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Abstract

We use Ziegler’s results [16] on the higher Bruhat orders to show that Abello’s

acyclic sets of linear orders [1] can be described as the permutations of equivalence

classes of maximal reduced decompositions. This allows us to strengthen Abello’s

structural result: we show that acyclic sets arising from this construction are dis-

tributive sublattices of the weak Bruhat order. Fishburn’s “alternating scheme” is

the set of permutations of one such equivalence class of maximal reduced decomposi-

tions. Any acyclic set that arises in this way can be represented by an arrangement

of pseudolines, and we use this representation to derive a formula enumerating the

“alternating scheme.”

1 Introduction

Majority voting is one of the most commonly accepted and widely practiced methods for

aggregating preferences. It is well-known that social preferences determined by majority

voting on every pair of alternatives may be intransitive. On the other hand, if voters’

preferences are restricted to lie within certain domains, the problem of intransitivity can
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be avoided. Social choice theorists have found several such domain restrictions [14, 12],

and this has led to the question: Given n alternatives, what is the cardinality of the largest

domain of linear orders that still guarantees transitive social preferences under pairwise

majority voting?1 Such a domain is called an acyclic set of linear orders.2

The question of finding maximum cardinality acyclic sets has proven to be one of the

most difficult combinatorial questions in social choice theory [7]. While several upper and

lower bounds have been found, and others conjectured [1, 6, 11, 7], the only successful

attempt to study the structure of “large” acyclic sets is Abello’s [1].3 He showed that a

maximal chain in the “weak Bruhat order” forms an acyclic set. Moreover, any maximal

acyclic set containing a maximal chain is an upper semimodular sublattice of the weak

Bruhat order ([1], Theorem 3.3). Our contribution is describing explicitly these maximal

acyclic sets containing a maximal chain in the weak Bruhat order, and proving a slightly

strengthened version of Abello’s Theorem 3.3 in a transparent way. We also show that

Fishburn’s “alternating scheme” [6, 7] is the maximal acyclic set containing a particular

chain in the weak Bruhat order. Our approach is based on results on the higher Bruhat

orders [16, 5]. Placing Fishburn’s “alternating scheme” in this formal framework allows us

to derive an explicit formula enumerating it.

In section 2 we define the combinatorial objects we will use, and discuss the relationships

among them. In section 3 we describe explicitly the maximal acyclic sets that contain a

maximal chain in the weak Bruhat order, and show how the “alternating scheme” fits in

that framework. We derive the formula enumerating the alternating scheme in section 3.1.

1We assume throughout that the number of voters is at least 3. This question can be posed without

reference to the number of voters because if a preference profile results in intransitive social preferences

under majority voting, then it contains 3 preferences that would, by themselves, result in such intransitivity

[12].
2Henceforth “acyclic sets.”
3An early paper by Chameni-Nembua [3] seems to have anticipated some of Abello’s and our results.
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2 Definitions

Let R be the set of all total, transitive, reflexive and antisymmetric binary relations (i.e.

linear orders) on the finite set A of social alternatives. The finite set of agents will be

denoted by I, and their preferences (Ri)i∈I are from R. Under majority voting, social

preferences RM are defined by: for all a, b ∈ A

aRMb ⇐⇒ |{i ∈ I : aRib}| ≥ |{i ∈ I : bRia}|. (1)

For simplicity, we identify the n-set A with the set [n] := {1, 2, . . . , n} under an arbitrary,

fixed ordering of A, and we represent individual preferences as permutations of [n]. A

permutation π : [n] → [n] will be identified with the linear order

π−1(1) > π−1(2) > · · · > π−1(n), (2)

and will be written as π−1(1) π−1(2) · · · π−1(n). The set of permutations is denoted by Sn.

Definition 2.1 A set T ⊆ Sn is acyclic if for all i, j, k ∈ [n], at most two of the orders

ijk, jki, kij appear as a restriction to {i, j, k} of some order in T .

