
Ad-Hoc Knowledge Engineering with

Semantic Knowledge Wikis

Jochen Reutelshoefer, Joachim Baumeister and Frank Puppe

Institute for Computer Science, University of Würzburg, Germany
email: {reutelshoefer,baumeister,puppe}@informatik.uni-wuerzburg.de

Abstract. A couple of semantic wikis have been proposed to serve as
collaborative knowledge engineering environments – however, the knowl-
edge of almost all systems is currently based on the expressiveness of
OWL (Lite/DL). In this paper we present the concept of a semantic

knowledge wiki that extends the capabilities of semantic wikis by strong
problem-solving methods. We show how problem-solving knowledge is
connected with standard ontological knowledge using an upper ontol-
ogy. Furthermore, we discuss different possibilities to formalize problem-
solving knowledge, for example by semantic knowledge annotation, struc-
tured text and explicit markups.

1 Introduction

Recently, different approaches of semantic wikis have been presented as applica-
tions especially designed for the distributed engineering of ontological knowledge,
for example see IkeWiki [1] and OntoWiki [2]. Such systems are used to build
ontologies of a specific domain in a collaborative manner and use the well-known
metaphor of wikis as the primary user interface. New concepts are usually de-
fined by creating a new wiki page with the name of the concept. Properties of
the new concept are described by semantically annotating text phrases of the
particular wiki page. The semantic extension of wikis allows for a richer set
of possible applications when compared to standard wikis: due to the seman-
tic annotation of content the user is able to semantically search for ontological
concepts and/or related concepts. Furthermore, a semantic wiki can be browsed
in a semantic way; for example, users can click on semantically relevant (and
probably personalized) links that are placed appropriately.

Based on the expressiveness of OWL (Lite/DL) the defined ontologies are
able to capture a wide range of general knowledge but lack in the possibility
to represent active problem-solving knowledge that is necessary to generate and
drive a (semi-)automated problem-solving session with a user. Such knowledge
typically relates the class of findings – provided as user inputs and describing
the current problem – with the class of solutions that are derived for the given
problem description. In previous work we presented the concept of knowledge
wikis as an extension of standard wikis adding the possibility to capture, main-
tain, and share explicit problem-solving knowledge [3, 4]. The presented concept

provided strong support to represent explicit knowledge like rules and models,
but was not able to capture ontological knowledge beyond subclass hierarchies
of solutions and part-of hierarchies of input groups/inputs.

In this paper we describe the (refined) concept of semantic knowledge wikis
that are interpreted as an extension of semantic wikis. Besides basic ontological
knowledge – such as the definition of classes, taxonomic and user-defined proper-
ties – a semantic knowledge wiki is able to represent problem-solving knowledge
that is applied on selected classes of the ontology. The problem-solving knowl-
edge can be seen as an external knowledge source for changing the values of
concept instances; for example in most of the cases the state of a solution in-
stance is set to the value “established”. Beyond that it is not intended that the
problem-solving knowledge interacts with other knowledge defined in the ontol-
ogy. In future work, we will consider the exchanging semantics of problem-solving
knowledge with the knowledge defined in the ontology, as for example it is cur-
rently done in the context of the RIF working group1. In summary, a semantic
knowledge wiki represents a distributed knowledge engineering environment not
only representing semantic relations between the concepts of an ontology but
also explicit derivation knowledge.

In contrast to trained knowledge engineers – well educated in knowledge rep-
resentation and reasoning – we adress experienced users to act as “ad-hoc knowl-
edge engineers”. For this reason, the provided interfaces and markups of the
wiki need to be as simple as possible in order to lower the barriers of knowledge
acquisition. Furthermore, in running projects we experienced the requirement
to handle a mixed granularity of the represented knowledge. An interesting re-
search question is to find a collection of suitable markups that can cope with
the different types of knowledge and its granularity, respectively.

In this paper, we first describe the basic concepts of a semantic knowledge
wiki by introducing an upper ontology for problem-solving. This ontology repre-
sents the basic classes and properties that are used in a typical problem-solving
process. Moreover, this ontology is used as the basis in every new wiki project,
since newly defined concepts are implicitly or explicitly aligned to classes of the
upper ontology. We also introduce different types of markups for the definition
of problem-solving knowledge. The markups take into account that knowledge
can be “formalized” in many different ways, ranging from explicit models and
rule bases to semantically annotated text or structured text phrases.

