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ABSTRACT Automated Facial Expression Recognition (FER) in the wild using deep neural networks
is still challenging due to intra-class variations and inter-class similarities in facial images. Deep Metric
Learning (DML) is among the widely used methods to deal with these issues by improving the discriminative
power of the learned embedded features. This paper proposes an Adaptive Correlation (Ad-Corre) Loss
to guide the network towards generating embedded feature vectors with high correlation for within-class
samples and less correlation for between-class samples. Ad-Corre consists of 3 components called Feature
Discriminator, Mean Discriminator, and Embedding Discriminator. We design the Feature Discriminator
component to guide the network to create the embedded feature vectors to be highly correlated if they belong
to a similar class, and less correlated if they belong to different classes. In addition, the Mean Discriminator
component leads the network to make the mean embedded feature vectors of different classes to be less
similar to each other. We use Xception network as the backbone of our model, and contrary to previous work,
we propose an embedding feature space that contains k feature vectors. Then, the Embedding Discriminator
component penalizes the network to generate the embedded feature vectors, which are dissimilar. We trained
our model using the combination of our proposed loss functions called Ad-Corre Loss jointly with the cross-
entropy loss. We achieved a very promising recognition accuracy on AffectNet, RAF-DB, and FER-2013.
Our extensive experiments and ablation study indicate the power of our method to cope well with challenging
FER tasks in the wild. The code is available on Github.

INDEX TERMS Facial expression recognition, facial emotion recognition, Ad-Corre loss, loss function,
convolutional neural network.

I. INTRODUCTION
Automated Facial Expression Recognition (FER) is one
of the most important visual recognition technologies to
detect human emotions, a universal signal that is used by
humans for non-verbal communication [1], [2]. Six expres-
sions -angry, disgust, fear, happy, sad, and surprise- are
defined by Ekman et al. [3] as the basic universal emo-
tional expressions. Although automated FER has been a
topic of study for decades, its widely-used applications in
Human-Computer Interaction (HCI), driver monitoring for
autonomous driving, education, healthcare, and psychologi-
cal treatments has brought more attention to it more recently.
Although the Convolutional Neural Networks (CNNs) based
methods have achieved a promising accuracy in a wide range
of applications [4]–[6], automated FER is still considered
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a challenging task specifically when it comes to practical
applications.

Deep metric learning (DML) methods are proposed to
improve the discrimination between the embedded feature
vectors with respect to the class categories. Another benefit
of DML, where the model is trained discriminatively, is that
the network can learn the semantically meaningful embedded
feature vectors which tend to be robust against intra-class
variations [7]. To achieve this goal, The widely-used triplet
loss [4] was proposed to increase the similarities between
the embedded feature vectors of similar expressions while
increasing the differences between different expressions.
In other words, each time an anchor image, a positive sample
image (having the same expression as the anchor image),
and a negative sample image (having a different expression
as the anchor image) are chosen. The triplet loss tends to
penalize the network to minimize the distance (mostly the
euclidean) between the anchor and the positive samples while
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increasing the distances between the anchor image and the
negative images.

Although triplet loss can enhance the generation of the
embedded feature vectors and accordingly the performance
of the classification task which is done mostly using cross-
entropy (CE) loss, there are some issues with it. The most
challenging issue of triplet loss [4] is its sensitivity to the pro-
cess of choosing the anchor, positive and negative samples.
In other words, unless the so-called hard-positive and hard-
negative samples are chosen correctly, the network converges
slowly or may never converge [4]. Moreover, a misclassified
or a poor-quality image can likely be chosen as a hard-positive
or a hard-negative candidate. While online mini-batch select-
ing strategy could alleviate the mentioned issues, the problem
can still be devastating specifically for the task of FER where
the intra-class variations and inter-class similarities of the
facial expressions are dramatically high.

In this paper, we introduce Ad-Corre Loss to improve the
discriminative power of the deep embedded feature vectors.
Contrary to the triplet loss [4], the correlation loss is agnostic
to the process of selecting the triplets. More specifically,
inspired by the definition of the CorrelationMatrix, we define
Ad-Corre Loss to make the embedded feature vectors belong-
ing to the same expression class to be highly correlated, while
those belonging to the different expression classes be less
correlated (see Fig. 1). Ad-Corre Loss consists of 3 differ-
ent components called Feature Discriminator (FD), Mean
Discriminator (MD), and Embedding Discriminator (ED)
components.

We propose the FD component (see Fig. 2) to lead the
network to generate embedded feature vectors with high cor-
relation if they belong to the same classes and low correlation
if they belong to different classes. The FD component uses
all the samples within a mini-batch and calculates the cor-
relation for all pairs of the embedded feature vectors. Such
characteristic enables the Ad-Corre Loss to be tolerant to
mislabeled images. Moreover, we propose Adaptive Attention
Map, which is designed to monitor the performance of the
model during the training phase and generate an attention
map to penalize the model more for the expressions that
are frequently misclassified compared to the ones with less
frequent misclassification rate. The FD component utilizes
the Adaptive Attention Map to direct the network toward
generating more discriminative embedded feature vectors by
monitoring the performance of the classification task.

