 
for some y 2 1, G contains no copy of Kz , y+ ,  in which the two vertices in the first 
class are nonadjacent. Then 
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We need the following simple lemma. 

Lemma 3.2. Let G be a graph with maximum degree d containing no complete 
bipartite subgraph K2,? +, in which the two vertices in the first class are nonadjacent. 
Then, for any 1 r 4 and any vertex u of G ,  the number of induced cycles of length 1 
in G containing u does not exceed 1 yd'-2. 

Proof. The number of simple paths of len th 1 - 2 starting at u and ending in 
another vertex is at most d(d - l y - ,  5 d'- . Each such path ending at, say, a 
vertex u,  where u is not adjacent to u,  can be completed to an induced cycle of 
length 1 in G in at most y k distinct ways, since otherwise u and u would have at 
least y + 1 common neighbors in G, contradicting the hypothesis. Moreover, in 
this manner each induced cycle of length 1 containing u is counted twice. This 

Q 

completes the proof. 

Proof of Proposition 3.1. Let G = (V, E) be a graph satisfying the assumptions of 
the proposition. Put c = 3 2 ,  x =  [ c q y d l .  We will show that A ( G ) S x .  Let 
f : V+ { 1 , 2 ,  . . . , x }  be a random vertex-coloring of G, where for each vertex 
u E V independently, the color f(u) E { 1 , 2 ,  . . . , x }  is chosen randomly according 
to a uniform distribution. For each pair of adjacent vertices u and u of G, let 
A , u , v )  be the event that f ( u )  = f (u) .  We call such an event an event of type A , .  (It 
is convenient for us to call the type A ,  rather than the more natural A 2 ) .  
Similarly, for each induced even cycle C of G whose vertices are u l ,  u2 ,  . . . , uz, 
(in this cyclic order), let A ,  be the event that f ( u , )  = f (u,)  = . . . = f ( u z k - , )  and 
f (u2)  = f (u4)  = .  . . = f ( u z k ) .  We call such an event an event of type A z , .  As 
argued in the proof of Theorem 1 . 1 ,  it is easily seen that if none of these events 
holds, then f is an acyclic coloring of G. Therefore, in order to complete the proof 
it suffices to show that with positive probability none of the events above occur. 
This fact will be proved by applying the local lemma. Let H be the graph whose 
nodes are all the events A,, , , ,  and A , ,  in which two nodes representing two of 
our events are adjacent if and only if the sets of vertices of G corresponding to the 
two events share at least one common vertex. Obviously, H is a dependency 
graph for the events considered, since the occurrence of each A .(A ,,,,,) depends 
only on the colors of the vertices of C (the colors of u, u ,  respectively.) 

Every vertex u of G appears in at most d pairs of adjacent vertices { u ,  u } .  By 
Lemma 3.2, it appears in at most 1 yd'-' induced cycles of length I ,  for any even 
1 2 4. It follows that in the dependency graph H constructed above, for all k 2 3, 
each event of type A ,  is adjacent to at most kd events of type A ,  and to at most 
ikydIp2  events of type A ,  (I r 4). Therefore (since y r l), the following state- 
ment holds. 

Fact 3.3. In the dependency ra h H, for each k r 3  each event of type A ,  is 
adjacent to at most k(<d) events of type A ,  for all 1 L 3. 

Clearly, the probability of each event of type A ,  is : and that of each event of 
type A ,  is (:),-' for all k 14. Thus we have: 

1-5 
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Fact 3.4. If A is an event of type A , ,  then 

Pr(A)=(-)  1 k - 2  . 
X 

In order to apply the local lemma, we have to define the weights y i  appearing in 
its statement. For each event A of the A ,  define 

where c = 3 2  is the constant defined in the beginning of the proof and x =  
[ c g y d ] .  Note that for each A, O < y ,  <l. Combining the local lemma 
(= Lemma 2.1), Fact 3.3, and Fact 3.4 we see that in order to complete the proof 
it suffices to check that for every k 2 3 

k - 2  

-<- 
k - 2 -  k - 2  
1 

X 

that is. that 

1-2 

Also, as c = 32, y 2 1, d 2 1 we conclude that 

and since (1 - f )' 2 for all real z 2 2 the following holds: 
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It follows that inequality (4) holds provided 

for all k 2 3; that is, provided V7 log, c 2 8& for all k 2 3. Since the maximum 
of the quantity 8& for k 2 3 is 24 it suffices to check that V7 log, c 2 24 and this 
certainly holds for our choice c = 32. We have thus proved that A(G)  5 [32<yd], 

An edge-coloring of G = (V, E )  is called acyclic if it is a proper edge coloring 
(that is, no two incident edges have the same color) and there is no cycle in the 
subgraph containing all the edges of any two of the colors. The acyclic edge 
chromatic number of G ,  denoted by A’(G),  is the least number of colors in an 
acyclic edge coloring of G. 