2 An Overview of KnowWE

As discussed above every (semantic) wiki page describes a distinct concept to-
gether with formalized properties linking the entity with other classes. In a
knowledge wiki we also capture the problem-solving knowledge that is neces-
sary for deriving the particular concept. Then, every wiki page embeds not only
semantically annotated text and multimedia but also explicit problem-solving
knowledge.

1 RIF WG wiki: http://www.w3.org/2005/rules/wiki/RIF Working Group

As a typical use case, the user of a semantic knowledge wiki can browse the
contents of the wiki in a classic web-style –possibly using semantic navigation
and/or semantic search features. Moreover, he/she is also able to start an in-
teractive interview where giving a problem description. Based on these inputs
an appropriate list of solutions is presented that are in turn linked to the wiki
pages representing these particular concepts. Thus, every solution represented
in the wiki is considered during a problem-solving process. Instead of using an
interactive interview mode the user can enter findings inline by clicking on inline
answers embedded in the normal wiki page. These inline answers are generated
based on the semantic annotations made in the article.

In the following we briefly describe the processes of capturing and sharing
knowledge in the semantic knowledge wiki KnowWE [3].

2.1 Knowledge Capture

Semantic annotations and knowledge is edited in the mandatory edit pane of the
wiki together with standard wiki content like text and pictures. At the moment

Fig. 1. Editing a wiki article of the knowledge wiki KnowWE: A rule base is embedded
into the standard wiki text (bottom of the edit pane) and semantic annotations are
made in the first paragraph of the text.

KnowWE proposes the textual acquisition of annotations and knowledge in the
edit pane, thus a collection of textual markups for annotations and knowledge

is required. For a new solution a corresponding wiki page with the solution’s
name is created. The wiki page includes describing text in natural language
and the explicit knowledge for deriving the solution. In this paper, we introduce
the concept of distributed knowledge engineering with knowledge wikis, and we
demonstrate the methods and techniques using the toy application of a sports
advisor wiki. The running example considers a wiki providing knowledge about
different forms of sports, both in textual and in explicit manner. Explicit knowl-
edge can be used to derive an appropriate form of sport for interactively entered
(user) preferences. Besides such a simple recommendation application the wiki
can be used for a variety of tasks briefly sketched in the case study.

For example, in Figure 1 we see the edit pane of an article describing the
form of sports “Swimming”: Standard text is semantically annotated by the par-
ticular properties explains and isContradictedBy for which their meaning is
described in the following. Additionally, the first part of a formalized rule base
is shown at the bottom of the edit pane. Here, knowledge for deriving and ex-
cluding the solution “Swimming” is defined. Besides rules derivation knowledge
can be formalized in different manners, for example, explicit set-covering mod-
els, structured texts, semantic knowledge annotations. We discuss the different
markups in the rest of the paper.

(a)

(b)

(c)

Fig. 2. Possible interfaces for a problem-solving session: interview mode (a) and in-
place answers (b). Derived solutions are presented immediately in the wiki (c).

When saving a wiki article the included knowledge is extracted and compiled
to an executable knowledge base. In consequence, we arrive at one separate
knowledge base for each wiki article capturing the derivation knowledge for the
corresponding concept of the article. With the increasing number of wiki articles
the number of knowledge bases will also increase. As we see in the next section
the concepts created in the wiki are naturally aligned due to the upper ontology

of the knowledge wiki. Furthermore, the developers are encouraged to reuse
a pre-defined application ontology which is build on the fixed upper ontology.
However, ad–hoc defined findings not corresponding to the application ontology
can be easily aligned by expressing alignment rules, that match these concepts
with concepts of the application ontology.

2.2 Knowledge Sharing

Besides standard ways of knowledge sharing in (semantic) wikis like (semantic)
searching and browsing we provide two ways for a more interactive knowledge
sharing in knowledge wikis: first, every wiki page can generate an interactive
interview from the included knowledge base by asking questions represented by
the findings used in the knowledge base, as for example depicted in Figure 2a.
Second, semantic annotations in text are used to offer inline answers, i.e., click-
able text in the article asking for meaningful facts corresponding with the high-
lighted text, cf. Figure 2b. In both ways a new finding instance is entered into
the knowledge wiki corresponding to the clicked finding object. The instance is
propagated to the knowledge wiki broker that in turn derives solutions based on
the entered findings. The propagation paths of the broker are depicted in Fig-
ure 3. The entered finding instances are propagated to the broker which aligns

