Journal of Artificial Intelligence Research 47 (2013) 741-808 Submitted 01/13; published 08/13

Acyclicity Notions for Existential Rules and
Their Application to Query Answering in Ontologies

Bernardo Cuenca Grau BERNARDO.CUENCA.GRAUQCS.0X.AC.UK
Ian Horrocks IAN.HORROCKS@(S.0X.AC.UK
Markus Kroétzsch MARKUS.KROETZSCHQCS.0X.AC.UK
Clemens Kupke CLEMENS.KUPKEQ@(CS.0X.AC.UK
Despoina Magka DESPOINA.MAGKA@CS.0X.AC.UK
Boris Motik BORIS.MOTIK@QCS.0OX.AC.UK
Zhe Wang ZHE.WANG@CS.0X.AC.UK

Department of Computer Science, University of Oxford
Parks Road, Ozford OX1 3QD, United Kingdom

Abstract

Answering conjunctive queries (CQs) over a set of facts extended with existential rules
is a prominent problem in knowledge representation and databases. This problem can be
solved using the chase algorithm, which extends the given set of facts with fresh facts in
order to satisfy the rules. If the chase terminates, then CQs can be evaluated directly in
the resulting set of facts. The chase, however, does not terminate necessarily, and checking
whether the chase terminates on a given set of rules and facts is undecidable. Numerous
acyclicity notions were proposed as sufficient conditions for chase termination. In this
paper, we present two new acyclicity notions called model-faithful acyclicity (MFA) and
model-summarising acyclicity (MSA). Furthermore, we investigate the landscape of the
known acyclicity notions and establish a complete taxonomy of all notions known to us.
Finally, we show that MFA and MSA generalise most of these notions.

Existential rules are closely related to the Horn fragments of the OWL 2 ontology
language; furthermore, several prominent OWL 2 reasoners implement CQ answering by
using the chase to materialise all relevant facts. In order to avoid termination problems,
many of these systems handle only the OWL 2 RL profile of OWL 2; furthermore, some
systems go beyond OWL 2 RL, but without any termination guarantees. In this paper we
also investigate whether various acyclicity notions can provide a principled and practical
solution to these problems. On the theoretical side, we show that query answering for
acyclic ontologies is of lower complexity than for general ontologies. On the practical
side, we show that many of the commonly used OWL 2 ontologies are MSA, and that the
number of facts obtained by materialisation is not too large. Our results thus suggest that
principled development of materialisation-based OWL 2 reasoners is practically feasible.

1. Introduction

Existential rules are first-order implications between conjunctions of function-free atoms
that may contain existentially quantified variables in the implication’s consequent (Baget,
Leclere, Mugnier, & Salvat, 2011a; Cali, Gottlob, Lukasiewicz, Marnette, & Pieris, 2010a).
Such rules are used in a variety of ways in databases, knowledge representation, and logic
programming. In database theory, existential rules are known as tuple-generating depen-
dencies (Abiteboul, Hull, & Vianu, 1995) and are used to capture a wide range of schema

(©2013 AI Access Foundation. All rights reserved.

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

constraints. Furthermore, they are also used as declarative data transformation rules in
data exchange—the process of transforming a database structured according to a source
schema into a database structured according to a target schema (Fagin, Kolaitis, Miller, &
Popa, 2005). Existential rules also provide the foundation for several prominent knowledge
representation formalisms, such as Datalog® (Cali, Gottlob, & Pieris, 2010b; Cali et al.,
2010a), and they are also closely related to logic programs with function symbols in the
head. Practical applications of existential rules range from bioinformatics (Mungall, 2009)
to modelling complex structures of chemical compounds (Magka, Motik, & Horrocks, 2012;
Hastings, Magka, Batchelor, Duan, Stevens, Ennis, & Steinbeck, 2012).

Answering conjunctive queries (CQs) over a set of facts extended with existential rules is
a fundamental, yet undecidable (Beeri & Vardi, 1981) reasoning problem for existential rules.
The problem can be characterised using chase (Johnson & Klug, 1984; Maier, Mendelzon,
& Sagiv, 1979)—a technique closely related to the hypertableau calculus (Motik, Shearer, &
Horrocks, 2009b; Baumgartner, Furbach, & Niemeld, 1996). In a forward-chaining manner,
the chase extends the original set of facts with facts that can be derived using the rules.
The result of the chase is a universal model, in the sense that an arbitrary CQ over the
original facts and rules can be answered by evaluating the query in this model.

1.1 Chase Termination and Acyclicity Notions

Rules with existentially quantified variables in the head—so-called generating rules—require
the introduction of fresh individuals. Cyclic applications of generating rules may prevent
the chase from terminating, and in fact determining whether chase terminates on a set of
rules and facts is undecidable (Deutsch, Nash, & Remmel, 2008). However, several decidable
classes of existential rules have been identified, and the existing proposals can be classified
into two main groups. In the first group, rules are restricted such that their possibly infinite
universal models can be represented using finitary means. This group includes rules with
universal models of bounded treewidth (Baget et al., 2011a), guarded rules (Cali et al.,
2010a), and ‘sticky’ rules (Cali, Gottlob, & Pieris, 2011). In the second group, one uses a
sufficient (but not necessary) acyclicity notion that ensures chase termination.

Roughly speaking, acyclicity notions analyse the information flow between rules to en-
sure that no cyclic applications of generating rules are possible. Weak acyclicity (WA)
(Fagin et al., 2005) was one of the first such notions, and it was extended to notions such as
safety (Meier, Schmidt, & Lausen, 2009), stratification (Deutsch et al., 2008), acyclicity of
a graph of rule dependencies (aGRD) (Baget, Mugnier, & Thomazo, 2011b), joint acyclic-
ity (JA) (Krotzsch & Rudolph, 2011), and super-weak acyclicity (SWA) (Marnette, 2009).
Syntactic acyclicity criteria have also been investigated in the context of logic programs
with function symbols in the rule heads, where the goal is to recognise logic programs with
finite stable models. Several such notions have been implemented in state of the art logic
programming engines, such as omega-restrictedness (Syrjanen, 2001) from the SMODELS sys-
tem (Syrjdnen & Niemeld, 2001), lambda-restrictedness from the ASP grounder GRINGO
(Gebser, Schaub, & Thiele, 2007), argument-restrictedness (Lierler & Lifschitz, 2009) from
the DLV system (Leone, Pfeifer, Faber, Eiter, Gottlob, Perri, & Scarcello, 2006), and many
others (Calimeri, Cozza, lanni, & Leone, 2008; Greco, Spezzano, & Trubitsyna, 2012; De
Schreye & Decorte, 1994).

742

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

1.2 Applications of Acyclicity Notions

Acyclicity notions are interesting for several reasons. First, unlike guarded rules, acyclic
rules can axiomatise structures of arbitrary shapes, as long as these structures are bounded
in size. Second, the result of the chase for acyclic rules can be stored and manipulated as
if it were a database; this is important, for example, in data exchange, where the goal is to
materialise the transformed database.

In this paper, we further argue that acyclicity notions are also relevant to descrip-
tion logics (DLs)—knowledge representation formalisms underpinning the OWL 2 ontology
language (Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider, & Sattler, 2008). CQ
answering over DL ontologies is a key reasoning service in many DL applications, and the
problem was studied for numerous different DLs (Calvanese, De Giacomo, Lembo, Lenzerini,
& Rosati, 2007; Krotzsch, Rudolph, & Hitzler, 2007; Glimm, Horrocks, Lutz, & Sattler,
2008; Ortiz, Calvanese, & Eiter, 2008; Lutz, Toman, & Wolter, 2009; Pérez-Urbina, Motik,
& Horrocks, 2009; Rudolph & Glimm, 2010; Kontchakov, Lutz, Toman, Wolter, & Za-
kharyaschev, 2011). Answering CQs over ontologies, however, is quite technical and often of
high computational complexity. Therefore, practical OWL 2 reasoners frequently solve this
problem using materialisation—a reasoning technique in which the relevant consequences
of the ontology are precomputed using chase, allowing queries to be directly evaluated in
the materialised set of facts. Examples of materialisation-based systems include Oracle’s
Semantic Data Store (Wu, Eadon, Das, Chong, Kolovski, Annamalai, & Srinivasan, 2008),
Sesame (Broekstra, Kampman, & van Harmelen, 2002), OWLIM (Kiryakov, Ognyanov, &
Manov, 2005), Jena (Carroll, Dickinson, Dollin, Reynolds, Seaborne, & Wilkinson, 2004),
and DLE-Jena (Meditskos & Bassiliades, 2008). Such reasoning is possible if (i) the ontology
is Horn (Hustadt, Motik, & Sattler, 2005) and thus does not require disjunctive reasoning,
and (ii) the chase is guaranteed to terminate. To satisfy the second assumption, reasoners
often consider only axioms in the OWL 2 RL profile (Motik, Cuenca Grau, Horrocks, Wu,
Fokoue, & Lutz, 2009a); this systematically excludes generating rules and thus trivially
ensures chase termination, but it also makes the approach incomplete. Generating rules are
partially supported in systems such as OWLim (Bishop & Bojanov, 2011) and Jena, but
such support is typically ad hoc and provides no completeness and/or termination guar-
antees. Acyclicity notions can be used to address these issues: if an ontology is Horn and
acyclic, a complete materialisation can be computed without the risk of non-termination.

1.3 Our Contributions

Motivated by the practical importance of chase termination, in this paper we present two
new acyclicity notions: model-faithful acyclicity (MFA) and model-summarising acyclicity
(MSA). Roughly speaking, these acyclicity notions use a particular model of the rules to
analyse the implications between existential quantifiers, which is why we call them model
based. In particular, MFA uses the actual ‘canonical’ model induced by the facts and
the rules, which makes the notion very general. We prove that checking whether a set of
existential rules is MFA is 2EXPTIME-complete, and it becomes EXPTIME-complete if the
predicates in the rules are of bounded arity. Due to the high complexity, MFA may be
unsuitable for practical application. Thus, we introduce MSA, which can be understood as
MFA in which the analysis is performed over models that ‘summarise’ (or overestimate) the

743

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

actual models. Checking MSA of existential rules can be realised via checking entailment of
ground atoms in datalog programs. We use this close connection between MSA and datalog
to prove that checking MSA is ExpPTiME-complete for general existential rules, and that it
becomes coNP-complete if the arity of rule predicates is bounded.

We next conduct a detailed investigation of the landscape of known acyclicity notions,
augmented with MFA and MSA. For the class of logic programs that correspond to exis-
tential rules with skolemised existential quantifiers, we show that MSA and MFA strictly
subsume existing acyclicity notions known from logic programming. We also show that
MSA is strictly more general than SWA—one of the most general acyclicity notions known
in database theory. Furthermore, we investigate the relationship between the known notions
and thus complete the picture with respect to their relative expressiveness.

Both MSA and MFA can be applied to general existential rules without equality. Equal-
ity can be incorporated via singularisation—a technique proposed by Marnette (2009) that
transforms the rules to encode the effects of equality. Singularisation is orthogonal to
acyclicity: after computing the transformed rules, one can use MFA, MSA, or in fact any
notion to check whether the result is acyclic; if so, the chase of the signularised rules ter-
minates, and the chase result can be used in a particular way to answer arbitrary CQs.
Unfortunately, singularisation is nondeterministic: some ways of transforming the rules
may produce acyclic rule sets, but not all ways are guaranteed to do so. In this paper, we
refine singularisation to obtain practically useful upper and lower bounds for acyclicity. We
also show that, when used with JA, our lower bound actually coincides with WA.

We next turn our attention to theoretical and practical issues of using acyclicity for
materialisation-based CQ answering over ontologies. On the theoretical side, we show that
checking MFA and MSA of Horn-SROZF ontologies is EXPTIME- and PTIME-complete,
respectively, and that answering CQs over acyclic Horn-SROZF ontologies is EXPTIME-
complete as well. Furthermore, we show that, for Horn-SHZF ontologies, the complexity
of checking MFA and of answering CQs drops to PSPACE. Answering CQs is EXPTIME-
complete for general (i.e., not acyclic) Horn-SHZF ontologies (Eiter, Gottlob, Ortiz, &
Simkus, 2008; Ortiz, Rudolph, & Simkus, 2011), so acyclicity makes this problem easier.
Furthermore, Horn ontologies can be extended with arbitrary SWRL rules (Horrocks &
Patel-Schneider, 2004) without affecting decidability or worst-case complexity, provided
that the union of the ontology and SWRL rules is acyclic; this is in contrast to the general
case, where SWRL extensions of DLs easily lead to undecidability.

On the practical side, we explore the limits of reasoning with acyclic OWL 2 ontologies
via materialisation. We checked MFA, MSA, and JA for 336 Horn ontologies; furthermore,
to estimate the impact of materialisation, we compared the size of the materialisation
with the number of facts in the original ontologies. Our experiments revealed that many
ontologies are MSA, and that some complex ones are MSA but not JA; furthermore, the
universal models obtained via materialisation are typically not too large. Thus, our results
suggest that principled, materialisation-based reasoning for ontologies beyond the OWL 2
RL profile may be practically feasible.