In addition, we express that the high intra-class variations
and inter-class similarities for FER in the wild might not
be well discriminated by using only one embedded feature
vector per input image. Accordingly, for an input image we
introduce one embedding space containing k different embed-
ded feature vectors. We propose the ED component (see
Fig. 2) to penalize themodel to generate the embedded feature
vectors within the embedding space to be less correlated to
each other, which leads the network towards extracting a
wider range of features from the input image. In other words,
since for each input image, the model generates k different

FIGURE 1. Correlation-based Loss versus Triplet Loss. Contrary to
Triplet-based losses, Correlation Loss considers all the samples in a
mini-batch and leads the network to create embedded feature vectors
such that for similar classes they are highly correlated, and for different
classes, they are less correlated. A:anchor, P:positive, N:negative, C:close,
F:far, H: highly correlated, L: less correlated.

embedded feature vectors, the more dissimilar the embedded
feature vectors the more discriminative they can be. As a
consequence, for each input image, it is more likely that
different embedded feature vectors tend to represent different
features from the images. We define k equal to the number
of facial expressions (which is seven in the context of this
paper).

Considering FER as the task of clustering different embed-
ded feature vectors, we want the model to create clusters
that are compact and far from each other. In this manner,
we propose the MD component (see Fig. 3), which calculates
the mean of the embedded feature vectors for each class of
expressions and penalizes the model to make the means of
each class to be less correlated to the other means.

The contributions of our approach are summarized
as follows.
• We propose Ad-Corre Loss, a correlation-based loss
function with 3 main components designed to increase
the discriminative power of the model.

• FD component designed to guide the model to generate
the embedded feature vectors that are highly correlated
if they belong to a similar class, and less correlated if
belong to different classes. Adaptive Attention Map is
proposed to guide the FD component to penalize the
modelmore, formore frequentmisclassified expressions
compared to the less frequent misclassified classes.

• MD component designed to make the network generate
the embedded feature vectors such that the means of
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each class are less correlated, resulting in compactness
of the clusters.

• ED component penalizes the network to make the
embedded feature vectors to be as less correlated as
possible to extract the wider range of features from the
input image.

The remainder of this paper is organized as follows. Sec. II
reviews the related work in FER. Sec. III describes our pro-
posed Deep Metric-based model, the proposed loss function,
and describes how it improves the accuracy of FER in the
wild. Sec. IV provides the experimental results, and finally,
Sec. VI concludes the paper with some discussions on the
proposed method and future research directions.

II. RELATED WORK
In this section, we first review the previous work in FER and
then discuss the use of DML for general image classification
tasks. Afterward, we review the work used DML in FER.

FER in General: FER has been studied widely and a
broad variety of approaches are proposed. In the following,
we review some of the important work such as [8]–[19] in
this context.

In order to extract the spatial relations within facial
images and the temporal relations between different
frames in the video, Hasani et al. [8] proposed a CNN
including 3D Inception-ResNet layers. In another work,
Georgescu et al. [9] proposed to fuse the automatically
extracted features by utilizing a CNN and handcrafted fea-
tures extracted by the bag-of-visual-words to design a model
for FER. In addition, Hoang et al. [10] expressed that the
general background data can also be considered as com-
plementary cues for emotion recognition, and proposed a
method using the visual relationship between the main target
and the adjacent objects in the background to facial emotion
recognition.

Recognition of human emotion recognition using audio
and visual features is also studied in some previously
proposed work. Recently, Schoneveld et al. [11] used
deep feature representations of the audio and visual
modalities to improve the accuracy of the FER task.
In addition, Zhou et al. [12] explored audio features using
speech-spectrogram and LogMel-spectrogram and evaluated
facial features with different CNNs and different emotion
pretrained strategies.

Proposing new CNNs is another widely used method
for FER which is studied in the following researches:
Hasani et al. [13] proposed a CNN architecture using a func-
tion with bounded derivative instead of a simple shortcut
path in the residual units for automatic recognition of facial
expressions. Yu et al. [14] proposed a multi-task frame-
work for the global-local representation of facial expres-
sions, where a shallow module is responsible for extracting
information from local regions and the global image, and
then a part-based module process the critical local regions.
Shi et al. [15] proposed a multiple branch cross-connected

convolutional neural network (MBCC-CNN) for facial
expression recognition, constructed based on the Network-
in-Network, and tree structure approaches to extract fea-
tures from the facial image more effectively. Liu et al. [17]
proposed a hybrid CNN including Spatial Attention CNN,
designed to extract expressional features from an input face
image, as well as a series of Long Short-term Memory Net-
works with Attention mechanism, designed for the potential
use of facial landmark points for FER. Dharanya et al. [16]
proposed Auxiliary Classifier Generative Adversarial Net-
work (AC-GAN) based model which regenerates the basic
facial emotions from an input face image and then classi-
fies them. Zhang et al. [18] proposed a weakly supervised
local-global attention network which is designed to extract
and combine the local and the global features from input
facial images. Also, their proposed architecture is designed
to use the attention mechanism to deal with part location and
feature fusion problems. Liu et al. [19] proposed a framework
including a face alignment method to reduce the intra-class
difference, a feature extraction module to obtain the semantic
information, and a backbone model for FER.

DML for Classification in General: DML has a wide
variety of application in computer vision including image
classification [20], [21], [22], face recognition [23], [4],
and re-identification [24], [25], visual search [26], vehicle
re-identification [27], [28], [29] and so on.

For image classification task, Hoffer et al. [20] proposed a
triplet network for image classification which is trained on
triplets of data with anchor points, a positive that belongs
to the same class, and a negative that belongs to a different
class. In another work, Deng et al. [21] proposed a method to
first create a feature vector for the labeled samples and then
use them to classify the unlabeled samples. Zhe et al. [22]
proposed an algorithm for learning a robust discriminative
hyper-spherical feature space.

