
Citation: Liao, X.; Sahran, S.;

Abdullah, A.; Shukor, S.A. AdaCB:

An Adaptive Gradient Method with

Convergence Range Bound of

Learning Rate. Appl. Sci. 2022, 12,

9389. https://doi.org/10.3390/

app12189389

Academic Editor: Christos Bouras

Received: 20 July 2022

Accepted: 16 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

AdaCB: An Adaptive Gradient Method with Convergence
Range Bound of Learning Rate
Xuanzhi Liao *, Shahnorbanun Sahran , Azizi Abdullah and Syaimak Abdul Shukor

Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti
Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
* Correspondence: p98708@siswa.ukm.edu.my

Abstract: Adaptive gradient descent methods such as Adam, RMSprop, and AdaGrad achieve great
success in training deep learning models. These methods adaptively change the learning rates,
resulting in a faster convergence speed. Recent studies have shown their problems include extreme
learning rates, non-convergence issues, as well as poor generalization. Some enhanced variants have
been proposed, such as AMSGrad, and AdaBound. However, the performances of these alternatives
are controversial and some drawbacks still occur. In this work, we proposed an optimizer called
AdaCB, which limits the learning rates of Adam in a convergence range bound. The bound range
is determined by the LR test, and then two bound functions are designed to constrain Adam, and
two bound functions tend to a constant value. To evaluate our method, we carry out experiments on
the image classification task, three models including Smallnet, Network IN Network, and Resnet are
trained on CIFAR10 and CIFAR100 datasets. Experimental results show that our method outperforms
other optimizers on CIFAR10 and CIFAR100 datasets with accuracies of (82.76%, 53.29%), (86.24%,
60.19%), and (83.24%, 55.04%) on Smallnet, Network IN Network and Resnet, respectively. The results
also indicate that our method maintains a faster learning speed, like adaptive gradient methods, in
the early stage and achieves considerable accuracy, like SGD (M), at the end.

Keywords: deep learning; adaptive gradient descent methods; stochastic gradient descent;
convergence-range bound; image classification

1. Introduction

Deep learning methods have yielded significant success in several complicated ap-
plications, such as image classification [1–3] and object detection [4–7]. It is essential to
train a deep convolutional neural network with an excellent optimizer to obtain consider-
able accuracy and convergence speed. Stochastic gradient descent (SGD) [8] is one of the
primary and dominant optimizers that performs well across many applications due to its
simplicity [9,10]. However, SGD scales the gradients uniformly in all directions with a con-
stant learning rate. This strategy leads to a slow training process and sensitivity to tuning
learning rates. Recent works proposed various adaptive gradient methods to achieve faster
convergence by computing individual learning rates for different gradients to address
this problem. Examples of these adaptive methods include AdaGrad [11], RMSProp [12],
and Adam [13]. These methods use the exponential moving average (EMA) [14] of the
past square gradients to adjust the learning rates. Particularly, Adam is one of the famous
adaptive gradient methods, and it has become the alternative optimizer after SGD(M)
across many deep learning frameworks because of its rapid training speed [15,16]. Despite
their popularity, there is still a performance gap between the adaptive gradient methods
with well-tuned SGD (M) [17].

However, recent theories have shown that Adam suffers from non-convergence is-
sues and weak generalization [15,18]. An empirical study showed that the parameters of
Adam update unstably; its second moment could be out of date, resulting in producing

Appl. Sci. 2022, 12, 9389. https://doi.org/10.3390/app12189389 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189389
https://doi.org/10.3390/app12189389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7576-7308
https://doi.org/10.3390/app12189389
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189389?type=check_update&version=2

Appl. Sci. 2022, 12, 9389 2 of 16

inappropriate learning rates based on the changes in gradients [19]. The second moment of
Adam in training has been found to produce extreme learning rates; the extreme or abnor-
mal learning rates encountered during training cause poor generalization performance of
Adaptive methods [20].

Reddi et al. [18] proposed a variant of Adam called AMSGrad to solve the shortcom-
ings of Adam as mentioned above. Although the authors provide a theoretical guarantee
of convergence, AMSGrad only shows better results on training data. However, a study
further indicated that AMSGrad does not show noticeable improvement over Adam [21].

Another work to fix the problems of Adam is called AdaBound [20]. AdaBound bor-
rows the truncating theory of gradient clipping [22] to constrain the unreasonable learning
rates of Adam by two hand-designed asymptotical functions: the upper bound function
ηu = f inal_lr ∗ (1 + 1

(1−γ)∗t) and the lower bound function ηl = f inal_lr ∗ (1− 1
(1−γ)∗t+1).

These two functions tend to a constant value that transforms Adam to SGD (M) gradually.
The experiments in [20] demonstrate that AdaBound maintains a rapid training speed, like
Adam, in the early and achieves a considerable generalization, like SGD (M), in the end.
Additionally, the parameters of bound functions are not sensitive and default parameters
are recommended for all classification tasks. In contrast, the experiments reported in [23]
showed that AdaBound does not outperform Adam and others, the poor performance
of AdaBound could be caused by the default parameters because the same bound are
recommended for all classification task. Savarese [24] showed that the bound functions
strongly affect the optimizer’s behavior and might require careful tuning.

A reasonable learning rate range refers to the reasonable learning rates that a current
task can converge, the maximum value of this range is considered the largest learning rate
that does not cause the disconvergence of training criteria [25]. However, AdaBound is
empirically hand-designed for its bounds, which are independent of tasks. So, it remains a
problem to AdaBound that its bounds are able to accurately and completely truncate the
unreasonable learning rates or not during training, because the unreasonable learning rates
of a certain task are not stated explicitly. Therefore, it is imperative to specify the reasonable
convergence range of Adam for a certain task to accurately distinguish the unreasonable
learning rates, and design the bound functions according to reasonable convergence range
to achieve a smooth transformation from Adam to SGD (M) without any unreasonable
learning rates.

To address the problem of AdaBound, we proposed a new variant of the adaptive
gradient descent method with a convergence range bound, which is called AdaCB. The
major contributions of this paper are summarized as follows:

1. The LR range test [26] is used to accurately determine the reasonable convergence
learning rate range for Adam instead of empirically hand designed, which can distin-
guish the unreasonable learning rates for a certain task.

2. Inspired by the clipping method, the learning rates of Adam are constrained by two
asymptotical functions: upper bound and lower bound. The upper bound is the
asymptotical function that starts from the maximum value of the convergence range
and gradually approaches the global fixed learning rate. The lower bound is the
asymptotical function that starts from 0, and gradually approaches the global fixed
learning rate.

3. We evaluate our proposed algorithm for the image classification task. Smallnet [27],
Network IN Network [28], and Resnet [29] are trained on CIFAR10 [30] and CI-
FAR100 [30] datasets. Experiment results show that our proposed method behaves
like an adaptive gradient method with a faster convergence speed, and achieves
considerable results like SGD (M).