This is an extended version of a paper by Cuenca Grau, Horrocks, Krotzsch, Kupke,
Magka, Motik, and Wang (2012) published at KR 2012.

744

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

2. Preliminaries

In this section we introduce definitions and notation used in the rest of our paper.

2.1 First-Order Logic

We use the standard notions of constants, function symbols, and predicate symbols, where
~ is the equality predicate, T is universal truth, and L is universal falsehood. Each function
or predicate symbol is associated with a nonnegative integer arity. Variables, terms, substi-
tutions, atoms, first-order formulae, sentences, interpretations (i.e., structures), and models
are defined as usual. By a slight abuse of notation, we often identify a conjunction with

the set of its conjuncts. Furthermore, we often abbreviate a vector of terms t1, ..., t, as t:
we define |t] = n; and we often identify ¢ with the set of indexed terms {ty,...,t,}. With
©(Z) we stress that & = x1,...,x, are the free variables of a formula ¢, and with ¢o we

denote the result of applying a substitution o to ¢. A term, atom, or formula is ground if it
does not contain variables; a fact is a ground atom. The depth dep(t) of a term ¢ is defined
as 0 if ¢ is a constant or a variable, and dep(t) = 1 + max}_, dep(t;) if t = f(t1,...,tn). A
term t' is a subterm of a term t if ' =t or t = f(5) and ¢’ is a subterm of some s; € §; if
additionally ¢ # t, then t’' is a proper subterm of t. A term s is contained in an atom P(ﬂ
if s €t, and s occurs in P(t_) if s is a subterm of some term t; € ¢; thus, if s is contained
in P(t), then s also occurs in P(#), but the converse may not hold. A term s is contained
(resp. occurs) in a set of atoms I if s is contained (resp. occurs) in some atom in 1.

In first-order logic, the equality predicate ~ is commonly assumed to have a predefined
interpretation—that is, every first-order interpretation is required to interpret ~ as the
smallest reflexive relation over the domain. Satisfaction of a sentence ¢ in an interpretation
I where = is interpreted in this way is written I = ¢, and entailment of a sentence v from
a sentence ¢ is written ¢ = 1. Unless otherwise stated, we use this standard interpretation
of equality throughout this paper.

Equality, however, can also be treated as an ordinary predicate with an explicit axioma-
tisation. Let ¥ be an arbitrary set of function-free first-order formulae. Then, ¥ =) if &~
does not occur in ¥; otherwise, ¥~ contains formulae (1)-(3) and an instance of formula (4)
for each n-ary predicate P occurring in X different from ~, and for each 1 < i <n. Note
that all variables in all of these formulae are (implicitly) universally quantified.

—SrRT (1)

T1 R Ty = Ty R T (2)

T1 R To ATy RT3 — TR X3 (3)

Pz, miy oo o) ANy = ah — Ploy,. . xh o) (4)

If ~ is treated as an ordinary predicate, satisfaction of a formula ¢ in a model I is written
I Ex~ ¢, and entailment of a formula v from formula ¢ is written ¢ =~ 1. Please note that,
according to our definitions, I =~ ¢ can hold even if interpretation I interprets predicate ~
in an arbitrary way; in contrast, I = ¢ can hold only if interpretation I interprets predicate
~ as the identity relation on the model’s domain. The consequences of ¥ w.r.t. = and of
YUYy war.t. = coincide—that is, for each first-order sentence ¢ constructed using the
symbols from ¥, we have ¥ = ¢ if and only if ¥ U Xy Ex 1.

745

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

2.2 Rules and Queries

An instance is a finite set of function-free facts. An ezistential rule (or just rule) is a
function-free sentence of the form

VIVZ.[p(T, Z) — TG4 (T,)] ()

where ¢(Z, Z) and ¢ (Z,) are conjunctions of atoms, and tuples of variables Z, 7, and 2 are
pairwise disjoint. Formula ¢ is the body and formula 1 is the head of the rule. For brevity,
quantifiers VZVZ are often omitted. For convenience, we sometimes identify a rule body or
head with the set of the respective conjuncts. A datalog rule is a rule where ¥ is empty.
A rule is equality-free if it does not contain the equality predicate ~. A term s occurs in
an existential rule if s occurs in a head or body atom of the rule, and these definitions
are extended to a set of rules in the obvious way; existential rules do not contain function
symbols, so an analogous notion of s being contained in a rule coincides with this one. Two
variables are directly connected in a rule if they occur together in a body atom of the rule;
furthermore, connected is the transitive closure of directly connected; finally, a rule of the
form (5) is connected if all pairs of variables w,w’ € U Z are connected in the rule.

A congunctive query (CQ) is a formula of the form Q(%) = 37.¢(Z, ¥), where ¢(Z,7) is
a conjunction of atoms; the query is Boolean if ¥ is empty. A substitution § mapping &
to constants is an answer to Q(Z) w.r.t. a set of rules ¥ and instance I if X U I = Q(Z)0.
Answering CQs is the core reasoning problem in many applications of existential rules.

When answering a conjunctive query Q(Z) over a set of rules ¥ and an instance I, in
the rest of this paper we implicitly assume that Q(Z) and I contain only the predicates
from X. This simplifies the presentation since it allows us to define various transformations
of ¥ without having to take into account possible predicates that occur in Q(Z) or I only.
This assumption is w.l.o.g., as we can always extend ¥ with tautological rules of the form
P(¥) — P(&) for each predicate P occurring in Q(&) or I but not in X.

Furthermore, we assume that =~ does not occur in the body of any rule in ¥ or in the
query Q(Z). This is w.l.0.g. since we can eliminate each atom of the form x & ¢ in a rule body
and further replace x with ¢ in the rest of the rule; furthermore, to eliminate body atoms of
the form a ~ b with a and b constants, we can introduce a fresh predicate O,, add a new rule
— Og(a), replace each body atom a ~ b with conjunction O,(x) A x =~ b in which z is a fresh
variable, and finally eliminate atom = = b as before. Similarly, we do not provide an explicit
support for the inequality predicate %. Inequality in rule heads can be simulated using an
ordinary predicate: each atom of the form s % t occurring in a rule head can be replaced with
NotEqual(s, t), where NotEqual is a fresh ordinary predicate that is explicitly axiomatised as
irreflexive; note that, if ~ is handled as a regular predicate explicitly axiomatised by rules
(1)—(4), then the replacement axioms (4) must be instantiated for P = NotEqual as well. In
contrast, atoms involving the inequality predicate occurring in rule bodies generally require
disjunctive reasoning, which is not supported by existential rules.

Finally, we assume that conjunctions ¢(Z, Z) and ¥ (Z, ¥) in each rule of the form (5) are
both not empty. We also assume that T and L are treated as ordinary unary predicates,
and that the semantics of T is captured explicitly in ¥ by instantiating the following rule
for each n-ary predicate P occurring in X:

P(z1,...,2n) = T(z1) Ao AT () (6)

746

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

These assumptions ensure that I U Y is always satisfiable, but that ¥ U I = Jy.L(y) if and
only if 1 UX is unsatisfiable w.r.t. the conventional treatment of T and L. By allowing
body atoms of the form T(z), without loss of generality we can require each existential
rule to be safe (i.e., that each universally quantified variable occurring in a head atom also
occurs in a body atom of the rule), which greatly simplifies many of our definitions.

In database theory, satisfaction and entailment are often considered only w.r.t. finite
interpretations under the unique name assumption (UNA); the latter ensures that distinct
constants are interpreted as distinct elements. In contrast, such assumptions are not cus-
tomary in ontology-based KR. In this paper, we do not assume UNA, as UNA can be
axiomatised explicitly if needed using the inequality predicate (or a simulation thereof).
Furthermore, in this paper we investigate theories that are satisfiable in finite models (i.e.,
for which the chase is finite); thus, the difference between finite and infinite satisfiability is
immaterial to our results.

We frequently use skolemisation to interpret rules in Herbrand interpretations, which
are defined as possibly infinite sets of ground atoms. In particular, for each rule r of the
form (5) and each variable y; € ¥, let f2 be a function symbol globally unique for r and y; of
arity |Z]; furthermore, let g be the substitution such that Og(y;) = f4(%) for each y; € 7.
Then, the skolemisation sk(r) of r is the following rule:

90(57 Z) - w(fv Zj)esk (7)

The skolemisation sk(X) of a set of rules ¥ is obtained by skolemising each rule in X.
Skolemisation does not affect the answers to CQs—that is, for each conjunctive query Q(Z)
formed from only the predicates in ¥, each instance I, and each substitution o, we have
YUI E Q(Z)o if and only if sk(X) UXx U I =x Q(Z)o.

2.3 The Skolem Chase

Answering CQs can be characterised using chase, and in this paper we use the skolem chase
variant (Marnette, 2009). Let r = ¢ — 1) be a skolemised rule and let I be a set of ground
atoms. A set of ground atoms S is a consequence of r on I if substitution o exists mapping
the variables in r to the terms occurring in I such that o C I and S C vo. The result
of applying r to I, written r(I), is the union of all consequences of r on I. For Q a set of
skolemised rules, (1) = J,cq7(I). Let I be a finite set of ground atoms, let ¥ be a set
of rules, let 3’ = sk(X) U ¥x, and let X and X, be the subsets of ¥’ containing rules with
and without function symbols, respectively. The chase sequence for I and ¥ is a sequence
of sets of facts I%, Ié, ... where I% = I and, for each i > 0, set I% is defined as follows:

o if O/ (I5) € IS, then IE = I U S, (IE),
e otherwise I = 5 ' U E’f(lgl).

The chase of I and ¥ is defined as I = J, I&; note that I can be infinite. The chase can
be used as a ‘database’ for answering CQs: a substitution o is an answer to @ over ¥ and I
if and only if I3° FE~ Qo. The chase of I and ¥ terminates if ¢ > 0 exists such that It = I%
for each j > i; the chase of ¥ terminates universally if the chase of I and ¥ terminates for
each I. If the skolem chase of I and ¥ terminates, then both the nonoblivious chase (Fagin
et al., 2005) and the core chase (Deutsch et al., 2008) of I and ¥ terminate as well.

747

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

The critical instance I3, for a set of rules ¥ contains all facts that can be constructed
using all predicates occurring in ¥, all constants occurring in the body of a rule in ¥, and
one special fresh constant *. The skolem chase for I5; and X terminates if and only if the
skolem chase of ¥ terminates universally (Marnette, 2009).

2.4 Acyclicity Notions

Checking whether the skolem chase terminates on a given instance is undecidable, and
checking universal skolem chase termination is conjectured to be undecidable as well. Con-
sequently, various sufficient acyclicity notions have been proposed in the literature. For-
mally, an acyclicity notion X is a class of finite sets of rules; such a definition allows us
to talk about (proper) containment between acyclicity notions. We sometimes write ‘3 is
X, by which we mean ‘¥ € X’. We next introduce weak and joint acyclicity: the former is
one of the first such notions considered in the literature; and as we show in Section 3, the
latter notion is relatively powerful, yet still easy to understand. We use these two notions
throughout the paper to present examples and state various technical claims. In Section 3
we present the definitions of many other acyclicity notions known in the literature.

In the following, let X be a set of rules where no variable occurs in more than one rule. A
position is an expression of the form P|; where P is an n-ary predicate and i is an integer with
1 <4 < n. Given a rule r of the form (5) and a variable w occurring in r, the set Posp(w) of
body positions of w contains each position P|; such that P(t1,...,t,) € ¢(#,2) and t; = w
for some vector ¢ of terms. The set Posy(w) of head positions is defined analogously, but
w.r.t. the head atoms of r. Note that, since each variable occurs in at most one rule in
Y, sets Posp(w) and Posy(w) are (indirectly) associated with the rule that contains w. In
the rest of this paper, whenever we use notation such as Posg(w) or Posg(w), we silently
assume that no variable occurs in more than one rule and so the notation is unambiguous.
This is clearly w.l.o.g. as one can always arbitrarily rename variables in different rules.

Weak acyclicity (WA) (Fagin et al., 2005) can be applied to existential rules that contain
the equality predicate. The WA dependency graph WA(X) for ¥ contains positions as
vertices; furthermore, for each rule r € ¥ of the form (5), each variable z € Z, each position
P|; € Posg(x), and each variable y € ¢, graph WA(X) contains

e a reqular edge from P|; to each Q|; € Posg(z) such that @ # ~ and,
e a special edge from P|; to each Q|; € Posy(y) such that Q # ~.

Set X is WA if WA(X) does not contain a cycle that involves a special edge. Equality atoms
are effectively ignored by WA.

Joint acyclicity (JA) (Krotzsch & Rudolph, 2011) generalises WA, but it is applicable
only to equality-free rules. For an existentially quantified variable y in ¥, let Move(y) be
the smallest set of positions such that

e Posy(y) € Move(y), and

e for each existential rule » € ¥ and each universally quantified variable x occurring in
r, if Posp(x) C Move(y), then Posg(x) C Move(y).

