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ABSTRACT
Power and energy are first-order design constraints in high perfor-
mance computing. Current research using dynamic voltage scal-
ing (DVS) relies on trading increased execution time for energy
savings, which is unacceptable for most high performance com-
puting applications. We present Adagio, a novel runtime system
that makes DVS practical for complex, real-world scientific appli-
cations by incurring only negligible delay while achieving signifi-
cant energy savings. Adagio improves and extends previous state-
of-the-art algorithms by combining the lessons learned from static
energy-reducing CPU scheduling with a novel runtime mechanism
for slack prediction. We present results using Adagio for two real-
world programs, UMT2K and ParaDiS, along with the NAS Paral-
lel Benchmark suite. While requiring no modification to the appli-
cation source code, Adagio provides total system energy savings of
8% and 20% for UMT2K and ParaDiS, respectively, with less than
1% increase in execution time.

Categories and Subject Descriptors
D.3.4 [Processors]: Run-time environments

General Terms
Measurement, Experimentation, Performance

Keywords
DVS, DVFS, MPI, Energy, Runtime

1. INTRODUCTION
Excessive power consumption continues to be an important prob-

lem in high performance computing (HPC). Dynamic voltage scal-
ing (DVS) technology addresses this issue by allowing the CPU

clock frequency to be changed dynamically. Lower frequencies
require less power, and the resulting reduction in energy leads di-
rectly to reduced heat and indirectly to longer component mean
time between failure [28], less energy required for cooling, and the
possibility of greater component density.

Our goal is to develop a runtime system that uses DVS to save
energy in scientific applications with only negligible execution de-
lay. Other research in runtime systems has achieved impressive
energy savings, but at the risk of increasing execution time.

Unlike existing runtime systems, previous work in offline schedul-
ing using linear programming [22] demonstrated CPU frequency
schedules resulting in near-optimal energy saving with negligible
delay. This approach relies on scheduling changes at MPI commu-
nication calls, identifying the critical path of execution to ensure
it is never slowed, and approximating ideal frequencies by split-
ting execution time over available discrete frequencies. However,
offline scheduling requires a complete program trace at each dis-
crete frequency. Further, the use of a linear programming solver to
generate the schedule is far too costly to be done at runtime.

In this paper, we introduce the Adagio runtime system, which
achieves significant energy savings with negligible (less than 1%)
increase in execution time. We accomplish this by adapting and
extending the principles behind offline scheduling as follows:

1. Schedules in Adagio are generated from predicted computa-
tion time. Adagio uses a simple, robust algorithm that re-
quires no application-specific knowledge.

2. Slowdown decisions in Adagio occur at runtime. We base
initial scheduling on worst-case slowdown with subsequent,
more aggressive scheduling based on observed performance.

3. Adagio limits critical path detection to information local to
the processor. Adagio scheduling assumes only negligible
delay of MPI call completion will be tolerated.

4. Adagio identifies individual MPI calls through hashing the
stack trace. Not only must Adagio correctly predict the com-
putation, communication and slowdown associated with the
upcoming call, it must also predict the upcoming call itself.

The above Adagio features are distinct from the cited offline schedul-
ing approach, where all of these problems are solved using an exe-
cution trace from all available discrete frequencies.

Adagio is a unique run-time approach to HPC energy savings in
that execution delay is negligible and the application source code
need not be modified. Previous HPC energy-saving algorithms
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are fundamentally different. Approaches that use a fine-grain his-
tory mechanism to predict future behavior [7, 8] will save less en-
ergy than Adagio when load imbalance can be leveraged to reduce
the frequency during computation bursts. Another approach uses
per-iteration delay to determine per-processor frequencies [10], but
does not detect the critical path correctly in the general case and
therefore risks significant program slowdown. Adagio differs from
these approaches in that it slows only that computation known to
be off of the critical path in order to realize energy savings.

We show the effectiveness of Adagio for real-world programs as
well as standard benchmarks. This includes UMT2K [12] and Par-
aDiS [1], two complex, real-world programs. While incurring less
than 1% delay, Adagio reduces total system energy consumption up
to 8% for UMT2K and 20% for ParaDiS. These are significant sav-
ings because the power difference between the fastest and slowest
frequencies on our experimental platform is only 39%. We include
comparisons of Adagio to existing energy-saving algorithms.

The paper is organized as follows. We present definitions, as-
sumptions and a taxonomy of existing runtime algorithms in Sec-
tion 2. Next, Section 3 details Adagio, our new runtime algorithm.
In Section 4 we compare the effectiveness of Adagio to similar al-
gorithms using real-world applications and standard benchmarks.
Finally, we discuss related and future work in Sections 5 and 6.

2. OVERVIEW
We place our work among existing algorithms based on common

assumptions and definitions. We then provide a taxonomy of other
approaches with their respective strengths and weaknesses.

2.1 Definitions and Basic Assumptions
We assume an SPMD (Single Program Multiple Data) program-

ming model on a distributed-memory system using message pass-
ing, in our case MPI, for any communication between processes.
For simplicity—and without restricting generality—we assume that
each process is associated with a single core, although a single ma-
chine may have multiple cores. We refer to these cores as proces-
sors for the remainder of the paper.

Figure 1 illustrates our execution model. A task is the basic unit
of scheduling, comprising total communication and computation
that takes place on a single processor between the completion of
two successive MPI communication calls. The computation portion
of a task is measured by an instruction count and an observed per-
frequency instruction execution rate. We measure communication
by recording the time spent within the MPI library.

We use critical path analysis to determine which tasks can be
slowed without incurring overall execution delay. A critical path
(CP) is the longest path through a directed acyclic graph. For our
analysis, each task forms a vertex in the graph and each edge in-
dicates a dependence between tasks (e.g., an edge exists between
successive tasks on the same processor, and between a blocking
send and its matching receive). Each vertex is weighted with the
normalized execution time of that task, defined as the time required
to complete the computation portion of the task when executing at
the fastest frequency. Further, the graph has exactly one source, the
MPI_Init function call, and one sink, the MPI_Finalize call.
The critical path can change processors at any receive point (includ-
ing calls with no explicit data transfer, such as MPI_Barrier).