Ward [14] introduced this condition as “latin squarelessness,”4 and showed that with an

odd number of voters it guarantees transitive majority. Sen [12] introduced this condition

for the setting where indifference in individual preferences is allowed, and called it the

“assumption of value-restricted preferences.” He showed that in that setting it guarantees

transitive majority. While a profile of preferences that is not acyclic may produce a transi-

tive social preference under majority voting, acyclicity is clearly necessary in the following

sense: if a domain of preferences always produces a transitive majority regardless of how

many agents have each particular preference relation, then this domain must be acyclic.5

4Ward comments on the term: “awkward, but there is a suggestive rythmic harmony with its prede-

cessor, single peakedness.”[14]
5Notice that “acyclicity” is the property of a set of preferences, not of a profile of preferences. It is for

this reason that we do not discuss restrictions on the parity of the number of agents, although, for any

particular preference profile, it is important.
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Abello [1] used the structure imposed on the set Sn of linear orders by the “weak Bruhat

order” to construct acyclic sets. Since then significant work has been done on the “higher

Bruhat orders” [9, 10, 16, 5]. Some of these results are central to our approach, so we

present them as we give the following definitions.

For any permutation π ∈ Sn, let

inv(π) := {{i, j} : i < j and π(i) > π(j)} (3)

denote the inversion set of π. For example, inv(2143) = {{1, 2}, {3, 4}}. Let B(n, 1) :=

{inv(π) : π ∈ Sn}.

Definition 2.2 The weak Bruhat order B(n, 1) is the partial order on B(n, 1) defined

by the transitive closure of single step set inclusion. That is, for any two permutations σ

and π, inv(σ) covers inv(π) if and only if inv(π) ⊆ inv(σ) and |inv(π)| + 1 = |inv(σ)|.

The weak Bruhat order is a lattice [16, Theorem 4.4], and it is the same as B⊆(n, 1),

the set B(n, 1) partially ordered by set inclusion [15, Prop. 2.1].

Since every permutation of [n] can be uniquely identified by its inversion set, the weak

Bruhat order can also be viewed as a partial order on permutations. For example, part b)

of Figure 1 shows the weak Bruhat order B(3, 1), while part a) shows it as a partial order

on S3.

0

12 23

12, 13 13, 23

12, 13, 23

123

213 132

231

321

312

a) b)

Figure 1: The weak Bruhat order B(3, 1)

A maximal chain in B(n, 1) is a set of permutations {π1, π2, . . . , πl} such that πi covers

πi+1 for i = 1, . . . , l− 1, and πl is the identity while π1 is its reverse. A maximal chain can
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be identified by the sequence of transpositions that generates it. For example, we could

identify the maximal chain

1234, 2134, 2314, 2341, 3241, 3421, 4321 (4)

by saying: transpose the first and the second element, then the second and the third, etc.

Since we always transpose adjacent elements, naming just the position of the left element

to be transposed suffices. Denoting the transpositions of the ith and the i + 1st element

by si, we could describe the above sequence as

1234
s1−→ 2134

s2−→ 2314
s3−→ 2341

s1−→ 3241
s2−→ 3421

s1−→ 4321. (5)

In fact, we may even omit the permutations — we could always recover them from the

sequence of transpositions: s1s2s3s1s2s1. We assume, implicitly, that the sequence of per-

mutations always starts with the identity. Such a sequence of increasing adjacent transpo-

sitions si, resulting in the reverse of the identity, is called a maximal reduced decomposition

[2, Section 6.4].6 The permutations visited by a maximal reduced decomposition are the per-

mutations in the maximal chain in the weak Bruhat order it corresponds to. For example,

the permutations visited by s1s2s3s1s2s1 above are

id = 1234 (6)

s1 = 2134

s1s2 = 2314

s1s2s3 = 2341

s1s2s3s1 = 3241

s1s2s3s1s2 = 3421

s1s2s3s1s2s1 = 4321.

6Maximal because it starts with the identity and ends with its reverse, and reduced because it has

minimum length (namely
(

n

2

)

) among all the ones that start with the identity and end with its reverse.

