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ABSTRACT

We introduce ADAM, the All-Data Asteroid Modelling algorithm. ADAM is simple and universal since it handles all disk-resolved
data types (adaptive optics or other images, interferometry, and range-Doppler radar data) in a uniform manner via the 2D Fourier
transform, enabling fast convergence in model optimization. The resolved data can be combined with disk-integrated data (photome-
try). In the reconstruction process, the difference between each data type is only a few code lines defining the particular generalized
projection from 3D onto a 2D image plane. Occultation timings can be included as sparse silhouettes, and thermal infrared data are
efficiently handled with an approximate algorithm that is sufficient in practice because of the dominance of the high-contrast (bound-
ary) pixels over the low-contrast (interior) pixels. This is of particular importance to the raw ALMA data that can be directly handled
by ADAM without having to construct the standard image. We study the reliability of the inversion, using the independent shape
supports of function series and control-point surfaces. When other data are lacking, one can carry out fast non-convex lightcurve-only
inversions, but any shape models resulting from it should only be taken as illustrative large-scale models.

Key words. minor planets, asteroids: individual: 2000 ET70 – methods: analytical – minor planets, asteroids: general –
methods: numerical – minor planets, asteroids: individual: Daphne

1. Introduction

Ground-based and other remote-sensing data on asteroids are
obtained with a variety of instruments that essentially sample
regions on the surface of the target in various ways. These
share some common mathematical characteristics of general-
ized projections (Kaasalainen & Lamberg 2006; Kaasalainen
2011; Viikinkoski & Kaasalainen 2014). The most abundant
source of data for asteroid shape and spin reconstruction is disk-
integrated photometry, because even data that are sparse in time

are often sufficient for modelling (Kaasalainen 2004; Ďurech
et al. 2006). Lightcurve-inversion procedures (Kaasalainen et al.
2001) are available at e.g. the Database of Asteroid Models from
Inversion Techniques (DAMIT) site1. Because of the inherently
limited information content of the disk-integrated data, the cor-
responding models are usually most reliably described in convex

space (Ďurech & Kaasalainen 2003, and further discussed be-
low). However, even partially disk-resolved data offer a realistic
possibility of more detailed modelling. Previously described ap-
proaches for such reconstruction are the SHAPE software (Ostro
et al. 2002) for radar and lightcurve data, and the KOALA pro-
cedure (Kaasalainen & Viikinkoski 2012; Carry et al. 2012) for
optical images, occultation timings, and lightcurves.

The best way to reconstruct a model of an asteroid is to
use all available data. To combine disk-resolved data (adaptive

⋆ The code is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A8
1 http://astro.troja.mff.cuni.cz/projects/asteroids3D

optics or other images, interferometry, and range-Doppler
radar data) with disk-integrated data (photometric or infrared
lightcurves) and occultation timings (“sparse silhouettes”), we
need a general procedure for using any data sources in asteroid
modelling. We call this ADAM: all-Data Asteroid Modelling.
Concise accounts of the various data types and their mod-
elling aspects are given in Kaasalainen & Lamberg (2006),

Kaasalainen & Ďurech (2013), and Ďurech et al. (2015). This
paper is intended as a technical companion to those reviews.

We present the ADAM algorithm in a high-level format that
includes all the necessary methods and formulae, either written
here or given by references to the literature. We discuss and col-
lect the essential techniques and aspects of a complete inversion
procedure capable of handling all the major asteroid data sources
and formats. The key point is that complementary data sources
can facilitate a good reconstruction even when none of them is
sufficient alone.

The paper is organized as follows. In Sect. 2 we describe
the various shape supports we use in the reconstruction; some
with the emphasis on global features, some concentrating on lo-
cal details. This is intimately connected with the reliability esti-
mate of the result, since independent shape representations help
to reveal the most probable features. Section 3 introduces the
Fourier transform method necessary for a simple and universal
handling of data sources of disk-resolved type. In Sect. 4, we
present examples of these types (interferometry, radar, and opti-
cal images). The interferometric data from ALMA are of partic-
ular interest. We also discuss the special case of one-dimensional
projections (continuous-wave radar and certain types of interfer-
ometry). In Sect. 5 we sum up everything in the form of the

Article published by EDP Sciences A8, page 1 of 11

http://dx.doi.org/10.1051/0004-6361/201425259
http://www.aanda.org
http://cdsarc.u-strasbg.fr
ftp://130.79.128.5
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A8
http://astro.troja.mff.cuni.cz/projects/asteroids3D
http://www.edpsciences.org


A&A 576, A8 (2015)

ADAM algorithm, and conclude in Sect. 6. Some basic ADAM
functions are listed in Appendix A.

Using the methods and algorithm described here and in
Kaasalainen et al. (2001), Kaasalainen (2011), and Kaasalainen
& Viikinkoski (2012), writing an ADAM program from scratch
is quite straightforward (for example, convex lightcurve inver-
sion is inherently more complex). We have uploaded free ADAM
code files and functions written in Matlab and C to a toolbox at
the DAMIT site. These can be used for writing customized inver-
sion software, and for browsing and understanding the compu-
tational methods. These methods, too numerous to be discussed
here in detail, include techniques, such as the partial derivative
chains for gradient-based optimization, ray-tracing procedures,
projections and transforms, scattering and luminosity models,
GPU acceleration, etc. (Note that we do not offer any user
support: the files are presented as is.)

The ADAM procedure is a considerably more general pack-
age than the KOALA (Kaasalainen & Viikinkoski 2012; Carry
et al. 2012), which is based on extractable image contours. The
KOALA contour-fitting principle is necessary for including oc-
cultation data, so a full ADAM procedure inherits this function
from KOALA. For fitting any pixel images, we recommend the
ADAM Fourier-transform functions rather than KOALA.