We define time spent blocked in an MPI communication call as
slack. By definition, while a processor executes on the critical path,
it does not block while waiting for data to arrive during MPI com-
munication calls: any process blocked waiting on remote commu-
nication can be slowed in order to complete exactly when the re-
mote communication completes without affecting overall execution

time. Thus, if a process is blocked, it cannot be on the critical path
(non-blocked processes may be either on or off the path).

The ideal frequency is the slowest CPU frequency at which a
given task can be run without incurring any slack, that is, the fre-
quency necessary to finish “just in time”. The ideal frequency ex-
ists in the continuous domain: while the ideal frequency uses the
minimum amount of energy [9], it is usually not one of the discrete
frequencies available on the processor. If the ideal frequency occurs
between the fastest and slowest frequency, we can approximate the
ideal frequency by executing part of the task in the higher neighbor-
ing frequency and the remaining portion in the lower neighboring
frequency. We use the slowest available frequency when it is faster
than the ideal frequency.

2.2 Taxonomy
Ideally, runtime HPC DVS algorithms satisfy three simultaneous

goals: save as much energy as possible, increase execution time
as little as possible, and support both simple and complex appli-
cations. No existing approach meets all of these goals. Table 1
summarizes the current state of the art in three classes of runtime
algorithms along with a near-optimal offline scheduler and com-
pares them to Adagio. We discuss existing approaches from each
class in more detail in Section 5.

2.2.1 Offline Scheduling
We first briefly review the offline scheduler [22] that uses a com-

plete execution trace for every available CPU frequency as input.
Given this input, linear programming determines a near-optimal
schedule based on MPI call granularity, i.e., the critical path could
move from one processor to another at any MPI communication
call. Thus this granularity allows critical path identification and
prevents slowing of any computation along the critical path. While
the MPI communication calls indicate where frequencies are to be
changed, this algorithm is near-optimal because it lowers the fre-
quency of the computation surrounded by these calls, thus (so far
as is possible) eliminating slack. Often, there is no available single
frequency that is low enough to remove all slack but not so low that
the slowed computation impinges on the critical path. Judiciously
splitting the computation across two neighboring frequencies (as
detailed in Section 3.2) allows close approximation of the ideal fre-
quency, saving additional power with no additional delay.

Using these techniques, the offline scheduler essentially places
an upper bound on the effectiveness of any DVS algorithm, either
online or offline. While its high cost precludes using it in a pro-
duction environment or at runtime, the design of Adagio reflects
lessons learned from this approach.

2.2.2 Scheduled Communication
The simplest class of runtime algorithms, which we term Sched-

uled Communication, uses DVS to reduce energy consumption when
program execution blocks on MPI communication [14, 15, 22].
This matches the granularity used in offline scheduling. Because
data transfer is not computationally intensive, slowing these trans-
fers generally incurs a negligible increase in overall execution time.
Because no computation is slowed, the critical path is not affected,
avoiding calculation of the ideal frequency. Scheduled Commu-
nication algorithms save energy in highly complex, production-
quality MPI programs, with no source code modification. However,
they leave significant potential energy savings untapped.

2.2.3 Scheduled Iteration
Scheduled Iteration methods [10, 16] compute the total slack per

processor per timestep, then schedule a single discrete frequency
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Figure 1: Typical Program Execution in SPMD style (left) and the resulting task graph (right).

Algorithm Online vs. Unmodified Critical Path Slows Slows Ideal
Class Offline Granularity App. Source Aware Comp. Comm. Freq. References

Offline Scheduling Offline Communication call Yes Yes Yes Yes Yes [22]

Scheduled Communication Online Communication call Yes Yes No Yes No [14, 15, 22]
Scheduled Iteration Online Timestep No No Yes No No [10, 16]
Scheduled Timeslice Online Timeslice Yes No Yes Yes No [3, 7]

Adagio Online Communication call Yes Yes Yes Yes Yes (this paper)

Table 1: Comparison of near-optimal offline scheduling to runtime classes (bold entries show desired characteristics).

for each processor for the upcoming timestep . We define a timestep
intuitively as an iteration of a scientific application’s outermost
loop. This timestep-level granularity works well for simple appli-
cations where the critical path remains on a single processor for
the duration of each timestep. However, applications with complex
communication patterns may have a critical path that crosses sev-
eral processors during a timestep. In this case, algorithms of this
type will choose not to slow any processor that contains any portion
of the critical path, thus forgoing any energy savings that might be
had on those processors elsewhere in that timestep. As such, we
classify these algorithms as not critical-path-aware and not using
ideal frequency, although they can be significantly more effective
than Scheduled Communication algorithms, at least on simple ap-
plications, due to the slowing of computation during the timestep.
Also, this class of algorithms may require modification of the ap-
plication source code to indicate the boundaries of the timestep.

2.2.4 Scheduled Timeslice
Scheduled Timeslice methods [3, 7] schedule at fixed time inter-

vals. These algorithms predict the execution characteristics of the
upcoming interval (i.e., timeslice) based on recent intervals. They
generally select the lowest discrete available frequency for each
processor such that predicted slowdown does not exceed a user-
specified limit. This timeslice granularity cannot track the critical
path, nor do these algorithms use the ideal frequency to match the
specified delay. Thus, any delay specification smaller than what
would be achieved using the second-highest frequency will result
in no computation being slowed. This approach does not require

modification to the application source and can save significant en-
ergy, but only where significant delay can be tolerated.

2.2.5 Conclusions
None of the existing runtime methods achieves all of our goals,

because none of them combines the design criteria of MPI-call
granularity, slowing computation using ideal frequencies, and re-
specting the critical path. Adagio combines all of these without
requiring modification to the application source code.

3. ADAGIO
We begin this section with the Adagio implementation. We then

provide a discussion of three optimizations: ideal frequency calcu-
lation, slack reclamation, and handling large messages.