The latter requirement is equivalent to allowing only increasing transpositions: . . . ij . . . → . . . ji . . . with

i < j.
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A maximal reduced decomposition can also be viewed as a permutation of
(

[n]
2

)

, the

2-subsets of [n]. Since it starts with the identity and ends with its reverse, every pair must

be transposed, and since it is “reduced,” every pair must be transposed exactly once. The

sequence of these transpositions gives us a permutation of (unordered) pairs. In fact, a

structure that generalizes the weak Bruhat order can be imposed on the set of all such

permutations of pairs, or, generally, k-subsets of [n]. More precisely, the higher Bruhat

order B(n, k) is defined on the “inversion sets” of certain permutations of
(

[n]
k

)

.

Definition 2.3 [16] A permutation of
(

[n]
k

)

is admissible if the k-subsets of any k + 1-

subset of [n] appear either in lexicographic or in reversed lexicographic order in it. The

inversion set inv(ρ) ⊆
(

[n]
k+1

)

of an admissible permutation ρ is the set of k + 1-subsets of

[n] whose k-subsets appear in reversed lexicographic order in ρ.

For example, inv({1, 2}{3, 4}{1, 4}{2, 4}{1, 3}{2, 3}) = {{1, 3, 4}, {2, 3, 4}}.

Definition 2.4 [16] Let

B(n, k) :=

{

inv(π) : π is an admissible permutation of

(

[n]

k

)}

. (7)

The higher Bruhat order B(n, k) is the partial order on B(n, k) defined by the transitive

closure of single step set inclusion.7

Notice that the order is defined on inversion sets, not on the permutations themselves.

While the inversion set (a set of 2-subsets of [n]) of a permutation of [n] determines the

permutation uniquely, the inversion set (a set of (k +1)-subsets of [n]) of a permutation of
(

[n]
k

)

determines an “equivalence class” of permutations. We now illustrate this for B(n, 2),

the higher Bruhat order we will use below.

A maximal chain in the weak Bruhat order, when viewed as a permutation of 2-subsets,

is admissible [16, Lemma 2.4]. Moreover, every admissible permutation of
(

[n]
2

)

can be nat-

urally identified with a maximal chain in the weak Bruhat order [16, Theorem 4.1(A)][10].

7The higher Bruhat order B(n, 2) is the same as B⊆(n, 2), the set B(n, 2) partially ordered by set

inclusion [4]. Note, however, that the analogous statement does not hold for all B(n, k) [16]. Higher

Bruhat orders have been shown to be closely related to other combinatorial structures, such as hyperplane

arrangements, tilings, and wiring diagrams.
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Since maximal chains in B(n, 1) can be thought of as maximal reduced decompositions, we

have that admissible permutations of
(

[n]
2

)

, maximal chains in B(n, 1) and maximal reduced

decompositions are essentially equivalent objects. How can we identify admissible permu-

tations (or maximal chains in B(n, 1), or maximal reduced decompositions) that have the

same inversion sets and thus are mapped to the same element of B(n, 2)? Lemma 2.2 in

[16] answers this question: two admissible permutations of
(

[n]
2

)

have the same inversion

sets if, and only if, they are equivalent in the equivalence relation induced by the notion of

“elementary equivalence:”

Definition 2.5 [16, Def. 2.1][10, Def. 2.2] Two admissible permutations of
(

[n]
2

)

are elementarily equivalent if they differ by an interchange of two disjoint neighbors.8

To summarize, we illustrate the correspondences among permutations of 2-subsets,

maximal reduced decompositions, and maximal chains in the weak Bruhat order. The weak

Bruhat order B(4, 1) is shown in Figure 2. Four maximal chains with their corresponding

permutations of
(

[n]
2

)

and maximal reduced decompositions are shown in Figure 3, which

the reader may find a useful reference in later discussions as well. These four permutations

of
(

[n]
2

)

are, in fact, equivalent — they all have {{1, 3, 4}, {2, 3, 4}} as their inversion set.

The union of the four maximal chains is the subposet of B(4, 1) highlighted in Figure 2. The

permutations visited by the four maximal reduced decompositions are the permutations

in this highlighted subposet. When a set of maximal reduced decompositions correspond

to an equivalence class of permutations of
(

[n]
2

)

, we will call them an equivalence class of

maximal reduced decompositions. Theorem 1 below states that the permutations visited by

an equivalence class of maximal reduced decompositions form an acyclic set.