748

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

The JA dependency graph JA(X) of ¥ is defined as follows. The vertices of JA(X) are
the existentially quantified variables occurring in ¥. Given arbitrary two such variables y;
and ys, the JA dependency graph JA(X) contains an edge from y; to y2 whenever the rule
that contains yo also contains a universally quantified variable x such that Posy(z) # () and
Posp(z) C Move(y1). Set X is JA if JA(X) does not contain a cycle.

2.5 Rule Normalisation

Existential rules can often be transformed into other existential rules by replacing parts
of the rule head or body with atoms involving fresh predicates. Such a transformation is
called normalisation, and is often used as a preprocessing step to bring the rules into a
suitable form. For example, Horn OWL 2 axioms can be translated into existential rules
by using the well known transformations of first-order logic, and the latter can then be
normalised to a form we describe in Section 6. In this section we introduce a definition of
rule normalisation that captures all similar methods known to us.

Let r be a rule of the form (8), where ¢1, 2, Y1, and 19 are conjunctions of atoms
satisfying &1 U Xy = T3 U Ty, Zo N 23 = 0, and Yo Nz = 0.

(;01(517 517 52) A W?(i‘bu 517 53) — 3g17g27g3'[w1(f37 ,7217372) A 1/}2(54)3717373)] (8)

A normalisation step replaces a conjunction in either the head or the body of the rule with
an atom involving a fresh predicate. More precisely, a head normalisation step replaces
¥1(Z3, 1, Y2) with atom Q (&3, 1) where @ is a fresh predicate, thus replacing r with rule
(9), and it adds rule (10).

©1(Z1, 21, 22) N a(@e, 21, Z3) — 1, U53.[Q (L3, 11) A Y2(Za, U1, Y3)] 9)
Q(#3,91) — o1 (¥3, 1, ¥2) (10)

Alternatively, a body normalisation step replaces ¢1(Z1, 21, Z2) with atom Q(Z1, 1) where
Q is a fresh predicate, thus replacing r with rule (11), and it adds rule (12).

Q(Z1,21) N pa(Za, 21, Z3) — T, Yo, ¥3-[V1 (&3, U1, Yo) A o (Za, Y1, U3)] (11)
©1(Z1, 71, 7o) = Q(Z1, 71) (12)

Given a set of existential rules 3, normalisation steps are often applied to X iteratively. If
the predicate @ introduced in each step is always fresh, we call such normalisation without
structure sharing. In contrast, normalisation with structure sharing allows the predicate
Q@ to be reused across different normalisation steps. For example, once a predicate @ is
introduced in a head normalisation step to replace (%1, 21, Z2), then a conjunction of the
form o1 (2, 21, Z,,) where &, 2, 2, are renamings of ¥, 21, Z2 can be replaced with Q (5, 7})
without introducing the corresponding rule (10). An analogous optimisation can be used
in a body normalisation step.

Let 3’ be a set of rules obtained via normalisation (with or without structure sharing)
from X. It is well known that X’ is a conservative extension of . Consequently, for each
instance I and each BCQ @ that does not use the freshly introduced predicates, we have
YUITEQifand only if Y UT E Q.

749

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

3. Novel Acyclicity Notions

Weak acyclicity has considerably influenced the field of data exchange in databases, but it
is a rather strict notion and so it may not be sufficient in many applications of existential
rules. Joint acyclicity significantly relaxes weak acyclicity and was developed mainly for
rule based knowledge representation applications.

In Section 3.1 we show that even joint acyclicity—one of the most general acyclicity
notions developed so far—does not capture rules corresponding to axioms commonly found
in ontologies for which the chase terminates universally. To address this important limi-
tation, we propose in Section 3.2 model-faithful acyclicity (MFA)—a novel, very general,
notion that can be used to successfully ensure chase termination for many ontologies used
in practice. The computational cost of checking MFA is, however, rather high; hence, in
Section 3.3 we introduce model-summarising acyclicity (MSA)—a more strict notion that
is easier to check and produces the same results as MFA on most existing ontologies.

3.1 Limitations of Existing Acyclicity Notions

To motivate our new acyclicity notions, we first present an example that shows how known
acyclicity notions, such as JA, are not satisfied by rules that are equivalent to very simple
axioms that abound in OWL ontologies.

Example 1. Let X be the set of rules (13)—(17).

Ty = A(x1) — Jy1.R(z1,91) A B(y1) (13)
ro = R(xz2,21) N B(2z1) — A(z2) (14)
ry = B(z3) — Jya.R(x3,y2) A C(y2) (15)
ry = C(xq4) = D(x4) (16)
rs = R(x5,29) A D(z2) — B(xs) (17)

Rules r1 and ro correspond to the description logic axiom A = AR.B, rule r3 corresponds to
axiom B T AR.C, rule r4 corresponds to axiom C' T D, and rule rs5 corresponds to axiom
JdR.D C B. Such azioms are very common in OWL ontologies.

By the definition of JA from Section 2, we have Move(y1) = {R|2, Bl1, R|i, A|1}. Thus,
the JA dependency graph contains an edge from yy to itself, so the set of axioms ¥ is not
JA. In contrast, the following table shows the chase sequence for Is; and 3.

A(x) R(x, f(*)) R(f(x),9(f(%))) D(g(f(x)))
B(x) B(f(x)) C(g(f(%)))
C(+) R(x, g(x)) D(g(x))
D(%) Clg(*))
R(x, %)

Rule 1o is not applicable to R(f(x),g(f(x))) since I3 does not contain the fact B(g(f(x)))
necessary to match the atom B(z1) from the rule. Thus, the chase terminates. O

All existing acyclicity notions essentially try to estimate whether an application of a
rule can produce facts that can (possibly by applying chase to other rules) repeatedly

750

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

trigger the same rule in an infinite manner. The key difference between various notions is
how rule applicability is determined. In particular, JA considers each variable in a rule in
isolation and does not check satisfaction of all body atoms at once; for example, rule (14)
is not applicable to the facts generated by rule (15), but this can be determined only by
considering variables x5 and 27 in rule (14) simultaneously. These notions thus overestimate
rule applicability and, as a result, they can fail to detect chase termination.

3.2 Model-Faithful Acyclicity (MFA)

Our main intuition for addressing this problem is that more precise chase termination
guarantees can be obtained by tracking rule applicability more ‘faithfully’. A simple solution
is to be completely precise about rule applicability: one can run the skolem chase and then
use sufficient checks to identify cyclic computations. Since no sufficient, necessary, and
computable test can be given for the latter, we must adopt a practical approach. For
example, we can ‘raise the alarm’ and stop the process if the chase derives a ‘cyclic’ term
f(t), where f occurs in t. This idea can be further refined; for example, one could stop only
if f occurs nested in a term some fixed number of times. The choice of the appropriate test
thus depends on an application; however, as our experiments show, checking only for one
level of nesting suffices in many cases. In particular, no term f(#) with f occurring in # is
generated in the chase of the set of rules ¥ from Example 1.

Definition 2. A term t is cyclic if a function symbol f exists such that some term f(5) is
a subterm of t, and some term f(@0) is a proper subterm of f(5).

Our notion of acyclicity is declarative: the given set of rules ¥ is transformed into a new
set of rules X’ that tracks rule dependencies using fresh predicates; then, X is identified as
being acyclic if ¥’ does not entail a special nullary predicate C. Since acyclicity is defined
via entailment, it can be decided using any theorem proving procedure for existential rules
that is sound and complete. Acyclicity guarantees termination of the skolem chase, which
also guarantees termination of nonoblivious chase and core chase. We call our notion model-
faithful acyclicity because it estimates rule application precisely, by examining the actual
structure of the universal model of X.

Definition 3. For each rule r = p(%,Z) — 3§.4(Z,§) and each variable y; € ¥, let F. be a
fresh unary predicate unique for r and y;; furthermore, let S and D be fresh binary predicates,
and let C be a fresh nullary predicate. Then, MFA(r) is the following rule:

p(Z,7) = 3. (W@ DA\ |Fiw) A N Sl)

Yi€Y ;€T

For a set ¥ of rules, MFA(X) is the smallest set that contains MFA(r) for each rule r € ¥,
rules (18)—(19), and rule (20) instantiated for each Fi. corresponding to some r € X:

S(l‘l,l'g) — D(xl,xg) (18)
D(a:l,mg) A 5(1'2,1'3) — D(xl, xg) (19)
Fi(z1) AD(z1, 22) AFi(xg) — C (20)

751

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

The set 3 is model-faithful acyclic (MFA) w.r.t. an instance I if I UMFA(X) & C; further-
more, ¥ is universally MFA! if 3 is MFA w.r.t. I3.

Example 4. Let ¥ be the set of rules from Ezample 1. Then, MFA(r1) and MFA(rs3) are
given by (21) and (22), respectively; since r1 and rs contain a single existentially quanti-
fied variable each, we omit the superscripts in F,. and F,, for the sake of clarity. Thus,
MFA(X) consists of rules (14), (16), and (17), rules (21)—(22), rules (18)—(19), and rule
(20) instantiated for F,. andF,..

A(z1) = 3y1-R(z1,91) A B(yr) AR, (y1) AS(21,01) (21)
B(z3) — Jy2.R(3,92) A C(y2) AF, (y2) A S(xs, y2) (22)

It is straightforward to see that the chase of I3, and MFA(X) consists of the facts presented
in FExample 1, augmented with the following facts:

S(Cx, f (%)) D+, f()) D(f (), 9(f(+)))

S(, 9(%)) D(x, g(x)) D(x, 9(f()))

Fr (f (%)) S(f(x), 9(f(+)))

Fry(9(+)) Fry (9(f (%))
The chase of I3, and MFA(X) does not contain C, which implies that I UMFA(X) = C. As
a result, 3 is universally MFA. O

MFA is formulated as a semantic, rather than a syntactic notion, and is thus mainly
independent from algorithmic details: entailment I UMFA(X) = C can be checked using an
arbitrary sound and complete first-order calculus. In Section 4 we discuss the relationship
between MFA and existing notions, and we show that MFA generalises most of them.

The following proposition shows that MFA characterises the derivations of the skolem
chase in which no cyclic terms occur.

Proposition 5. A set X of rules is not MFA w.r.t. an instance I if and only if I,?,loFA(E)
contains a cyclic term.

Proof. Let ¥ = MFA(Y), and let Ig,, Ié,, ... be the chase sequence for I and Y¥’. Moreover,
let f¢ be the function symbol used to skolemise the i-th existentially quantified variable in
rule 7, as defined in Section 2.2. We next prove that the following claims hold for all terms
t and ¢ occurring in Ig,, each rule r, each integer i, and each integer k, as well as k = oo.

1. Term t is of the form f!(@) if and only if F.(t) € IE,.
2. Term t is of the form fi(@) and ' € @ if and only if S(¢,t) € IZ,.

3. If t is a proper subterm of ¢, then D(t',t) € IgTQ; furthermore, D(¢,t) € I3y if and
only if ¢ is a proper subterm of ¢.

1. In the rest of this paper we often omit ‘universally’; furthermore, when used as an acyclicity notion,
MFA means ‘universally MFA’.

752

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

(Claims 1 and 2, direction =) The proof is by induction on k. Set I, does not contain
functional terms, and so it clearly satisfies both claims. For the induction step, assume
that both claims hold for I;,_l and consider I%,. Since Ié,_l - Ig,, both claims clearly hold
for each term t that occurs in Ig,_l. Consider an arbitrary term t of the form f(@) that
does not occur in Ig/_l, and an arbitrary term t' € @. Clearly, ¢ is introduced into I%, by an
application of the skolemisation of MFA(r) for some rule r € .. Since the head of MFA(r)
contains atoms Fi(y;) and S(zj,y;) for each z; € &, we have Fi(t) € I£, and S(¢,t) € I%,
for each t' € @, and so we have F'(t) € Iy and S(#',t) € I for each t’ € @ as well. Finally,
since I = (J,, I%,, these claims clearly hold for k = oc.

(Claims 1 and 2, direction <) Predicate S and each predicate F. occur in ¥’ only in head
atoms of the form F.(y;) and S(z;,y;); hence, the skolemised rules contain these predicates
only in head atoms of the form Fi(f}(%)) and S(z;, fi(Z)), which clearly implies our claim.

(Claim 3, the first part for k& # oo) The proof is by induction on k. The base case holds
vacuously since 12, does not contain functional terms. Assume now that the claim holds
for some k — 1, and consider an arbitrary term t = f!(#) occurring in Ig, such that t’ is
a subterm of some t; € 4. By Claim 2, we have S(¢;,t) € Ig,; furthermore, t; occurs in
Ig,_l, so by the induction assumption we have D(¢,t;) € Ig’l. Finally, the rules without
functional terms are applied before the rules with functional terms; hence, by rule (19) we
have D(#,t) € I&2, as required.