The rest of our paper is organized as follows. In Section 2, we review the background
of traditional optimizers and adaptive gradient optimizers. In Section 3, we introduce
our proposed AdaCB. In Section 4, we conduct experiments to verify the effectiveness of
our method. In Section 5, we discuss the advantages and disadvantages of our proposed
optimizer. In Section 6, we summarize the paper.

Appl. Sci. 2022, 12, 9389 3 of 16

2. Related Works

Training neural networks are about tuning the weights with the lowest loss function
by learning algorithms (gradient descent methods) to produce an accurate model for
classification or prediction [31]. In general, there are two types of gradient descent methods:
stochastic gradient descent methods and adaptive gradient descent methods.

2.1. Stochastic Gradient Descent (SGD)

SGD is the primary and dominant algorithm for CNN models. The SGD updates the
weights with a constant learning rate, which is shown in the following Equation (1). The θt
stands for weights at the step t and θt+1 stands for the updated weights after that step t.
The gt denotes the gradients for corresponding weights at the step t and α stands for the
global learning rate, which is often set from 0.1, 0.01, and 0.001. SGD takes a long time for
training and is sensitive to learning rates. For the sake of clarifying, the variables of θt+1, θt,
gt, and t stand for updated weights, current weights, current gradients, and current step
respectively for the rest of the equations.

The general updating rule for weights in SGD:

θt+1 = θt − α× gt (1)

2.2. SGD with Momentum

Inspired by the idea of momentum in physics, Poyak et al. [32] proposed a variant of
SGD called SGD with momentum, shortly named SGD (M). The cumulative momentum
speed vt is introduced to affect the updating direction and vt−1 denotes the last correspond-
ing indicator. The basic idea is that the direction and magnitude of the previous gradients
contribute to the step size in the current step. As a result, the training speed is slightly
improved.

The general updating rule for weights in SGD (M):

θt+1 = θt + vt (2)

Calculating the cumulative momentum speed:

vt = γ× vt−1 − α× gt (3)

In Equations (2) and (3), the γ is the momentum term that determines the influence of
previous gradients on the current update, which is set as close to 1 as possible. The α is a
global learning rate like vanilla SGD.

2.3. AdaGrad

However, SGDs scale the gradients in all directions with a constant learning rate,
ignoring the sight of the difference between each parameter is not ideal. Therefore, the
adaptive gradient descent methods are proposed. In such a situation, the parameter with
the critical update should take a more significant step in the gradient direction than the
parameter with a less critical update. In other words: to speed up the learning process,
every parameter to be updated should have its learning rate in every step.

The first try is AdaGrad. This method calculates the individual learning rates for
different parameters, given by a constant value dividing the root of the sum of the square of
the past gradients from step 0 to t. The updating rule is defined as following Equation (4).

The general updating rule for weights in AdaGrad:

θt+1 = θt −
α√

∑t
1 g2

t + ε
× gt (4)

where the α is a constant value, which is given by 0.001 in practice, and epsilon ε is 1 × 10−8

to avoid the zero of the denominator. The adaptive learning rates are determined by

Appl. Sci. 2022, 12, 9389 4 of 16

α√
∑t

1 g2
t +ε

. However, the denominator is the sum of squared gradients, which can lead to a

monotonic increase. Therefore, the learning rates decrease monotonically, leading to slow
updating or non-updating circumstances.

2.4. RMSProp

To address the problem of AdaGrad, RMSProp is developed. Instead, RMSProp uses
an exponential moving average of square gradients, which is donated to vt, and vt−1 is
the last corresponding indicator. As a result, the denominator is not monotony increasing.
Equations (5) and (6) show the updating rules. The momentum term of EMA γ is given by
0.9. The constant value α is 0.001 in practice, and the epsilon ε is 1 × 10−8 to avoid the zero
of the denominator.

The general updating rule for weights in RMSProp:

θt+1 = θt −
α√

vt + ε
× gt (5)

Calculating the EMA indicator of square gradients:

vt = γ× vt−1 + (1− γ)× g2
t (6)

2.5. Adam

The Adaptive Moment Estimation (Adam) algorithm is another adaptive gradient
method proposed by Kingma [13], which is widely used in CNNs [33]. It is an extension of
RMSprop. Like RMSprop, an Exponential Moving Average of squared gradients vt is used,
and vt−1 stands as the last corresponding indicator. Additionally, an Exponential Moving
Average of gradients mt is included, and mt−1 is the last corresponding indicator. This new
value resembles the average direction of the gradients to avoid non-updating cases caused
by zero value of gradient. The authors also employ two bias corrections for these two EMA
indicators, which are denoted as m̂t and v̂t. As a result, they could obtain proper estimations
for both denominator and gradients in the early training stage. The formal notations are
shown as follows Equations (7) to (11). The variables of β1 and β2, which determine the
memory time of that two EMA indicators. The authors suggest standard values of β1 for 0.9,
and β2 for 0.999. The value of α is set as 0.001 in practice, and ε is 1 × 10−8.

The general updating rule for weights in Adam:

θt+1 = θt −
α√

v̂t + ε
× m̂t (7)

Calculating the EMA indicator of gradients:

mt = β1 ×mt−1 + (1− β1)× gt (8)

Calculating the bias correction for EMA indicator of gradient:

m̂t =
mt

1− βt
1

(9)

Calculating the EMA indicator of square gradients:

vt = β2 × vt−1 + (1− β2)× g2
t (10)

Calculating the bias correction for EMA indicator of square gradient:

v̂t =
vt

1− βt
2

(11)

Appl. Sci. 2022, 12, 9389 5 of 16

2.6. AMSGrad

In the recent paper “On the convergence of Adam and beyond” [18], the authors
indicated that Adam might suffer from non-convergence issues. Long-term memory
should be emphasized to reduce the influence of non-informative gradients and eliminate
unreasonable large learning rates. Therefore, the AMSGrad is proposed.

The AMSGrad differs at two points from the Adam algorithm. The first difference
is that the AMSGrad only uses the EMA indicator of gradients mt and EMA predictor of
square gradients vt, and omits the bias corrections for both m̂t and v̂t. Note that mt−1 and
vt−1 are the last corresponding EMA indicators. The second difference concerning Adam is
that the denominator calculation is replaced by taking the maximum value v̂t between the
last indicator vt−1 and the current indicator vt. In this way, a sort of long-term memory is
incorporated into large gradients, which results in a non-increasing step size and avoids
the pitfalls of Adam. However, the denominator increases monotonically because only the
biggest variable is concerned, leading the slow updating or non-updating circumstances
like AdaGrad. The formal notations of AMSGrad are described as follows Equations (12) to
(15). The parameter setting is the same as Adam, where α is 0.001, β1 is 0.9, and β2 is 0.999.
The epsilon ε is 1 × 10−8.