3.1 Adagio Implementation
As Adagio is task based, we must predict the properties of the

next task that will execute after a given task. This prediction re-
quires that the algorithm first determines which task will occur
next. To accomplish this, we create a signature for each task based
on a hash of the pointers that make up the stack trace. The hash is
generated when the MPI call associated with the task is intercepted
by our library. The record of each completed task contains the hash
of the task that had been observed to follow it immediately.

Before the computation of a task begins, Adagio fetches the fre-
quency schedule for the task and changes the operating frequency
to the first one in the schedule. It also initializes performance coun-
ters to monitor the code. After a task, Adagio collects data and
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Variable Explanation Variable Explanation

f̄ Slowest frequency available on the machine. φ Ideal frequency for a task.

f̂ Fastest frequency available on the machine. tcomp Total observed computation time.

t Total observed task time (includes communi-
cation, computation, and slack).

tcopy Total time required for message copying (does not in-
clude blocking time).

tlib Total observed time spent in the MPI library
(includes copy and blocking time).

ttarget Available time for computation. Adagio slows the pro-
cessor to take exactly this time.

R Rate at which a processor executes a task
computation (instructions per second).

I Number of instructions executed during computation.

taskid Unique identifier for each task, generated by
hashing the stack pointers.

Rates[taskid][f ] Table of instructions per second for each task taskid at
each discrete frequency f .

Sched[taskid] Table holding frequency schedule for each taskid.

Table 2: Variables used within Adagio and their purpose.

PreTask()1

2

taskid = hash(stack_pointer_chain)3

if isnew(taskid) then4

/* First instance of a task: */
/* Choose fastest frequency. */

f = f̂5

else6

/* Look up correct frequency. */
f = Sched[taskid]7

SetFreq(f)8

InitPerformanceCounters()9

RunTask(taskid)10

11

PostTask()12

13

/* Generate the schedule for the */
/* next execution of this task. */
Record I, tcomp, tlib.14

Rates[taskid][f ] = I/tcomp15

t = tcomp + tlib16

ttarget = t − tcopy17

if isnew(taskid) then18

/* First instance of a task: */
/* Set slowdown rates to */
/* worst-case for each */
/* available frequency. */
for f ∈ F do19

Rates[taskid][f ] =20

Rates[taskid][f̂ ] ∗ f̂/f21

end22

/* Find slowest frequency that */
/* respects the critical path. */
/* Default is fastest freq. */

Sched[taskid] = f̂23

for f from slowest (f̄ ) to fastest (f̂ ) do24

if I/Rates[taskid][f ] ≤ ttarget then25

Sched[taskid] = f26

return;27

end28

29

Figure 2: Adagio algorithm with no optimizations.

determines the frequency schedule for the next execution of that
task. We stress that Adagio executes on each processor and tailors
schedules to computation performed on each processor.

The first time a task is observed, we record the task that preceded
it and execute it at the highest available frequency. This forms the
basis for the prediction of computation, communication, and block-
ing times. We assume that task behavior will essentially be identi-
cal every time it is executed. This a very simple predictor captures
the behavior of real-world scientific applications.

Figure 2 shows pseudocode for Adagio for the simple case of
using a single frequency per task. We detail the optimized split-
frequency case in Section 3.2. As runtime algorithms have no
prior information about program execution characteristics, Adagio
schedules execution at the fastest frequency (represented by f̂ ) the
first time a task is encountered. If the task reoccurs, Adagio sched-
ules it under the assumption of worst-case slowdown (execution
slowdown proportional to that of the change in frequency). Com-
putation will not be slowed by more than the ratio of the change
in frequencies, e.g., running a task at 1.6GHz instead of 1.8GHz
will cause no more than a 12.5% delay. The communication and
memory-boundedness of a task may lower this delay substantially.
Thus, Adagio records the observed slowdown when a task is sched-
uled and executed in a particular frequency. Adagio then uses this
refined estimate for subsequent scheduling.

Table 2 summarizes the variables that we use to describe Ada-
gio’s algorithm. Throughout this discussion, we will use f̂ , and f̄
to denote the fastest and slowest operating frequencies (i.e., MHz)
and will use them to index into tables Sched and Rates (instead
of standard array indices).

Adagio records the number of instructions I and the instructions
per second R for the current frequency and task when it completes.
Recording R allows Adagio to estimate how fast a task would run
if it ran at the fastest frequency—a significant contribution beyond
previous work [6, 24], which lacked an algorithm to determine exe-
cution time as a function of frequency. Further, recording I allows
Adagio to determine when execution characteristics (i.e., computa-
tion) have changed between task instances. We measure the number
of instructions using PAPI [21]. We also use gettimeofday to
measure the total execution time of a task, which we need to com-
pute the instructions per second metric. We emphasize that these
counters are collected at runtime and only for those frequencies that
are actually used. No training runs are necessary.

We record the total task time t, which is the sum of the task com-
putation time, tcomp, and the time spent in its associated MPI call,
tlib. The target execution time ttarget is set to the difference of t
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and the copy portion of the communication time, tcopy. We predict
tcopy based on results obtained with microbenchmarks that vary the
message size, such as a simple ping pong test. These microbench-
marks are application-independent and need only be executed once
in order to characterize a particular system.

We schedule the task to take time ttarget during the upcoming
timestep by iterating through all frequencies, slowest to fastest, and
finding the slowest frequency that does not exceed the target, thus
respecting the critical path. By definition, a task that blocks cannot
be on the critical path, and so this algorithm will not slow any task
that was on the critical path during the previous iteration. We do
miss the opportunity to slow tasks that are both off of the critical
path and do not block, but the additional algorithmic complexity
required to detect such tasks is not warranted due to the limited
additional amounts of energy that can be saved.

As stated above, if we have not yet executed the task in a partic-
ular frequency f , we assume worst-case slowdown: given quantity
Rates[taskid][f̂ ] (observed during the initial timestep),

Rates[taskid][f ] = Rates[taskid][f̂ ] × f/f̂ .