We take asteroid reconstruction to mean here that the follow-
ing output parameters are derived from input data: 1) shape (sur-
face) definition; 2) rotational state (period and spin axis direc-
tion; possibly also terms for YORP acceleration, precession, or
a binary orbit); 3) scattering or other luminosity parameters (of-
ten fixed a priori); and 4) image offset (alignment) and possible
other auxiliary or normalization terms. Without the loss of gener-
ality, we do not discuss each item separately, but mostly take the
shape parameters to represent all the free parameters since the
optimization principle is technically the same for all parameter
types. The speed, convergence, and reliability of gradient-based
optimization methods are here superior to global optimization
methods (such as genetic algorithms or Monte Carlo; see the
discussion in Kaasalainen et al. 2001). We emphasize that the
spin parameters, especially the period, usually have numerous
local minima, so a dense enough comb of initial values of these
parameters is a prerequisite for a good final reconstruction.

2. Shape

Given the diverse shapes of asteroids and the continuing
progress in instrument technology, effective methods for shape
representation are required for a general reconstruction scheme
from observations. In inverse problems it is typically not clear a
priori how well a given shape support will perform. In this sec-
tion we present shape supports and corresponding regularization
functions well suited for asteroid-like shapes.

2.1. Shape supports

An important part of shape modelling is the choice of shape rep-
resentation. Assuming a typical asteroid surface is homeomor-
phic to the unit sphere, we can consider each coordinate as a
function on the sphere, and choosing a suitable basis for func-
tions, expand coordinate functions using this basis. This can be
generalized to multiple bodies such as binaries in a straightfor-
ward manner. Typical such bases are spherical harmonics, spher-
ical wavelets, and spherical splines. Our experiments suggest
that parametrizations, which expand each coordinate function
separately, tend to produce suboptimal results since they ignore

the geometric dependencies and constraints between coordinates
when considering surfaces represented by non-tangled meshes.
Thus we have found it useful to consider two well-regulated,
but conceptually different, shape supports in practice: octantoids
based on spherical harmonics, and subdivision surfaces.

2.1.1. Function series

An octantoid is a surface given by p ∈ R3 that can be
parametrized in the form

p(θ, ϕ) =



















x(θ, ϕ) = ea(θ,ϕ) sin θ cosϕ,

y(θ, ϕ) = ea(θ,ϕ)+b(θ,ϕ) sin θ sinϕ,

z(θ, ϕ) = ea(θ,ϕ)+c(θ,ϕ) cos θ,

(1)

where a, b and c are conveniently expressed as linear com-
binations of the (real) spherical harmonic functions Ym

l
(θ, ϕ),

with coefficients alm, blm and clm, respectively. Note that (θ, ϕ),
0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, are coordinates on the unit sphere S 2

parametrizing the surface, but not describing any physical di-
rections such as polar coordinates. As usual, the Laplace series
for a, b, c are useful for keeping the number of unknowns; i.e.
the coefficients of Ym

l
, small and the surface smooth. If b =

c = 0, this representation is the usual star-like one with the ra-
dius exp(a), but we have found that even if the target is star-like,
the octantoid form allows us to capture of detail better, and b
and c we can represent with considerably fewer terms than the
main function a. The number of shape parameters is thus be-
tween the (lmax + 1)2 of the star-like case and 3(lmax + 1)2, when
lmax is the largest degree of the function series. The drawback of
this representation is its globality: one might want less smooth-
ness regularization in some regions than in others. When more
local control is desired (e.g. a feature clearly visible in fly-by im-
ages or in radar), the representation (1) may be expanded with
spherical splines or spherical wavelets to provide local detail
without affecting the global shape. Depending on the desired
level of resolution and the non-star-like irregularity of the sur-
face, the number of free function series coefficients is typically
between 50 and 300 from low- to mid-resolution. Function series
are seldom useful for high resolution, where one may ultimately
want to adjust each vertex separately by defining individual ai,
bi, and ci.

2.1.2. Subdivision control points

Subdivision surfaces offer local control more than global repre-
sentations like function series. Beginning with an initial set of
vertices and corresponding triangles, called a control mesh, the
surface is iteratively refined by adding new vertices and com-
puting new positions for old vertices. The vertex coordinates of
the control mesh form the parameter set defining the surface.
Each subdivision step smoothes out the surface in a higher level
of resolution. Those subdivision schemes that are well-behaved
converge to a smooth limit surface.

In this paper, we use the Loop subdivision scheme (Loop
1987). Considering a vertex p with immediate neighbours
p0, . . . , pn−1, the subdivision method first creates new vertices
by splitting each edge

qi =
3p + 3pi + 3pi−1 + pi+1

8
, i = 0, . . . , n − 1, (2)

where the indices should be interpreted as modulo n. After the
vertex creation step, the position of the vertex p is refined as

p′ = (1 − nβ)p + β
∑

pi. (3)
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Fig. 1. Original control mesh (left) with 18 vertices (54 coordinates) as

the shape parameter set and 32 facets, after two
√

3-subdivision steps
(middle), and after four subdivision steps (right).

The multiplier β is usually chosen to be

β =
1

n

[

5

8
− (3 + 2 cos(2π/n))2

64

]

, (4)

but other choices are also possible. The limit surface is continu-
ous; C2 at the ordinary vertices (i.e. vertices that have six neigh-
bours) and C1 at extraordinary vertices. The number of free con-
trol points for model rendering is similar to or somewhat lower
than the number of function series coefficients (for a comparable
level of resolution).