The general updating rule for weights in AMSGrad:

θt+1 = θt −
α√

v̂t + ε
×mt (12)

Calculating the EMA indicator of gradients:

mt = β1 ×mt−1 + (1− β1)× gt (13)

Calculating the EMA indicator of square gradients:

vt = β2 × vt−1 + (1− β2)× g2
t (14)

Taking the maximum operation for the denominator:

v̂t = max(vt−1, vt) (15)

2.7. AdaBound

AMSGrad designed a strategy of non-increasing learning rates to tackle extreme
learning rate problems. However, recent work has pointed out AMSGrad does not show
evident improvement over Adam [21]. Luo et al. [20] speculate that Adam’s extremely
large and small learning rates are likely to account for weak generalization ability. To this
end, they proposed AdaBound which implemented a gradual transformation from Adam
to SGD (M) by employing dynamic bounds to clip extreme ones. However, AdaBound
only tackles the extreme learning rates at the end. AdaBound is described in the following
Equations (16) to (23).

The general updating rule for weights in AdaBound:

θt+1 = θt − η̂t × m̂t (16)

Calculating the EMA indicator of gradients:

mt = β1 ×mt−1 + (1− β1)× gt (17)

Calculating the bias correction for EMA indicator of gradient:

m̂t =
mt

1− βt
1

(18)

Appl. Sci. 2022, 12, 9389 6 of 16

Calculating the EMA predictor of square gradient:

vt = β2 × vt−1 + (1− β2)× g2
t (19)

Calculating the bias correction for EMA predictor of square gradient:

v̂t =
vt

1− βt
2

(20)

Setting the lower bound function for Adam:

ηl = f inal_lr× (1− 1
(1− γ)× t + 1

) (21)

Setting the upper bound function for Adam:

ηu = f inal_lr× (1 +
1

(1− γ)× t
) (22)

Constraining the learning rates of Adam in these two bounds:

η̂t = Clip(
α√

v̂t + ε
, ηl , ηu) (23)

where the ηl is the lower bound and ηu is the upper bound, and f inal_lr is considered as
a global constant learning rate to the end. The value γ controls the transition speed from
Adam to SGD (M). The authors do the grid search on these two parameters, and they are
not sensitive to accuracy. The γ and the f inal_lr are given to 0.999 and 0.1 for all tasks,
respectively. The rest of the parameters are the same as Adam, which mention in the last
Section 2.5. In this setting, the bound range is empirically hand-designed without data
information, which is an exhausting way. As a result, it is unknown whether bounds of
AdaBound can properly truncate the unreasonable learning rates, because the unreasonable
learning rates of a certain task are not state clearly. Intuitively, AdaBound uses the same
bounds for all tasks because parameters are not sensitive, which may hurt the generalization
performance of the algorithm [23].

2.8. Differences and Similarities between Algorithms

The algorithms described above are considered the adaptive version of SGD because
some terms or techniques are mutually used. The general updating rules of them can be
described in the following Equation (24).

θt+1 = θt − learning_rate× gradient (24)

Most algorithms can be described as a uniquely used combination of a small number
of building blocks in Equations (25) to (28), and they vary in some terms, as shown in
Table 1.

Appl. Sci. 2022, 12, 9389 7 of 16

Table 1. Differences and similarities between gradient descent algorithms.

Algorithm Learning_Rate Gradient

SGD 0.001, 0.01, 0.1 gt

AdaGrad 0.001√
∑t

1 g2
t +ε

gt

RMSProp 0.001√
vt+ε

gt

Adam 0.001√
v̂t+ε

m̂t

AMSGrad 0.001√
max(vt ,vt−1)+ε

mt

AdaBound Clip(α√
v̂t+ε

, ηl , ηu) m̂t

Calculating the EMA indicator of gradient:

mt = β1 ×mt−1 + (1− β1)× gt (25)

Calculating the EMA indicator of square gradient:

vt = β2 × vt−1 + (1− β2)× g2
t (26)

Calculating the bias correction for EMA indicator of gradient:

m̂t =
mt

1− βt
1

(27)

Calculating the bias correction for EMA indicator of square gradient:

v̂t =
vt

1− βt
2

(28)

3. Proposed Algorithm

Inspired by Adam and Adabound, we propose a new optimizer with convergence
range-bound named AdaCB. Firstly, the convergence range of Adam for a particular task is
specified by the learning rate range test (LR test). Secondly, two bound functions named
upper bound and lower bound are designed to clip the learning rates of Adam in this
convergence range. The upper bound starts from the maximum value of the convergence
range and approaches the global fixed learning rate asymptotically; the lower bound starts
from zero value and approaches the global fixed learning rate asymptotically. In this setting,
AdaCB behaves like Adam in the early stage and gradually transforms to SGD in the end,
thus, extreme learning rates are considered during the whole stage because the bounds are
specified.

3.1. Specify the Convergence Range for Adam

LR test is a helpful way to determine the reasonable convergence range of learning
rate for a new model or dataset. LR test wraps the update part of an optimizer to train
a model for several epochs and makes the learning rate gradually increase from small to
large ones, then the acceptable range learning rate can be approximately estimated by the
curve of the loss function. When the loss keeps decreasing, it means the current learning
rate is acceptable, when the loss starts rising, it means the current learning rate is the proper
largest learning rate the model can be converged.

Adam automatically adjusts the learning rates for different parameters by the formula
α√

v̂t+ε
, which is always changed during training. We wrap the update part of Adam into

the LR test as an individual value and make the value increase from small to large. When
the loss starts rising, this current learning rate can be considered the maximum learning
rate at which the model can be converged. The global fixed learning rate can be considered

Appl. Sci. 2022, 12, 9389 8 of 16

as the proper learning rate that the model can be converged stably. A global fixed learning
rate is recommended as the common SGD (M) learning rate in which one order lower than
the learning rate where loss is minimum [26].

For example, we use the Smallnet [27] architecture to perform the LR test wrapped
with Adam on the CIFAR10 dataset [30] and generate the curve of the loss function, which
is shown in the following Figure 1. As we can see in Figure 1, the loss starts increasing
when the current learning is approximately 0.5, so 0.5 is considered the maximum value
that this particular task can be converged. The SGD (M) learning rate is commonly chosen
from {0.1, 0.01, 0.001} [34,35], according to principle of choosing a global fixed learning
rate [26], the global fixed value can be 0.01.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 17

thus, extreme learning rates are considered during the whole stage because the bounds are

specified.

3.1. Specify the Convergence Range for Adam

LR test is a helpful way to determine the reasonable convergence range of learning

rate for a new model or dataset. LR test wraps the update part of an optimizer to train a

model for several epochs and makes the learning rate gradually increase from small to

large ones, then the acceptable range learning rate can be approximately estimated by the

curve of the loss function. When the loss keeps decreasing, it means the current learning

rate is acceptable, when the loss starts rising, it means the current learning rate is the

proper largest learning rate the model can be converged.

Adam automatically adjusts the learning rates for different parameters by the for-

mula
ˆ

t

α

v +ε
, which is always changed during training. We wrap the update part of

Adam into the LR test as an individual value and make the value increase from small to

large. When the loss starts rising, this current learning rate can be considered the maxi-

mum learning rate at which the model can be converged. The global fixed learning rate

can be considered as the proper learning rate that the model can be converged stably. A

global fixed learning rate is recommended as the common SGD (M) learning rate in

which one order lower than the learning rate where loss is minimum [26].