For the face recognition task, Chopra et al. [23] proposed
the first methods for training a similarity metric from data.
They proposed a discriminative loss function such that the
similarity metric is small for pairs of faces from the same
person and large for pairs from different persons. In another
work, FaceNet [4] proposed the triplet loss which uses the
triplet embedded feature vector for face verification and
recognition. In addition, Additive Angular Margin Loss pro-
posed by Deng et al. [30] designed to obtain highly discrimi-
native features from the input image to improve the accuracy
of the face recognition task.

For face re-identification, Ding et al. [24] proposed a
distance-driven feature learning which tends to maximize
the relative distance between the matched pair and the mis-
matched pair for each triplet unit. More recently, Circle
loss [25] introduced a unified perspective for learning with
class-level labels and pair-wise labels for face recognition,
person re-identification.

For vehicle re-identification application, Deep Relative
Distance Learning is proposed by Liu et al. [27] in which
a two-branch CNN is used to project raw vehicle images
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FIGURE 2. FD component: For each pair of images in a mini-batch, the FD component of the Ad-Corre Loss penalize the network to generate
the corresponding embedded feature vectors such that they are highly correlated if belonging to a similar emotion class, and less correlated if
belonging to different emotion classes. ED component: ED component of Ad-Corre Loss is proposed to lead the network such that for an input
image, the embedded feature vectors in the embedding space be less correlated. Thus, each embedded feature vector will decode different
features of the facial input image.

into a Euclidean space measure the similarity of arbitrary
two vehicles. Angular loss proposed by Wang et al. [29] for
learning better similarity metrics by constraining the angle at
the negative point of triplet triangles. VP-ReID proposed by
Wei et al. [28] extracts robust visual descriptors by learning
and fusing complementary regional and global features with
multi-branch CNN.

In another work, Bell et al. [26] proposed a multi-domain
embedding for visual search in interior design. Besides,
multi-similarity loss [31] proposed the general pair weighting
framework which tends to convert the DML sampling prob-
lem into a unified view of pair weighting.

DML for FER: Many of the previous DML-based work
in FER have either proposed a custom loss function or an
algorithm that result in better discrimination of the embedded
feature vectors.

The following researches have proposed custom loss func-
tions: Wen et al. [32] proposed Center loss which simul-
taneously learns a center for embedded feature vectors of
each class and penalizes the distances between the embedded
feature vectors and their corresponding class centers. The
Island loss [33] is also proposed to reduce the intra-class
variations while enlarging the inter-class difference by max-
imizing the cosine distance between the class centers in
the embedding space. Separate loss et al. [34] which is a
cosine version of both center and Island loss functions. While
the intra-loss maximizes the cosine similarity between the
features belonging to a class, the inter-loss minimize the
cosine similarity between the class centers in the embedding
space. Meng et al. [35] proposed an identity-aware CNN
as well as an identity-sensitive contrastive loss which learns
identity-related information to alleviate variations that are

introduced by personal attributes and achieve better FER
performance.

Besides, the following researches tends to provide
algorithms to improve the discriminative power of the
embedded feature vectors: Liu et al. [36] combined the
deep metric loss and softmax loss using a unified two
fully connected layer with joint optimization to improve the
performance of FER. A multi-scale CNN with an atten-
tion mechanism is proposed by Li et al. [37] to learn
the importance of different convolutional receptive fields
using both softmax loss and a regularized version of the
center loss [32] to discriminate features in the embedding
space. Li et al. [38] proposed Deep Locality-Preserving
CNN being trained using Locality-Preserving loss to enforce
the intra-class compactness by locally clustering deep fea-
tures using the k-nearest neighbor algorithm. Discriminant
distribution-agnostic loss [39] enforces the inter-class dis-
similarity which can be useful while dealing with extremely
imbalanced datasets. Hayale et al. [40] proposed an algorithm
for automated FER to preserve the local structure of images
in the embedding similarity space.

Despite achieving good accuracy, the majority of these
work need the selection of sample pairs either online or
offlinewhich requires extra work and process.Moreover, they
are sensitive to the pair selection process as well, while our
proposed method is capable of coping well with this issue.

III. METHODOLOGY
In this section, we first explain the network architecture.
Then, we describe our proposed Ad-Corre Loss and its main
FD, MD, and ED components. Moreover, we explain how
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each component of AD-Corre loss contributes to improving
the accuracy of FER.

A. NETWORK ARCHITECTURE
We use Xception [41], an efficient CNN, as the backbone of
our network architecture. After the Global Average Pooling
layer, we introduce an embedding feature space containing k
independent embedded feature vectors. Then, we concatenate
all the embedded feature vectors followed by a dropout layer
to prevent the model from over-fitting. Finally, we use a fully
Connected layer with softmax activation to generate the class
probabilities.

Contrary to the majority of the previously proposed CNNs,
we use more than one embedded feature vector to improve
the capacity of the CNN as well as the accuracy of FER (in
Sec IV-D we study the effect of using multiple embedded fea-
ture vectors). Although using more embedded feature vectors
results in improvement of the accuracy, it increases the num-
ber of parameters of the model too. We empirically define k,
the number of the embedded feature vector in the embedding
space, the same as the number of the expression classes to
put a trade-off between the accuracy and the efficiency of the
model.

Similar to FaceNet [4], we normalize each embedded fea-
ture vector using the L2 normalization method with a size
of 256. The goal of using more than one embedded feature
vector is to force each vector to extract different features from
the input image. To achieve this goal, we propose the ED
component (see Sec. III-B3) which penalizes the model to
generate the embedded feature vectors with fewer similarities
for an input image.

B. AD-CORRE LOSS
The correlation of two d-dimensional random variables
(defined in [−1,+1] range) is a measure that indicates the
joint variability between them. Specifically, positive covari-
ance tends to show similar behavior between two random
variables, while a negative covariance indicates the opposite
behavior. According to Eq. 1, the correlation between the
Xd×1 and Yd×1 is 1 when X and Y are identical and is
−1 when they are uncorrelated. The x̄ and ȳ are the mean
of the X and Y vectors, respectively.