Since equivalence classes of maximal reduced decompositions turn out to be the central

objects in our analysis, we would like to have a concise representation of them. In fact, an

equivalence class of maximal reduced decompositions can be represented in a particularly

8The Lemma and the Definition are originally formulated for permutations of
(

[n]
k

)

, k ≥ 1, though here

we consider only the case k = 2. In general, the neighbors to be interchanged must have at most k − 2

common elements.
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1234

2134

2314

3214

3241

3421

4321

4231

4132

1423

1324

3124 1342

2413

412331422341

2431 4213
3412

1432

1243

2143

4312

Figure 2: The weak Bruhat order B(4, 1)

useful way as an “arrangement of pseudolines.”

2.1 Arrangements of pseudolines

We illustrate how one can represent an equivalence class of maximal reduced decomposi-

tions as an arrangement of pseudolines by demonstrating it on the example used in (6):

s1s2s3s1s2s1. We associate a “line” with each of the numbers 1, 2, 3 and 4, and represent

the starting permutation, 1234, by placing them in that order. The numbers 4, 3, 2, 1 on

the right indicate that the lines will end up in that order after we carry out all the trans-

positions. The first transposition, s1, corresponds to crossing the first and second lines

(see Figure 5 on p. 11). The next transposition is s2, so we cross the second and the

third lines.9 Continuing this way, we cross the third and fourth lines to represent s3 (see

Figure ??). In general, for si we cross the ith and i+1st line from the top. After we carry

9Notice that we did not cross the line that is labelled “2,” but, rather, the second line from the top

(with the third).
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1234

2134

4321

4231

2413

4213

2143

l

{1,2}{3,4}{1,4}{2,4}{1,3}{2,3}

l

s1s3s2s1s3s2

1234

4321

4231

2413

4213

2143

1243

l

{3,4}{1,2}{1,4}{2,4}{1,3}{2,3}

l

s3s1s2s1s3s2

1234

4321

4231

2413

2143

1243

2431

l

{3,4}{1,2}{1,4}{1,3}{2,4}{2,3}

l

s3s1s2s3s1s2

1234

4321

4231

2413

2143

2431

2134

l

{1,2}{3,4}{1,4}{1,3}{2,4}{2,3}

l

s1s3s2s3s1s2

Figure 3: The correspondences among permutations of
(

[n]
2

)

, maximal chains, and maximal reduced decompositions
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a) b)

i

k i

j

k

j

ik

j

i k

j

Figure 4: The set {i, j, k} is an inversion in a), but not in b)

out all the transpositions in the maximal reduced decomposition s1s2s3s1s2s1, we get the

arrangement of pseudolines shown in Figure 5.

It is easy to see that, given a maximal reduced decomposition, one can construct form

it an arrangement of pseudolines the way we did above. But will distinct maximal reduced

decompositions result in distinct arrangements? The example above reveals that the answer

must be “no.” The maximal reduced decomposition s1s2s1s3s2s1 would result in exactly

the same arrangement — in other words, switching the adjacent s1 and s3 does not change

the arrangement. In general, the maximal reduced decompositions that correspond to the

same arrangements of pseudolines are equivalent [8]. Thus we can represent an equivalence

class of maximal reduced decompositions as an arrangement of pseudolines. It will be

significant in section 3.1 that the inversion set I ∈ B(n, 2) corresponding to the equivalence

class can be identified in the arrangement as follows. When restriction of the arrangement

to any triple i < j < k will either look like an upward pointing triangle or like a downward

pointing triangle (Figure 4). In the first case {i, j, k} is an inversion, while in the second

case it is not.