For example, we use the Smallnet [27] architecture to perform the LR test wrapped

with Adam on the CIFAR10 dataset [30] and generate the curve of the loss function,

which is shown in the following Figure 1. As we can see in Figure 1, the loss starts in-

creasing when the current learning is approximately 0.5, so 0.5 is considered the maxi-

mum value that this particular task can be converged. The SGD (M) learning rate is

commonly chosen from {0.1, 0.01, 0.001} [34,35], according to principle of choosing a

global fixed learning rate [26], the global fixed value can be 0.01.

Figure 1. The curve of loss functions by learning rate range test on the CIFAR10 dataset (Smallnet).

The x-axis is learning rate, and the y-axis is training loss.

3.2. Design the Bound Functions

Similar to AdaBound, the clipping operation clip is employed on a reasonable

learning rate range of Adam obtained by the above Section 3.1, which can be demon-

strated in the following Equation (29).
ˆ

t

α

v + ε
 is donated as the learning rates of Adam,

Figure 1. The curve of loss functions by learning rate range test on the CIFAR10 dataset (Smallnet).
The x-axis is learning rate, and the y-axis is training loss.

3.2. Design the Bound Functions

Similar to AdaBound, the clipping operation clip is employed on a reasonable learning
rate range of Adam obtained by the above Section 3.1, which can be demonstrated in the
following Equation (29). α√

v̂t+ε
is donated as the learning rates of Adam, ηl is the lower

bound function that starts from 0 to and gradually approaches the global fixed learning rate,
and ηu is the upper bound function that starts from the maximum value of convergence
range to the global fixed learning rate.

Clipping the learning rates of Adam in convergence range:

Clip(
α√

v̂t + ε
, ηl , ηu) (29)

3.2.1. The Design of Upper Bound

The linear and exponential properties are the common and widely used mechanisms
to solve some mathematical problems in practical [36–40]. To tackle the extreme learning
rates of Adam during whole training and achieve a smooth transformation from Adam
to SGD, the upper bound is designed to be an asymptotical function from the maximum
value of convergence range to the global fixed value. In this section, we define the two toy
functions for the upper bound ηu, which can be linear and exponential according to basic
math definitions [41]. The upper bound functions are shown in the following Equations
(30) and (31).

Linear asymptotic of upper bound:

ηu = maxlr − (maxlr − glolr)×Minimum
(

t
T ×M

, 1
)

(30)

Appl. Sci. 2022, 12, 9389 9 of 16

Exponential asymptotic of upper bound:

ηu = maxlr ×
(

glolr
maxlr

)Minimum(t
T×M ,1)

(31)

where the maxlr is the largest learning rate that a task can be converged, the glolr is the
global fixed learning rate that a task can be converged stably, the T is the total training step
of a particular task, and t is the current step, M is the certain moment that Adam completely
transforms to SGD, and Minimum is the clipping operation to take the minimum value 1 to
avoid the range explosion. For the explanation of M, when the M is defined as 0.5, it takes
50 percent of training time to complete the asymptotical process from the largest learning
rate to the global fixed learning rate. By this design principle, the upper bound can start
from the largest learning rate of the convergence range and gradually approach the fixed
learning rate at a certain moment, then ηu = glolr.

3.2.2. The Design of Lower Bound

For the lower bound, we design an asymptotical function that starts from zero and
gradually approaches the upper bound. However, the upper bound gradually approaches
a global fixed value, so the lower bound gradually approaches a global fixed value too. As
a result, the lower bound depends on the upper bound, which varies for a particular task
that enhances the flexibility of the range. Regarding the exponential design principle [41],
the initial value and denominator cannot be zero. Therefore, in this section, we only define
the linear function for the lower bound ηl , which is shown in Equation (32).

Linear asymptotic of lower bound:

ηl = Minimum
(

t
T ×M

, 1
)
× ηu (32)

where t is the current training step and T is the total training step, M is the moment that
Adam completely transforms to SGD (M), and Minimum is the clipping operation to take
the minimum value 1 to avoid the range explosion. By this design principle, the lower
bound can start from zero value and gradually approach a global fixed value at a certain
moment, then ηl = ηu = glolr.

3.3. Algorithm Overview for AdaCB

Based on the above analysis, this subsection demonstrates our proposed algorithm
named AdaCB, which considers tackling the extreme learning rates during the whole
training stage using specified bounds. The details of AdaCB are illustrated in Algorithm 1.
The maxlr and glolr can be found by the LR test mentioned in the last Section 3.1. The T
is the total training step, which is automatically calculated by (SampleSize/BatchSize) ∗
Epoch. The M is a certain moment when Adam completely transforms into SGD (M). For
example, if we set it M = 0.5, it takes 50 percent of the total training time to complete the
transformation between Adam and SGD (M). The β1, β2 and α are initial parameters of
Adam. The clip is the constraint operation in a range and the ηl and ηu are bound functions
designed in the last Sections 3.2.1 and 3.2.2.

In this setting, the AdaCB behaves like Adam in the early stage, and it gradually
becomes SGD (M) in the end as two bounds tend to a fixed value. Additionally, the
extreme learning rates are tackled during whole training because the bound ranges are
specified particularly.

Appl. Sci. 2022, 12, 9389 10 of 16

Algorithm 1 AdaCB

Parameters: maxlr, glolr, T, M (parameters of our proposed algorithm)
Initialize: β1 = 0.9, β2 = 0.999, α = 0.001 (initial parameters for Adam)
1:set m0 = 0, v0 = 0, t = 0
2:for t = 0 to T do
3: gt = ∇ ft(xt) (calculating the gradients)
4: mt = β1 ×mt−1 + (1− β1)× gt (calculating EMA indicator of gradients)
5: m̂t =

mt
1−βt

1
(calculating bias correction of EMA indicator of gradients)

6: vt = β2 × vt−1 + (1− β2)× g2
t (calculating EMA indicator of square gradients)

7: v̂t =
vt

1−βt
2

(calculating bias correction of EMA indicator of square gradients)

6: η̂t = Clip(α√
v̂t+ε

, ηl , ηu) (clipping the learning rates in the convergence range)

8: θt+1 = θt − η̂t × m̂t (updating the weights)
9:ends for

4. Experiments

In this section, we validate our optimizer AdaCB on the image classification task
and compare it to the other three state-of-the-art optimizers, including SGD (M), Adam,
and AdaBound. The details of the optimizers are presented in previous Section 2. All
the experiments are implemented using Keras with the backend support of Tensorflow,
while GeForce GTX 1060 6 GB GPU is utilized to accelerate the computations. Three CNN
architectures with various depths and widths are used respectively to train on CIFAR10
and CIFAR100 datasets in a total of 100 epochs, which include Smallnet [27], Network
IN Network [28], and 18 layers of Resnet [29]. The batch size is set to 128. We report the
average accuracy over five runs for each optimizer across different CNN architectures and
datasets.

Data augmentation is a popular regularization technique used to expand the dataset
size. However, it is difficult to isolate the impact of the data augmentation from the
methodology [42,43]. To exclude complex data expansion that affected the final results, we
only divide the original images by 255, and no data augmentation is used. Please note that
we are only testing the performance of the optimizers, and we are not testing the effect of
the regularization technique.