COR(X ,Y ) =

∑d
k=1(Xk − x̄)(Yk − ȳ)√

(
∑d

k=1 Xk − x̄)(
∑d

k=1 Yk − ȳ)
(1)

Thus, the correlation matrix between n number of d-
dimensional random variables represents the joint variability
between each possible n× n pairs. In other words, we define
CORMn×n as the correlation matrix between n numbers of
d dimensional random variables such that CORM[i, j]n×n for
i, j ∈ {0, 1, . . . , n} indicates the joint variability between the
ith and the jth variables if i 6= j, and the variance of the ith

variable if i = j.More specifically, if we define a set of n num-
bers of k dimensional variables as Vn×d = {V1,V2, . . . ,Vn},

we can define the correlation matrix according to Eq. 2:

CORMn×n =

 COR(V1,V1) . . . COR(V1,Vn)
...

. . .
...

COR(Vn,V1) . . . COR(Vn,Vn)

 (2)

Using the correlation matrix, it is possible to compare the
similarity between each pair within a mini-batch. We use this
characteristic to introduce each component of our proposed
Ad-Corre Loss. For the FD component, we use the correlation
matrix to compare the correlation between the embedded
feature vectors within a mini-batch. Likewise, for the MD
component, we use the correlation matrix to measure the cor-
relation between the mean vectors of each expression class.
For ED, for each input image, we use the correlation matrix
to measure the correlation between the embedded feature
vectors in the embedding space.

1) FD COMPONENT OF AD-CORRE LOSS
Inspired by the definition of correlation matrix (see Equa-
tions 1, 2), we propose FD component of Ad-Corre Loss.
Assume we define our mini-batch to have size n. It is pre-
sented in Fig. 2, for a mini-batch of n input images, there
will be k different embedded feature vectors in the embedding
space. We define the set of class labels within a mini-batch
as Labels = {l1, l2, . . . , ln}, where li ∈ {0, 1, . . . , 6} (we
only consider 7 human expressions in the context of this
paper) represent the facial expression for the ith image. Then,
we define the npSign(li, lj) function in Eq. 3:

npSign(li, lj) =

{
+1 If li = lj
−1 otherwise

(3)

Then, we define the 8n×n in Eq. 4:

8n×n =

 npSign(l1, l1) . . . npSign(l1, ln)
...

. . .
...

npSign(ln, l1) . . . npSign(ln, ln)

 (4)

to illustrate, for any possible pair of the embedded feature
vectors within a mini-batch, if the selected pair belongs to
the same human expression classes, the corresponding item
in 8n×n matrix will be +1, and -1 if the pair belongs to
different expression classes. Now, based on the definition of
the correlation matrix in Eq.2, we define the Naive version of
the FD (NFD) component in Equations 5, 6:

LossNFD =
1
kn2

k∑
l=0

n∑
i=0

n∑
j=0

β[i, j] |8[i, j]−CORMl[i, j]|

(5)

βn×n = 1n×n − In×n (6)

where 1n×n is a matrix where all the elements are 1, In×n
is the identity matrix, and CORMl represents the correlation
matrix of the l th embedded feature vector (as mentioned in
Sec. III-A, we define k as 7). Besides, βn×n is defined to
set the diagonal of the correlation matrix to zero since such
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FIGURE 3. We propose MD component of Ad-Corre Loss to calculate the mean of the embedded feature vectors with respect to their expression class
(C1, . . . ,Ck ), and lead the network to make this mean vectors to be dissimilar.

values represent the variances. We calculate the correlation
loss for the k embedded feature vectors. NFD component
penalizes the model to generate embedded feature vectors
that are highly correlated if they belong to a similar class,
and uncorrelated if they belong to different classes.

While the triplet-based loss function [4] families are sensi-
tive to the process of selecting anchor, positive, and negative
triplets, the proposed NFD component takes the advantages
of all the samples within a mini-batch. Such a characteristic
makes the NFD component to be tolerant to mislabeled, and
low-quality images, which can be selected mistakenly as the
Hard-Negative pairs.
Adaptive Attention Map: To further improve the accu-

racy of the model, we define Adaptive Attention Map, which
penalizes the model more, for more frequent misclassified
expressions compared to less frequent ones. In other words,
if the model tends to misclassify disgust for 30% of the
input images, while such rate for happy is 10%, our proposed
Adaptive Attention Map will penalize the model much more
for the former expression class. Consequently, we define
a hyper-parameter called δ as a factor of the mini-batch
size. Then, for δ most recent iterations, we save both the
ground-truth and the predicted labels during the training pro-
cess. Using the predicted and the ground-truth labels, we cal-
culate the training confusion matrix -where rows are ground
truth labels and accordingly it is normalized by rows- and call
it CONFM7×7. The value of δ affects the confusion matrix
update speed. Likewise, for a small δ, the confusion matrix

becomes so sensitive to the mini-batch, while for the bigger
δ, it keeps many historical samples and might not represent
the current accuracy of the model.We empirically choose δ as
5×n to make the confusionmatrix represent an updated status
of the model while being robust to the randomly selected
mini-batch. We define the w(li) function in Eq.7:

w(li) = 1− CONFM[li, li]+ ε (7)

where li ∈ {0, 1, . . . , 6} is the facial expression label for
the ith image in the current mini-batch, and ε = 10e−7.
To illustrate, the main diagonal of the CONFM7×7 shows
the accuracy (in percentage) of the corresponding classes.
Accordingly, w(li) ∈ [ε, 1+ ε] will assign a greater weight to
the expressions for which the model performs less accurately,
while the weight is smaller for the expressions that model
performs more accurately. We use ε to make sure that the
output of Eq.7 is greater than zero. Afterward, we define the
Adaptive Attention Map and call it �n×n in Eq. 8:

�n×n =

 w(l1)+ w(l1) . . . w(l1)+ w(ln)
...