(Claim 3, the second part) The ‘proper subterm’ relation is transitive, and rules (18)
and (19) effectively define D as the transitive closure of S, which clearly implies this claim.

Assume now that I3 contains a cyclic term ¢. Then, some term ¢; = f(5) is a subterm

of t and some term to = fi(#) is a proper subterm of ¢;. By Claims 1 and 3, then we have
{Fi(t2),D(t2,t1),Fi(t1)} C Iy. But then, since ¥’ contains rule (20), we have C € I3, so
Y is not MFA. For the converse claim, assume that > is not MFA w.r.t. an instance I.
Then, by Definition 3 we have that I UMFA(X) = C. Since the special nullary predicate C
occurs only on the right-hand side of rule (20), there exist terms ¢; and t2, a rule r € 3,
and a predicate F. such that {F.(t1),D(t1,t2),Fi(t2)} C Igy. Since Fi(t;) and Fi(ty) are
contained in I3y, Claim 1 implies that ¢; and t5 are of the form ¢; = fi(uy) and ty = f(u3),
respectively. Finally, D(t1,t2) € 139 and Claim 3 imply that ¢; is a proper subterm of t3, so
I35 contains a cyclic term. O

This characterisation implies termination of skolem chase of MFA rules ¥ in 2EXPTIME.
In particular, a term ¢ derived by the skolem chase of 3’ = MFA(X) cannot be cyclic by
Proposition 5; such ¢ can then be seen as a tree with branching factor bounded by the
maximum arity of a function symbol in sk(X') and with depth bounded by the number
of function symbols in sk(X'). The chase can thus generate at most a doubly exponential
number of different terms and atoms. The 2EXPTIME bound already holds if the rules are
WA (Cali et al., 2010b), so CQ answering for MFA rules is not harder than for WA rules.

Proposition 6. If a set of rules ¥ is MFA w.r.t. an instance I, then the skolem chase for
I and X terminates in double exponential time.

Proof. Let ¥ = MFA(X), let ¢, f, and p be the number of constants, function symbols,
and predicate symbols, respectively, occurring in sk(X'), let ¢ be the maximum arity of a
function symbol, and let a be the maximum arity of a predicate symbol in sk(X'). Consider

753

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

now an arbitrary term ¢ occurring in I37; clearly, ¢ can be seen as a tree with branching
factor £ containing constants in the leaf nodes and function symbols in the internal nodes;
furthermore, since ¢ is not cyclic, dep(t) < f, the number of leaves is bounded by ¢/, and the
total number of nodes is bounded by f - ¢/. Each node is assigned a constant or a function
symbol, so the number of different terms occurring in 3§ is bounded by p = (c + f)7 o
and the number of different atoms in I3y is bounded by p- ©?, which is clearly doubly
exponential in ¥ and I. Consequently, the size of I3y is at most doubly exponential in X
and I. Furthermore, for an arbitrary set of facts I’ and rule r, the set r(I’) can be computed
by examining all mappings of the variables in r to the terms occurring in I’, which requires
exponential time in the size of 7 and polynomial time in the size of I’. Consequently, I3 can
be computed in time that is double exponential in I and ¥. Finally, it is straightforward
to see that Ig° C Iy, so I3 can be computed in double exponential time as well.]

By Proposition 6, answering a BCQ over MFA rules is in 2EXPTIME. We next prove
that checking MFA w.r.t. a specific instance [is also in 2EXPTIME, and that checking uni-
versal MFA is 2EXPTIME-hard. This provides tight complexity bounds for both problems.
Towards this goal, we first establish in Lemma 7 a relationship between answering certain
kinds of queries over certain kinds of rules and checking whether a related set of rules is
universally MFA; we use this relationship in several hardness proofs in the rest of this paper.
Then, in Theorem 8 we present our main complexity result.

Lemma 7. Let 3 be a set of weakly acyclic, constant-free, equality-free, and connected rules
with predicates of nonzero arity, let A and B be unary predicates, let R be a fresh binary
predicate, let a be a constant, and let Q) be ¥ extended with rule (23).

R(z,z) A B(z) = Jy.[R(z,y) A A(y)] (23)
Then, we have {A(a)} UX ¥~ B(a) if and only if Q is universally MFA.

Proof. Let I = {A(a)}, and let 2, Ié, ... be the chase sequence for I and ¥X. Furthermore,
let Q' = MFA(Q), let J = I, let Jg,,Jé,, ... be the chase sequence for J and €, and let
f be the function symbol used to skolemise the existential quantifier in rule (23). Set X is
constant-free, so a is the only constant occurring in each set I%.

We next show that the facts in Jgj), are of a certain form. To this end, for each ¢ > 0,
let tp = f(... f(x)...) where the function symbol f is repeated ¢ times (by this definition,
we have ty = *); also, each term or fact obtained from t; by zero or more applications of
predicates or function symbols not in {f, D, S, C, R} is of level . By induction on the chase
sequence for J and ', we next prove that the sequence satisfies the following property (#):

for each fact F' € Jé,, some integer ¢ exists such that F' is of the form R(x,x*)
or R(ts,tey1), or the predicate of F' is contained in {D,S,C}, or F' is an {-level
fact and the predicate of F' is not contained in {D,S, C, R}.

Set Jg, = J clearly satisfies property (#) since each fact in it is clearly of level 0. Now assume
that Jsjl, satisfies property (#) for some j, and consider an application of a rule r € Q. If r
corresponds to rule (18), (19), (20), or (23), then the result of the rule application clearly
satisfies property (#). Otherwise, r is safe and no body atom contains a predicate in

754

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

{D,S, C, R}; by induction assumption, then some atom is matched to a fact of some level ¢;
the body atoms of r are connected, so all body atoms are matched to facts of the same level;
finally, the head atoms of r contain function symbols different from f, but no constants or
predicates of zero arity, so each fact derived by an atom in the head of r either contains
predicate S or is of level £.

We next show that the chase sequences for I and X, and for J and €’ are related by the
following property (0):

for each fact F' of level 1 and the fact F' obtained by replacing each t; in F’
with a, we have F € I} for some i if and only if F’ € JJ, \ J for some j.

The proof of (O) is straightforward: J contains R(x,*) and B(x), so J&, contains R(x, f(x))
and A(f(*)); moreover, due to (¢), term t; plays in the chase sequence for J and Q' the
‘same role’ as constant a in the chase sequence for I and ¥, so the rule applications to facts
of level 1 in the former chase sequence correspond one-to-one with rule applications in the
latter chase sequence. We omit the formal details for the sake brevity.

Now assume that {A(a)} UY | B(a). Then, B(a) € I% holds for some i. By property
(0), then integer j exists such that B(f(x)) € ng,. But then, due to rule (23), some ¢ > j
exists such that A(f(f(*))) € J&. By Proposition 5, then (2 is not universally MFA.

Conversely, assume that {A(a)} UX = B(a). Since ¥ is weakly acyclic and equality-
free, ¥ is super-weakly acyclic (Marnette, 2009); as we will show in Section 4 (see Theorem
19), ¥ is then MFA as well. Now consider an arbitrary integer j and fact F € J2,. If F
is of level 0 or 1, since X is MFA, fact F' does not contain a cyclic term. Furthermore,
B(a) ¢ I3® so, by property (¢), fact F' is not of the form B(f(x)); thus, rule (23) does not
‘fire’ to introduce facts of level greater than 1. Consequently, F' does not contain a cyclic
term, and so, by Proposition 5, the set € is universally MFA. O

Theorem 8. Given a set of rules X, deciding whether ¥ is MFA w.r.t. an instance I is in
2EXPTIME, and deciding whether ¥ is universally MFA is 2EXPTIME-hard. Both results
hold even if the arity of predicates in 3 is bounded.

Proof. (Membership) Let ¥’ = MFA(X), let I2,, I, ... be the chase sequence for I and ¥,
and let p, p, and a be as stated in the proof of Proposition 6. The number of different
atoms that can be constructed from p terms is bounded by k = p - % note that this is
double exponential even if a is bounded. Let k' = k + 4; we next show that whether ¥ is
MFA w.r.t. I can be decided by constructing Ig, and then checking whether C € I¥,. As in
the proof of Proposition 6, the latter can be done in double exponential time.

If Ig, = 1%, then I3 = Ig,, so ¥ is not MFA if and only if C € I¥,. Otherwise, we
have Ig, - Ig,; but then, Igfl clearly contains at least one cyclic term ¢ = f? (t_) such that
t' = fi(5) is a subterm of some t; € t. Since Igfl satisfies Claims 1-3 from the proof of
Proposition 5, we have D(t;,t) € I. ;fr:s; by rule (20) and the fact that rules without functional
terms are applied before rules with functional terms, we have C € Ig,; thus, C € I3y, so X
is not MFA by Proposition 5.

(Hardness) We prove the claim by a reduction from the problem of checking I UY = @,
where 3 is a weakly acyclic set of equality-free rules and with predicates of bounded arity,

755

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

I is an instance, and @ = 37.£(¥) is a Boolean conjunctive query. Cali et al. (2010b) show
that, for such I, ¥, and @, deciding I U¥ = @ is 2EXPTIME-complete. We next transform
1, 3, and @ so that we can apply Lemma 7, which proves our claim.

Let ¥ = X U {{(y) — B} where B is a fresh predicate of zero arity; clearly, I UY = @
holds if and only if 7 U X, | B holds.

Let ¥ and Iy be obtained by eliminating constants from the rules in X1; that is, we
initially set I = I and then, for each rule r € ¥ and each constant ¢ occurring in r, we
replace all occurrences in ¢ with a fresh variable w,, add an atom O.(w.) to the body of r
where O, is a fresh predicate uniquely associated with ¢, and add a fact O.(c) to Is. It is
straightforward to see that I UX; |= B if and only if I» U X9 = B.

Finally, to transform Yo and Is into Y3, we define some notation. Let P be a fresh n+1-
ary predicate unique for each n-ary predicate P, and let w be a fresh variable not occurring
in Y. For a conjunction of atoms ¢, let ¢ = Ape, P(t,w). Rule (24) is obtained from
15 as specified below, where A is a fresh unary predicate, each constant ¢ occurring in I is
associated with a distinct, fresh variable v., and v, is the vector of all such variables:

Aw) = 3. N\ Ploey,. - ve,w) (24)
P(ct,...,cr)€l2

Finally, the set 33 contains rule (24) and a rule

@(, Z,w) = FG(E, 7, w) for each rule o(Z,Z) = (&, 7) in . (25)
Clearly, all predicates in X3 are of nonzero arity; all rules in X3 are constant-free and
connected; and A occurs only in the body of rule (24) and X9 is WA, so X3 is WA as well.
Finally, let I3 = {A(a)} where a is a fresh constant; by induction on the chase sequences for
Y9 and I, and X3 and I3, it is straightforward to show that, for each integer 7 and each fact
P(ci, ... cr), we have P(ci, ..., cx) € (I2)y, if and only if P(f¢,(a),. .., fe,(a),a) € (Ig)ggl,
where f.,,..., fe, are the skolem functions used to skolemise v, ..., v, in rule (24). Thus,
I, U¥y = B if and only if I3 U ¥3 = B(a), which by Lemma 7 implies our claim. O

The results of Theorem 8 are somewhat discouraging: known acyclicity notions can
typically be checked in PTIME or in NP. We consider MFA to be an ‘upper bound’ of
practically useful acyclicity notions. We see two possibilities for improving these results. In
Section 3.3 we introduce an approximation of MFA that is easier to check; our experiments
(see Section 7) show that this notion often coincides with MFA in practice. Furthermore,
we show next that the complexity is lower for rules of the following shape.

Definition 9. A rule r of the form (5) is an 3-1 rule if § is empty or & contains at most
one variable.

As we discuss in the following sections, 3-1 rules capture (extensions of) Horn DLs. We
next show that BCQ answering and MFA checking for 3-1 rules is easier than for general
rules. Intuitively, if 3 is MFA and contains only 3-1 rules, then all functional terms in
sk(MFA(X)) are unary and hence the number of different terms and atoms derivable by
chase becomes exponentially bounded, as shown by the following theorem.

756

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

Theorem 10. Let X be a set of 3-1 rules, and let I be an instance. Checking whether X is
MFA w.r.t. I is in EXPTIME, and checking whether ¥ is universally MFA is EXPTIME-hard.
Moreover, if 3 is MFA w.r.t. I, then answering a BCQ over % and I is EXPTIME-complete.

Proof. We defer the proof of both hardness claims to Section 6, which deals with an even
smaller class of rules that correspond to Horn description logic ontologies. In particular,
we prove hardness of BCQ answering in Lemma 59, and hardness of checking whether ¥ is
MFA w.r.t. I in Lemma 60. In the rest of this proof, we show both membership results.