4.1. Hyper Parameter Tuning

The setting of hyper parameters has a great impact on the performance of the opti-
mization algorithm. Here we describe how we adjust them. We follow Luo et.al. [20] and
implement a logarithmical grid search on a large space of learning rate for SGD (M) and
take the best results. We set the recommended parameters for another adaptive gradient
method. The hyper parameters of each algorithm are adjusted and summarized as follows:

• SGD (M): we roughly tune the learning rate for SGD (M) on a logarithmic scale from
{10, 1, 0.1, 0.01, 0.001} and then fine-tune it. We set the momentum parameter to
the default value of 0.9. As a result, we set the learning rate of SGD (M) as 0.01 for
CIFAR10 and CIFAR100 under Smallnet, Network IN Network, respectively; and 0.1
as the learning rate for CIFAR10 and CIFAR100 under Resnet18.

• Adam: we set the recommended parameters for Adam, where α = 0.001, β1 = 0.9,
β2 = 0.999.

• AdaBound: we set the recommended parameters for AdaBound, where α = 0.001,
β1 = 0.9, β2 = 0.999, f inal_lr = 0.1, and γ = 0.999.

• AdaCB: We use the same hyper parameter settings for Adam. The maxlr and glolr
are determined by the LR test, which is mentioned in Section 3.1. As a result, we set
the maxlr = 0.5 and the glolr = 0.01 on CIFAR10 and CIFAR100 under Smallnet; we
set the maxlr = 0.9 and glolr = 0.01 on CIFAR10 and CIFAR100 under Network IN
Network; we set the maxlr = 5 and glolr = 0.1 on CIFAR10 and CIFAR100 under
Resnet18. The total training step is (SampleSize/BatchSize) ∗ Epoch. For more, we

Appl. Sci. 2022, 12, 9389 11 of 16

will conduct an empirical study to obtain the proper value for transformation speed
and asymptotical behavior of the bound function.

4.2. Empirical Study on Behaviors of Bound Function and Transformation Speed

In the previous Section 3.2.1, we propose a linear and exponential asymptotic function
for the upper bound and a parameter for transformation speed. To investigate the proper
behaviors of bound function and transformation speed M, we conduct a quick analysis
with the Smallnet on CIFAR10 dataset, in which the moment M is chosen in {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The results are shown in Table 2. The experiment results show
that linear behavior is better than exponential behavior intuitively, and the best result is
obtained when M = 0.6. For the sake of clarifying, we use linear behavior for the upper
bound function and M = 0.6 in the rest of the experiments.

Table 2. AdCB with different asymptotic behavior and transformation speed.

M 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Linear 0.7966 0.8189 0.8162 0.8233 0.8274 0.8299 0.8243 0.8262 0.8295 0.8272
exponential 0.7849 0.8006 0.8144 0.8220 0.8243 0.8191 0.8217 0.8254 0.8247 0.8281

Note: The best accuracy with proper asymptotic behavior and transformation speed is in bold.

4.3. Results of Smallnet on CIFAR10 and CIFAR100

Figures 2 and 3 show the learning curve of testing accuracy for each gradient descent
method on CIFAR10 and CIFAR100 under Smallnet architecture. We find that Adam
has a faster convergence speed in the early stage, but it finally produces the worst test
accuracy. Despite of slow convergence speed for SGD (M) in the early stage, SGD (M)
gradually outperforms Adam and AdaBound with increasing training steps. AdaBound
has a comparable convergence speed with SGD (M), but the testing accuracy is worse than
SGD (M). Our proposed algorithm has a comparable convergence speed with Adam, and
it achieves the highest testing accuracy. The detail of testing accuracy for each optimizer
on CIFAR10 and CIFAR100 under Smallnet architecture is shown in Table 3. According to
Table 3, AdaCB achieves the best accuracy over five runs, followed by SGD (M), AdaBound,
and Adam.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17

a faster convergence speed in the early stage, but it finally produces the worst test accu-

racy. Despite of slow convergence speed for SGD (M) in the early stage, SGD (M) gradu-

ally outperforms Adam and AdaBound with increasing training steps. AdaBound has a

comparable convergence speed with SGD (M), but the testing accuracy is worse than

SGD (M). Our proposed algorithm has a comparable convergence speed with Adam, and

it achieves the highest testing accuracy. The detail of testing accuracy for each optimizer

on CIFAR10 and CIFAR100 under Smallnet architecture is shown in Table 3. According

to Table 3, AdaCB achieves the best accuracy over five runs, followed by SGD (M),

AdaBound, and Adam.

Table 3. The performance of optimizers on cifar10 and cifar100 under smallnet.

Optimizer CIFAR10 CIFAR100

AdaBound 82.39% ± 0.13% 52.44% ± 0.3%

AdaCB 82.76% ± 0.23% 53.29% ± 0.19%

Adam 81.95% ± 0.37% 51.35% ± 0.28%

SGD(M) 82.47% ± 0.24% 52.76% ± 0.16%

Note: The best accuracy on cifar10 and cifar100 under smallnet is in bold.

Figure 2. The learning curve of testing accuracy on CIFAR10 under Smallnet.

Figure 3. The learning curve of testing accuracy on CIFAR100 under Smallnet.

Figure 2. The learning curve of testing accuracy on CIFAR10 under Smallnet.

Appl. Sci. 2022, 12, 9389 12 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 17

a faster convergence speed in the early stage, but it finally produces the worst test accu-

racy. Despite of slow convergence speed for SGD (M) in the early stage, SGD (M) gradu-

ally outperforms Adam and AdaBound with increasing training steps. AdaBound has a

comparable convergence speed with SGD (M), but the testing accuracy is worse than

SGD (M). Our proposed algorithm has a comparable convergence speed with Adam, and

it achieves the highest testing accuracy. The detail of testing accuracy for each optimizer

on CIFAR10 and CIFAR100 under Smallnet architecture is shown in Table 3. According

to Table 3, AdaCB achieves the best accuracy over five runs, followed by SGD (M),

AdaBound, and Adam.

Table 3. The performance of optimizers on cifar10 and cifar100 under smallnet.

Optimizer CIFAR10 CIFAR100

AdaBound 82.39% ± 0.13% 52.44% ± 0.3%

AdaCB 82.76% ± 0.23% 53.29% ± 0.19%

Adam 81.95% ± 0.37% 51.35% ± 0.28%

SGD(M) 82.47% ± 0.24% 52.76% ± 0.16%

Note: The best accuracy on cifar10 and cifar100 under smallnet is in bold.

Figure 2. The learning curve of testing accuracy on CIFAR10 under Smallnet.

Figure 3. The learning curve of testing accuracy on CIFAR100 under Smallnet. Figure 3. The learning curve of testing accuracy on CIFAR100 under Smallnet.

Table 3. The performance of optimizers on cifar10 and cifar100 under smallnet.