Our assumption is conservative: the execution rate will not de-
crease more than the decrease in CPU frequency but might decrease
less since memory references (and I/O) are independent of CPU
frequency. Thus, slowing the CPU will not in general lead to as
much slowdown as the slowdown in frequency. Scheduling con-
servatively does not increase overall execution time, and as soon
as a task is executed at a particular frequency, we replace this pes-
simistic estimate with an observed value.

3.2 Optimizations
We now detail three novel optimizations: approximating ideal

frequencies by using two neighboring frequencies, slack reclama-
tion, and large message handling.

3.2.1 Split Frequencies
We determine the ideal CPU frequency, φ, for a task such that

it executes in exactly ttarget seconds. However, processors used
in HPC environments operate only at a few discrete frequencies.
To our knowledge, all other existing runtime algorithms choose a
single frequency and either lose energy savings by running faster
than the ideal frequency or lose time (and possibly energy savings)
by running slower than the ideal frequency. In the worst case, |F|+
1 iterations will be required to discover the ideal frequency if task
behavior is consistent across iterations.

We can approximate the ideal frequency by using its neighboring
frequencies [9]. Our optimized schedule still uses the fastest avail-
able frequency when the computation lies on the critical path and
the slowest available frequency when the ideal frequency is even
slower (slack remains in this case). In any other case, we calcu-
late how long to run the epoch in the two frequencies immediately
above and below the ideal frequency. Let q be the percentage of
time to execute at frequency f , and let frequencies f > φ > f ′.
We must satisfy

ttarget = q × (I/Rates[e][f ]) + (1 − q) × (I/Rates[e][f ′]).

We solve for q for the given task and use the two frequencies for the
corresponding durations (ttarget × q seconds for frequency f and
ttarget×(1−q) seconds for frequency f ′). For this reason, Adagio
stores q as well as f (f ′ is always one frequency below f ) per task
in Sched. Thus, each processor can generally execute each task at
or very near the target time.

At the beginning of each task, we use setitimer to gener-
ate an interrupt after q × I/Rates[e][f ] seconds that allows Ada-

gio to switch to f ′. When Adagio catches the SIGALRM signal, it
records Rates[e][f ], and I (up to that point), switches the CPU fre-
quency to f ′, and continues. We disable the alarm when entering
the MPI function that ends the task to avoid interrupting the ap-
plication when computation completes ahead of schedule. Adagio
additionally stores Rates[e][f ′].

Using a split-frequency schedule can lead to using a particular
frequency for a small amount of time. This choice would incur a
time penalty for the additional switch and decrease system stability
(at least on our hardware). To counter this, we have empirically ar-
rived at a switching threshold of 100ms for our cluster. We require
any frequency switch to remain in the new frequency for at least
100ms. Thus, a task will not be scheduled for a lower frequency if
the scheduled time would be less than the threshold, split frequen-
cies will not be used unless the time spent in both frequencies will
be greater than the threshold (the higher frequency will be used for
the entire task), and the threshold time must be exceeded before
switching to a lower frequency while in the MPI library.

3.2.2 Slack Reclamation
Tasks may still block during communication. If there was suffi-

cient computation that the task had been scheduled, any blocking in
excess of the buffer will use the lowest frequency, as that will be the
frequency chosen for the computation. However, there exists a sec-
ond case where a task consists of a small amount of computation —
too small to be scheduled — followed by a relatively large amount
of blocking communication. To prevent using a high frequency for
blocking, we determine the amount of time spent blocking during
the previous instance of the task and, if this is greater than or equal
to twice the switching threshold, set an alarm to expire at the thresh-
old time. If the alarm fires before the task completes, we change to
the lowest available frequency and remain there (if our prediction
is correct) for at least another duration equal to the threshold.

3.3 Large Message Handling
The FT benchmark is unusual in several respects (Section 4 con-

tains all results). Among these, required communication for a par-
ticular MPI_Alltoall call is measured in seconds instead of
milliseconds. In this case, our threshold value is too short to handle
the amount of communication that occurs. There are several meth-
ods to deal with this issue. We could construct an FT-specific so-
lution or we could attempt to model expected communication time
for these calls. We have instead created a simple, general solution.
A side effect of an all-to-all call is synchronization. We wish to sep-
arate out the communication time spent blocking waiting for other
processes to arrive at the call from the communication time spent
transferring data. So, at the beginning of large MPI_Alltoall
calls, our library inserts an MPI_Barrier. Any slack present at
this barrier can be reclaimed by scheduling the computation im-
mediately before it as usual. The task terminated by the following
MPI_Alltoall has almost no computation, and slack reclama-
tion occurs as outlined in the previous section.

4. RESULTS
This section reports our performance results. For all experi-

ments, we used a cluster of sixteen nodes, each containing two
AMD Opteron 265 dual-core processors. We used sixteen nodes
and one core per processor in all tests (32 cores) except for those
NAS tests that required the number of nodes to be a perfect square
(in this case, we used a single core per node). We can indepen-
dently set the frequency of each processor, but this early-model
multicore processor cannot scale core frequencies independently.
Consequently, the second core on a processor consumes energy
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while doing no useful computation, reducing the energy savings
we can achieve. Adagio has been designed in anticipation of pro-
cessors with per-core DVS control. Future work will extend Ada-
gio to handle assignments of processes to cores consistent with our
energy-saving goals.

We chose OpenMPI [27] as our MPI implementation. The nodes
are connected by gigabit ethernet and have 2GB RAM each. The
Opteron 265 supports CPU frequencies 1000 MHz through 1800
MHz in steps of 200 MHz. We use the sysfs interface made
available by a modified Fedora Core 2 OS running the 2.6.16 kernel
for frequency shifting. We compiled all applications with gcc or
g77 using the -O2 optimization flag. The system ran no other
processes during our experiments other than the usual daemons.