The main computational aspect with subdivision methods
is that the number of facets increases exponentially with the
number of divisions. After n subdivision steps, each facet that
has been divided has produced 4n subfacets. An alternative

scheme to Loop subdivision is the
√

3-subdivision (Kobbelt

2000). Instead of splitting the edges,
√

3-scheme subdivides
facets by inserting a new vertex to the facet centroid and con-
necting it to the vertices of the facet (Fig. 1). The main attrac-

tion of the
√

3-scheme compared to the Loop subdivision is the
slower increase (3n) of facets, while performing similarly in the
limit.

In practice, it is usually a good idea to choose the initial con-
trol mesh to be an ellipsoid or a scaled convex surface obtained
from lightcurve inversion, with a suitable number of vertices for
the mesh. The number of subdivision steps should be chosen
carefully: while each subdivision increases resolution and sta-
bility by spreading the influence of each parameter to a larger
number facets, the computational burden grows exponentially.
Instead of subdividing all the facets, better performance may
be obtained with adaptive subdivision, where only facets ben-
efiting from increased resolution are subdivided. However, it is
not obvious how to do this automatically during optimization.
A heuristic inclusion of surface regions to be refined based on a
ranking of the improvement of the fit is one possibility (cf. the
χ2-sensitivity map of Kaasalainen & Viikinkoski 2012); visual
inspection of the model fit and a graphical user interface can
guide the refining process.

2.2. Regularization functions

In inverse problems, finding a feasible regularization method is
typically the most delicate part of problem solving. Ideally, both
the shape representation and regularization method should be
chosen to complement each other. The shape support should be
general enough to represent probable shapes, and the regular-
ization should prevent unrealistic or degenerate shapes while, at
the same time, reveal the features present in the data. For octan-
toids, the choice is remarkably easy. Assuming the basic shape
is geometrically star-like, it is intuitively obvious to penalize the
deviation from star-likeness. To this effect, we define

η =
∑

l,m

l
(

b2
lm + c2

lm

)

. (5)

Every star-like surface has a representation for which η = 0, so η
is a natural quantity to be included in the final χ2-function to
be minimized (Sect. 5). The χ2-sum contains both the goodness-
of-fit measure and the regularizing functions that represent prior
assumptions and expectations of the solution.

Subdivision surfaces have somewhat different smoothness
properties in this regard. It is well known that the Loop sub-
division converges to a smooth surface, so each subdivision step
will produce a smoother result. However, it is computationally
expensive to take a large number of subdivision steps. Therefore,
it is advantageous to combine a few, usually two or three,
subdivision steps with mesh-based regularization methods.

While not strictly necessary, it is convenient to assume that
the triangular mesh representing the shape forms a manifold.
This assumption makes the checking of shadowing and illumi-
nation both conceptually and computationally simpler. Thus it
is imperative to avoid self-intersections, as they introduce errors
to the fitting process. One approach is to explicitly check for
intersecting facets and retriangulate if required. However, trian-
gulation and intersection tests are costly, and usually optimiza-
tion steps leading to self-intersections are suboptimal. A better
approach is to prevent self-intersections in the first place.

Regularization based on dihedral angles penalizes large an-
gles between adjacent facet normals; i.e. the regularization
prefers planar regions. We thus want to minimize

γ1 =
∑

i, j∈T
wi j(1 − νi · ν j), (6)

where T are the facets of the mesh, and νk is the unit normal vec-
tor corresponding to the facet k. The sum is over all those facets j
that are adjacent to the facet i, and the weights wi j are usually
chosen to be unity. As a special case, we may suppress only con-
cave features, obtaining convex regularization (Kaasalainen &
Viikinkoski 2012)

γ2 =
1
∑

j A j

∑

i, j

A j(1 − νi · ν j), (7)

where Ai is the area of the facet i and the sum is over those
facets j that are adjacent to the facet i and tilted above its plane.

To prevent degenerate facets and maintain a homogeneous
mesh, it is advantageous to inhibit large variations in facet areas

γ3 =
∑

i

(

Ai − Ā
)2
, (8)

where Ā is the mean facet area of the polyhedron.
In practice, the regularization functions η and γ2 are suffi-

cient for octantoid surfaces, while γ2 and γ3 are useful for the
subdivision surfaces. Unrealistically sharp angles can be pre-
vented with γ1, but a weight that is too large will inhibit conver-
gence. In addition to geometric considerations, one can use regu-
larization based on physical constraints, such as the requirement
for the rotation axis to be close to the largest principal axis of
the inertia tensor (Kaasalainen 2011; Kaasalainen & Viikinkoski
2012).

2.3. Reliability estimates

The octantoid representation or the subdivision mesh tend to pro-
duce aesthetically pleasing, “asteroid-like” surfaces, but it is not
initially obvious which surface features of the model are actually
present in the data, and which are the side effects of the shape
support and the regularization used. Conventionally, Markov
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Fig. 2. Model of asteroid (41) Daphne from adaptive optics images, re-
constructed as a subdivision surface (left) and an octantoid (right).

chain Monte Carlo (MCMC) methods are used to obtain a reli-
ability estimate for the model parameters. However, in our case,
modelling and systematic errors usually dominate (Kaasalainen

& Ďurech 2006), rendering the MCMC approach inefficient and
inaccurate because the error distribution is not known (it is
certainly not random Gaussian as in standard MCMC).