Optimizer CIFAR10 CIFAR100

AdaBound 82.39% ± 0.13% 52.44% ± 0.3%
AdaCB 82.76% ± 0.23% 53.29% ± 0.19%
Adam 81.95% ± 0.37% 51.35% ± 0.28%

SGD(M) 82.47% ± 0.24% 52.76% ± 0.16%
Note: The best accuracy on cifar10 and cifar100 under smallnet is in bold.

4.4. Results of Network in Network on CIFAR10 and CIFAR100

As we can see in Figure 4, AdaBound has the worst convergence speed in the early
stage and produces the worst testing accuracy on CIFAR10 under Network IN Network
architecture. SGD (M) has a better convergence speed than AdaBound, and it finally beat
AdaBound and Adam. AdaCB is as faster as Adam in the early stage and achieves the
highest testing accuracy in the end. From Figure 5, we can find that Adam has the fastest
convergence speed in the early stage and the worst testing accuracy in the end. AdaCB is
second only to Adam in convergence speed in the early stage, and it finally achieves the
best testing accuracy on CIFAR100 under Network IN Network architecture. Adabound
has a comparable convergence speed with SGD (M) before 20 epochs, and SGD (M) wins
Adabound eventually. Table 4 demonstrates the performance of each optimizer on CIFAR10
and CIFAR100 under Network IN Network.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17

4.4. Results of Network in Network on CIFAR10 and CIFAR100

As we can see in Figure 4, AdaBound has the worst convergence speed in the early

stage and produces the worst testing accuracy on CIFAR10 under Network IN Network

architecture. SGD (M) has a better convergence speed than AdaBound, and it finally beat

AdaBound and Adam. AdaCB is as faster as Adam in the early stage and achieves the

highest testing accuracy in the end. From Figure 5, we can find that Adam has the fastest

convergence speed in the early stage and the worst testing accuracy in the end. AdaCB is

second only to Adam in convergence speed in the early stage, and it finally achieves the

best testing accuracy on CIFAR100 under Network IN Network architecture. Adabound

has a comparable convergence speed with SGD (M) before 20 epochs, and SGD (M) wins

Adabound eventually. Table 4 demonstrates the performance of each optimizer on

CIFAR10 and CIFAR100 under Network IN Network.

Table 4. The performance of optimizers on cifar10 and cifar100 under NIN.

Optimizer CIFAR10 CIFAR100

AdaBound 84.32% ± 0.34% 58.31% ± 0.36%

AdaCB 86.24% ± 0.22% 60.19% ± 0.25%

Adam 84.55% ± 0.37% 56.41% ± 0.47%

SGD(M) 85.74% ± 0.26% 58.86% ± 0.6%

Note: The best accuracy on cifar10 and cifar100 under NIN is in bold.

Figure 4. The learning curve of testing accuracy on CIFAR10 under NIN. Figure 4. The learning curve of testing accuracy on CIFAR10 under NIN.

Appl. Sci. 2022, 12, 9389 13 of 16Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

Figure 5. The learning curve of testing accuracy on CIFAR100 under NIN.

4.5. Results of Resnet18 on CIFAR10 and CIFAR100

As we can see in Figures 6 and 7, the testing accuracy of Adam is fluctuating on

CIFAR10 and CIFAR100 under Resnet18 architecture. Adabound produces a smooth curve

of testing accuracy, but its testing accuracy is the worst. AdaCB achieves the best testing ac-

curacy, followed by SGD (M), Adam, and AdaBound. The results are shown in Table 5.

Table 5. The performance of optimizers on cifar10 and cifar100 under Resnet18.

Optimizer CIFAR10 CIFAR100

AdaBound 78.72% ± 0.4% 48.53% ± 1%

AdaCB 83.24% ± 0.29% 55.04% ± 0.4%

Adam 82.32% ± 0.51% 51.54% ± 0.16%

SGD(M) 82.42% ± 0.73% 51.97% ± 0.54%

Note: The best accuracy on cifar10 and cifar100 under Resnet18 is in bold.

Figure 6. The learning curve of testing accuracy on CIFAR10 under Resnet18.

Figure 5. The learning curve of testing accuracy on CIFAR100 under NIN.

Table 4. The performance of optimizers on cifar10 and cifar100 under NIN.

Optimizer CIFAR10 CIFAR100

AdaBound 84.32% ± 0.34% 58.31% ± 0.36%
AdaCB 86.24%± 0.22% 60.19%± 0.25%
Adam 84.55% ± 0.37% 56.41% ± 0.47%

SGD(M) 85.74% ± 0.26% 58.86% ± 0.6%
Note: The best accuracy on cifar10 and cifar100 under NIN is in bold.

4.5. Results of Resnet18 on CIFAR10 and CIFAR100

As we can see in Figures 6 and 7, the testing accuracy of Adam is fluctuating on
CIFAR10 and CIFAR100 under Resnet18 architecture. Adabound produces a smooth curve
of testing accuracy, but its testing accuracy is the worst. AdaCB achieves the best testing
accuracy, followed by SGD (M), Adam, and AdaBound. The results are shown in Table 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17

Figure 5. The learning curve of testing accuracy on CIFAR100 under NIN.

4.5. Results of Resnet18 on CIFAR10 and CIFAR100

As we can see in Figures 6 and 7, the testing accuracy of Adam is fluctuating on

CIFAR10 and CIFAR100 under Resnet18 architecture. Adabound produces a smooth curve

of testing accuracy, but its testing accuracy is the worst. AdaCB achieves the best testing ac-

curacy, followed by SGD (M), Adam, and AdaBound. The results are shown in Table 5.

Table 5. The performance of optimizers on cifar10 and cifar100 under Resnet18.

Optimizer CIFAR10 CIFAR100

AdaBound 78.72% ± 0.4% 48.53% ± 1%

AdaCB 83.24% ± 0.29% 55.04% ± 0.4%

Adam 82.32% ± 0.51% 51.54% ± 0.16%

SGD(M) 82.42% ± 0.73% 51.97% ± 0.54%

Note: The best accuracy on cifar10 and cifar100 under Resnet18 is in bold.

Figure 6. The learning curve of testing accuracy on CIFAR10 under Resnet18. Figure 6. The learning curve of testing accuracy on CIFAR10 under Resnet18.

Appl. Sci. 2022, 12, 9389 14 of 16Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 17

Figure 7. The learning curve of testing accuracy on CIFAR100 under Resnet18.

5. Discussion

The experimental outcomes obtained from the last section have shown that AdaCB

outperformed the other optimizers. Compared to Adam, our proposed method employs

the two bounds to clip the learning rates of Adam, so the effect of unreasonable learning

rates is alleviated during training. Additionally, compared to AdaBound, the bound

functions of our method are designed based on reasonable convergence range obtained

by the LR test instead of empirically hand designed, which can accurately truncate the

unreasonable learning rates for a certain task. Moreover, our proposed method is faster

than SGD (M) with convergence speed, because our method generates the feature of

adaptive learning rates in the early stage. AdaCB integrates both advantages of the

adaptive gradient descent method and SGD (M), which can behave like Adam in the

early stage with faster convergence speed and become SGD (M) in the end with consid-

erable accuracy. However, our method also has shortcomings. Our method relies on the

LR test to pre-specify the convergence bound range, which takes a bit of time to train the

current task with a few epochs to calculate the starting point and end point of the con-

vergence range. In future work, we will investigate to determine the convergence bound

range adaptively rather than pre-specify with the LR test, so more time can be saved.