Let ¥ = MFA(X); let ¢ be the number of constants in an instance; and let f be the
number of function symbols in the rules. Since Y contains only 3-1 rules, ¥’ also contains
only 3-1 rules; consequently, all functional terms in sk(X’) are of arity 1. Hence, each
noncyclic term can be understood as a sequence of at most f function symbols, so the total
number of different noncyclic terms is bounded by o = ¢- (f 4+ 1)f. The total number of
atoms is bounded by p - % where p is the number of predicates and a is the maximum
arity of a predicate in ¥'. Note that this is exponential even if a is fixed. As in the proof
of Proposition 6, we can now show that either the chase for ¥/ and I terminates or a cyclic
term is derived in exponential time, which proves that the complexity of checking whether
Y is MFA w.r.t. I is in EXPTIME.

Finally, since I3° C I37, if ¥ is MFA, then I$° can be computed in exponential time, so
a BCQ over ¥ and [can be answered in EXPTIME. O

3.3 Model-Summarising Acyclicity (MSA)

The high cost of checking MFA of ¥ arises because the arity of function symbols in sk(X) is
unbounded and the depth of cyclic terms can be linear in 3. To obtain an acyclicity notion
that is easier to check, we must coarsen the structure used for cycle analysis. We thus next
introduce model-summarising acyclicity, which ‘summarises’ the models of ¥ by reusing the
same constant to satisfy an existential quantifier, instead of introducing ‘deep’ terms.

Definition 11. Let S, D, and F. be as specified in Definition 3; furthermore, for each rule
r = (&, 2) — 3Gap(Z,) and each variable y; € ij, let ci. be a fresh constant unique for r
and y;. Then, MSA(r) is the following rule, where Oysa is the substitution that maps each
variable y; € i to ci.:

o(T,2) = 0@ Powsa A [\ |Fr(wi)omsa A\ S(x;,vi)0msa

Yi€Y T;ET

For a set ¥ of rules, MSA(X) is the smallest set that contains MSA(r) for each rule
r €Y, rules (18)—~(19), and rule (20) instantiated for each predicate Fi.. Set ¥ is model-
summarising acyclic (MSA) w.r.t. an instance I if I UMSA(Y) = C; furthermore, ¥ is
universally MSA if 3 is MSA w.r.t. I5,.

Example 12. Consider again the set of rules X from Ezample 1. MSA(r1) and MSA(rs)
are given by rules (26) and (27), respectively; since r1 and rs contain a single existentially

quantified variable each, we omit the superscripts in F,. , F.., c. , and c,, for the sake of

57

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

clarity. Thus, MSA(X) consists of rules (14), (16), and (17), rules (26)—(27), rules (18)—
(19), and rule (20) instantiated for F,, andF,.,

A(xl) _>R<m17cr1)/\B<CT1)/\Fr1(C) S(‘Q:h 7"1) (26)
Bas) = R(58,6) A Cl6y,) A Fr(6r) A S(a3,) 1)

The following table shows the chase sequence for I3, and MSA(X).

A(x) R(x,c,,) R(c,,,¢py) D(cyysCry)

B(x) R(x,c,,) D(c,,)

C(+) B(c,,) S(CrysCry)

D(x) Clery) D(+,¢p,)

R(, %) SICH: D(*,¢,,)
(*, Cry)
Fr.(c,)
Fry(cry)

The result of the chase does not contain C, and so ¥ is universally MSA. O

Note that MSA(Y) is equivalent to a set of datalog rules: the only minor difference is
that the rules in MSA(X) can contain several head atoms, but such rules can clearly be
transformed into equivalent datalog rules. Thus, MSA can be checked using a datalog rea-
soner. This connection with datalog and the complexity results by Dantsin, Eiter, Gottlob,
and Voronkov (2001) for checking entailment of a ground atom in a datalog program provide
us with the upper complexity bound for checking MSA in Theorem 13. The complexity of
datalog reasoning is O(r - n”) where r is the number of rules, v is the maximum number of
variables in a rule, and n is the size of the set of facts that the rules are applied to; thus,
checking MSA should be feasible if the rules in X are ‘short’ and so v is ‘small’.

Theorem 13. For Y. a set of rules, deciding whether ¥ is MSA w.r.t. an instance I is in
EXPTIME, and deciding whether X is universally MSA is EXPTIME-hard. The two problems
are in coNP and coNP-hard, respectively, if the arity of the predicates in ¥ is bounded.

Proof. (Membership) Let ¥ = MSA(X), and note that ¥ is MSA w.r.t. I if and only if
Tuy' B~ Cifand only if C ¢ I3y, The total number of atoms occurring in I3 is p-c®, where
p is the number of predicates, ¢ is the number of constants, and a is the maximum arity of
the predicates in Y'; this number is clearly exponential if a is not bounded. The rest of the
proof is the same as in Theorem 8.

Assume now that a is bounded; then the number of ground atoms in I3y becomes poly-
nomial. Furthermore, by the definition of the chase, C € I3} if and only if there exist a se-
quence of rules 1, ..., r, of the form r; = ; — 9; and a sequence of substitutions o1, ..., 0y,
such that po; C TU {wjaj | j < i} C Iy for each 1 <i < n and ¢,0, = C. Clearly, we can
assume that n < p-c%, which is polynomial. Thus, we can guess the two sequences in non-
deterministic polynomial time, and we can check the required property in polynomial time.
Thus, I UY' |= C can be checked in nondeterministic polynomial time, so checking whether
Y is MSA w.r.t. I is in coNP.

758

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

(Hardness) Let ¥ be a set of datalog rules, let I be an instance, and let @ be ground
atom. Checking whether I UY = @ is EXPTIME-complete in general (Dantsin et al., 2001).
Furthermore, the problem is NP-hard if the arity of predicates is bounded: a rule in ¥ can
encode an arbitrary Boolean conjunctive query with atoms of bounded arity but arbitrarily
many variables, for which answering is well known to be NP-hard.

Let 34 and I be obtained from ¥ as in the proof of Theorem 8; then, I U = @ if and
only if Iy U Xy = B(a), and the set of rules Q obtained from ¥4 as specified in Lemma 7 is
universally MFA if and only if I, UXy = B(a). Finally, the only existential variable in
occurs in a rule of the form (23), so it is straightforward to see that € is universally MFA
if and only if 77 is universally MSA. O

Before concluding this section, we present Theorem 14 and Example 15, which together
show that MFA is strictly more general than MSA.

Theorem 14. If a set of rules 3 is MSA (w.r.t. an instance I), then ¥ is MFA (w.r.t. I)
as well.

Proof. Let 31 = MFA(X) and let ¥y = MSA(Y). Furthermore, let & be the mapping of
ground terms to constants defined such that h(t) = c! if t is of the form fi(...), and h(t) =

if t is a constant; for an atom A = P(t1,...,t,), let h() = P(h(t1),...,h(ty)); and for an
instance I, let h(I) = {h(A) | A € I}. Finally, let I%l,lél, ... be the chase sequence for I
and Xq, and let I%Q,I%Q, ... be the chase sequence for I and 3. Note that sk(X3) = o
differs from sk(31) only in that the former contains the constant c. in place of each func-
tional term f!(Z). Please note that, although our definition of the chase applies rules with
function symbols after rules without function symbols, one can clearly construct the chase
of the function-free set of rules ¥o using any order of rule applications, including the one
corresponding to the order of rule applications in the chase of ¥;. Assuming this slight
modification, one can show by a straightforward induction on 4 that h(Iél) - I%Q for each
i; this implies h(Ig]) C Igy. Consequently, C ¢ I3 clearly implies C ¢ I3°; hence, if ¥ is
MSA, then 3 is MFA as well, as required. O

Example 15. Let ¥ be the set of rules (28)—(31).

ry = A(z) = Jy.R(x,y) A B(y) (28)
ro = B(z) = Jy.S(z,y) NT(y,) (29)
3= A(z) NS(z,2) = C(x) (30)
ry = C(z)NT(z,z) = A(z) (31)
It is straightforward to check that 3 is universally MFA, but not universally MSA. %

3.4 Acyclicity Notions and Normalisation

As mentioned in Section 2.5, existential rules are often normalised into a particular form;
however, this cannot destroy acyclicity: if a set of rules ¥ is MFA, then each set of rules
obtained from 3 by normalisation is MFA as well. This claim involves certain technical
assumptions about the treatment of equality, which is why we postpone a formal proof
of this statement until Section 5. Next, however, we show that normalisation can have a
positive effect on acyclicity.

759

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

Example 16. Let 3 be the set containing only the following rule:
A(z) — Fy.[B(z) A A(y)] (32)

As specified in Section 2.2, this rule is skolemised as follows, which causes that the skolem
chase of ¥ and instance I = {A(a)} does not terminate.

A(z) — B(z) N A(f(2)) (33)

Note, however, that atoms B(z) and A(y) in the head of the rule do not share variables,
so we can normalise this rule as follows, where Q) is a fresh predicate of zero arity:

A(z) = B(z) AQ (34)
Q — Jy.A(y) (35)

It is straightforward to check that this normalised set of rules is MFA; in fact, the normalised
set of rules is even JA. Intuitively, normalisation, as defined in Section 2.5, ensures that
each functional symbol introduced during normalisation depends on as few variables in the
rule as possible. O

Normalisation, however, can have a negative effect on universal termination, as shown
by the following example.

Example 17. Let 3 be the set containing only the following rule:
C(2) A R(z,2) A B(x) = Jy13y2.[R(z, y1) A R(y1, y2) A B(y2)] (36)

One can readily check that ¥ is universally MFA. Now let ¥ be the following set of rules,
which is obtained by replacing conjunction R(y1,y2) A B(y2) in the rule head with Q(y1):

C(2) N R(z,x) A B(z) — Jy1.[R(z,y1) A Q(y1)] (37)
Q(y1) = Jya2.[R(y1,y2) A B(y2)] (38)
Let f1 and fo be function symbols used to skolemise the existential quantifier in rule (37)

and (38), respectively. Since Q(x) € I3, the chase of ¥ and I3, derives R(x, fa(*)) and
B(fa(x)); but then, these facts, C(x), and rule (37) derive Q(f1(f2(%))), after which rule
(38) derives R(f1(f2(x)), f2(f1(f2(%)))) and B(f2(f1(f2(x)))). The chase of ¥' and I3, thus
contains a cyclic term, so Y is not universally MFA.

Intuitively, this problem occurs because the critical instance 1%, for X' also instantiates
the predicate @ introduced during normalisation. Such predicates, however, cannot occur in
arbitrary input instances, so we can use the critical instance for ¥. Since Q(x) & I3, the
skolem chase of ¥/ and I3 does not derive a cyclic term, from which we can conclude that
the skolem chase of ¥ terminates on each instance I that contains facts constructed using
only the predicates occurring in . %

4. Relationship with Known Acyclicity Notions

Many acyclicity notions have been proposed in the literature, but the relationships between
them have been only partially investigated. We next investigate the relationship between
MFA, MSA, and the acyclicity notions known to us, and we produce a detailed picture of
their relative expressiveness. We show that MFA and MSA generalise most of these notions.

760

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

4.1 Acyclicity in Databases

Acyclicity notions have been considered in databases in data integration and data exchange
scenarios. Weak acyclicity (Fagin et al., 2005) was one of the first such notions, and it has
spurred on the research into more sophisticated notions for ensuring chase termination.

4.1.1 SUPER-WEAK ACYCLICITY

Marnette (2009) proposed super-weak acyclicity (SWA), which generalises weak acyclicity
provided that the rules are equality-free. We next recapitulate the definition of SWA, and
then we show that MSA and MFA are strictly more general than SWA.

Definition 18. Let X be a set of existential rules in which no variable occurs in more than
one rule, and let Oy be the substitution used to skolemise the rules in ¥.2 A place is a pair
(A, 1) where A is an n-ary atom occurring in a rule in 3 and 1 <i < n. A set of places P’
covers a set of places P if, for each place (A,i) € P, a place (A',i') € P' and substitutions
o and o' exist such that Ac = A'o’ and i =1'. Given a variable w occurring in a rule
r =@ — 3y, sets of places In(w), Out(w), and Move(w) are defined as follows:

e set In(w) contains each place (R(t),4) such that R(t) € ¢ and t; = w;
e set Qut(w) contains each place (R(H)0sc, 1) such that R(t) € ¢ and t; = w; and
e set Move(w) is the smallest set of places such that

— Out(w) C Move(w) and

— Out(w’) C Move(w) for each variable w' that is universally quantified in some
rule in X such that Move(w) covers In(w').

The SWA dependency graph SWA(X) of ¥ contains a vertex for each rule of ¥, and an
edge from a rule v € ¥ to a rule v’ € X if a variable ¥’ occurring in both the body and the

head of ' and an existentially quantified variable y occurring in the head of r ewists such
that Move(y) covers In(z'). Set ¥ is super-weakly acyclic (SWA) if SWA(X) is acyclic.

Marnette (2009) uses a slightly different definition: the notation for places is the same
as our notation for positions; a variable may occur in more than one rule so sets In(w),
Out(w), and Move(w) are defined w.r.t. a rule and a variable; and a rule trigger relation is
used instead of the SWA dependency graph. For simplicity, Definition 18 introduces SWA
in the same style as JA; however, both definitions capture the same class of rules.