Moreover, the posterior distribution of shape parameters
from MCMC will not really tell anything about the reliability
of the model with respect to data, but only about the distribu-
tion of the estimate within the adapted shape support. We have
found that this results in an overly optimistic conception of the
reliability of the result, simply because the acceptable shape re-
sults cannot be probed widely enough using one shape support
only. The Monte Carlo procedure focusses on regions of shape
variation that are too small for both computational and geomet-
ric reasons. In addition, the computation of the model fit is time
consuming if the data set and parameter space are large, making
MCMC estimation computationally expensive.

To circumvent these obstacles, we have found the follow-
ing approach fast and robust in practice. Any real feature of the
model based on the data should also be present if another, in-
dependent model type such as a shape support is used. When
model errors dominate, it is thus better to sample the “model
space” within some χ2 than the χ2-space with some fixed model.
As an example, shape models of the asteroid Daphne from adap-
tive optics images and photometry (Viikinkoski & Kaasalainen
2014), using both the octantoid representation and subdivision
surfaces, are shown in Fig. 2. The models are quite similar and
fit the data equally well, and their difference gives an idea of the
real level of resolution. The MCMC probing with either shape
support leads to small differences that are unrealistic (insignif-
icant compared to those in Fig. 2). Even the shape-support test
is likely to produce reliability limits that are too optimistic; the
model error can be further enlarged by e.g. introducing random
fluctuations in the scattering properties over the surface. This
principle could be developed into a meta-level Monte Carlo pro-
cedure that probes the space of possible model types using latent
parameters.

We conclude that shape sampling based on a fixed model
type, no matter how diligently done with Monte Carlo or other
methods, leads to overly optimistic resolution with artificial de-
tails. A typical example of this is the radar model of the asteroid
Itokawa that portrayed imaginary detail at the resolution level
expected from the data while not capturing even the large-scale
features. There was nothing wrong with the model fit to the data
as such: the inverse problem was not unique (or very unstable)
because of the restricted observing geometries and instrumen-
tal projection (Sect. 4.2), but the constrained shape support of
the program did not reveal this (Ostro et al. 2005; Nolan et al.
2014).

Fig. 3. Asteroid (6489) Golevka reconstructed from disk-integrated
photometry. From left to right: convex, octantoid and subdivision
surface.

2.4. Inversion with photometry only

Since ADAM utilizes photometric data in addition to disk-
resolved data, we note that ADAM can be used to reconstruct a
model using only photometric data (simply using only the pho-
tometric fit function from the toolbox). This is easy and fast to
do (and the shape rendering is even faster than the standard con-
vex inversion of lightcurves), but the result is inevitably unreli-
able: it is well known that even sizable non-convex shape fea-
tures require high solar phase angles to show in disk-integrated

data (Kaasalainen et al. 2001; Ďurech & Kaasalainen 2003;
Kaasalainen & Ďurech 2006). This can be probed with the shape
reliability approach above.

As an example, we show reconstructed shapes of the aster-
oid Golevka in Fig. 3, based on the data in Kaasalainen et al.
(2001). Both the subdivision method and the octantoid-based
model display additional detail not seen in the convex model.
However, the details are not supported by the data: the convex
model gives at least as good a fit as the non-convex, as is al-
most always the case with lightcurves (so far the only case of
a better non-convex model fit to photometry is that of the aster-

oid Eger in Ďurech et al. 2012). Indeed, with Golevka and other
ground truth cases (maps from space probe missions), even the
lightcurve fit with the correct shape and the scattering model as-
sumed in inversion is not better than that with the convex model
(Kaasalainen et al. 2001; Kaasalainen & Ďurech 2006). This un-
derlines the fact that, because of systematic errors, any best-χ2

optimized solution that relies only on photometry is likely to
miss the details.

While the convex model yields the best overall agreement
with the radar-based Golevka model (see the comparison in
Figs. 3 and 4 in Kaasalainen et al. 2002), the non-convex mod-
els portray much of the general sharpness and ruggedness of the
body even though their details are not correct. The convex shape
presents something of a softened error envelope within which
numerous local shape variations are possible (as if the target
were seen unfocussed), while the non-convex representations are
samplings of those variations. Their details coincide neither with
each other nor with those in the radar-based model, but they are
useful as illustrations and for probing the potential shape options
(cf. the non-convex examples in Kaasalainen et al. 2004).

3. Fourier transform and information content

As discussed in Viikinkoski & Kaasalainen (2014), the Fourier
transform (FT) facilitates a natural interpretation for the pixel
size as the maximum frequency present in the data, and makes
it easy to incorporate the impulse response function of the
imaging system. It also makes the optimization procedure fast
and straightforward, without the cumbersome aspects related to
pixellated image fields and binned model image distributions.
The principle of the ADAM approach is to compare, instead
of the images themselves, a set of FT samples (typically some
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thousands depending on the level of resolution) from the model
image with those of the data image, and to iterate until the best
fit is found. This is described in Sect. 5.

Letting T be the set of facets forming a model polyhedron
and P a projection operator, the two-dimensional Fourier trans-
form of a projected polyhedron in the (ξ, η)-plane is

F (u, v) =
∑

Ti∈T

"
PTi

Bi Ii(ξ, η) e−2πı(uξ+vη) dξ dη, (9)

where Bi is the luminosity value of the facet i, and the func-
tion I(ξ, η) is unity if the point projected on (ξ, η) is visible and
zero otherwise. As shown in Viikinkoski & Kaasalainen (2014),
we obtain by Green’s theorem, dividing a facet into subfacets
if necessary so that we may assume I is constant within each
sub-facet,

F (u, v) =
∑

i

Bi

∑

j

Ii j(u, v), (10)

where

Ii j(u, v) =
1

4π2(u2 + v2)

(b − d)u − (a − c)v

(a − c)u + (b − d)v

×
[

e−2πı(au+bv) − e−2πı(cu+dv)
]

(11)

for the jth boundary line segment (oriented counterclockwise)
of the facet i, with the end points (a, b) and (c, d).