6. Conclusions

In this paper, we proposed a new optimizer called AdaCB, which employs the con-

vergence range bound on their effective learning rates. We compare our proposed

method with Adam, AdaBound, and SGD (M) on CIFAR 10 and CIFAR 100 datasets

across Smallnet, Network IN Network, and Resent. The outcomes indicate that our

method outperforms other optimizers on CIFAR10 and CIFAR100 datasets with accura-

cies of (82.76%, 53.29%), (86.24%, 60.19%), and (83.24%, 55.04%) on Smallnet, Network

IN Network and Resnet, respectively. Moreover, the proposed optimizer enjoys the

convergence speed of Adam and generates considerable results like SGD (M).

Author Contributions: Conceptualization, X.L.; methodology, X.L.; software, X.L.; validation, X.L.,

S.S., A.A., and S.A.S.; formal analysis, X.L., S.S., A.A., and S.A.S.; investigation, X.L., S.S., A.A., and

S.A.S.; resources, X.L., S.S., A.A., and S.A.S.; data curation, X.L., S.S., A.A., and S.A.S. All authors

have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia (UKM), grant nos.

GPK-4IR-2020-022 and TAP-K008010.

Figure 7. The learning curve of testing accuracy on CIFAR100 under Resnet18.

Table 5. The performance of optimizers on cifar10 and cifar100 under Resnet18.

Optimizer CIFAR10 CIFAR100

AdaBound 78.72% ± 0.4% 48.53% ± 1%
AdaCB 83.24%± 0.29% 55.04%± 0.4%
Adam 82.32% ± 0.51% 51.54% ± 0.16%

SGD(M) 82.42% ± 0.73% 51.97% ± 0.54%
Note: The best accuracy on cifar10 and cifar100 under Resnet18 is in bold.

5. Discussion

The experimental outcomes obtained from the last section have shown that AdaCB
outperformed the other optimizers. Compared to Adam, our proposed method employs
the two bounds to clip the learning rates of Adam, so the effect of unreasonable learning
rates is alleviated during training. Additionally, compared to AdaBound, the bound
functions of our method are designed based on reasonable convergence range obtained
by the LR test instead of empirically hand designed, which can accurately truncate the
unreasonable learning rates for a certain task. Moreover, our proposed method is faster than
SGD (M) with convergence speed, because our method generates the feature of adaptive
learning rates in the early stage. AdaCB integrates both advantages of the adaptive gradient
descent method and SGD (M), which can behave like Adam in the early stage with faster
convergence speed and become SGD (M) in the end with considerable accuracy. However,
our method also has shortcomings. Our method relies on the LR test to pre-specify the
convergence bound range, which takes a bit of time to train the current task with a few
epochs to calculate the starting point and end point of the convergence range. In future
work, we will investigate to determine the convergence bound range adaptively rather
than pre-specify with the LR test, so more time can be saved.

6. Conclusions

In this paper, we proposed a new optimizer called AdaCB, which employs the con-
vergence range bound on their effective learning rates. We compare our proposed method
with Adam, AdaBound, and SGD (M) on CIFAR 10 and CIFAR 100 datasets across Smallnet,
Network IN Network, and Resent. The outcomes indicate that our method outperforms
other optimizers on CIFAR10 and CIFAR100 datasets with accuracies of (82.76%, 53.29%),
(86.24%, 60.19%), and (83.24%, 55.04%) on Smallnet, Network IN Network and Resnet,
respectively. Moreover, the proposed optimizer enjoys the convergence speed of Adam and
generates considerable results like SGD (M).

Appl. Sci. 2022, 12, 9389 15 of 16

Author Contributions: Conceptualization, X.L.; methodology, X.L.; software, X.L.; validation, X.L.,
S.S., A.A., and S.A.S.; formal analysis, X.L., S.S., A.A., and S.A.S.; investigation, X.L., S.S., A.A., and
S.A.S.; resources, X.L., S.S., A.A., and S.A.S.; data curation, X.L., S.S., A.A., and S.A.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Universiti Kebangsaan Malaysia (UKM), grant nos. GPK-4IR-
2020-022 and TAP-K008010.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The selected dataset in this study is available on this link: https:
//www.cs.toronto.edu/~kriz/cifar.html (accessed on 20 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, C.; Zhang, X.; Sun, J.; Wang, L. Remote Sensing Scene Image Classification Based on Self-Compensating Convolution Neural

Network. Remote Sens. 2022, 14, 545. [CrossRef]
2. Ye, A.; Zhou, X.; Miao, F. Innovative Hyperspectral Image Classification Approach Using Optimized CNN and ELM. Electronics

2022, 11, 775. [CrossRef]
3. Bansal, M.; Kumar, M.; Sachdeva, M.; Mittal, A. Transfer learning for image classification using VGG19: Caltech-101 image data

set. J. Ambient Intell. Humaniz. Comput. 2021, 12, 1–12. [CrossRef] [PubMed]
4. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

5. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
6. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.

2019, 30, 3212–3232. [CrossRef]
7. Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA implementation for CNN-based optical remote sensing object detection. Electronics

2021, 10, 282. [CrossRef]
8. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
9. Ding, J.; Ren, X.; Luo, R.; Sun, X. An adaptive and momental bound method for stochastic learning. arXiv 2019, arXiv:1910.12249.
10. Gupta, N.; Gupta, S.K.; Pathak, R.K.; Jain, V.; Rashidi, P.; Suri, J.S. Human activity recognition in artificial intelligence framework:

A narrative review. Artif. Intell. Rev. 2022, 55, 4755–4808. [CrossRef]
11. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.

2011, 12, 2121–2159.
12. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA

Neural Netw. Mach. Learn. 2012, 4, 26–31.
13. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.
14. NIST/Sematech Engineering Statistics Handbook. National Institute of Standards and Technology. 2001. Available online:

https://www.itl.nist.gov/div898/handbook (accessed on 12 June 2022).
15. Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning.

In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
16. Sinha, N.; Karjee, P.; Agrawal, R.; Banerjee, A.; Pradhan, C. COVID-19 Recommendation System of Chest X-Ray Images Using

CNN Deep Learning Technique with Optimizers and Activation Functions. In Studies in Computational Intelligence; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 963. [CrossRef]

17. Chen, L.; Bei, L.; An, Y.; Zhang, K.; Cui, P. A Hyperparameters automatic optimization method of time graph convolution network
model for traffic prediction. Wirel. Netw. 2021, 27, 4411–4419. [CrossRef]

18. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and beyond. In Proceedings of the 6th International Conference on
Learning Representations, ICLR 2018—Conference Track Proceedings, Vancouver, BC, Canada, 30 April–3 May 2018.

19. Shazeer, N.; Stern, M. Adafactor: Adaptive learning rates with sublinear memory cost. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 10–15 July 2018.