. . .
...

w(ln)+ w(l1) . . . w(ln)+ w(ln)

 (8)

�n×n defines the attention map for NFD component. To be
more detailed, for any possible ith and jth pair in the mini-
batch, �[i, j] considers the accuracy of the model for the
corresponding class of both i, and j and accordingly calculates
the weight based on Eq. 7. We define FD component of
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Ad-Corre Loss in Eq. 9:

LossFD =
1
kn2

k∑
l=0

n∑
i=0

n∑
j=0

β[i, j] �[i, j] |8[i, j]− CORMl[i, j]| (9)

FD component is proposed to improve the discriminative
power of the embedded feature vectors that are defined in the
embedding feature space. Moreover, monitoring the perfor-
mance of the network during the training process and updat-
ing the proposed Adaptive Attention Map forces the model
to perform accurately for dramatically imbalanced datasets.
We further (see Sec. IV-D) show the effect of the Adaptive
Attention Map in improving the accuracy.

2) MD COMPONENT OF AD-CORRE LOSS
We propose MD component in the Ad-Corre Loss to make
the network generate the embedded feature vectors such that
the means of different classes are uncorrelated. As Fig. 3
shows, MD component is calculated for each of the k embed-
ded feature vectors in the embedding space. First, we calcu-
late the mean of the embedded feature vectors having the
same class within a mini-batch and call it M_Setk×m =
{m_efv1,m_efv2, . . . ,m_efvk}, where k is the number of the
human facial expressions (which is 7), and m is the size of
the embedded feature vectors (which is 256). Then, using the
definition of the correlation matrix in Eq. 2, we define the
MeanMk×k as the correlation matrix of the mean set, M_Set.
We define LossMD in Eq. 10:

LossMD =
1
k3

k∑
l=0

k∑
i=0

k∑
j=0

(1k×k [i, j]− Ik×k [i, j]) |1+MeanMk [i, j]|

(10)

where MeanMl is the correlation matrix of the mean set of
the l th embedded feature vector. Besides, the (1k×k [i, j] term
set diagonal to be zero as they are the variances, and the
|1 + MeanMk [i, j]| term guides the network to generate the
embedding since the correlation of the mean feature vectors
with different labels be as close to 1, which indicates they
are less correlated. We further show in Sec.IV-D that the MD
component of Ad-Corre Loss results in better discrimination
of the generated embedded feature vectors in the embedding
space.

3) ED COMPONENT OF AD-CORRE LOSS
As Fig. 2 shows, our proposed architecture contains k dif-
ferent embedded feature vectors being defined in a so-called
embedding space. Particularly, we define k the same as the
numbers of the facial expressions (which is 7 in this paper),
and thus for an input image, the model creates 7 indepen-
dent embedded feature vectors. Since there is no relation
between the embedded feature vectors generated for and input
image I, there is no guarantee that the different embedded
feature vectors represent different features of I. Consequently,

we proposed the ED component of Ad-Corre Loss to force the
model to generate the embedded feature vectors which are as
less correlated to each other as possible. In other words, the
ED component is designed to guide the model to generate
the embedded feature vectors representing different features
from an input image.

We define the embedding space as
ES = {EFV1, . . . ,EFVk}, where EFVi is ith embedded
feature vector. Followed by the definition of the correlation
matrix in Eq. 2, we define the embedding correlation matrix
called EmbMk×k such that EmbM[i, j] shows the correlation
between the EFVi and EFVj. We define ED component,
LossED in Eq. 11:

LossED =
1
nk2

n∑
l=0

k∑
i=0

k∑
j=0

(1k×k [i, j]− Ik×k [i, j]) |1+ EmbMl[i, j]|

(11)

where EmbMl represents the embedding correlationmatrix of
the l th sample in the mini-batch. In addition, 1k×k is a matrix
with all elements as 1, and Ik×k is the identity matrix.

In the best scenario, if all the embedded feature vectors
in the embedding space are uncorrelated, all the elements
of EmbM are -1. Accordingly, the term |1 + EMBk×k [i, j]|
in Eq. 11 will be zero (consider that we use the first term,
1k×k [i, j] − Ik×k [i, j]), to set the diagonal to zero since they
represent the variance). In contrast, the highest amount of the
ED component is when all the embedded feature vectors are
identical, such that all elements of EmbM are 1.

4) AD-CORRE LOSS
We use the CE loss function for classification. In addition,
to improve the model accuracy specifically to cope with the
intra-class variation as well as inter-class similarities of the
facial expressions, we train our proposed model using CE
jointly with our proposed Ad-Corre Loss, (LossAd-Corre) in
Eq.12:

LossAd-Corre=CE+λ (LossFD+LossMD+LossED) (12)

where LossFD, LossMD, and LossED are the three components
of the Ad-Corre Loss proposed to improve the discriminative
power of the model by forcing it to generate the embedded
feature vectors which are similar for the images having the
same expression, and dissimilar for the images with different
expressions. Besides, the value of the hyper-parameter λ can
dramatically affect the accuracy of the model. We further
investigate the effect of λ in Sec IV-D and accordingly set
it as 0.5. Likewise, in Sec IV-D, we show that the Ad-Corre
Loss performsmuch better than the baseline CE loss function.