The summation over the interior edges of a projected poly-
hedron can be reordered by noting that each polygon edge in
the interior is shared by two polygons, so a new factor B̃ can
be taken to be the difference between the two Bi, and the edge
term is computed only once. This explicitly shows why most
of the information in the image is indeed from the limb and
shadow boundary curves discussed in Kaasalainen (2011) and
Kaasalainen & Viikinkoski (2012). The values of B̃ for interior
triangle edges are usually close to zero (indeed, they vanish for
the geometric scattering Bi = const.), so most of the weight is
on the boundary edges. In practice, this is confirmed by the sim-
ilar results for e.g. the asteroid Daphne obtained by KOALA and
ADAM. There is little real information in the interior pixels of
adaptive optics images, but on the other hand their errors do not
distort the result either: the difference between the KOALA and
ADAM models (for the same initial values and shape support) is
negligible.

The role of boundary information can be understood when
compared to the extreme case of lightcurve data: if we sum
the pixel brightnesses over the image as in photometry, all the
local shape information in the image is lost, so the remain-
ing information is considerably more dependent on the light-
scattering properties that are never very well known. With im-
ages the boundary contrast is always largest, however, so it is
sufficient to have some kind of reasonable scattering (or thermal
distribution) model to account for the interior pixel contrasts.
Indeed, the uniqueness theorems on the image, interferometry,
occultation, or radar data are based on robust boundary con-
tour information (Kaasalainen 2011; Kaasalainen & Viikinkoski
2012; Viikinkoski & Kaasalainen 2014). With disk-integrated
data only, Minkowski stability is luckily on our side when using
convex models (Kaasalainen et al. 2001, 2002).

4. Data sources

The versatility of the ADAM algorithm enables the handling of
different data sources with only minor changes to the instrument-
dependent part of the procedure (essentially just the definition of

the instrumental projection plane and the adopted point-spread
function). In this section, we present diverse examples of shape
reconstruction with ADAM using both simulated and observed
data.

4.1. Interferometry and ALMA

The interferometric imaging method differs radically from a typ-
ical telescope; instead of observing the sky brightness directly,
the interferometer samples the Fourier transform of sky bright-
ness. Each antenna pair of the interferometric array determines
one sample on the Fourier plane. The maximum separation be-
tween antennas determines the maximum attainable resolution.
The interferometer most relevant to asteroid shape studies is the
Atacama Large Millimeter Array (ALMA) in the Chilean desert.
In its full configuration, the interferometer will be capable of ob-
serving at the resolution of a few milliarcseconds at the wave-
length of 0.3 mm, corresponding to the separation of 16 km
between antennas.

Given the brightness distribution I(ξ, η) on the plane-of-sky,
the visibility function is defined as the integral

V(u, v) =

"
I(ξ, η) e−2πı(uξ+vη) dξ dη, (12)

which is a two-dimensional Fourier transform of the brightness
distribution. Each antenna pair, corresponding to the projected
baseline on the plane-of-sky, samples the visibility function.
When the visibility function is sampled on a sufficiently dense
set, the Fourier transform can be inverted to obtain the brightness
distribution I(ξ, η). Since the function V(u, v) is measured only
at a finite number of points, the observed visibility function is

Ṽ(u, v) = F(u, v) V(u, v), (13)

where F(u, v) is a sampling function corresponding to the sam-
pled points on the (u, v)-plane. Thus the obtained brightness
distribution is actually

Ĩ(ξ, η) = f (ξ, η) ⋆ I(ξ, η), (14)

i.e., a convolution of the true brightness distribution with the
inverse Fourier transform f (ξ, η) of the sampling function.
Deducing the true brightness distribution I from the partially
measured brightness Ĩ is an inverse problem and there are sev-
eral iterative algorithms to infer I from Ĩ, see, e.g. Labeyrie et al.
(2006).

While the images obtained from the interferometer are in-
formative, the great advantage with ADAM is that the algo-
rithm works directly with the values of the visibility function
obtained from the instrument. This approach has several distinct
advantages:

– sparse data may be used (e.g. interferometry with a few base-
lines);

– the distribution of antennas does not cause bias, since the
Fourier transform is not inverted;

– possible artefacts caused by the inversion process are
avoided;

– the dependence between different observations is taken au-
tomatically into account.

To obtain the luminosity values for the model surface (i.e.
the brightness factor Bi for each facet) in the infrared
regime of ALMA, we can use the Fourier-series approxi-
mation of Nesvorný & Vokrouhlický (2008) as discussed in
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Fig. 4. Antenna locations of ALMA (left) and corresponding uv-plane
visibilities (right). Images generated with the CASA software package.

Viikinkoski & Kaasalainen (2014). The fast analytical computa-
tions are then efficient in the optimization. A simple thermophys-
ical model is sufficient for shape reconstruction, as the most rel-
evant information is contained in the boundary data, which are
quite robust with respect to our thermal model. This is in con-
trast to the disk-integrated thermal data that are more sensitive
to both the surface properties and the thermal model.

For thermal infrared imaging, ALMA facilitates asteroid
observations at resolution levels previously attained only by
range-Doppler radar. To explore the possibilities of ALMA for
shape modelling, we use the Common Astronomy Software
Applications (CASA) package developed by National Radio
Astronomical Observatory (NRAO) to simulate observations.