Blackboard

Broker

Wiki Article 1

Knowledge Service [KS1]

Knowledge Base 1

. . .

aligned inputs aligned solutions

align

update
propagate

Application

Ontology

inputs

solutions

Upper

Ontology

Wiki Article n

Knowledge Service [KSn]

Knowledge Base n

propagate

Fig. 3. Blackboard architecture for the distributed problem–solving of the knowledge
wiki KnowWE.

the findings to a global application ontology (building on an upper ontology)
and then files the aligned instances to a central blackboard. Also, the broker
notifies all knowledge bases contained in the wiki for the new fact added to the
blackboard and gives the possibility to derive solutions based on the currently
available facts. Derived solutions are also propagated by the broker as new facts.
With the use of this simple broker/blackboard architecture we are able to allow
for a distributed problem-solving incorporating the multiple knowledge bases of

the wiki. Therefore, all solutions represented in the knowledge wiki can be de-
rived at any page; already derived solutions are presented at the right pane of the
wiki as for example shown in Figure 2 c. Here, the solutions ”Cycling” and ”Jog-
ging” were derived as the most appropriate solutions, even though the findings
were entered on the page describing the solution ”Swimming”. The presented
example can be seen as a specialized case of semantic navigation.

In comparison to our previous work [5], we focus on the knowledge acquisition
issues of a semantic knowledge wiki: we discuss an upper ontology as an enabling
technology for problem-solving and semantic annotation, and we introduce al-
ternative ways to enter problem-solving knowledge into a wiki, for example by
using semantic annotations and structured texts using NLP techniques.

3 An Upper Ontology for Classification Tasks

Studer et al. [6] introduced in detail how the input data and output data of
problem-solving methods is structured by specific ontologies. Similarly, we in-
troduce an upper ontology for the classification problem class used in semantic
wiki context. The upper ontology is the foundation of every new wiki project.
The upper ontology includes the general definitions of findings and solutions
that are the basic elements of a problem-solving task. A new wiki project main-
tains an application ontology by creating specific findings and solutions that are
subclassing the concepts of the upper ontology.

3.1 Concepts and Properties of the Upper Ontology

In the following we describe an upper ontology for problem-solving that is used
in the semantic knowledge wiki KnowWE. An excerpt of the upper ontology is
shown in Figure 4a; we omitted less important concepts like textual inputs and
values for clarity. All unlabeled associations denote subClassOf relations.

The concept Input plays a key role and allows to describe the world state as a
set of variables. Inputs are grouped by the concept Questionnaire to structure in-
puts into meaningful clusters. The two main subclasses of Input are InputChoice
and InputNum to define variables with discrete (named) values and numerical
value ranges, respectively. Accordingly, a corresponding value subclassing Value
is assigned to each Input. The concept Solution denotes a special type of a one-
choice input that is not entered by the user but derived by a knowledge base,
thus representing the final output of a problem-solving session. The value range
of a solution is restricted to the possible values Established, Suggested, Unde-
fined, and Excluded for expressing the current derivation state of the particular
solution.

A concrete problem-solving session is represented by an instance of the con-
cept PSSession where a knowledge consumer describes his/her current problem
by entering the values of the corresponding observed inputs. The reasoning pro-
cesses of different users are completely independent from each other as each user
is describing his own specific problem instance. The assignment of a value to a

(b)

(a)

Fig. 4. a) The upper ontology of the semantic knowledge wiki KnowWE. b) a part of
the input definitions (WikiFindings page) of a sports advisor demo.

corresponding input is captured by the concept Finding, depicted at the top of
Figure 4a.

The proposed knowledge wiki allows for a free and general use of various,
alternative knowledge representations to actually derive the concrete solutions
defined in the application ontology. For this reason, derivation knowledge is rep-
resented in the upper ontology only in a very general manner, as depicted in
the left lower corner of Figure 4a. For the specification of problem-solving rela-
tions we introduce the general object properties explains and isContradictedBy
with Solution as the domain and LogicExpression as its range: The abstract con-
cept LogicExpression is subclassed by CompositeExpression, which allows fo the
composition of logical expressions over findings by the subclasses Conjunction,
Disjunction, and Negation. The semantics of the properties explains and isCon-
tradictedBy are described more detailed in the context of the XCL knowledge
representation (eXtensible Covering List) in Section 4.