Our application set includes two complete applications, UMT2K
and ParaDiS, as well as the programs in the NAS suite [20]. For
each application, we measure execution time (elapsed wall clock
time) and energy consumed. We measure the total system power
with precision multimeters at the wall outlet and compute energy
using energy = power × time so energy is total system energy,
not just CPU energy. While time, and thus energy, can vary across
many runs of a benchmark, power does not vary much at all. All
results are from direct program executions and measurements, not
simulations or emulations. Each benchmark was executed using
each indicated algorithm a minimum of five times, with the median
time and energy values normalized against the median time and en-
ergy for benchmark execution with no DVS scheduling. We also
provide a lower bound to the energy consumption. This was com-
puted using program traces and indicates the maximum amount of
energy that can be saved by Adagio given perfect knowledge.

When computing in a tight loop, each compute node in the sys-
tem consumes 180 watts at the fastest available frequency and 117
at the slowest. Blocking at the slowest frequency reduces the 117
watts to 110. Thus, assuming no time increase due to frequency
scaling, an overly optimistic upper bound on possible DVS energy
savings on these nodes is 39%. Real applications cannot achieve
this bound without increasing execution time because at least one
processor must be on the critical path and run at the fastest fre-
quency and, generally, not all non-critical-path processors can be
run at the slowest frequency.

4.1 Algorithms
In Section 3 we described the design and implementation of Ada-

gio. We now describe our comparison algorithms: Fermata-1800;
Adagio-Comp; Timeslice; and Jitter.

From the class Scheduled Communication, we use Fermata-1800
[22], which uses the same technique as the slack reclamation algo-
rithm in Adagio. All computation is executed at 1800 MHz, while
communication runs at the slowest frequency if blocking time ex-
ceeds a 100ms threshold. Fermata slows only communication. We
use Adagio-Comp, the Adagio algorithm with no slack reclamation,
to show the effect when we slow only computation.

From the Scheduled Timeslice algorithms we implement Times-
lice. These algorithms require the user to specify a delay they will
tolerate in order to save energy. A higher tolerance generally in-
creases energy savings. With a delay tolerance of only 0% or 1%,
similar to Adagio’s target, they save the most energy by only slow-
ing communication since they do not use split frequencies. Choos-
ing which communication to slow can only be based on the char-
acteristics of previous timeslices, so at best the first timeslice that
includes the communication call runs at the highest frequency, and
the first timeslice after the communication call runs at the lowest
frequency. Depending on the size of the timeslice, this best case
approaches the performance of the Fermata algorithm.

Adagio Adagio−Comp Fermata Jitter Timeslice
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Figure 3: Normalized time, energy, and power for UMT2K.

To allow a fairer comparison, we instead have implemented an
algorithm that gives a bound to the performance of algorithms in
this class. We execute all computation at the second-highest fre-
quency (1.6GHz) and use Fermata to execute communication at
the lowest frequency. This results in a certain amount of delay
(never worse than 12.5%) depending on the application. There are
two factors influencing the resulting energy savings. Running at a
lower frequency lowers power, but running longer increases time.

From the Scheduled Iteration algorithms we use Jitter [10]. This
algorithm slows the processor for an entire iteration. These itera-
tions are not identified automatically: the user must annotate the
source code with a call to MPI_Pcontrol and recompile. Jitter
can detect when an iteration on a particular processor ran longer
than expected (when, for example, a portion of the critical path
crossed that processor and was inadvertently slowed) and restores
the processor to the fastest frequency for subsequent iterations. In
the worst case, this can occur on every processor that has some
amount of slack, and in this case Jitter will eventually schedule all
the processors to run at the highest frequency. No energy will be
saved, but the only delay will come from the slowdown of the few
iterations that were tested.

4.2 UMT2K
The UMT2K benchmark [12] is part of the ASC Purple Bench-

mark Suite [11] assembled by Lawrence Livermore National Lab-
oratory (LLNL). Extensive studies of this benchmark [22] have
shown that it is a very challenging test of energy savings for of-
fline, let alone runtime, scheduling.

UMT2K implements a tree communication pattern that handles
large, asynchronous messages (100KB+). The critical path does
not stay on the same processor across an entire iteration. The tasks
in UMT2K tend to have either a great deal of computation ended
by a small amount of communication or very short computation
followed by a large amount of communication. The implication is
that task-level scaling of computation will be generally ineffective,
but that slowing the right communication can save energy.

We see this reflected in our results as shown in Figure 3, which
indicates the lower bound for energy use as determined by offline
scheduling. After finding the median values of runs with no energy
scheduling, we recorded the median values of runs for each algo-
rithm and normalized them to the nonscheduled median values. For
this application, Adagio saved 8% energy with only 0.2% delay.

Fermata, Adagio-Comp and Adagio ran with less than 1% delay.
We can pinpoint the source of the energy savings from examining
Fermata and Adagio-Comp. Because Fermata only slows commu-
nication, and observing that it achieved 7.6% energy savings doing
so, we can conclude that very little energy savings can be picked up
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from slowing computation. In fact, Adagio-Comp (which primarily
slows computation) actually uses more energy than the nonsched-
uled runs (0.4% more). We cannot simply add the savings achieved
by Adagio-Comp and Fermata together to estimate total savings
since the combination into Adagio performed slightly better.

Jitter performs poorly on this application. The Jitter algorithm is
sophisticated enough to determine when slowing a particular pro-
cessor leads to overall slowdown, and that processor is returned to
executing at the fastest frequency for the following iteration. For
this application, Jitter is unable to find any processors where slack
can be reduced without additional delay, and so ultimately ends up
running all processors at the highest available frequency. In making
this determination, though, Jitter introduces an overall execution
delay of 2.5% with a negative energy savings of -2.3%.

Our Timeslice algorithm saves the most energy for this bench-
mark: 10.5%. However, this comes at a cost of a 5.6% delay.
Timeslice is the most effective algorithm if this kind of delay can be
tolerated. However, supercomputers are purchased to run programs
as fast as possible, and energy savings are likely to be interesting
only within that constraint.