The following theorem shows that MSA is more general than SWA. Furthermore, in
Example 12 we argued that the set of rules ¥ from Example 1 is MSA, and one can readily
check that ¥ is not SWA. Consequently, MSA is strictly more general than SWA.

Theorem 19. If a set of rules 3 is SWA, then ¥ is universally MSA.

2. Substitution fs is unique for each rule in Section 2.2; however, since each variable in ¥ occurs in at most
one rule, w.l.o.g. we can take 6 as the substitution used to skolemise all the rules in .

761

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

Proof. Let X = MSA(X), let I°, I, . .. be the chase sequence for I{ and ¥/, and let 1™ be the
chase of I3, and ¥’. Furthermore, let p be the function that maps constants to themselves and
that maps ground functional terms as p(f:(f)) = c, where f? and c’. were introduced in Sec-
tion 2.2 and Definition 11, respectively. Finally, let p(P(t1,...,tn)) = P(p(t1),...,p(tn)).

We next prove the following property (¢): for each rule r € X, each existentially quanti-
fied variable y; occurring in 7, each P(f) € I where P ¢ {S,D, C}, and each ¢; € such that
tj = c, a substitution 7 and a place (4, j) € Move(y;) exist such that P(f) = p(A7). The
proof is by induction on the length of the chase. Since I = I3, does not contain a constant
of the form c%, property (#) holds vacuously for I°. Assume now that property (4) holds for
some I*~1 and consider an arbitrary rule r € ¥, an existentially quantified variable y; in 7,
a fact P(t) € I* \ I*! with P ¢ {S,D,C}, and a term ¢; € such that ¢; = c’. Fact P(#) is
derived in I* from the head atom H of some rule 7' € MSA(X). Let o be the substitution
used in the rule application; clearly, we have Ho = P(f) Furthermore, let r? € ¥ be the rule
such that r! = MSA(r?), let 73 = sk(r?), and let H3 be the head atom of r® that corresponds
to H; clearly, we have p(H30) = P(t). Now if H has c’ in position j, then r = 7! since 7!
is the only rule that contains c’; thus, (H3, j) € Out(y;) € Move(y;), so property (#) holds.
Otherwise, H contains at position j a universally quantified variable z such that o(x) = ct.
Let By,...,B, be the body atoms of r! that contain z; clearly, {Bio,...,Byo} C I*1,
All these atoms satisfy the induction assumption, so for each By, € {Bj,..., B,} and each
¢ such that By, contains variable x at position ¢, a place (B, ,¢) € Move(y;) and substitu-
tion 7™ exist such that B,,o = p(B., 7). Let ¢’ be the substitution obtained from o by
setting o’(w) = 7™(w) for each variable w for which 7 (w) is a functional term; clearly,
Bp,o' = B],7™. But then, Move(y;) covers In(z); hence, by the definition of Move, we have
that (H3,j) € Move(y;), so property (4) holds.

We additionally prove the following property (): if S(cfn,cﬁ,’,) € I for some 7 and 7',
then SWA(X) contains an edge from r to /. Consider an arbitrary such fact, let y; be the
existentially quantified variable of r corresponding to c, and let k be the smallest integer

T
such that S(ci,cff/) € I*. Clearly, S(ci,cff,) is derived in I* from the head atom S(a:,cff/)
of rule 7. Let o be the substitution used in the rule application; thus, o(z) = c’.. Let
Bi,..., B, be the body atoms of r that contain x; clearly, we have {Bio, ..., B,o} C I*1.
All these atoms satisfy property (#), so for each B,, € {Bj,...,B,} and each ¢ such that
By, contains variable x at position ¢, a place (B, ,¢) € Move(y;) and substitution 7™ exist
such that By, = p(B],7™). But then, as in the previous paragraph we have that Move(y;)
covers In(x), so SWA(X) contains an edge from r to r’.

Assume now that Y is not MSA, so C € I*°; then {Fi(t),D(¢,t'),Fi(t')} C I* holds for
some F% due to rules (20). But then, since predicate F. occurs in ¥’ only in an atom F(ct),
we have t =t' = c’. Finally, since D is axiomatised in ¥’ as the transitive closure of S,
clearly SWA(X) contains a path from r to itself, and so ¥ is not SWA. O]

The rule set in Example 1 is MSA but not SWA. Furthermore, it is known that SWA is
more general than JA, and the two notions differ only if at least one rule contains a body
atom in which at least one variable occurs more than once (Krotzsch & Rudolph, 2013).
The following example shows that SWA is strictly more general than JA.

Example 20. Let 3 be the set of the following rules:
T = A(z1) = 3y.R(z1,y) A R(y, z1) A R(21, 21) (39)

762

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

Ty = R(x2,22) = B(2) (40)
T3 = B(xzs) — A(zs) (41)
One can readily verify that % is SWA, but not JA. O

Theorem 19 holds even if ¥ contains the equality predicate, but provided that the
axiomatisation of equality (cf. Section 2) is taken as part of the input. On such rule sets,
however, SWA, JA, MSA, and MFA are not strictly more general than WA. We discuss the
underlying problems, as well as possible solutions, in Section 5.

4.1.2 AcycCLICITY BY REWRITING

Spezzano and Greco (2010) proposed an acyclicity notion called Adn-WA. Roughly speak-
ing, one first rewrites a set of rules ¥ into another set of rules ¥/ by adorning the positions
in the predicates that can contain infinitely many terms during the chase; then, one checks
whether X' is WA. The rewriting algorithm is rather involved, so we do not recapitulate its
definition; instead, we discuss it by means of an example. Spezzano and Greco used this
example to show that Adn-WA is not subsumed by SWA, but the same example also shows
that Adn-WA is not subsumed by MFA either.

Example 21. Let X be the set containing the following rules:
A(z) — Jy.R(z,y) (42)
B(z) AN R(z,z) = A(x) (43)

The transformation by Spezzano and Greco (2010) produces a set ' that consists of
three groups of rules. The first group contains rules (44)—(47).

Ab(z) — 3y.RY (z,y) (44)
B%(2) A R (z,2) — A®(x) (45)
Bb(2) ARY (z,2) — Af (2) (46)
Al (z) — 3y.RY (z,y) (47)

For each n-ary predicate P, the transformation introduces predicates of the form P™, where
m is an adornment—a string of length n of letters b or f. Intuitively, if m contains letter
b at position i, then during the chase construction the i-th position of P™ can contain only
constants occurring in an instance. Rules (44)—(47) were derived as follows. Rule (44)
is obtained from rule (42) by marking all positions of variable x with b, which effectively
creates a variant of the rule whose body is applicable only to constants. Variable y in the
head of rule (44) occurs under an ezistential quantifier, so the corresponding position is
marked with f. Rule (45) is obtained from rule (43) in an analogous way. But then, since
facts introduced by rule (44) can trigger an application of rule (43), the latter rule is marked
as rule (46); predicate A’ in the head of rule (46) reflects the fact that variable z in the rule
body is instantiated by atom RY (z,x). Finally, facts derived by rule (46) can trigger an
application of rule (42), so the latter rule is instantiated as (47). At this point the algorithm
terminates: since no rule was instantiated with a marking B! in the head, it is not possible
to use predicate RY to mark the body of rule (43) in a consistent way.

763

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

The second group consists of rules (48)—(50), which ‘populate’ the adorned predicates
with the contents of an instance.

R(xy,x9) — RY (z1,x2) (48)
A(x) — A®(z) (49)
B(z) — B®(z) (50)

The third group consists of rules (51)—(56), which ‘gather’ the content of each adorned
predicate P™ into a fresh output predicates P.

R (x1,73) — R(1,72) (51)
Rbf(xl,:cg) — R(ml, x2) (52)
Rﬁ(ml,@) —]:Z(xl, x2) (53)
Ab(z) — A(z) (54)
Al (z) = A(z) (55)
B"(z) — B(x) (56)

It is straightforward to check that ¥ is not MFA. In contrast, X' is WA; furthermore,
Spezzano and Greco (2010) show that, for each instance I and each vector of ground terms
t, we have P(f) € I if and only if P(t) € I¥. Since ¥ is WA, IY is finite, and, by the
previously mentioned property, I° is finite as well. O

The following example shows that MFA is not subsumed by Adn-WA, which indicates
that MFA and Adn-WA are incomparable.

Example 22. Let 3 be the set containing the following rules:

= A(x) = Jy.R(z,y) A B(y) (57)
ro = S(z,z) A B(x) = Jy.S(x,y) (58)
The rules in the first group of the set X' obtained by the transformation are shown below;
we do not show the rules in the second and the third group for the sake of brevity.
Ab() = 3y.RY (,y) A B (y)
S (z,2) A B (x) — 3y.8% (z,9)
S (z,2) A B () — Fy.87(
ST (z,2) A B (x) = Fy.57(
The last rule ensures that the WA dependency graph for ¥ contains a special edge from

position ST |y to itself; thus, X' is not WA, and therefore ¥ is not Adn-WA. In contrast,
one can readily verify that 3 is MFA. O

Spezzano and Greco (2010) also proposed several optimisations of this transformation,
the discussion of which is out of scope of this paper. All of them can be seen as ‘unfolding’
the rules in ¥ up to a certain number of chase steps. This seems close to an idea by Baget

764

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

et al. (2011b), who propose to run the chase for some fixed number of steps before checking
for potential cycles. A similar effect could be obtained by extending the notion of MFA to
check for terms that contain a function symbol nested some fixed number of times.

Finally, note that the transformation by Spezzano and Greco (2010) is independent
from the notion used to check the acyclicity of the transformed rule set; hence, given an
arbitrary acyclicity notion X, one can define Adn-X in the obvious way. Given arbitrary
notions X and Y such that X C Y, it is obvious that Adn-X C Adn-Y’; consequently, we
have Adn-X ¢ MFA for each X such that WA C X. In contrast, however, it not obvious
whether the inclusion between Adn-X and Adn-Y is strict whenever the inclusion between
X and Y is strict, or whether MFA is contained in Adn-X for some X with WA C X.
Finally, we conjecture that X € Adn-X holds for an arbitrary notion X, but we do not
have a formal proof of this conjecture. Due to the complex nature of the rewriting, we
refrain from further analysis of these relationships.

4.1.3 MoNITOR GRAPH

Meier et al. (2009) propose an idea that is similar in spirit to MFA. The idea is to track
each chase step in an additional data structure called the monitor graph. If the chase is
infinite, then the monitor graph contains cycles of arbitrary length; conversely, if one can
show that the monitor graph does not contain a cycle of some fixed length, then the chase is
guaranteed to terminate. While this idea is closely related to MFA, note that the definition
of MFA is semantic; hence, one can use an arbitrary theorem proving technique to check
whether MFA(X) = C. In contrast, the notion of a monitor graph is specifically tied to the
nonoblivious chase. It is well known that the result of the nonoblivious chase depends on
the order in which the rules applied; consequently, a set of rules can be identified as cyclic
or acyclic depending on the selected rule application strategy. Because of this dependence,
it is difficult to compare the monitor graph approach with other acyclicity notions.

4.2 Acyclicity in Knowledge Representation

Existential rules can capture knowledge representation formalisms such as Horn fragments
of description logics (see Section 6), conceptual graphs (Baget, 2004; Baget et al., 2011a),
and datalog™ rules (Cali et al., 2010a), and so acyclicity notions allow for materialisation-
based query answering over knowledge bases. In this context, Baget (2004) and Baget et al.
(2011a) proposed the notion of acyclic graph rule dependencies (aGRD). Intuitively, aGRD
introduces a rule dependency relation < for which r; < ro means that an application of
rule 71 on an instance I can subsequently trigger an application of rule ro. If the relation
< is acyclic, then no rule can trigger itself so the skolem chase terminates on an arbitrary
instance. This can be formalised as follows.

Definition 23. The rule dependency relation < C ¥ X ¥ on a set of rules X is defined
as follows. Let r1 = p1 — 31901 and ro = o — Iis.1be be arbitrary rules in X, and let
sk(r1) = o1 — Y] and sk(re) = @2 — 4. Then, r1 < ro if and only if there exist an instance
I, a substitution oy for all variables in sk(r1), and a substitution o for all variables in sk(rs)
such that 101 C I, paoa € I, paoe C T UY o1, and Yhoo € T Ujor. Set ¥ has an acyclic
graph of rules dependencies (aGRD) if the relation < on ¥ is acyclic.

765

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

Definition 23 differs from the original definition by Baget (2004) in several ways. First,
Baget uses fresh nulls to capture the effect of existential quantifiers, whereas Definition 23
uses skolem functions; however, this does not change the resulting relation < in any way.
Second, Baget does not require 509 € I Ujo;. This condition intuitively ensures that
an application of r1 to I enables ro to derive something new; analogous optimisations were
proposed by Deutsch et al. (2008) and Greco et al. (2012). It should be clear that Definition
23 is stronger than the one by Baget. To unify the notions used in various parts of this
paper, we included this optimisation into Definition 23; however, we nevertheless call the
resulting stronger notion aGRD.