Consider a hypothetical asteroid with geocentric and helio-
centric distances of 1.5 and 1 AU, respectively. The thermal flux
is observed at the 350 GHz band, a frequency located in an at-
mospheric window. There are 11 observation runs, each obser-
vation lasting 50 s with 10 s integration time. We choose an an-
tenna configuration providing approximate resolution of 10 mas,
a resolution which is well within the capabilities of ALMA. The
antenna configuration and the corresponding uv-plane sampling
pattern are shown in Fig. 4. The uncorrupted plane-of-sky im-
ages, with a resolution of five milliarcseconds, are displayed in
the column on the left in Fig. 5. We use the CASA software to
add realistic atmospheric noise to the observations. The result-
ing dirty images, which are obtained by assuming that the un-
sampled frequencies are zero, are shown in the middle column.
These images are provided for illustration purposes only, since
ADAM uses the uv-plane samples directly.

To test the ADAM reconstruction method, we use a low-
resolution octantoid representation with 75 shape parameters.
We also fit a scaling term, common to all observations. Usually
it is a good idea to use scaling specific to each observation, but in
this case we know that all the simulated observations are done in
similar conditions, so the common scaling term is justified. The
reconstructed shape is displayed in the right column in Fig. 5,
with the same observation geometries as for the model images.
The small-scale detail is lost, which is to be expected because
of the added atmospheric noise and coarse instrument resolu-
tion. However, the bifurcated shape is well recovered despite the
noisy data (note that we used ALMA data only). The compu-
tation time for this reconstruction was a few minutes. For real
observations, complementary data are often provided by other
observation methods e.g. disk-integrated photometric data are
almost always available.

4.2. Radar data

The mathematical principles of the feasibility and uniqueness
of the inversion of range-Doppler images are discussed in

Fig. 5. Simulated, uncorrupted images with 5 mas pixel size (left col-
umn), observed dirty images generated with CASA (middle) and the
reconstructed low-resolution shape model (right). Note that the middle-
column images are not needed in inversion; we use the direct FT data
instead. The images are what would be seen if the raw data were decon-
volved for viewing purposes as is usually done for ALMA targets. The
test shape model is from Ostro et al. (2000).

Viikinkoski & Kaasalainen (2014). Here we consider some prac-
tical issues related to shape reconstruction. While other imag-
ing methods rely on detecting the radiation of the sun that is
reflected or re-radiated from the asteroid, radar provides its own
illumination, making it possible to observe an asteroid regardless
of the position of the sun. Moreover, in contrast to the visible
or infrared wavelengths, the frequencies used by the radar are
not significantly distorted by the atmosphere. Additionally, the
properties of the waveform may be carefully controlled to reveal
structural details on the surface of the asteroid. These properties
make it possible to obtain data resolution down to 10 m or less
for near-Earth asteroids, but this does not immediately translate
to the same model resolution because of the inverse problem (cf.
the Itokawa example in Sect. 2.3).

Range-Doppler radar resolves an object both in the range and
in the line-of-sight velocity that translates to the Doppler shift of
the reflected pulse. The frequency spectrum may be extracted
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by taking the fast Fourier transform of the pulses corresponding
to a particular range gate. The actual hardware implementation
and the signal processing are complicated as the detected signals
are below the noise level of the instrument (Ostro et al. 2002).
Fortunately, the technical specifics are not required for the ac-
tual shape reconstruction, since the radar performance may be
modelled by the point-spread function of the system.

The point p = (x, y, z) on the asteroid’s surface can be trans-
ferred to the range-Doppler frame (r,D) by the linear mapping

r = (x cos φ + y sin φ) sin θ + z cos φ (15)

D = ω sin θ (x sin φ − y cos φ), (16)

where ω is the rotation rate of the asteroid around the z-axis,
and (θ, φ) are the spherical radar direction coordinates as seen
from the asteroid. In this mapping, the range-Doppler radar im-
age brightness L may be written as an integral over the asteroid
surface S as

L(r,D) =

"
S

hr

[

r − r(p)
]

hD

[

D − D(p)
]

B(p) I(p) dS , (17)

where hD and hr are the point-spread functions of the radar sys-
tem, corresponding to the Doppler-shifted frequency D and the
range r, respectively. Here I is the visibility function, which
is unity if the point is visible to the radar and zero otherwise.
This form is similarly defined for all generalized projections
(Kaasalainen & Lamberg 2006). The mapping p → (r,D) is
unique, but its inverse is many-to-one, so the inherent informa-
tion content of a range-Doppler image is considerably smaller
than that of an optical image of similar resolution. Thus, while
the nominal resolution provided by radar may be unmatched
by any other instrument, the drawback of radar imaging is the
difficulty of the interpretation of the images.

The radar scattering function is given by B, which is usually
a simple cosine law

B(p) = C
[

µ(p)
]n
, (18)

where µ is the cosine of the angle between the surface normal
and the radar direction. The constants C and n measure the sur-
face reflectivity and the specularity of scattering, respectively.
The validity of Eq. (18) for modelling the microwave scattering
from the asteroid’s surface is a rather convoluted question. While
the cosine law is quite simplified, it should be noted that as the
reflected wave is formed in a complicated manner by the surface
material whose properties and roughness are usually unknown,
fully realistic modelling of the reflected wave is not computa-
tionally feasible. However, as in the other disk-resolved cases,
most of the information is contained in the boundary contours
and is thus independent of the scattering model used.

Assuming the asteroid is modelled as a polyhedron with tri-
angular facets T , the integral (17) may calculated separately for
each facet, after projecting each triangle Ti as a triangle PTi on
the range-Doppler plane

L(r,D) =
∑

Ti∈T
BiIi

∫

PTi

hr(r − r′) hD(D − D′) dr′ dD′, (19)

where we have assumed that the visibility I and the scattering
law B are constant within a triangle.