Though it is implicit in the above construction, we emphasize that the permutations

visited by an equivalence class of maximal reduced decompositions can be recovered from

its corresponding arrangement. Each such permutation corresponds to an additional line

added to the arrangement, i.e. a new line that crosses every other line exactly once. The

permutation corresponding to such a line is obtained by carrying out all the transpositions

that correspond to the vertices to the left of the new line. For example, the line in Figure

6 corresponds to s1s2s1, i.e. to 3214. Equivalently we could describe the permutation as

the order in which the new line crosses the four original lines: first it crosses line 3, then
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2
s

3

1

s

s

1

3

4

2

3

4

1

2

Figure 5: The arrangement

of pseudolines corresponding to

s1s2s3s1s2s1

2
s

3

1

s

s

1

3

4

2

3

4

1

2

Figure 6: The permutation cor-

responding to this new line is

3214

line 2, line 1 and line 4. Another way to describe this idea is through defining a “natural”

partial order on the vertices of the arrangement of pseudolines.

Definition 2.6 Let Vn be the set of vertices of an arrangement of pseudolines A on n

strings. The natural partial order PA on the vertices Vn is defined by

ij PA kl ⇐⇒ {i, j} ∩ {k, l} 6= ∅ (8)

and ij is to the left of kl on the line connecting them.

For example, the arrangement in Figure 5 has V = {12, 13, 14, 23, 24, 34} as its vertex set,

and its natural partial order is:

12 PW 13 (9)

13 PW 14

12 PW 23

23 PW 24

13 PW 23

23 PW 34

14 PW 24

24 PW 34.
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12

13

23

14

24

34

2

14

3

2

1 4

3

12

34

24

23 14

13

Figure 7: The natural partial order on the vertices of an arrangement

Figure 7 illustrates how the natural partial order is constructed. Drawing a new line,

as above, now determines an order ideal in the natural partial order. For example, the

new line drawn in Figure 6 corresponds to the ideal generated by the vertex 23. Thus, in

general, the lattice of ideals of the natural partial order can be thought of as a partial order

on the permutations visited by the equivalence class of maximal reduced decompositions

corresponding to the arrangement. Moreover, as we show in Theorem 2, this lattice is a

sublattice of the weak Bruhat order.

3 “Large” acyclic sets

Abello [1] and Fishburn [6, 7] constructed “large” acyclic sets using seemingly different

approaches. We will show that both constructions are based on the same basic idea, namely

that permutations visited by an equivalence class of maximal reduced decompositions form

an acyclic set (Theorem 1 below). This also provides an explicit construction of the “large”

acyclic sets Abello defined implicitly (Theorem 2 below). In Theorem 3 we show that

Fishburn’s “alternating scheme” is the set of permutations visited by the equivalence class

of a particular maximal reduced decomposition, and we conjecture that it is the largest

acyclic set obtainable via this construction. Before we state our results, we describe the

“alternating scheme” and a useful generalization.

Fishburn [6] noted that a set of permutations is acyclic if, and only if, every triple

1 ≤ i < j < k ≤ n satisfies a never constraint of the form “a is never bth in the restriction
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to {i, j, k},” where a ∈ {i, j, k} and b ∈ {1, 2, 3}.10 A never constraint is written as

aNbijk. (10)

The alternating scheme is a set of such never constraints:

Definition 3.1 The alternating scheme is the following set of never constraints:11

for all 1 ≤ i < j < k ≤ n, jN3ijk if j is even (11)

jN1ijk if j is odd.

The following generalization of the alternating scheme will be useful.

Definition 3.2 Let U ⊆
(

[n]
3

)

. The set of U -constraints is the following set of never

constraints:

for all 1 ≤ i < j < k ≤ n, jN3ijk if {i, j, k} /∈ U (12)

jN1ijk if {i, j, k} ∈ U.

In particular, the alternating scheme is the set of UA-constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (13)

Every acyclic set described in this paper will satisfy a set of U -constraints for some

U ∈ B(n, 2).

Theorem 1 The permutations visited by an equivalence class of maximal reduced decom-

position form an acyclic set.

10It is easy to see that this is equivalent to acyclicity (Definition 2).
11Fishburn defines two “dually equivalent” [6] alternating schemes. For simplicity, we introduce only

one of these.
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This result is implicit in Abello’s Theorem 3.3 together with his concluding remarks

[1].