The following example shows that aGRD, even in its weaker form as originally proposed
by Baget (2004), is not contained in SWA.

Example 24. Let 3 be the set consisting of the following rule:
r= A(Zlux)'z?) /\B(ZQ) — El?/layQ-A(l”ayl,yQ) (63)
To see that v < r does not hold, consider the skolemisation v’ of r:

sk(r) = A(z1,,29) N B(z2) = Az, fi(x), fo(x)) (64)

Now let I be an arbitrary instance, and let o1 and oo be arbitrary substitutions such that
{A(z1,x, 22)01, B(22)01} C I and {A(z1,x, 22)092, B(z2)o2} € I. Since instance I contains
only constants, atom A(z, fi(x), fa(x))o1 is of the form A(a, fi(a), fa(a)); but then, for
{A(z1, 2, 29)09, B(z2)o2} C T U{A(a, fi(a), fo(a))} to hold, it must be that oa2(z2) = fa(a);
thus, B(z3)oo = B(fa(a)) should be contained in I, which is impossible since I is an instance
and thus does not contain functional terms. Note that the additional condition by Greco et al.
(2012) plays no role here. Thus, we have r A, so ¥ is aGRD even in the weaker form by
Baget (2004). However, one can easily check that ¥ is not SWA. %

However, aGRD seems to be a rather weak notion: as the following example shows, even
a set of rules without existential quantifiers can be cyclic according to this criterion.

Example 25. Let 3 be the set consisting of the following rules:

ry = A(z) — B(x) (65)
ro = B(z) — C(x) (66)
ry = C(z) = A(z) (67)

To see that ry < 1o, let I = {A(a)}, let 0 = {x — a}, and note that A(x)o € I, B(x)o & 1,
B(z)o € IU{B(z)o}, and C(x)o ¢ I U{B(z)o}. Analogously, by taking I = {B(a)} we get
ro < r3, and by taking I = {C(a)} we get r3 < ri. Consequently, ¥ is not aGRD. However,
3} is obviously WA since it does not contain existentially quantified variables. O

Baget et al. (2011a) suggested that rule dependencies become more powerful if they are
combined with an arbitrary acyclicity notion X. Intuitively, the main idea is to use < to
partition a set of rules into strongly connected components, and then check whether each
component is X; we call this notion X =. This idea can be formalised as follows.

766

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

Definition 26. Let X be a set of existential rules, and let < be the rule dependency relation
on X. Relation < is extended to arbitrary sets C C X and C' C X such that C < C' if
and only if rules r € C and v € C' exist such that r <1'. A dependency partition of X
is a sequence of sets ¥1,...,%Xy, such that ¥ =J!_, X;, each ¥; is a strongly connected
component of <, and X; A X; for all i and j such that 1 <1 < j < n.

Let X be an arbitrary acyclicity notion. Then, ¥ € X~ if a dependency partition
Yi,..., 2, of X exists such that, for each 1 <1i <n, we have ¥; € X, or X; consists of
a single rule r; such that r; A r;.

If 3 is aGRD, then each strongly connected component ¥; contains a single rule r; such
that r; £ r;. Now if Definition 26 did not consider the special case where ¥; consists of a
single rule that does not depend on itself, then SWA ™ would not extend aGRD; for example,
the rule in Example 24 would not be in SWA=. The extra condition in Definition 26 thus
ensures that aGRD is contained in X~ regardless of the choice of X, and that aGRD can
be understood as ()=——the acyclicity notion obtained by extending the empty notion (i.e.,
the notion under which no rule set is acyclic) with rule dependencies.

We next present two simple results. Proposition 27 precludes inclusions between certain
acyclicity notions and will thus help us establish proper inclusions between many acyclicity
notions. Furthermore, Proposition 28 shows that combining an acyclicity notion contained
in SWA with rule dependencies creates a strictly stronger acyclicity notion; note that this
holds even for the weaker form of rule dependencies originally proposed by Baget (2004).

Proposition 27. Let X and Y be acyclicity notions such that X CY. Then, X~ C Y ™.
Furthermore, if there exists a set ¥ € Y \ X whose rule dependency relation has a cycle
containing all the rules from X, then Y € X=, Y= X~ and X~ C Y ™.

Proof. Relationship X~ C Y~ is immediate from Definition 26. Assume now that there
exists a set of rules ¥ € Y\ X whose rule dependency relation has a cycle containing all the
rules from Y. By Definition 26, ¥ ¢ X implies ¥ ¢ X~, and ¥ € Y implies ¥ € Y=. But
then, we clearly have Y ¢ X~ and Y= ¢ X~ and the latter clearly implies X~ C Y=. [

Proposition 28. For each acyclicity notion X such that X C SWA, we have X C X~ and
aGRD € X.

Proof. Set ¥ from Example 24 is in aGRD and thus in X ~; however, ¥ is not in SWA and
hence not in X either. O

MSA also does not contain aGRD; however, unlike for SWA, our claim depends on the
optimisation in Definition 23. An analysis of the relationship between MSA and the version
of rule dependencies originally proposed by Baget (2004) is out of scope of this paper.

Example 29. Let 3 be the set consisting of the following rules:

ry = R(z1,21) NU(21,2) NU(29,2) = R(21,22) (68)
ro = R(z,xz) — Jy.T(z,y) (69)
r3 = T(z,x) = Jy.U(z,y) (70)

767

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

It is obvious that r1 <19, 11 A 13, 10 A T1, T2 A T2, 1o <13, 13 A 12, and r3 AL r3. We next
argue that r1 A r1 and r3 £ r1, which implies that ¥ is aGRD.

To see that r1 £ r1, assume that an application of r1 to an instance I produces an atom
of the form R(a,b); due to atom R(x1,x1) in the body of r1, we have R(a,a) € I. Now let
I' =TU{R(a,b)}; since R(a,a) € I, the rule application derives ‘something new’ only if
a # b. Now assume that a substitution oo exists that makes r1 applicable to I' but not to I;
this rule application must ‘use’ the fact R(a,b), which implies that R(x1,x1)o2 = R(a,b);
however, this is impossible since a # b. Consequently, we have r1 A r1, and this holds even
for the version of rule dependencies by Baget (2004).

Furthermore, to see that r3 £ r1, assume that r3 is applicable to an instance I, and that
the rule application derives a fact of the form Ul(a, f(a)). Now let I' =T U{U(a, f(a))},
and assume that a substitution oo exists that makes r1 applicable to I' but not to I; this
rule application must ‘use’ the fact U(a, f(a)), which implies that o2(x1) = o2(x2) = a and
o9(z) = f(a). Furthermore, rule ri is applicable only if R(a,a) € I; but then, the rule appli-
cation does not derive ‘something new’ since R(x1,x2)o2 = R(a,a). Consequently, we have
r3 A r1; however, unlike in the previous paragraph, this claim depends on the optimisation
in Definition 23.

Consider now the chase of I3, and MSA(X) as shown below (facts involving the predicates
D, F,,, and F,, are omitted for clarity). The chase result contains C, so ¥ is not in MSA,
and thus aGRD ¢ MSA; as a corollary, we also get MSA C MSA™.

R(x,¥) T(ne,) Uley,.c,) Ric,) Tl,c,) C
T(*’*) U(*7CT3) S(C’I‘Q’Crg) S(CT27CT2)
U (*,) S(*,cm)

S(*,crg)

Note that R(*,c,,) is derived from R(x,*), U(*,c,,), and U(c,,,c,,), where the latter two
facts are obtained from distinct instantiations of MSA(rs). Rule dependencies, however,

analyse rule applicability w.r.t. sk(rs), which is closer to the actual skolem chase. %

In contrast to this result, in Theorem 32 we will show that extending MFA with rule
dependencies does not create a stronger notion: MFA™ coincides with MFA, which implies
that X~ C MFA for each notion X such that X C MFA. Towards this goal, we show in
Lemma 30 that independent rule sets can be evaluated independently, and in Lemma 31
that a single rule that does not depend on itself can be applied only once.

Lemma 30. Let 31 and Yo be sets of existential rules such that 3o £ 31, and let F' be a
set of ground facts not containing a function symbol in sk(X2). Then, F¥° v = (FY)S -

Proof. Let Fy = Fg; let Fo, I, ... be the chase sequence for Fp and Yo where, for con-
venience, we assume each F; to be obtained from F;_; by a single rule application (this
assumption is clearly w.l.o.g.); and let F’ = (Fp)§5,. By the definition of the skolem chase,
we clearly have F' C F¥° 5, . Furthermore, assume that Fy° 5, & F'; then, a skolemised
rule 71 € sk(X1) of the form ry = p1(#1) — ¢1(Z1) exists such that F' C r(F’). Fix the
smallest ¢ such that F; C ri(F;) (we clearly have ¢ > 0), and let o be the substitution used

=

in the application of r1. Furthermore, let ro € sk(X3) be the skolemised rule of the form

768

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

ro = po(&a) — 1Po(F2) that is used to derive F; from F;_i, and let oo be the substitution
used in the application of ro. Now consider an arbitrary term f(Z2) in the head of ro and
assume that f(Z3)o9 occurs in F;_q; since the function symbol f is ‘private’ to ro, the head
of 79 must have been already instantiated for oo; but then, 1909 C F;_1, which contradicts
our assumption that 1909 € F; \ F;—1. Thus, we have the following property (*):

for each term f(¥3) occurring in the head of r9, ground term f(Z2)o2 does not
occur in F;_q.

Finally, let § be a function that maps each ground term in F;_1 to a fresh distinct constant;
let I = §(Fi_1); let o}, be the substitution defined by o} (w) = §(o2(w)) for each variable w
in ro; and let o} be the substitution defined as follows for each variable w in r:

e of(w) = f((S(ﬂ) if o1(w) = f(f) for f a function symbol ‘private’ to ro; and
e o) (w) = (o1 (w)) otherwise.

We clearly have @o0) C I and 1po0f € I; furthermore, by (x), we also have p107] C I U a0},
and 0] € I U el Moreover, ¢10) € I follows from our assumption that 7 is the smallest
integer such that F; C r1(F;). But then, by Definition 23, we have ro < r1 and, consequently,

Yo < X1 as well, which is a contradiction. O

Lemma 31. Let ¥ = {r} be a singleton rule set such thatr 4 r, and let F' be a set of facts
not containing a function symbol in sk(X). Then, Fg° = X(F).

Proof. Let Fy = F, and let Fpy, FY, ... be sets of facts such that each F;iq is the union of
F; with the result of a distinct single application of r to Fy; clearly, | J, F; = X(Fy). Now
assume that |, F; € X(J; Fi); then analogously to the proof of Lemma 30, one can show

that r < r, which is a contradiction; we omit the details for the sake of brevity.]

Theorem 32. Let 3 be an arbitrary set of rules and let I be an arbitrary instance. If ¥ is
MFA™ w.r.t. I, then ¥ is also MFA w.r.t. I.

Proof. Assume that ¥ is in MFA<; let I be an arbitrary instance; let 3q,...,3, be a
dependency partition of 3; let Yo = () and Iy = I; and, foreach 1 <7 < n,let T; = Uzzl by,
and [; = (Ii_l)%‘;. By the definition of dependency partitions, we have that 3; £ 1,1 holds
for each 1 < i < n. We next show that, for each 0 < ¢ < n, the following two properties hold:

(a) I = (IO)%O“ and
(b) I; does not contain a cyclic term.

Set Ip does not contain functional terms and hence it trivially satisfies (a) and (b). Now
consider arbitrary 0 < i < n such that I;_; satisfies (a) and (b). By the induction assump-
tion, Lemma 30, ¥3; 74 YT;,_1,and T; = X; UT;_1, we have that (Io)%ol = ((IO)%Oz—l)%(i’ thus,
I; satisfies (a). To see that I; satisfies (b), note that no function symbol used to skolemise
the rules in ¥; is used to skolemise the rules in Y;_;; we call this property (). Now there
are two ways to compute ;.

e Assume that 3; = {r;} such that r; A r;. By Lemma 31, we have I; = r;(I;_1); but
then, I; does not contain a cyclic term due to (x).

769

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

e If X; is MFA, then I; does not contain a cyclic term due to (x) and Proposition 5.

From the above claim we have that I,, = I%:l = I3° and that I, does not contain a cyclic
term; but then, ¥ is MFA w.r.t. I by Proposition 5.]