Taking the Fourier transform on both sides, applying the con-
volution theorem, and writing Ti(u, v) for the sum over the edges
of a Fourier transformed triangle as in Sect. 3, we obtain

L(u, v) =
∑

Ti∈T
Bi Ii Hr(u) HD(v)Ti(u, v), (20)

Fig. 6. Mid-resolution shape model of the asteroid 2000 ET70 recon-
structed from radar images. Viewing directions are from the positive x,
y, and z axes, respectively.

where Hr(u) and HD(v) are the Fourier transforms of hr and hD,
respectively.

Like any images, radar plots are seldom correctly aligned
in some reference frame due to the errors in the centre of mass
prediction, so the actual position of a radar image with respect to
the two-dimensional projection of the model must be determined
during the optimization. The task of image alignment is further
complicated by the peculiar asymmetric structure of radar im-
ages, especially the bright leading edge, other possible ridges
of strong reflectivity, and the fading farthest-range pixels. If the
alignment information is unknown, it is usually a good idea to
fit the image offsets to a fixed shape first, obtaining better initial
positions that can be used in the shape optimization.

To demonstrate the reconstruction method, we make a fast
ADAM model of the near-Earth asteroid 2000 ET70. Our goal
is to get a quick first look at an initial model (to be refined
at will). The asteroid was observed during February 2012 at
Arecibo and Goldstone observatories using 2380 and 8560 MHz
range-Doppler radars (Naidu et al. 2013). The images obtained
from Arecibo have a resolution of 15 m in range and 0.075 Hz
in frequency. Goldstone images have a somewhat lower reso-
lution, 15 to 75 m and 1 Hz, respectively. Our goal is to pro-
duce medium-scale detail in the reconstructed shape, so a typ-
ical model choice is an octantoid with lmax ∼ 10 and around
1500 facets. Our example is “first-result oriented” on purpose,
so we assume no information about the instrument-specific dis-
tortions, or more importantly, knowledge about the point-spread
functions determined by the instrument and the processing rou-
tines of the radar signal. Thus the point-spread function used
in the shape reconstruction is simply the two-dimensional delta
function.

For each data image, we fit, in addition to the shape pa-
rameters, the offset with respect to the model centre of mass
and the reflectivity term in Eq. (18). The reconstructed middle-
resolution shape is shown in Fig. 6 and the model fit to the data in
Fig. 7. The shape model fits the boundary contours of the radar
images satisfactorily, but there are some differences in the in-
terior details. This is a consequence of the parametrization and
facet size chosen for reconstruction. The interior could be repro-
duced in greater detail by choosing a different parametrization,
for example locally adaptive subdivision surfaces, or by refin-
ing the positions of individual vertices. The model dimensions,
shape features, and spin parameters agree with those published
by Naidu et al. (2013; the spin parameters are identical except
for a 2◦ difference in the pole latitude, well within error limits).

The main point of the initial low-to-middle resolution is that
the speed of ADAM is considerable, and a detailed knowledge
of the instrument or the surface scattering physics is not needed,
so one obtains a first model very fast by just feeding in the
images. The middle-resolution radar-based reconstruction (us-
ing 82 radar images) was computed in less than an hour on a
standard laptop, and GPU programming can reduce the compu-
tation time significantly. This makes possible a broad sampling
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Fig. 7. Examples of range-Doppler images of the asteroid 2000 ET70 from Arecibo Observatory (rows 1 and 3) and corresponding simulated
images from the mid-resolution model (rows 2 and 4). The contrast scale of the model image is somewhat modified to reveal inner image features.

of the parameter space or real-time experimenting with various
models. Once a lower-resolution model has been adopted as the
final frame, it is straightforward to refine it further. However, this
requires accurate information about the point-spread and scatter
functions.

4.3. Adaptive optics and other images

Model reconstruction from adaptive optics images in the Fourier
approach is extensively covered in Viikinkoski & Kaasalainen
(2014), along with an example of the reconstruction of the main
belt asteroid Daphne from adaptive optics images and photom-
etry (Fig. 2). Other imaging data may be incorporated into the
framework using a similar approach. For instance, fly-by images
are, from the viewpoint of the reconstruction algorithm, concep-
tually identical to the AO images. This is one of the attractions
of ADAM: at the bare minimum, the user does not need to know
anything about the images except their projection matrix and
epochs.

We note that the photometric data were actually not even
needed in reconstructing Daphne (except for a better estimate
of the rotation period than with AO images only). The shape

results with or without photometry are similar. This shows that
even sparse AO data are well sufficient for modelling asteroid
spin states and shapes in detail.

4.4. One-dimensional projection operators

In the regime between disk-integrated and disk-resolved ob-
servations there are one-dimensional operators that project
the plane-of-sky onto a line. Typical examples are the
continuous-wave (CW) Doppler spectra that measure the dis-
tribution of the reflected power in frequency only, and the fine
guidance sensors (FGS) onboard the Hubble Space Telescope,
measuring the brightness distribution along an instrument axis.
One-dimensional projections are seldom sufficient for actual
shape reconstruction, but they may contain useful information
about the object’s size or indications about the bifurcated struc-
ture (Kaasalainen & Viikinkoski 2012), and combined with other
sources, they facilitate shape inversion.