3.2 Creation and Maintenance of the Application Ontology

The concrete inputs and solutions of a new wiki application are defined in the
application ontology. With the two special wiki pages WikiFindings and Wiki-

Solutions the structure of the application ontology is maintained: The (user)
inputs together with their values are defined in the article WikiFindings using
the special textual markup Kopic. Within this tag we textually define new in-
puts and their corresponding values together with questionnaires grouping the
particular inputs. Defined solutions and inputs of the application ontology are
automatically subclassing the corresponding concepts of the upper ontology. Fig-
ure 4b shows a part of the input hierarchy of the sports advisor demo already
mentioned before. With one dash we denote a new input followed by its type
definition, for example [oc] for one-choice inputs and [num] for specifying nu-
meric inputs. For choice inputs the possible values are listed in the following lines
with an additional preceding dash. Analogously, the solutions of the application
ontology are organized in the article WikiSolutions. In summary, the application
ontology is created and modified in a wiki-like way, i.e., by editing the wiki pages
WikiFindings and WikiSolutions.

For the knowledge engineering task we propose an evolutionary process model
as introduced by Fischer [7]: at the beginning of a project an initial effort – called
seeding phase – has to be made to create a simple but usable basic application
ontology. In the working progress the ontology is extended and restructured in
cyclic evolutionary growth and reseeding phases.

4 Simple Knowledge Representations for Ad-Hoc

Knowledge Engineers

In the previous section we introduced an upper ontology for problem-solving
representing the basis of an application ontology. This application ontology de-
fines the specific inputs and solutions of the particular application domain. As
mentioned earlier, every wiki page is able to capture problem-solving knowledge
relating defined inputs with the corresponding solution of the particular wiki
page. Since we aim to motivate experienced user to act as ad-hoc knowledge en-
gineers the problem-solving knowledge needs to meet the following requirements:

1. easy to understand and formalize,
2. a compact and intuitive textual representation,
3. yields a transparent and comprehensible inference process.

This will help to break down the initial barriers when

1. making personal knowledge explicit,
2. inserting it into a wiki page text,
3. and finally evaluating the created knowledge.

As complexity in knowledge representation and inference constitutes a major
barrier for contribution we face the trade-off between simplicity and expressive-
ness. Beneath simplicity, we have to make an open world assumption concerning
the derivation knowledge for a solution concept. During the development process
only a part of the total imaginable/retrievable amount of knowledge is present
in the knowledge wiki. Thus, it is desirable that any subset of the (fictional)

complete knowledge can be used to derive the best possible results with respect
to the given subset. Further, this subsets of course need to be extensible easily. A
knowledge representation meeting this requirements needs to be based on small
knowledge units which are to a great extend independent of each other. On the
one hand this characteristics enables to build very small but already working
knowledge bases which then can be extended subsequently step by step. On the
other hand the knowledge bases show some robustness with respect to the dele-
tion of small parts and redundant definitions by accident or ignorance which is
important within the scope of “ad-hoc knowledge engineering”.

Considering the concrete problem-solving process of a knowledge consumer
we need to regard that it is unpredictable which exact subset of inputs is actu-
ally observable, as real world situations are often diverse and wicked. Thus, it is
desirable to design the knowledge and the inference process in a way, that each
subset of entered findings will yield appropriate solution ratings. Of course, in
this case a confidence value based on the size of the entered finding set needs
to be presented along with the resulting solution states. To cope with these
challenges we provide the wiki user a simplified but easily extensible version
of set-covering models [8], called eXtensible Coverings Lists (XCL). In our ap-
proach the extensible-covering model of a solution basically consists of a set of n
findings. The weighting of the findings set to 1/n as default and we use the indi-
vidual similarity function. Apriori, the resulting function for a solution rating is
therefore restricted to m/n, where m is the number of correct findings and n the
number of total findings defined by the model. The possible result spans a real
range from [0, 1] which is partitioned into four disjoint intervals representing the
corresponding values of a solution ValueSolutionEstablished, ValueSolutionSug-
gested, ValueSolutionUnclear, and ValueSolutionExcluded. Obviously, there is a
crucial lack of sensitivity concerning single findings, which is bounded by 1/n.
To improve the limited expressiveness we introduced several extensions to this
simple finding list, for example combined findings and exclusion knowledge. In
the following section XCL and its textual markup is explained in more detail.