20. Luo, L.; Xiong, Y.; Liu, Y.; Sun, X. Adaptive gradient methods with dynamic bound of learning rate. arXiv 2019, arXiv:1902.09843.
21. Chen, X.; Liu, S.; Sun, R.; Hong, M. On the convergence of a class of Adam-type algorithms for non-convex optimization. In

Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019.
22. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International

Conference on Machine Learning, ICML 2013, New Orleans, LA, USA, 6–9 May 2013.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://doi.org/10.3390/rs14030545
http://doi.org/10.3390/electronics11050775
http://doi.org/10.1007/s12652-021-03488-z
http://www.ncbi.nlm.nih.gov/pubmed/34548886
http://doi.org/10.1109/CVPR.2016.91
http://doi.org/10.1109/TNNLS.2018.2876865
http://doi.org/10.3390/electronics10030282
http://doi.org/10.1214/aoms/1177729586
http://doi.org/10.1007/s10462-021-10116-x
https://www.itl.nist.gov/div898/handbook
http://doi.org/10.1007/978-3-030-74761-9_7
http://doi.org/10.1007/s11276-021-02672-5

Appl. Sci. 2022, 12, 9389 16 of 16

23. Savarese, P.; McAllester, D.; Babu, S.; Maire, M. Domain-independent dominance of adaptive methods. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021. [CrossRef]

24. Savarese, P. On the Convergence of AdaBound and its Connection to SGD. arXiv 2019, arXiv:1908.04457.
25. Bengio, Y. Practical recommendations for gradient-based training of deep architectures. Neural Netw. Tricks Trade 2012, 7700,

437–478. [CrossRef]
26. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, 24–31 March 2017. [CrossRef]
27. Qiu, S.; Xu, X.; Cai, B. FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks. In Proceedings of

the International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; Volume 2018-August. [CrossRef]
28. Lin, M.; Chen, Q.; Yan, S. Network in network. In Proceedings of the 2nd International Conference on Learning Representations,

Banff, AB, Canada, 14–16 April 2014; pp. 1–10.
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognitio, Las Vegas, NV, USA, 26 June–1 July 2016; Volume 2016-December.
[CrossRef]

30. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical report; Science Department, University of Toronto:
Toronto, ON, Canada, 2009.

31. Dogo, E.M.; Afolabi, O.J.; Nwulu, N.I.; Twala, B.; Aigbavboa, C.O. A Comparative Analysis of Gradient Descent-Based
Optimization Algorithms on Convolutional Neural Networks. In Proceedings of the International Conference on Computational
Techniques, Electronics and Mechanical Systems, Belgaum, India, 21–22 December 2018. [CrossRef]

32. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17.
[CrossRef]

33. Bharanidharan, N.; Rajaguru, H. Dementia MRI image classification using transformation technique based on elephant herding
optimization with Randomized Adam method for updating the hyper-parameters. Int. J. Imaging Syst. Technol. 2020, 31,
1221–1245. [CrossRef]

34. Yang, X. Kalman optimizer for consistent gradient descent. In Proceedings of the ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing—Proceedings, Toronto, ON, Canada, 6–11 June 2021; Volume 2021-June. [CrossRef]

35. Li, J.; Yang, X. A Cyclical Learning Rate Method in Deep Learning Training. In Proceedings of the 2020 International Conference
on Computer, Information and Telecommunication Systems, Hangzhou, China, 5–7 October 2020. [CrossRef]

36. Alagic, M.; Palenz, D. Teachers Explore Linear and Exponential Growth: Spreadsheets as Cognitive Tools. J. Technol. Teach. Educ.
2006, 14, 633–649.

37. Gohivar, R.K.; Yadav, S.K.; Koirala, R.P.; Adhikari, D. Study of artifacts in thermodynamic and structural properties of Li–Mg
alloy in liquid state using linear and exponential models. Heliyon 2021, 7, e06613. [CrossRef]

38. Khan, M.F.; Hasan, M.G.; Quddoos, A.; Fügenschuh, A.; Hasan, S.S. Goal programming models with linear and exponential
fuzzy preference relations. Symmetry 2020, 12, 934. [CrossRef]

39. Kumar, R.S.V.; Kumar, R.N.; Sowmya, G.; Prasannakumara, B.C.; Sarris, I.E. Exploration of Temperature Distribution through a
Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade
Approximant. Symmetry 2022, 14, 690. [CrossRef]

40. Oguejiofor, G.C. Modeling of linear and exponential growth and decay equations and testing them on pre- and post-war-coal
production in nigeria: An operations research approach. Energy Sources Part B Econ. Plan. Policy 2010, 5, 116–125. [CrossRef]

41. Inigo, M.; Jameson, J. College Mathematics for Everyday. Available online: https://math.libretexts.org/Bookshelves/Applied_
Mathematics/Book%3A_College_Mathematics_for_Everyday_Life_(Inigo_et_al) (accessed on 28 May 2022).

42. Hou, S.; Liu, X.; Wang, Z. DualNet: Learn Complementary Features for Image Recognition. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; Volume 2017-October. [CrossRef]

43. Murthy, V.N.; Singh, V.; Chen, T.; Manmatha, R.; Comaniciu, D. Deep Decision Network for Multi-class Image Classification. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30
June 2016; Volume 2016-December. [CrossRef]

http://doi.org/10.1109/CVPR46437.2021.01602
http://doi.org/10.1007/978-3-642-35289-8_26
http://doi.org/10.1109/WACV.2017.58
http://doi.org/10.1109/ICPR.2018.8546022
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/CTEMS.2018.8769211
http://doi.org/10.1016/0041-5553(64)90137-5
http://doi.org/10.1002/ima.22522
http://doi.org/10.1109/ICASSP39728.2021.9414588
http://doi.org/10.1109/CITS49457.2020.9232482
http://doi.org/10.1016/j.heliyon.2021.e06613
http://doi.org/10.3390/sym12060934
http://doi.org/10.3390/sym14040690
http://doi.org/10.1080/15567240802053459
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Book%3A_College_Mathematics_for_Everyday_Life_(Inigo_et_al)
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Book%3A_College_Mathematics_for_Everyday_Life_(Inigo_et_al)
http://doi.org/10.1109/ICCV.2017.62
http://doi.org/10.1109/CVPR.2016.246

	Introduction
	Related Works
	Stochastic Gradient Descent (SGD)
	SGD with Momentum
	AdaGrad
	RMSProp
	Adam
	AMSGrad
	AdaBound
	Differences and Similarities between Algorithms

	Proposed Algorithm
	Specify the Convergence Range for Adam
	Design the Bound Functions
	The Design of Upper Bound
	The Design of Lower Bound

	Algorithm Overview for AdaCB

	Experiments
	Hyper Parameter Tuning
	Empirical Study on Behaviors of Bound Function and Transformation Speed
	Results of Smallnet on CIFAR10 and CIFAR100
	Results of Network in Network on CIFAR10 and CIFAR100
	Results of Resnet18 on CIFAR10 and CIFAR100

	Discussion
	Conclusions
	References