Proof As discussed before and after Definition 2, equivalent maximal reduced de-

compositions correspond12 to permutations of
(

[n]
2

)

with the same inversion set. That is, all

the maximal reduced decompositions in the equivalence class can be written as permuta-

tions of
(

[n]
2

)

with the same inversion set, say I ⊆
(

[n]
3

)

. We will show that the permutations

visited by this equivalence class of maximal reduced decompositions satisfy the set of I-

constraints. Suppose {i, j, k} ∈ I, with 1 ≤ i < j < k ≤ n. Since {i, j, k} is an inversion,

in any maximal reduced decomposition in the equivalence class it must be that j and k are

transposed before i and j are. That is, any permutation visited by the equivalence class

satisfies the never constraint jN1ijk. A similar argument shows that for any {i, j, k} /∈ I,

with 1 ≤ i < j < k ≤ n, the never constraint jN3ijk is satisfied by all permutations visited

by the equivalence class. Thus these permutations satisfy a set of never constraints and so

they form an acyclic set.

Theorem 1 provides an explicit construction of “large” acyclic sets — but are these

the maximal acyclic sets that contain a maximal chain in the weak Bruhat order? Abello

showed that a maximal acyclic set that contains a maximal chain in the weak Bruhat order

forms an upper semimodular sublattice of the weak Bruhat order. We show below that

Abello’s acyclic sets are identical with those of our Theorem 1, and they form, in fact, a

distributive sublattice.

Theorem 2 Let C be a maximal chain in the weak Bruhat order B(n, 1) (considered as a

partial order on permutations). The largest acyclic set of permutations containing C is the

set of permutations visited by the equivalence class of the maximal reduced decomposition

corresponding to C. This acyclic set forms a distributive sublattice of B(n, 1).

Proof Let I ∈ B(n, 2) be the inversion set corresponding to C. We have shown in

Theorem 1 that the set of permutations visited by the equivalence class of the maximal

12see Figure 3
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reduced decomposition corresponding to C form an acyclic set. In particular, all these

permutations satisfy the set of I-constraints. The following Claim shows that no other

permutation satisfies all the I-constraints.

Claim 1 Let U ⊆
(

[n]
3

)

be an element of the higher Bruhat order B(n, 2) (i.e. U is an

inversion set). If a permutation π of [n] satisfies the set of U -constraints, then it is one of

the permutations visited by the commuting equivalence class of maximal reduced decom-

positions that corresponds to U . That is, it is a permutation of some maximal reduced

decomposition that corresponds to an admissible permutation (of
(

[n]
2

)

) with inversion set

U .

Proof By Lemma 2.2 of [16] we only need to show that the inversion set I ⊆
(

[n]
2

)

of

π constitutes an ideal in the poset Q that is the intersection of all admissible orders with

inversion set U . It is easy to see that Q is the transitive closure of the following relations:

for all 1 ≤ i < j < k ≤ n,

{i, j}Q{i, k} and {i, k}Q{j, k} if {i, j, k} /∈ U (14)

{j, k}Q{i, k} and {i, k}Q{i, j} if {i, j, k} ∈ U. (15)

By Lemma 2.4 in [16], for all 1 ≤ i < j < k ≤ n, the inversion set of any permutation can

include only an initial or a final segment of {i, j}, {i, k}, {j, k}. Since π satisfies the set

of U -constraints, its inversion set must include an initial segment of {i, j}, {i, k}, {j, k} if

{i, j, k} /∈ U , and a final segment of {i, j}, {i, k}, {j, k} if {i, j, k} ∈ U . Since Q is defined

by (14) and (15), this proves that the inversion set of π is indeed an ideal in Q.

To show the second claim in the Theorem, consider the arrangement of pseudolines

representing the equivalence class of maximal reduced decompositions. The permutations

visited by the equivalence class correspond to ideals of the natural partial order of this

arrangement. Thus the lattice of ideals is a partial order (a lattice) on these permutations.

By definition, this lattice orders the inversion sets of the permutations by inclusion, so it is

a sublattice of the weak Bruhat order. Since it is a lattice of ideals, by Birkhoff’s Theorem
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it is distributive.

Now we show that the alternating scheme fits in the framework just described.

Theorem 3 The alternating scheme is the set of permutations visited by an equivalence

class of maximal reduced decompositions.