UMT2K presents the intriguing possibility that communication
could be reordered to yield even greater energy savings. Currently,
the application uses a barrier for synchronization after a large com-
putation task. Because the computation is balanced, there is es-
sentially no slack. Then the application performs a sequence of
load-imbalanced asynchronous communications that terminate in
another barrier or MPI_Waitall. Moving to a synchronous com-
munication model could eliminate the need for barriers as well as
placing the inevitable slack into the same task as the load-balanced
computation. To our knowledge, no research has been done con-
cerning MPI programming techniques that allow for increased en-
ergy savings. We plan to revisit this issue in future work.

In summary, UMT2K presents a challenge for energy savings
because of its complex communication pattern and the inability to
slow computation without adding delay. Because Adagio can save
energy by both slowing computation and communication, Ada-
gio outperforms every other algorithm used on this benchmark, al-
though Fermata is almost as effective. Unlike Fermata, Adagio
also performs well when computation can be slowed, as we illus-
trate with the next benchmark: ParaDiS.

4.3 ParaDiS
ParaDiS [1] is a dislocation dynamics simulation in production

use at LLNL. It is a “chaotic” program that converges using a
varying number of iterations for the same initial inputs over dif-
ferent runs. Program performance reflects this behavior—total run
times in our experiments that do not use energy savings vary up
to 4.9%. This nondeterminism makes the program unsuitable for
offline scheduling. The power consumed, however, is consistent
within an algorithm: the power requirement for each iteration is
the same (to the extent we can measure it), and the varying number
of iterations are reflected in the varying energy. Thus, while a lower
bound on execution time would require multiple traces, a normal-
ized bound on energy savings can be computed from a single trace.

ParaDiS exhibits load imbalance. It is possible to configure Par-
aDiS to perform dynamic load balancing, which reduces (but does
not eliminate) slack available for DVS scheduling and makes tasks
more difficult to predict. We have successfully integrated Ada-
gio into the dynamic load balancer provided by ParaDiS and have
saved significant energy with less than 1% execution time delay.
Space limitations prevent us from detailing these results; this sec-
tion discusses only those ParaDiS results that do not use dynamic
load balancing.

Adagio Adagio−Comp Fermata Jitter Timeslice

Algorithm

N
or

m
al

iz
ed

 V
al

ue
s

0.
0

0.
4

0.
8

1.
2

Normalized Time
Normalized Energy

Baseline
Lower Bound

Figure 4: Normalized time, energy, and power for ParaDiS.

The results are shown in Figure 4. Three of the algorithms had
less than 1% delay, and all five achieved significant energy savings.
This application is structured so that the critical path tends to stay
on the same processor throughout the entire program. The task with
the largest computation also has a large amount of blocking com-
munication time (on processors off the critical path). There are also
tasks that have short computation combined with long communica-
tion. As such, both Adagio-Comp and Fermata do well in isolation,
and the combination into Adagio results in a 20.2% energy savings.

Due to this structure, Jitter also performed well, achieving 18.7%
energy savings with a 1.8% delay. Our Timeslice algorithm did
poorly. If no communication time existed on the critical path of
the program and all of the computation was CPU-bound, Timeslice
will slow execution by 12.5% (1.8GHz vs 1.6GHz). With ParaDiS,
the delay is much closer to this worst case (unlike UMT2K, which
is relatively communication bound). This additional delay does not
accrue energy savings — despite the 9.1% slowdown, Timeslice
only achieved 11.1% energy savings, the worst of any algorithm.

The challenge with ParaDiS does not lie so much in identifying
slack, but rather in making sure reclaiming the slack does not slow
overall program execution. We must predict the next timestep using
only prior information, However, prior information is not necessar-
ily a reliable guide to performance, especially at the beginning of
the program.

The computation time predictor in Adagio proves to be robust in
this situation. If the critical path time for each succeeding instance
increases more than the non-critical path times, Adagio schedules
the non-critical path processors to complete earlier than necessary.
This misprediction leaves some amount of energy savings unex-
ploited, but results in no additional delay. Additionally, when the
critical path times decrease more slowly than processors off the
critical path, Adagio also incurs no additional delay. In the case
of ParaDiS, the change was similar enough across all processors
that additional delay did not become an issue. Jitter’s prediction of
slack also takes advantage of this. ParaDiS is an example for which
predicting tasks and predicting iterations give similar results, as op-
posed to Timeslice’s prediction of timeslices.

4.4 Summary of UMT2K and ParaDiS results
Broadly speaking, there are two methods for saving energy using

DVS in MPI programs: slowing communication and slowing com-
putation to reduce slack. The former tends to work well in most
programs with significant communication time due to large mes-
sage sizes, and UMT2K is an excellent example of this. However,
there is relatively little slack present in UMT2K, and thus very little
opportunity to save energy by slowing computation. ParaDiS has
far greater load imbalance and thus greater slack. This not only
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allows for the slowing-communication approach to work, but also
for slowing of computation.

ParaDiS shows that Adagio outperforms other runtime algorithms
when load imbalance allows computation to be slowed, and our
UMT2K results show that Adagio outperforms other runtime al-
gorithms when load imbalance allows only communication to be
slowed. For each application, one of the existing techniques attains
performance close to that of Adagio (Fermata for UMT2K and Jit-
ter for ParaDiS), but performs relatively poorly on the other ap-
plication. Adagio is the only algorithm that performs well in both
situations. We now turn to the NAS Parallel benchmarks, a well-
known suite of load-balanced kernels.

4.5 NAS Parallel Benchmarks
The NAS Parallel Benchmark suite (NPB) [20] is a well-known

collection of benchmarks for parallel computing maintained and
distributed by the NASA Advanced Supercomputing division These
benchmarks generally have a well-balanced computational load,
implying no communication slack and thus no obvious opportu-
nity for energy savings. However, FT and CG proved to be the
exceptions. While both are load-balanced benchmarks, the ratio of
communication time to computation time in FT was high enough
that energy could be saved by only slowing communication, and
CG is sufficiently memory-bound that slowing computation on the
critical path resulted in a less than 1% delay. We explore the impli-
cations of both of these benchmarks later in this section.