IV. EXPERIMENTAL RESULTS
In this section, we first explain the datasets used in our
experiments. We then present the implementation details of
the model. Afterward, we compare the accuracy of our pro-
posed model trained using Ad-Corre Loss (see Eq. 12) with
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the state-of-the-art methods. Finally, we present a detailed
ablation study.

A. DATASET
We conducted our experiments using FER-2013 [42],
RAF-DB [43] and AffectNet [44] that are the widely-used
wild FER datasets. Since the images in such datasets contain
broad diversity across age, gender, pose, image quality, and
illumination, the models require to be much more robust
compared to lab-controlled datasets.

TABLE 1. Number of annotated images for each expression on the
studied databases.

AffectNet [44] is by far the largest publicly available
wild FER dataset that provides both categorical and Valence-
Arousal annotations. It contains 450,000 facial images that
are manually annotated with eight basic expression labels
and gathered from the Internet by querying expression-related
keywords in three search engines. Following many state-of-
the-art FER methods, we exclude the contempt expression
in our experiments. AffectNet [44] has an imbalanced test
set, a balanced validation set, and an imbalanced training
set. As the test set is not released by the authors, we report
accuracy on the validation set where each category con-
tains 500 samples. Plus, following many state-of-the-art
FER methods, we exclude the contempt expression in our
experiments.

FER-2013 [42] contains 28,709 training images, 3589 val-
idation images, and 3589 test images, annotatedwith six basic
human facial expressions as well as neutral. Following the
other researches, we report our accuracy on the combination
of validation and test set. FER-2013 has an imbalanced test
set, validation set, and training set.

RAF-DB [43] contains 29,672 facial images that are anno-
tated with basic or compound expressions by 40 trained
human annotators.. The dataset has two parts: the single-label
subset (basic emotions) and the two-tab subset (compound
emotions). We only use images with 6 basic emotions as
well as neutral, including 12,271 images as training set and
3,068 images as testing set. Both training and test sets are
imbalanced in RAF-DB [43].

B. IMPLEMENTATION DETAILS
For the training set in each dataset, we cropped all the
images and extracted the face region according to the pro-
vided bounding boxes. Then the facial images are scaled to
224 × 224 pixels. We augmented the images in terms of
rotation (from -45 to 45 degrees), crop, contrast, and bright-
ness to add robustness to the network. We used the Adam

optimizer [57] for training the networks with a learning rate
of 10−3, β1 = 0.9, β2 = 0.999, and decay = 10−5. We then
trained the networks for about 20 epochs for AffectNet [44]
and 60 epochs for FER-2013 [42], and RAF-DB [43] with
a batch size of 60. We implemented our networks using
the TensorFlow library and ran them on an NVidia 1080Ti
GPU. The code and all the pretrained models are available on
Github.

Since FD andMD components of Ad-Corre Loss are calcu-
lated within a mini-batch, we need to investigate if the batch
size can affect the final performance of the model. Moreover,
the FD and the MD component are not able to function as
expected if we define the batch size very small number such
as 1. To deal with this issue, we propose to use the virtual-
batch technique. In this technique, we define a virtual-batch
size as bmultiplied by the size of the real batch. Then, we save
the embedded feature vectors b times, and then calculate
the Ad-Corre Loss and perform the backpropagation. In our
experiments, we define b to be 1, 5, and 10 which result in
the virtual-batch size being 60, 300, and 600, and the final
changes in the performance of the network were negligible.
However, this technique can be utilized when the batch size
is very small due to the available GPU memory.

C. CLASSIFICATION RESULTS AND COMPARISON
Tables 2, 3, 4 present our results and compare them
with several state-of-the-art methods on AffectNet [44],
RAF-DB [43] and FER-2013 [42], respectively. On Affect-
Net [44], our proposed model achieves a classification accu-
racy of 63.36% which is the state-of-the-art among the
recently proposed methods.

Since the test set of RAF-DB [43] is imbalanced, we follow
some of the previous work and report the average accu-
racy, which is the mean of diagonal values in the confusion
matrix. The classification accuracy of our proposed model on
this dataset is 86.96% which is comparable to the accuracy
(87.03%) reported in [49]. We achieve the average accuracy
of 79.01%, which is the highest among the methods that have
reported this metric. On FER-2013 [42] dataset, our model
achieves the classification accuracy of 72.03%, which out-
performs the highest previous reported accuracy of 71.53%,
using BReG-NeXt [13] by a margin of 0.5%.

Fig. 4 shows the confusion matrix obtained by our pro-
posed model trained with Ad-Corre Loss on AffectNet [44],
RAF-DB [43] and FER-2013 [42] respectively. On Affect-
Net [44], the most confusion occurred between Fear and
Surprise, and Disgust and Anger which are 18% and 17%,
respectively since both pairs are very similar. The same
pattern of confusion occurs on RAF-DB [43], where the
model is mostly confused between Fear and Surprise (about
18%). The second highest confusion (about 16%) hap-
pens between Disgust and Neutral which can be caused by
extremely low number of samples in training set for Dis-
gust. On FER-2013 [42], we see the pattern of confusion
again between Disgust and Anger (about 13%), while most
confusion, about 18%, occurred between Sad and Neutral.
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FIGURE 4. Confusion matrices of the proposed model being trained by Ad-Corre Loss on AffectNet [44], RAF-DB [43], and FER-2013 [42] datasets.

TABLE 2. Comparison to the state-of-the-art results on AffectNet [44] dataset.

TABLE 3. Comparison to the state-of-the-art results on RAF-DB [43]
dataset.