Proof Recall that the alternating scheme is the set of UA constraints, where

UA = {{i, j, k}|1 ≤ i < j < k ≤ n and j is odd} . (16)

We will show that UA ∈ B(n, 2). In light of Theorems 1 and 2 and their proofs, this will

prove the Theorem. By [16, Theorem 4.1] we need to show that for any {p, q, r, s} with

1 ≤ p < q < r < s ≤ n the intersection of UA with {{p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}}

is either a beginning or an ending segment of it. If q and r are even, the intersection is

empty; if they are both odd, the intersection is all four elements; if q is odd, but r even,

then the intersection is the first two elements; in the symmetric case it is the last two.

Thus we have verified that UA ∈ B(n, 2).

We illustrate the above results with the alternating scheme for n = 4. The arrangement

of pseudolines corresponding to it is shown in Figure 8.

We can find the inversion set (and thus the element of the higher Bruhat order B(n, 2))

that this arrangement corresponds to: the lines 1, 3 and 4 make a triangle that points

up (Figure 9), and so {1, 3, 4} is part of the inversion set corresponding to any maximal

reduced decomposition represented by this arrangement. On the other hand, the lines 1,2

and 4 make a downward pointing triangle (Figure 10), and {1, 2, 4} is not an inversion.

The natural partial order of this wiring diagram is shown in Figure 12, and figure 11 shows

it “embedded” in the arrangement.

The lattice of ideals of the natural partial order is shown in part b) of Figure 13. Part

a) of Figure 13 illustrates that each ideal may be identified with the initial segment of

a (non-unique) maximal reduced decomposition corresponding to the arrangement. As
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Figure 12: The natural partial order

shown above, the maximal reduced decompositions identified with the top element in part

a) of the Figure constitute an equivalence class. If we replace the initial segments of the

maximal reduced decompositions with the permutations they generate, i.e. if we identify

each element of the lattice with a permutation, we get the sublattice of the weak Bruhat

order B(4, 1) described in Theorem 2 — this sublattice is shown in part c) of Figure 13

and is highlighted in Figure 2.

3.1 Enumerating the alternating scheme

Fishburn conjectured [6, Conjecture 2] that among acyclic sets that do not use an N2

(or “never second”) constraint, the alternating scheme has maximum cardinality. The

following conjecture is a weakening of his.

Conjecture 1 Among acyclic sets that are the permutations of some equivalence

class of maximal reduced decompositions, the alternating scheme has maximum cardinality.

This conjecture is based on intuition from enumerating the alternating scheme in the

particular way we describe below. Fishburn has shown that for n ≤ 6, the alternating

scheme achieves maximum cardinality, which implies the Conjecture above for those cases.

We have checked that it also holds for n = 7.

Our method of enumerating the permutations that satisfy the alternating scheme of

Fishburn [7] amounts to deriving the cardinality of the lattice of ideals of the natural
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partial order of the arrangement of pseudolines that corresponds to the inversion sets UA

(see (13) on p. 13). For example, the arrangement in Figure 8 corresponds to the inversion

set of the alternating scheme when n = 4: {{1, 3, 4}, {2, 3, 4}}. Thus we can enumerate

the permutations satisfying the alternating scheme by counting the ideals of the poset in

Figure 12. There are nine such ideals, and, indeed, the cardinality of the alternating scheme

is nine when n = 4. Because the natural partial order of an arrangement of pseudolines

corresponding to the alternating scheme is very regular, we can pursue the same strategy

to derive a general formula.

We illustrate the approach for n = 8. The arranegement corresponding to the alternat-

ing scheme is shown in Figure 14. The regularity of the diagram is not coincidental: every

arrangement corresponding to the alternating scheme for even n will “look the same.” To

see why, notice that even numbered lines must move up first, because they are in the mid-

dle of non-inversions. Then they must cross every smaller line before they cross any of the

larger ones. Odd lines must move down first, because they are in the middle of inversions.