4.1 Embedding Simple Knowledge in Wiki Texts

We present three different textual markups to integrate simple knowledge as
described above in standard wiki texts. To demonstrate the similarities and
differences of the markups we define knowledge in each way for the solution
Swimming corresponding to the sports advisor demo.

eXtensible Covering Lists (XCL) The most compact representation of the
covering knowledge is its formalization as an eXtensible Covering List that is
wrapped in a Kopic tag. As noted earlier the Kopic tag can be placed anywhere
in the wiki article and is also used to define other classes of knowledge like
the solutions and findings of the application ontology. The names of the inputs
and the corresponding values are matched against the definitions made in the
application ontology found in the WikiFindings article (cf., Figure 4b). In the

following example an XCL model for the solution Swimming is shown. Each line
represents a positive coverage of the finding by the solution and is called explains
relation. The order of the listed findings is not relevant for the inference process
and thus is arbitrary. If the domain knowledge is already available as informal
text, then it denotes a simple task to transfer the key findings described in the
text into basic findings contained in an XCL.

1 ¡Kopic id=‘‘Swimming scmodel’’¿

2 ¡XCL-section¿

3 Swimming –

4 medium = water,

5 Type of sport = individual,

6 Training goals ALL –endurance, stress reduction˝,

7 Running costs = medium,

8 Trained muscles = upper part,

9 Trained muscles = back

10 ˝

11 ¡/XCL-section¿

12 ¡/Kopic¿

During the inference process the best rated solution is chosen. A solution is
rated by comparing the findings defined in the XCL against the findings entered
by the user. The rating of a solution is expressed by its covering score. As
mentioned before, this numeric score is mapped to four predefined solution states
Unclear (default), Suggested, Establised and Excluded.

The basic XCL representation can be extended in multiple ways: Besides
the simple listing of findings shown above the XCL representation offers fur-
ther elements to extend/refine the expressiveness and selectivity of the covering
model that are briefly discussed in the following (the textual markup is given in
paratheses):

Exclusion knowledge [--]: This marks a relation such that the derivation of
the solution becomes impossible to be positively derived when the relation
is fulfilled. This type of relation is called isContradictedBy and it sets the
state of the solution to Excluded when fulfilled. Such a constraining relation
is defined by two minus signs in brackets ([--]) at the end of the relation
line, as for example shown in line 7 of the markup shown below.

Required relations [!]: Relations can be marked as required by using a
bracket containing an exclamation mark ([!]). Then a solution can only be
established as a possible output when all required relations are fulfilled, i.e.,
the corresponding findings were positively entered by the user. An example
is shown in line 2 in the following markup.

Sufficient relations [++]: By adding a bracket with two plus signs ([++]) to a
relation we define this solution to be a sufficient relation. Then, the solution
is always established if the corresponding finding is fulfilled. We call this

relation isSufficientlyDerivedBy. It is important to know that contradicting
relations are dominating sufficient relations.

Adding weights [num]: In the initial version every explains relation is
equally important when compared to the other relations of the XCL, thus
having the default value 1. The default value can be overridden for relations
in order to express their particular importance. In the textual notation the
weight is then entered in brackets at the end of the relation definition, for
example [2] to double weight a relation. See line 8 in the following markup
for a further example.

Logical operators (AND, OR): A complex relation can be created by combining
relations by logical operators. For example in line 2 of the model shown below
the findings medium = water and Type of sport = individual are connected
by the logical or-operator (OR). The resulting knowledge demands that either
medium = water or Type of sport = individual needs to be observed to fullfil
the relation. The three basic operators of propositional logic or, and and not
can be used.

Threshold values: When rating a solution the numeric covering score is
mapped to a solution state. The mapping function is defined by the threshold
values (establishedThreshold and suggestedThreshold). In most cases
the internal default threshold values are adequate, but for distinct solutions
they can be overriden as shown in line 12-13 of the following example model.
In the example, 70% of the expected and observed findings need to be cor-
rectly observed to set the solution tot the state Established, and 50% to set
the solution to the state Suggested (higher states overwrite lower states).
Further, with minSupport we specify how many percent of the findings de-
fined in the XCL model need to be entered by the user in order to activate
the solutions rating process.

The following markup shows a refined version of the previous model of the so-
lution Swimming using the described elements. Essentially, the already defined
relations were mostly refined by relational extensions like sufficient, contradicting
and necessary properties.