We executed each benchmark over 32 processors except in the
case of BT and SP, which require a perfect square for the number
of processors (in this case, 16). We chose the class size so that
the benchmark would run long enough to guarantee an accurate
reading on our power meters. This was class C in all cases except
MG, where we moved to the larger class D.

We present the results in Table 3. As expected, with the excep-
tion of FT , no significant energy was saved with Adagio; the largest
delay was 0.4% (in SP). This result is important because Adagio is
able to recognize when saving energy would incur non-negligible
delay. Moreover, the tasks in some of the NAS programs are small
enough that if Adagio tried to schedule them, scheduling overhead
(e.g., frequency switching) would dominate, again leading to too
much delay—and possibly even increased energy due to this extra
delay. These results show that Adagio can be used safely on appli-
cations. When energy savings are possible, as with UMT2K and
ParaDiS, Adagio will realize these savings with negligible delay.
Where no energy savings are available, Adagio does no harm.

Of particular interest here is the range of performance presented
by Timeslice. For a CPU-bound benchmark such as EP, slowdown
in execution time essentially matches the slowdown of the proces-
sor. Slowdown occurs in LU as well, although to a lesser extent.
Despite executing in a lower frequency, there are no significant en-
ergy savings due to the increase in execution time.

Jitter performed poorly overall, with the best energy savings
(19% on CG) associated with the worst delay (6%)1. One anomaly
is that Jitter resulted in 10% speedup on LU. In the past, we have
observed repeatable small speedups in some benchmark configura-
tions when the CPU is slowed. This appears to be caused by the
side effect of staggering communication to reduce contention at in-
dividual processors. As this kind of speedup has an effect on energy
savings, it is an avenue for future study. Finally, the structure of the
EP benchmark prevents Jitter from scheduling it.

At the other end of the scale are the benchmarks that are either

1The previous reported Jitter results for the NAS applications are
for 8 processors [10]; this explains some of the discrepancy with
our results.

memory-bound (CG) or communication-bound (FT). While both
Fermata and Adagio do well on FT (18% savings with 0.4% and
1.7% delay, respectively) Timeslice does even better: 22% savings
with only 1.5% delay. Timeslice saves energy on CG (9% savings
with 0.9% delay) while no other algorithm does.

This illustrates one area of possible improvement for Adagio.
The CG benchmark is entirely memory bound, but unless a task
is associated with slack greater than the threshold, Adagio will not
attempt to schedule that task, even when dropping the CPU fre-
quency by 12.5% will result in less than 1% slowdown. We could
address this in Adagio by first scheduling every task that falls below
the slack threshold to use a combination of the fastest and second-
fastest frequencies. This schedule will waste little time if the task
is CPU-bound. However, measuring the execution rate at the sec-
ond frequency will reveal if the task is memory-bound. In this case,
Adagio can schedule the task appropriately even in the absence of
slack. We can extend this approach iteratively to allow Adagio to
save significant energy while incurring at most a small bounded
delay in the absence of slack.

We now consider FT , which is unusual in two respects. First,
communication time is an order of magnitude larger than compu-
tation time, due to repeated calls to an MPI_Alltoall that took
up to ten seconds each in communication time alone. Second, the
initial iterations of several tasks varied widely enough to cause sig-
nificant misprediction and thus greater slowdown than had been
expected. While later iterations could be precisely predicted, there
were not enough total iterations to amortize the early error.

The former characteristic allowed Adagio to save 18% energy.
Communication is not CPU bound, so executing it in the lowest
possible frequency saved energy with negligible delay (the Fer-
mata algorithm accomplished the same savings with only 0.4%
delay). The latter characteristic caused an unusually high delay
of 1.7%. The Adagio-Comp algorithm saved essentially no energy
while causing a 1.5% delay, and the Timeslice algorithm accom-
plished additional savings by scheduling all of the iterations, which
Adagio cannot do because of its goal of negligible delay.

Several simple additions to Adagio could bring the delay results
down to our tolerance. As the issue is misprediction, the solu-
tion can either make the current predictor less sensitive to variation
or use application-specific knowledge to create a better predictor.
Since one of our goals is to avoid application source modification
or other application programmer intervention, we only examine the
former. The simplest modification would hard code a minimum of
n executions of a task before beginning to schedule it. This solu-
tion succeeds, at least in this case, since the error is confined to the
“warm up” iterations of FT . A more general solution would require
that n iterations are within p percent of the average computation
time before scheduling can begin or resume. An even more com-
plex solution, implemented in an earlier version of Adagio, calcu-
lates the accumulated percentage delay at runtime and only allows
scheduling to occur when that delay falls below the tolerance. In
all three cases, only computation scheduling is affected. Adagio
will continue to save some amount of energy by slowing the CPU
during communication.

We have chosen not to implement any of these solutions because
we are not persuaded that a real problem exists. The C class version
of FT ran for a handful of iterations; a more realistic benchmark
would have amortized the error over a greater number of iterations.
We have observed a similar pattern of behavior in ParaDiS; bench-
marking runs of a dozen iterations produced suboptimal results, as
there is a large amount of variation at startup. But in practice more
realistic ParaDiS runs show our simple predictor is more than ade-
quate to meet our defined limits.
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Bench- Normalized Time Normalized Energy
mark Adagio Adagio-Comp Fermata Timeslice Jitter Adagio Adagio-Comp Fermata Timeslice Jitter

bt.C 0.999 1.000 0.991 1.046 1.038 1.000 1.006 0.994 0.979 1.033
cg.C 0.999 0.997 1.000 1.009 1.063 0.995 0.992 0.995 0.911 0.812
ep.C 1.009 1.008 1.016 1.122 n/a 1.008 1.005 1.014 1.017 n/a
ft.C 1.017 1.015 1.004 1.015 1.027 0.821 0.990 0.823 0.781 0.950
lu.C 0.994 0.992 0.988 1.096 0.901 0.997 1.000 0.998 0.981 0.913

mg.D 1.000 0.997 1.003 1.048 1.043 0.983 0.997 0.985 0.940 0.993
sp.C 1.004 1.001 1.000 1.034 1.119 0.998 1.000 0.995 0.977 1.099

Table 3: Normalized Time and Energy for the NAS Parallel Benchmarks.