TABLE 4. Comparison to the state-of-the-art results on FER-2013 [42]
dataset.

TABLE 5. Precision, Recall, and F1-score of our proposed Ad-Corre Loss
on AffectNet [44] dataset.

In addition, we report the precision, recall, and f1-score of our
proposed Ad-Corre Loss on AffectNet [44], RAF-DB [43]
and FER-2013 [42] datsets in Tables 5, 6, 7 respectively.

In order to show the accuracy of the proposed
model trained by Ad-Corre Loss, we provide some
correctly-classified as well as some misclassified sam-
ples from AffectNet (see Figures 7 and 7), RAF-DB
(see Figures 7 and 7), and FER-2013(see Figures 7 and 7).
By reviewing the depicted samples, it can be figured out
that the model performs accurately in many challenging
cases with extreme head pose and image illumination, and
brightness.

To compare the discriminative power of Ad-Corre and CE
loss, We use t-SNE [58] to visualize the embedded feature
vectors. As Fig. 5 shows, while the feature vectors generated
using CE loss are not easily distinguishable for different facial

TABLE 6. Precision, Recall, and F1-score of our proposed Ad-Corre Loss
on RAF-DB [43] dataset.

TABLE 7. Precision, Recall, and F1-score of our proposed Ad-Corre Loss
on FER-2013 [42] dataset.

expressions, the feature vectors generated using Ad-Corre
Loss are more disentangled from each other. Training model
with Ad-Corre Loss resulted in a more compact cluster
of the embedded feature vectors compared to the clusters
generated training the model using CE loss. Moreover, the
distance between the clusters using Ad-Corre Loss is much
further from each other compared to the clusters created
using CE loss. Thus, we can observe that the Ad-Corre Loss
can increase the compactness of the model, by successfully
decreasing the intra-class difference. Moreover, Ad-Corre
Loss enhances inter-class separability which leads to the
discriminative power of the model.

D. ABLATION STUDY
To investigate the effect of each proposed loss function and
the proposed embedded feature vectors, we conducted five
different experiments on the AffectNet [44] dataset. In the
first experiment, we trained the model using CE as the loss
function and call it CE. We conducted another experiment
called CE + LossMD, where we trained the network using
both CE loss and just MD component of Ad-Corre Loss.
In the next experiment called CE + LossED, we trained our
proposed model using CE loss and just the ED component of
Ad-Corre Loss. Likewise, CE + LossFD indicates using CE
loss jointly with just FD component of Ad-Corre Loss.

As Table 8 shows, the accuracy of the model which is
trained using only the CE loss function is 56.46%. Using
CE + LossMD slightly improves the model accuracy by
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FIGURE 5. Visualization of the concatenation of the 7 embedded feature
vectors using t-SNE [58] on AffectNet [44] dataset. Training the model
using Ad-Corre Loss results in a more distinguishable embedded feature
vectors compared to the model trained with the cross-entropy loss.

TABLE 8. Studying the Affect of the proposed loss functions on the
accuracy of the model.

1.29% (increasing from 56.46% to 57.75%). Training the
model using CE+ LossED results in more accuracy improve-
ment from 56.46% to 59.51% (3.05%). Using CE + LossFD
improves the accuracy of the model much more compared to
the previous experiments by 5.4% (increasing from 56.46% to
61.86%). Finally, the accuracy of the model which is trained
using Ad-Corre Loss (see Eq. 12) has improved by about
6.9% compared to the baseline model trained with just CE
loss, indicating that our proposed Ad-Corre Loss is capable of
improving the discriminative power of our defined embedded
feature vectors which results in better classification of facial
expressions.

To investigate the effect of the number of the embedded
feature vectors in the embedding space, we define 2 different
models called Emb_3, and Emb_10 with 3, and 10 embedded
feature vectors respectively. We train Emb_3, and Emb_10
using Ad-Corre Loss. According to Table 9, the accuracy
of FER using Emb_3 model is 59.88% which is around
3.48% lower than the accuracy of the baseline model, which
has 7 embedded feature vectors. Moreover, the accuracy
of Emb_10 is 63.56% which indicates only around 0.2%
improvements compared to the baseline model. Although
increasing the number of the embedded feature vectors can
increase the accuracy of the model, our experiment shows
that the amount of increase is very small. Moreover, the
computational overhead should be taken into the account too
(see Sec. IV-E and Table 11).

We defined the hyper-parameter λ in our defined Ad-Corre
Loss in Eq. 12 to put a balance between the CE loss and
our proposed Ad-Corre. As the final goal of the model is
to classify the facial expressions of the human faces, setting
the value of λ can play a crucial role in the accuracy of
the model. In other words, we define λ to put a balance
between the task of clustering the embedded feature vectors

FIGURE 6. The affect of different values of the hyper-parameter λ on the
accuracy of the model.

TABLE 9. Studying the Affect of the number of embedded feature vectors
defined in the embedding space on the accuracy of the model.

and the classification of the facial expressions. Although
better clustering of the embedded feature vectors can result in
a better classification, a poorly-chosen λ can lead the network
towards only learning either classification or the clustering
task. We conducted 4 different experiments and set the value
of λ to be 0.01, 0.1, 0.5, and 0.1 and trained the network using
Ad-Corre Loss for 20 epochs on AffectNet [44] dataset.