1 ¡Kopic id=‘‘Swimming scmodel’’¿

2 ¡XCL-section¿

3 Swimming –

4 medium = water OR Type of sport = individual [!],

5 My favorite sports form = swimming [++],

6 Training goals ALL –endurance, stress reduction˝,

7 Favorite color IN –red, green, blue˝,

8 Running costs = medium,

9 Running costs = nothing [--],

10 Trained muscles = upper part [2],

11 Trained muscles = back [2],

12 Physical problems = skin allergy [--],

13 Type of sport = group [--],

14 ˝[establishedThreshold = 0.7,

15 suggestedThreshold = 0.5,

16 minSupport = 0.5

17]

18 ¡/XCL-section¿

19 ¡/Kopic¿

Although the presented representation is experienced to be compact and
intuitive for most of the users, it is clearly separated from the remaining text
of the wiki article, which usually describes the same concept and its knowledge
in natural language. This separation increases the risk of “update anomalies”,
for example if users are modifying or extending the wiki article but not the
corresponding part of formalized knowledge. Therefore, a tighter integration of
formal knowledge and informal text of a wiki article is desirable, and for this
aim we introduce two possible approaches in the following.

Inline Annotation Many semantic wikis use inline annotation techniques to
describe semantic properties between concepts of the ontology, for example Se-
mantic MediaWiki [9]. Using special properties of the upper ontologies like
explains and isContradictedBy we are able to capture set-covering knowl-
edge by evaluating semantic annotations. The following example shows sentences
describing the solution “Swimming”, where text phrases are annotated by the
property explains for defining positive set-covering relations and the property
isContradictedBy for the definition of exclusion rules. For example, the first
two lines state a relation between the solution Swimming (the concept of the
page) and the finding Medium = in water: the first expression after the open-
ing brace and before the ¡=¿ is the textual part of the sentence, that will be

rendered in the view mode of the article, shown in Figure 2b. The phrase before
¡=¿ can be omitted; then the preceding word before the annotation is highlighted
and related to the corresponding relation. The following part of the annotation
states the name of the property (e.g., explains, isContradictedBy) followed
by two colons. After that, the actual finding related to the solution concept is
specified, i.e., the range of the given property. In the topic view the annotated
text can be used as an interview method with inline answers. In this case the
input of a set-covering relation is posed as question to the knowledge consumer
as shown in Figure 2b.

1 Swimming is the most common form of [water sports ¡=¿ explains::

2 Medium = in water]. Swimming is good for successfully [reducing

3 stress or to train endurance ¡=¿ explains:: Training Goals =

4 stress alleviation OR Training Goals = endurance]. It only

5 should be avoided when [cardio problems ¡=¿ isContradictedBy::

6 Physical restrictions = cardio problems] are present. Further,

7 Swimming is quite inexpensive [explains:: Running Costs = low].

The semantic annotation of existing sentences means less knowledge acqui-
sition workload compared to the explicit markups introduced before. Although,
standard wiki text is tightly integrated with formal knowledge the readability of
the text suffers from annotations as shown above.

Structured Text A more radical approach is to omit semantic annotations
when possible and to use NLP techniques for annotating distinct parts of the wiki
text. In the context of our work, we are able to use “structured texts” since 1) the
available text needs to be mapped to a rather simple knowledge representation,
and 2) we can employ the given application ontology as background knowledge
for the concept extraction task. This is very similar to the approach of the
DBpedia project2 described by Auer et al. [10] which uses the article structure of
wiki pages to formalize knowledge about the described topic. Instead of creating
RDF-triple we want to generate problem-solving knowledge for the classification
task. The key problem here is the matching of the natural language expressions
to the concepts of the application ontology.

Using this technique we assume, that a distinct block of a wiki article is
tagged as a “structured text”. Then, this block is parsed in order to identify
findings for which set-covering relations are created. In a first step we are working
with semi-structured texts (e.g. bullet lists, tables). In the following example
in Figure 5a we show a bullet list in standard wiki syntax, where each line
contains one (combined) finding explaining the solution Swimming. While the
inline annotations expect exact matches we applied some lightweight linguistic
methods for matching findings in structured texts, for example simple string
matching combined with stemming and synonym lists already lead to fairly good