5. RELATED WORK
Previous work on static scheduling [22] has most heavily influ-

enced the design and implementation of Adagio. Specifically, the
concepts of MPI-level scheduling granularity came from that work,
as did the use of split frequencies (the latter ultimately originating
in the real-time work of Ishihara and Yasuura [9]). Several other
dynamic voltage scaling runtime algorithms exist. In this section
we detail algorithms from the classes Scheduled Communication,
Scheduled Iteration, and Scheduled Timeslice, and briefly describe
other related work.

5.1 Scheduled Communication
We choose three algorithms to illustrate the class Scheduled Com-

munication. We described the first, Fermata [22], in Section 4.
Li et al. [14], implemented the second, thrifty barriers, a similar
idea in spirit but aimed at chip multiprocessors. Lim et al. [15] de-
veloped the third, a technique to infer communication regions and
lower the frequency during those regions. Unlike Fermata, this ap-
proach lowers the frequency on some computation. However, it is
not aware of the critical path and so does not provide time guaran-
tees; instead, it attempts to minimize the energy-delay product.

5.2 Scheduled Iteration
Section 4 described Jitter [10], which is the primary Scheduled

Iteration algorithm of which we are aware for message passing pro-
grams. Liu et al. [16] slowed down computation before barriers, a
similar idea, for chip multiprocessors. As mentioned earlier, be-
cause these approaches make scheduling decisions across the en-
tire timestep, they cannot handle situations where the critical path
migrates across processors within a timestep—even if the migra-
tion occurs at global synchronization points. Unfortunately, such
migration is not unusual; in particular, it occurs in complex ap-
plications such as UMT2K. As Adagio predicts such migration, it
provides better results for these kinds of applications.

5.3 Scheduled Timeslice
We select two algorithms to illustrate the class Scheduled Times-

lice. The first, CPU-Miser [7], divides a timestep into many small
timeslices, the size of which depends on the current frequency.
CPU-Miser gathers performance counters for each timeslice and
uses past history to select a single frequency for the next times-
lice. Another approach uses cpufreq [3], a simple command-
line interface that makes use of the “userspace” CPU frequency
governor in the Linux kernel. Frequency switches occur based on
user-specified CPU idle levels and/or CPU temperature.

As with Scheduled Iteration, these approaches do not respect the
critical path, whereas Adagio does. While Adagio can schedule
computation effectively in environments where little or no delay
can be tolerated, CPU-Miser can require a significant delay (e.g.,
5%) to schedule computation effectively. This makes Adagio a bet-

ter fit for many classes of HPC applications, where the primary
metric is execution time.

5.4 Other Related Work
Several researchers have developed techniques and systems to

save energy with a modest increase in execution time. Cameron
et al. [2] and Hsu et al. [8] developed some of the earliest run-
time systems to save energy in a performance constrained manner
for HPC applications. Additionally, Springer et al. [24] and Ge et
al. [7] developed analytic models to predict or to understand energy
consumption in the context of scalability. Similarly to Springer et
al., Li and Martinez [13] considered both reducing parallelism and
frequency scaling, although in the context of chip multiprocessors.
Their results showed power savings in almost every situation.

Recent work has explored reducing the amount of concurrency
in programs, with one of the benefits of such reduction being lower
energy. Ding et al. adapt behavior when cores on a chip multipro-
cessor are unavailable (which can occur for multiple reasons) [5].
Curtis-Maury et al. fork fewer threads for parallel regions when
beneficial [4]. Both papers use linear regression to predict the ef-
fect on performance and minimize energy-delay. In contrast, Ada-
gio aims at saving energy with negligible delay.

Many researchers have addressed finding optimal energy savings
without a time increase in the real-time community. Several have
used Mixed Integer Linear Programming to solve the DVS schedul-
ing problem [9, 23, 25, 26] but are limited to a single processor.
Zhang et al. used an LP approximation of an ILP solution for the
parallel real-time domain [29]. Mochocki et al. [17, 18] continued
this work with an emphasis on accounting for frequency transition
overhead costs. Zhu (slack reclamation) [30] and Moncusi (hard
real time end-to-end deadlines) [19] have investigated non-optimal
distributed real-time energy scheduling. Other work [22] used Lin-
ear Programming to derive an approximate upper bound on poten-
tial energy savings. Unlike Adagio, these solutions are all offline.

6. SUMMARY AND FUTURE WORK
In this paper, we have presented Adagio, a runtime DVS algo-

rithm aimed at saving energy in HPC applications with negligible
delay. Adagio improves on existing runtime algorithms by using
the proper semantic level of granularity, split frequencies, and nor-
malized execution time. We applied Adagio to two real-world HPC
applications—UMT2K and ParaDiS—and obtained significant en-
ergy savings with negligible execution delay.

We are exploring important open issues including the develop-
ment of techniques that guarantee no added delay when slowing
MPI communication. Porting this work to OpenMP as well as pro-
viding a hybrid MPI/OpenMP solution will allow many more ap-
plications to save energy. Incorporating processor sleep states into
Adagio may allow savings of even greater amounts of energy if the
longer delays between transitions can be managed.
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Many architectural issues also remain. Multicore chips should
enable per-core DVS control. Multicore optimization is a very ac-
tive area of research, and the possibilities of leveraging this work
while simultaneously saving energy are intriguing. At a lower level,
an architectural description of how DVS affects HPC applications
will allow a greater understanding of the design of runtime algo-
rithms. Finally, we are actively working on using this approach in
real-time systems, where bounding delay is vitally important.
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