For a prime p > 2  let Kp denote the complete graph on the p vertices 
{ O , l , .  . . , p - 1).  Define an edge coloring f of K p  by f ( { x ,  y } ) =  ( x +  y )  
(mod p). One can easily check that f is an acyclic edge coloring of Kp and hence 
A’(K,) S p .  Also A’(Kp) z p  since any matching in K p  contains at most edges. 
Hence A’(Kp) = p. 

A similar construction can be used to show that for every prime p > 2, the 
complete bipartite graph Kp-l,p-l has A’(Kp-l ,p- . l )  = p. (Denote the p - 1 
vertices in each of the two color classes X and Y by 1,2 ,  . . . , p - 1 and color the 
edge { x ,  y} for x E X  and y E  Y by ( x + y )  (mod p) to obtain an acyclic 
edge-coloring, showing that A’(Kp- l ,p - l )  s p .  To show that A’(Kp- l ,p - l )  ’p 
observe that any matching in Kp-l,p-,  is of size at most p - 1, and if we have two 
matchings of size p - 1, then their union contains a cycle. 

By known results about the distribution of primes (see, for example, [9]) the 
above observations show that A’(K,) = n + O(n2j3) and A’(&,,) = n + 
as n - m .  

Define A‘(d) = max{ A‘( G )  : A( G )  = d }  . Since each acyclic vertex coloring of 
the line graph of a graph G gives an acyclic edge coloring of G ,  and since a line 
graph contains no copy of K2,* in which the two vertices in the first class are 
nonadjacent, Theorem 1.3 implies that A’(d) = O ( d ) .  This is precisely the 
assertion of Corollary 1.4. 

completing the proof of Proposition 3.1, and thus.of Theorem 1.3. 

4. CONCLUDING REMARKS AND OPEN PROBLEMS 

1) Theorem 1.3 implies that for every fixed d 2 1 a random d-regular graph G,,,d 
on n vertices satisfies, almost surely (that is, with probability that tends to 1 as n 
tends to infinity) A(G,,,) = O(d) .  Similarly, for every fixed > 0 a random graph 
Gn,p obtained by taking n labelled vertices and choosing each pair of them to be 
an edge randomly and independently with probability p ,  where p 5 Int+‘, satis- 
fies, almost surely A(G,, ,)  = O(A(G,,p))  + 1. 

2) The probabilistic construction given in the proof of Theorem 1.2 shows that 
the estimate given in Theorem 1.1 is not far from being sharp. This construction 
gives, almost surely, a graph G with maximum degree d, which contains no cop 
of K 2 , y + l  for some y = O(d2’3(log d)”3)  and still satisfies A ( G )  = I‘(d / 4/ Y 
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(log d)l13).  Thus, the estimate in Theorem 1.3 is sharp here up to a logarithmic 
factor. 

3) Consider a graph G with maximum degree d. Let us call a coloring of G 
‘P,-free’ if as usual no two adjacent vertices have the same color and also no path 
Pk with k vertices is 2-colored. Thus a P4-free coloring must be acyclic. The 
earlier proof that A(G)  I d2  + 1 in fact shows that there is always a P,-free 
coloring with at most this number of colors. For such colorings we may need 
(1 + o(l))d2 colors. For whenever q is a prime power, there is a graph G with 
n = q2 + q + 1 vertices and maximum degree q + 1, which has diameter 2 and thus 
has A ( G )  = n (see, for example, [5 ,  page 1761). 

If in the proof of Proposition 2.2 we consider only events of the first two types, 
then we see easily that G must have a P,-free coloring with O(d413) colors. A 
similar proof shows that for any fixed k 5 5 there is always a Pk-free coloring with 
~ ( d z )  colors. 

4) It would be interesting to close the gap in the estimates given for A(d)  by 
Theorems 1.1 and 1.2. We suspect that the upper bound, given in Theorem 1.1, is 
closer to the truth. 

5 )  We do not have any explicit construction of graphs G for which A ( G ) S  
A(G) (the existence of such graphs is proved in Theorem 1.2). Such a construc- 
tion, besides being interesting in its own right, may help to improve the lower 
bound for A(d)  given in Theorem 1.2, as it frequently happens that probabilistic 
arguments of the type used in the proof of this theorem supply estimates that 
deviate by some logarithmic factors from the best possible estimates. 

6) The proofs of Theorems 1.1 and 1.3 are not constructive, and since they 
apply the local lemma they do not supply even efficient randomized algorithms for 
the corresponding problems. It would be interesting to find a polynomial time 
(deterministic or randomised) algorithm that would find, given a graph G with 
maximum degree d ,  an acyclic coloring of it using O(d413) (or even o(d2))  colors, 
or an acyclic edge coloring of it, using O(d)  colors. 

k - 1  
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