2 DBpedia: http://www.dbpedia.org

results. In the simplest case we can identify an input name that is defined in
the application ontology together with a corresponding value name, for example
as found in line 5 of Figure 5a: the text phrase “when low risk of injuries is
desired” yields the finding “risk of injury = low”. The finding defined by this
input-value-pair tuple can be added as a set-covering relation of the solution
Swimming. Sometimes only an input is listed and humans implicitly refer to
a default value of this input, especially for inputs only having “yes” and “no”
as possible values (e.g. “practiced outdoor”). For this type of input we assume
“yes” as the default value when creating set-covering relations. For other inputs
the default answer needs to be defined in the application ontology, otherwise the
finding cannot be completely identified. Another popular case is appearance of
the value name in the line as the only indicator of a finding, for example in line 2
in water. If the corresponding input can be clearly identified due to the unique

(b)(a)

Fig. 5. a) Wiki syntax of a bullet list in structured text, b) automatically annotated
text phrases in a semi-structured text.

name of the found value, then we automatically generate a relation accordingly.
We often can disambiguate the occurrence of such a finding, since most of the
times humans only reduce the text to the value name if this would not result in
an ambiguity. All identified findings are implicitly annotated and can be used to
provide inline answers as shown for example in Figure 5b.

4.2 Knowledge Representations in Explicit Markup

Although in various forms extensible the XCL representation has limited expres-
siveness for some type of domain knowledge.

1 ¡Rules-section¿

2 // Abstraction rule r1 for body mass index calculation

3 IF (Height ¿ 0) AND (Weight ¿ 0)

4 THEN BMI = (Weight / (Height * Height))

5

6 // Derivation rule r2 for solution Running

7 IF (”Training goals” = endurance)

8 AND (”BMI”¡30) AND NOT(”Physical Problems” = knees)

9 THEN Running = SUGGESTED

10 ¡/Rules-section¿

In order to allow for the creation of complex knowledge relations we pro-
vide further knowledge representations to be used by more experienced users.
The textual markup of alternative representations was introduced in [5]. In the
context of this paper we briefly show the definition of rules for the derivation
of abstractions – for example to be used for concept mapping – and rules for
the derivation of solutions. The rules section shown above contains two rules
taken from the sports demo. The first calculates the body mass index (BMI)
and the second rule sets the solution Running to the value Suggested. In addi-
tion, we provide decision trees and several table-based representations for rules
and set-covering relations.

5 Case Studies

We have implemented the presented approach with the system KnowWE [3], a
semantic knowledge wiki, that is still under lively development. For an extensive
evaluation of the applicability of our system we made a student based case study
considering the creation of knowledge wikis with a group of 45 students. Within
about three weeks 11 recommendation systems with a total amount of about
700 knowledge bases containing rules an set-covering relations were created.
Beyond further student projects, the system is currently used in the context
of the BIOLOG Europe project (http://www.biolog-europe.org). Its purpose
is the integration of socioeconomic and landscape ecological research results
in order to produce a common understanding of the effects of environmental
change on managed ecosystems. Inter- and trans-disciplinary research projects
with economists yielded socioeconomic knowledge on how the biodiversity can
be supported in managed agro-ecosystems. The research results are present in
the form of large amounts of (unstructured) knowledge on landscape diversity
of life with respect to the given landscape structures, management decisions and
their progression [11], for example described in papers, data sheets, and further
multimedia content.

The project wiki LaDy (for ”Landscape Diversity”) aims to support domain
specialists and interested people to collect and share knowledge in the context of
the BIOLOG project. The knowledge appears at different levels of detail rang-
ing from textual descriptions and multimedia to formal knowledge covering the
effects on landscape diversity. Typically user inputs consider the description of
the investigated landscape, whereas solutions are defined with respect to the
biodiversity of various taxa, different ecosystem services and management deci-
sions. At the moment, the knowledge wiki is under development incorporating
ecological domain specialists distributed all over germany.

The participating domain specialists have neither background in knowledge
representation nor in ontology engineering, and therefore the interfaces need to
be as simple and intuitive as possible. In the various kick-of meetings we learned
that a simple set-covering list representation was experienced to be intuitive
and suitable for the first steps. After some simple examples the requirements of
the users concerning the expressiveness usually grew, and in many cases these
requirements could be covered by extended covering lists as shown for example
in the following. In Figure 6a, the solution High plant diversity is defined
by a set-covering list of constrained findings, where the second item (line 3–5)
is a complex finding combining a list of atomic findings by a disjunction and a
conjunction (simplified example shown).