Then they must cross every larger line before they cross any of the smaller ones. The

natural partial order is shown in Figure 14. To enumerate the alternating scheme, we must

count the ideals of this poset. An ideal can be identified by its “upper boundary,” as shown

in Figure 14. The empty ideal, however, cannot be represented by such a boundary, and

neither can any of the ideals consisting of fewer than four of the elements in the bottom

rank. To correct this, we add two extra ranks at the bottom, extending the arrangement

and the natural partial order as in Figure 15. We can represent the empty ideal by the

boundary shown in Figure 15. Now every ideal may be represented by its boundary, that

is, by a line in the arrangement that starts on the top and proceeds downward until it

reaches the bottom. In other words, every ideal corresponds to a path from one of the

circled points on the top to one of those circled on the bottom (Figure 16). This means

that enumerating the set of permutations that satisfy the alternating scheme amounts

to counting the paths from top to bottom in the extended version of the natural partial

order of the arrangement. We use standard lattice path enumeration techniques to sum

these paths, and then manipulate the resulting sums to obtain the formula in the following
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Figure 16: Representing ideals as paths

Theorem.

Theorem 4 The cardinality of the alternating scheme is

An = 2n−3 (n + 3) −

(

n − 2
n
2
− 1

) (

n −
3

2

)

(17)

for even n, and

An = 2n−3 (n + 3) −

(

n − 1
n−1

2

) (

n − 1

2

)

(18)

for odd n.

Proof We will prove the theorem for even n — the case of odd n is very similar.

The extended version of the natural partial order of the arrangement for n even will be

just like that shown in Figure 16, with n
2

+ 1 “circled” starting points on the top (and the

same number of ending points on the bottom). The length of a path will be n − 2. Using

standard lattice path counting techniques, we get

An =

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2
− 1 + |i − j|

)

−

(

n − 2
n
2

+ i + j − 2

)

−

(

n − 2
n
2

+ n − i − j + 3

)

. (19)
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We define

A1
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2
− 1 + |i − j|

)

(20)

A2
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2

+ i + j − 2

)

A3
n :=

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2

+ n − i − j + 3

)

.

A1
n counts the paths that start from the a vertex on the top and end at a vertex on the

bottom. We subtract A2
n and A3

n, the paths that go beyond the diagram (Figure 16) on

the right or on the left. We use the reflection principle [13, p. 130] to count A2
n and A3

n.

Each of these can be summed using two consequences of the Binomial Theorem (for even

N):
N

∑

k= N

2
+1

(

N

k

)

=
1

2

[

2N −

(

N
N
2

)]

(21)

and
N

∑

k= N

2
+1

k

(

N

k

)

=
N

2
2N−1. (22)

The second of these can be derived from the “differentiated” version of the Binomial

Theorem by noticing that

k

(

N

k

)

= k
N + 1 − k

k

(

N

N + 1 − k

)

= (N + 1 − k)

(

N

N + 1 − k

)

. (23)
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We derive the formula for the first sum:

A1
n =

n

2
+1

∑

i=1

n

2
+1

∑

j=1

(

n − 2
n
2
− 1 + |i − j|

)

(24)

= −
(n

2
+ 1

)

(

n − 2
n
2
− 1

)

+

n

2
∑

k=0

2
(n

2
+ 1 − k

)

(

n − 2
n
2
− 1 + k

)

= −
(n

2
+ 1

)

(

n − 2
n
2
− 1

)

+

n−2
∑

l= n

2
+1

2 (n − l)

(

n − 2

l

)

= −
(n

2
+ 1

)

(

n − 2
n
2
− 1

)

+ 2n

(

2n−3 +
1

2

(

n − 2
n
2
− 1

))

−

− (n − 2) 2n−3 − (n − 2)

(

n − 2
n
2
− 1

)

= 2n−3 (n + 2) +
(

1 −
n

2

)

(

n − 2
n
2
− 1

)

.

Similar algebraic manipulation gives us

A2
n =

(

n

4
−

1

2

) (

n − 2
n
2
− 1

)

(25)

A3
n = 2n−3

(n

2
− 1

)

−
n

4

(

2n−2 −

(

n − 2
n
2
− 1

))

. (26)

Thus we have

An = A1
n − A2

n − A3
n (27)

= 2n−3 (n + 3) −

(

n − 2
n
2
− 1

) (

n −
3

2

)

.
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