Combinations of rule dependencies with acyclicity notions have also been considered in
databases: Deutsch et al. (2008) proposed a notion of stratification, and Meier et al. (2009)
further developed this idea and proposed a notion of c-stratification. Roughly speaking, each
such notion checks whether all strongly connected components of a certain rule dependency
graph are WA. The rule dependency notions, however, were developed for the nonoblivious
chase and are thus different from Definition 23, as illustrated by the following rule:

r= R(z,z) = 3y.R(z,y) A R(y,y) (71)

The skolem chase on the critical instance for r is infinite, and r < r by Definition 23. In
contrast, rule r does not pose problems for the nonoblivious chase. In particular, assume
that the rule is matched to an atom R(t1,t2), and that it derives R(t2,t3) and R(t3,t3).
Then, rule r is not applicable to R(te,t3) or R(ts,t3) since in either case the head atom
is satisfied; hence, the rule dependency graphs by Deutsch et al. and Meier et al. are both
empty. These results can be summarised as follows: if a rule set 3 satisfies the notion by
Deutsch et al., then for each instance I there exists a finite nonoblivious chase sequence;
furthermore, if 3 satisfies the notion by Meier et al., then for each instance I all chase
sequences (regardless of the rule application strategy) are finite. Meier (2010) discusses in
detail the subtle differences between these notions. Since these notions consider a different
chase variant, we do not discuss them any further in this paper.

4.3 Acyclicity and Logic Programming

Acyclicity notions have also been considered in the context of disjunctive logic programs
with function symbols under the answer set semantics, with the goal of ensuring that a given
program has finitely many answer sets, all of which are finite. All of these notions must deal
with disjunction and nonmonotonic negation, which is one of the main differences to the
notions considered thus far. All notions from logic programming, however, are applicable to
rules without disjunction and nonmonotonic negation, in which case they ensure termination
of the skolem chase. Therefore, in this section we compare such specialisations of the
acyclicity notions from logic programming with aGRD, WA, JA, SWA, MSA, and MFA.
We simplify all definitions so that they apply only to skolemised existential rules—that is, we
do not present parts of definitions that handle disjunctions in the head and nonmonotonic
negation and function symbols in the body.

4.3.1 FINITE DoOMAIN NOTION

Calimeri et al. (2008) proposed a finite domain (FD) notion. We next recapitulate this
definition, but we do so in the style of Greco et al. (2012), which will come useful in Section
4.3.3 when we introduce I'-acyclicity. Both approaches use an argument graph to determine
possible ways for propagating ground terms between positions during chase. The definition
of the argument graph is the same as that of the WA dependency graph (see Section 2.4),

770

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

but without the distinction between regular and special edges. To simplify the presentation,
we consistently use the WA dependency graph instead of the argument graph.

Definition 33. Let ¥ be a set of rules. A position P|; is Y-recursive with a position Q|;
if the WA dependency graph WA(X) contains a cycle (consisting of reqular and/or special
edges) going through P|; and Q|;. The set Pospp(X) of finite domain positions of ¥ is the
largest set of positions in X such that, for each position P|; € Pospp(X), each rule r € ¥ of
the form r = @(&, Z) — 374(Z,¥), and each head atom of r of the form P(t), the following
conditions are satisfied:

o if the i-th component of t is a variable x € Z, then Posp(x) N Pospp(X) # 0; and

o if the i-th component of t is a variable y € i, then, for each variable x € &, some
position Q|; € Posg(x) N Pospp(X) exists that is not X-recursive with P|;.

Set ¥ is FD if Pospp(X) coincides with the set of all positions in X.

Note that the notion of X-recursive positions introduced above is symmetric: if P|; is
Y-recursive with Q|;, then Q|; is also ¥-recursive with P|;. Furthermore, note that Calimeri
et al. (2008) defined FD as follows:

A set of rules ¥ is FD if, for each rule r = ¢(Z, 2) — 37.¢(Z, ¥) in X, each atom
Q(f} in the head of r, each j-th term of ¢ that is an existential variable y, and
each variable x € Z, there exists a position P|; € Posg(z) such that @Q|; is not
Y-recursive with P|;.

Conditions in the above definition clearly correspond to the conditions in Definition 33; but
then, since Pospp(X) was defined as the maximal set satisfying these conditions, the two
definitions of FD coincide.

We next show that WA is strictly contained in FD. To this end, we first prove that WA
is contained in FD, and then we present an example showing that the inclusion is strict.

Proposition 34. If a set of rules 3 is WA, then X is FD.

Proof. Let X be a set of rules that is not FD. Then, there exist a rule » € X, an atom Q(f}
in the head of r, a j-th term of ¢ equal to an existential variable y, and a variable z € Z such
that each position P|; € Posg(z) is 3-recursive with Q|;. The set Posg(z) is not empty (&
contains precisely those variables occurring both in the body and the head of the rule),
so choose an arbitrary position P|; € Posp(xz). The WA dependency graph WA(X) then
contains a special edge from PJ; to Q|;. Furthermore, since Q|; is X-recursive with P|;,
graph WA(X) contains a cycle going through P|; and @|;. Thus, WA(X) clearly contains a
cycle containing a special edge, so X is not WA.]

Example 35. Let ¥ be the set containing rules (72) and (73).

ry = R(z,z) N A(z) — Jy.S(z,y) (72)
ro = S(z1,z2) = R(x1,x2) (73)

771

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

Set 3 is not WA since the WA dependency graph contains a special edge from R|s to S|a and
a regular edge from Sla to Rly. However, ¥ is FD because position S|z is not X-recursive
with Aly € Posg(x). Together with Proposition 34, we can conclude that WA C FD.

In addition, we have r1 < r9 and ro < r1. In Section 4.3.2 we will prove that FD C JA;
hence, FD C FD~, WA™ C FD~, and FD € WA~ from Propositions 27, 28, and 34. O

4.3.2 ARGUMENT-RESTRICTED RULE SETS

Lierler and Lifschitz (2009) proposed the notion of argument-restricted rule sets, whose
definition we summarise next.

Definition 36. An argument ranking for a set of rules ¥ is a function « that assigns a
nonnegative integer to each position in X such that the following conditions are satisfied for
each rule v € 32, each universally quantified variable x in r, and each existentially quantified
variable y in r:

1. for each P|; € Posy(x), some Q|; € Posg(x) exists such that o(P|;) > a(Q)|;); and
2. for each P|; € Posy(y), some Q|; € Posg(x) exists such that o(P|;) > a(Q);).
Set ¥ is argument restricted (AR) if an argument ranking for ¥ exists.

An argument-restricted set of rules has a finite skolem chase on an arbitrary instance:
by a straightforward induction on the chase sequence, one can show that dep(t;) < a(P|;)
for each ground fact P(ty,...,t,) derived by the chase and each 1 <i < n.

We next show that JA is strictly more general than AR. Towards this goal, we first
prove an auxiliary lemma that establishes a relationship between the set Move from the
definition of JA and an argument ranking; next, we use this lemma to prove that AR C JA;
and finally we present an example that shows this inclusion to be proper.

Lemma 37. Let X be a set of rules, let a be an argument ranking for X, let y be an
existentially quantified variable in X, and let Move(y) be the set of positions used in the
definition of JA. For each position P|; € Move(y), some position Q|; € Posy (y) exists such
that a(P|;) > a(Q|;) holds.

Proof. Let y be an existentially quantified variable occurring in some rule r € ¥, and
consider an arbitrary position P|; € Move(y). We prove the claim by induction on the
definition of Move(y). The base case when P|; € Posg(y) is trivial. Assume now that
PJ; € Posg(z) for some variable occurring in a rule ' € ¥, and that Posg(z) C Move(y),
so PJ; needs to be added to Move(y). By the definition of an argument ranking and since
P|; € Posg (z), position P’|y € Posp(z) exists such that a(P];) > «(P’|s). But then, since
P'|; € Posg(x) C Move(y), by the induction hypothesis we have that position Q|; € Pos (y)
exists such that a(P’'|s) > a(Q)|;). Thus, a(P|;) > a(Q];) holds, as required. O

Theorem 38. If a set of rules ¥ is AR, then X is JA.

Proof. Assume that ¥ is AR, let a be an argument ranking for ¥, and let JA(X) be the JA
dependency graph for ¥. We next prove the following claim: for each edge in JA(X) from
a variable y; to a variable ys, and for each position Q|; € Posg(y2), there exists a position

772

AcycLiciTy NOTIONS FOR EXISTENTIAL RULES

P|; € Posg(y1) such that a(P;) < a(Q|;). Consider an arbitrary edge from y; to vy in
JA(Y) and an arbitrary position @Q|; € Posy(y2). By the definition of the JA dependency
graph, then the rule r that contains s also contains a universally quantified variable x such
that = occurs in the head of r and Posg(x) C Move(y;). Since « is an argument ranking for
¥, some position P’|y € Posp(z) exists such that a(P’|¢) < a(Q|;). Since P’|; € Move(y1),
by Lemma 37 position P|; € Posg(y1) exists such that a(P|;) < a(P’|y). Thus, we have
a(Pl;) < a(Q];), and so our claim holds. But then, this claim clearly implies that the JA
dependency graph JA(Y) is acyclic, and therefore ¥ is JA. O

Example 39. Let X be the set consisting of the following rules:

r = R(z1,21) = Fy1.8(x1, y1) (74)
ry = R(z2,x2) — Jy2.5(y2, x2) (75)
ry = S(x3,x4) = T(x3,24) (76)
Ty = T(xs,26) AT (w6, x5) — R(xs,6) (77)

)

Let o be an argument ranking for ¥. Then, a(R|2) < a(S|2) due to (74); a(R|2) < a(Sh
due to (75); a(S|1) < a(T|1) and a(S|2) < a(T|2) due to (76); and o(T|2) < a(R|2) or
a(T)h) < a(R|2) due to (77). Together, these observations are contradictory, so such a can-
not exist and ¥ is not AR. In contrast, Move(y;) = {S|2,T'|2} and Move(y2) = {S|1,T|1},
and so X is JA.

In addition, we have 11 <13, 19 < T3, r3 <714, T4 <71, and T4 < 7T9; hence, we have
AR C AR™, AR C JA™, and JA € AR™ from Theorem 38 and Propositions 27 and 28. ¢

Lierler and Lifschitz (2009, Thm. 4) proved that AR is strictly more general than FD.
We next present an example that shows FD C AR, but that also settles the relationships
between FD~ and AR~.

Example 40. Let 3 be the set consisting of the following rules:

r = A(z) — Jy.R(z,y) (78)
ro = R(x1,x9) — S(x1,x2) (79)
ry = S(z,x) N B(x) = A(x) (80)

The WA dependency graph for ¥ contains a special edge from A|1 to R|a, as well as regular
edges from R|y to S|a and from S|z to Ali; thus, R|2 is X-recursive with Al1. Consequently,
rule (78) cannot satisfy the conditions in Definition 33, so we have R|s & Pospp(X), and
thus X3 is not FD. In contrast, 2 is AR, as evidenced by the following argument ranking:

a:{A|1»—>O, B|1l—>0, R‘l’—>0, R|2'—>1, S|1'—>0, S|2'—>1}

In addition, we have r1 < ro, T9 <13, and r3 < ri; hence, FD C FD~, FD= C AR™,
and AR € FD™ from Propositions 27 and 28. O

Finally, we note that A-restricted programs by Gebser et al. (2007) and w-restricted
programs by Syrjdnen (2001) are both included in FD and AR; thus, when restricted to
skolemised existential rules, these notions are also included in JA.

773

CuUENCA GrAU, HorrOCKS, KROTZSCH, KUPKE, MAGKA, MOTIK, & WANG

4.3.3 I'-AcycLICITY

Greco et al. (2012) recently proposed the notion of I'-acylicity for logic programs with
function symbols. The original definition of I'-acyclicity is rather complex, so we next
present a simplified version of I'-acyclicity that is applicable to existential rules. To unify
the naming style for the notions in this paper, we often write I'-acyclicity as T'A.

Greco et al. (2012) introduce a notion of an activation graph, which tracks whether a rule
can trigger another rule. This notion is closely related to the notion of rule dependencies
from Definition 23, but with the requirement that I is an arbitrary finite set of ground facts
(possibly containing functional terms). To understand why the latter is needed in logic
programming, consider the following logic program:

= A(z) A B(z) = A(f(x)) (81)
ry = A(z) A B(x) = B(f(x)) (82)

If we restrict the set I in Definition 23 to be an instance, then ry £ ro and ry 4 r1; however,
the skolem chase of 71, 79, and facts A(a) and B(a) is infinite. Intuitively, r; and 79 contain
the same function symbol f, so to determine whether an application of ry can trigger an
application of r2, we must allow the set I in Definition 23 to contain facts such as B(f(a)).
In our setting, however, function symbols are introduced by skolemisation and are thus
‘private’ to each rule, which allows us to restrict the set I in Definition 23 to facts without
functional terms. Thus, in the rest of this section, we simply reuse the rule dependency
relation < from Definition 23, which gives us a slightly stronger version of I'A for existential
rules than the one proposed by Greco et al. (2012).

Furthermore, Greco et al. (2012) handle logic programming rules with functional terms
in the body. Such rules, however, are not considered in this paper, which allows us to omit
the definition of a labelled argument graph and simplify the notion of a propagation graph
to a subset of the WA dependency graph.

We are now ready to present a simplified version of I'-acyclicity that is applicable to
existential rules.

Definition 41. Let ¥ be a set of rules. The rule dependency relation < is taken from
Definition 23, and the set of finite domain positions Pospp(X) is taken from Definition 33.

The se