As Fig. 6 shows, setting λ as 0.01 results in 49.33% accu-
racy which indicates that the model has focused more on the
clustering of the embedded feature vectors. In other words,
the classification task has been neglected by the model which
resulted in poor accuracy. In the second experiment, we set λ
to 0.1 and we see a better classification accuracy (54.85%).
Following the trend, we increased the value of λ to 0.5, and
1 which result in 63.36% and 60.14% accuracy receptively.
We can conclude that while setting λ as 0.5 might put a
balance between the clustering task and the classification
task, increasing λ to 1 leads the network towards paying
much attention to the classification task which can cause poor
clustering of the embedded feature vectors. Hence, we choose
λ as 0.5 in our proposed Ad-Corre Loss in Eq.12.

In another experiment, we investigated if the proposed
Ad-Corre Loss can be applied to other CNNs and improve the
accuracy of the model. We used Resnet50 [59] as our back-
bone model and trained two model instances, one using the
CE loss and another one using the Ad-Corre loss. We trained
the model following the configuration reported in Sec.IV-B
and used 7 embedded feature vectors.

As Table 10 shows, the accuracy of the model trained
using the CE loss is 68.25%, 82.13%, and 55.57% on
FER-2013 [42], RAF-DB [43], and AffectNet [44] dataset,
respectively. Training themodel using the proposedAd-Corre
Loss results in about 3.23% (from 68.25% to 71.48%),
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FIGURE 7. Some correctly-classified, and misclassified samples fom AffectNet [44], RAF-DB [43], and FER-2013 [42] dataset.

TABLE 10. We used Resnet50 as the backbone CNN and trained using CE
loss, while we trained Resnet50Ad-Corre using Ad-Corre Loss. The accuracy
of the latter is much higher compared to the former on FER-2013 [42],
RAF-DB [43], and AffectNet [44] dataset.

3.8% (from 82.13% to 85.93%), and 7.21% (from 55.57%
to 62.78%) accuracy improvement on FER-2013 [42],
RAF-DB [43], and AffectNet [44] dataset, respectively. This
experiment shows that Ad-Corre Loss is applicable to differ-
ent CNNmodels and compared to widely used CE loss, it can
improves the discriminating power of the model.

E. MODEL EFFICIENCY
In this section, we study the numbers of the parameters aswell
as the number of the floating-point operations (FLOPs) of our
proposed model with respect to the numbers of embedded
feature vectors. In Table 11, we show the number of the
parameters of the official Xception [41] model which is about
20.86 million (M). Adding 1 embedded feature vector to
the model (EMB_1) results in around 0.52M increase in the
numbers of the model parameters (from 20.86M to 21.38M).
The corresponding increase in the FLOPs is only about
0.58M (from around 4, 554, 344k to 4, 554, 919k). Adding
3 embedded feature vectors (EMB_3) results in around
1.57M increase in the model parameters (from 20.86M to
22.43M), and around 1.62M in the FLOPs compared to the
those of the official Xception [41]. Using 7 embedded fea-
ture vectors (EMB_7), the model parameters increases from
20.86M to 24.54M by around 3.68M, and the FLOPs by
around 3.73M compared to the Xception [41]. Despite a small
increase in model size and its FLOPs, as we show in Table 8,
using Ad-Corre Loss with 7 embedded feature vectors results
in around 6% increase in classification accuracy.

TABLE 11. Number of the model parameters and the FLOPs of the official
Xception [41] model, compared to our proposed model. We report these
parameters considering different number of the embedded feature
vectors.

V. DISCUSSION
In this section, we discuss the similarities and the differences
between our proposed loss functions and the two widely-used
loss functions for classification, the Center Loss [32] and the
Island Loss [33].

The Center Loss [32] predicts the center of each cluster
and penalizes the model to generate the embedded feature
vectors such that the distance between each embedded feature
vector and the corresponding predicted center vector is as
small as possible. In contrast, our proposed Correlation Loss
calculates the distance between each pair of the embedded
feature vectors within a mini-batch and penalize the model to
generate the embedded feature vectors belonging to similar
emotion class to be highly correlated, and those belonging
to different classes to be less correlated. Hence, the model
generates the embedded feature vectors within a similar class
to be compact implicitly. Moreover, in Center Loss [32], there
is no guarantee that the generated center vectors be far from
each other, while the Correlation Loss penalizes the network
to generate the embedded feature vector from different emo-
tion classes to be less correlated from each other, and hence,
the center of different emotion classes will be less correlated.

The Island Loss [33] was proposed to improve the per-
formance of the Center Loss [32] by penalizing the network
to increase the distance between the predicted center of the
clusters from each other. Contrary to the Island Loss [33], our
proposed Mean Loss calculates the center of each cluster and
penalizes them to be as less correlated as possible. We believe
calculating the center of each cluster (the Mean Loss) and
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penalizing the network according to their correlation is much
easier than predicting the center of each cluster and then
penalizing the network to increase the distance between them.

In addition, our proposed Adaptive Attention Map puts
weights on the emotion classes which are misclassified by
the model more frequently, compared to the emotions that
are easier to be recognized. There is no similar mechanism
in either the Center Loss [32] or the Island Loss [33].

VI. CONCLUSION
In this paper, we proposed a method for facial expres-
sion recognition in the wild. We used the widely used
Xception [41] and Resnet50 [59] CNN architectures as our
backbone models and proposed an embedding feature space
containing k different embedded feature vectors. We intro-
duced Ad-Corre Loss which consists of FD, ED, and MD
components and the CE loss. Our experiment shows that
regardless of the backbone model choice, the proposed
Ad-Corre Loss improves the discriminative power of the
generated embedded feature vectors. Our proposed model
trained using the Ad-Corre Loss achieved a very promising
recognition accuracy on AffectNet [44] and RAF-DB [43],
and FER-2013 [42]. Ad-Corre Loss can be easily used in
other classification tasks in future work.
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