In other cases we offered to transform the existing knowledge to a rule base,
since the largest degree of expressiveness can be provided by a rule-based repre-
sentation. An excerpt for a rule base is shown in Figure 6b where the value of
management productivity is defined in correspondence of inputs such as genetic
diversity and optimized soil retention. Providing a platform for both, exchang-
ing textual knowledge and implementing explicit rules on ecosystem behaviour,
LaDy provides a service to condense and to communicate knowledge needed for
an efficient management of ecosystem services.

6 Conclusions

We have introduced the concept of a semantic knowledge wiki with the im-
plementation KnowWE that extends the known OWL-based expressiveness of
other semantic wikis by active problem-solving capabilities. Whereas related ap-
proaches provide strong support to capture ontological knowledge – for example
see [1, 2] – our main goal is to make the engineering of executable problem-solving
knowledge as simple as possible thus supporting the formation of ad-hoc knowl-
edge engineers. For this reason, we presented an upper ontology connecting on-
tological knowledge with strong problem-solving knowledge, and we introduced
different possible ways to formalize problem-solving knowledge, for example se-
mantic knowledge annotations, (semi-)structured texts, and explicit knowledge
markups.

In the future we are planning to improve the power of natural language to
be used as direct input for knowledge acquisition, incorporating more linguistic
methods and controlled languages. Related work is reported by the Attempto

(a)

(b)

Fig. 6. a) Excerpt of a simplified version of a set-covering model for deriving “High
plant diversity” b) rules describing the value of management productivity depending
on inputs such as genetic diversity and optimized soil retention.

project [12], where Attempto Controlled English (ACE) uses a knowledge repre-
sentation that is equivalent to first order logic and is also being combined with a
wiki technology in the system AceWiki. Besides more sophisticated methods to
formalize knowledge we have further research questions that need to be adressed
in the future: In a distributed setting existing methods and tools for the evalua-
tion and the refactoring need to be reconsidered and refined in order to facilitate
the maintenance and quality of an evolving semantic knowledge wiki.

References

1. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Manage-
ment. In: STICA’06: 1st International Workshop on Semantic Technologies in
Collaborative Applications, Manchester, UK (2006)

2. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic
Collaboration. In: ISWC’06: Proceedings of the 5th International Semantic Web
Conference, Berlin, Springer (2006) 736–749

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE – Community–based
Knowledge Capture with Knowledge Wikis. In: K-CAP ’07: Proceedings of the
4th International Conference on Knowledge Capture, New York, NY, USA, ACM
(2007) 189–190

4. Baumeister, J., Puppe, F.: Web-based Knowledge Engineering using Knowledge
Wikis. In: Proceedings of Symbiotic Relationships between Semantic Web and
Knowledge Engineering (AAAI 2008 Spring Symposium). (2008)

5. Baumeister, J., Reutelshoefer, J., Puppe, F.: Markups for Knowledge Wikis. In:
SAAKM’07: Proceedings of the Semantic Authoring, Annotation and Knowledge
Markup Workshop, Whistler, Canada (2007) 7–14

6. Studer, R., Eriksson, H., Gennari, J., Tu, S., Fensel, D., Musen, M.: Ontologies and
the Configuration of Problem-Solving Methods. In: Proc. of the 10th Knowledge
Acquisition for Knowledge-based Systems Workshop, Banff. (1996)

7. Fischer, G.: Seeding, Evolutionary Growth and Reseeding: Constructing, Captur-
ing and Evolving Knowledge in Domain–Oriented Design Environments. Auto-
mated Software Engineering 5(4) (1998) 447–464

8. Reggia, J.A., Nau, D.S., Wang, P.Y.: Diagnostic Expert Systems Based on a Set
Covering Model. Journal of Man-Machine Studies 19(5) (1983) 437–460

9. Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic MediaWiki. In: ISWC’06:
Proceedings of the 5th International Semantic Web Conference, LNAI 4273, Berlin,
Springer (2006) 935–942

10. Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting
Semantics from Wiki Content. In: The Semantic Web: Research and Applications.
(2007) 503–517

11. Otte, A., Simmering, D., Wolters, V.: Biodiversity at the Landscape Level: Recent
Concepts and Perspectives for Multifunctional Use. Landscape Ecology 22 (2007)
639–642

12. Kuhn, T.: AceRules: Executing Rules in Controlled Natural Language. In: Pro-
ceedings of First International Conference on Web Reasoning and Rule Systems.
Volume 4524 of LNCS. (2007) 299–308