In both examples, the measurement can be written in the
form

S (x) =

∫

I(ξ, η) P(x − ξ cos γ − η sin γ) dξ dη, (21)
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where I(ξ, η) is the plane-of-sky brightness (optical or radar)
distribution of an object, P is the point-spread function of the
instrument, and the angle γ corresponds to the rotation of the
sensor in the image plane. In Kaasalainen & Viikinkoski (2012),
the integral was evaluated using a Monte Carlo method: the pro-
jected model was sprinkled with uniformly distributed sampling
points, and the integral was approximated as a sum over the vis-
ible and illuminated sampling points. We demonstrate how the
Fourier transform method can be used to interpret the integral as
a tomographic operator on the Fourier plane.

Taking the Fourier transform on both sides and using the
projection-slice theorem (a slice of a 2D FT along a line through
the origin equals the 1D FT of the projection of the original
2D function onto a line in the same direction; see e.g. Bracewell
2003), we get

S( f ) = I( f cos γ,− f sin γ)P( f ), (22)

where the calligraphic characters denote the Fourier-transformed
functions. Now it is obvious that S( f ) is a slice of a Fourier-
transformed brightness distribution along a line through the ori-
gin, multiplied with the Fourier transform of the point-spread
function. Moreover, this means that the same algorithm may
be used to fit both FGS and adaptive optics data, and similarly
both CW Doppler data and the range-Doppler images. In other
words, we extract a one-dimensional Fourier transform from the
2D model FT, and compare this with the 1D FT formed from the
data in the same manner as in the full 2D case.

5. ADAM algorithm

The flowchart in Fig. 8 describes the workings of ADAM. More
specifically, the algorithm may be divided in five distinct steps:

1. For each data image Di and observation geometry Ei, the
two-dimensional Fourier transform FDi(u, v) of Di is sam-
pled at a set of points {(ui j, vi j)}, j = 1 . . .Ni, on the spatial
frequency plane. The size of the set is chosen to correspond
to the level of resolution. For pixel images, the transform can
be computed with Eq. (10) when considering each pixel as
a polygon, or with using fast Fourier transform functions for
chosen grid points (but the time spent for FDi(u, v) is irrele-
vant, as are most of the computations, for the trial models).

2. The shape support and resolution level (number of parame-
ters) are chosen. The parameters are initialized such that the
initial shape is a sphere approximately equal in size to the
target.

3. For each observation geometry Ei, the Fourier transform
FMi(u, v) of the corresponding projection image Mi of the
model is calculated as described in the previous sections, to-
gether with the partial derivatives of FMi(u, v) with respect
to all optimized parameters. Ray-tracing, scattering or lu-
minosity models, and coordinate transforms for the image
plane are discussed in Kaasalainen et al. (2001), Kaasalainen
(2011), and Viikinkoski & Kaasalainen (2014).

4. An objective function χ2 is formed, with the square norm of
the complex-valued FT fit error

∑

i

Ni
∑

j=1

∥

∥

∥

∥

FDi(ui j, vi j)−e2πı(ox
i
ui j+o

y

i
vi j) Si(ui j, vi j)FMi(ui j, vi j)

∥

∥

∥

∥

2

+
∑

i

λiγ
2
i =: χ2, (23)

where (ox
i
, o
y

i
) is the offset between the data image Di and the

model image Mi, and, by the convolution theorem, Si is the

Fig. 8. ADAM optimization algorithm as a schematic for one image
type.

Fourier transform of the point-spread function of the imaging
system. The γi represent various regularization terms defined
above.
For brevity, we have written only one data mode in Eq. (23);
any number of modes with their goodness-of-fit functions
can be added to the sum. These functions for photometry
and silhouettes (occultations) are given in Kaasalainen et al.
(2001), Kaasalainen (2011), and Viikinkoski & Kaasalainen
(2014). The determination of the weights of the data modes
(as λi for the regularization functions) is discussed in
Kaasalainen (2011) and Kaasalainen & Viikinkoski (2012).
Weights can be determined for any subsets of data (e.g. less
reliable images) if necessary.
In addition, the intensity level of each data and model im-
age must be normalized. Often it is enough to divide both
model Mi and data image Di by their respective mean
intensities. Equivalently, writing

χ2 :=
∑

i j

∥

∥

∥Di(ui j, vi j) − M̃i(ui j, vi j)
∥

∥

∥

2
+ λγ2, (24)

we have

χ2
rel =
∑

i j

∥

∥

∥

∥

∥

∥

Di(ui j, vi j)

〈‖Di‖〉
−
M̃i(ui j, vi j)

〈‖M̃i‖〉

∥

∥

∥

∥

∥

∥

2

+ λγ2, (25)

where the mean 〈·〉 is taken over {(ui j, vi j)}, j = 1 . . .Ni.
However, sometimes it is better to allow the intensity level
of each Mi to be a free parameter and use χ2; this is use-
ful in the case where the mean intensity of Di is corrupted
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by excessive noise in the image background (this is typical
for range-Doppler images). This causes the χ2

rel
-based so-

lution to have a slightly wrong size to compensate for the
“diluted” normalized intensity level inside the actual object
region of Di.

5. The shape and spin parameters and the offsets (ox
i
, o
y

i
) as well

as the possible intensity level factors Ci minimizing χ2 are
determined with a suitable method such as the Levenberg-
Marquardt algorithm. If there are several hundreds of pa-
rameters, as in the case of fitting all shape vertices directly
(instead of using function series or control points) to pro-
duce maximal resolution, the conjugate gradient method is
efficient (Kaasalainen et al. 2001).

6. Conclusions and discussion

The ADAM algorithm can handle radar data, images, inter-
ferometry (also in the thermal infrared), photometry, and oc-
cultations separately or in combinations. The ADAM proce-
dure consists of a number of modules, and there are various
options for each module that are customized to the end-user
(e.g. the adopted optimization method, regularization functions,
shape support and mesh structure, ray-tracing method, coordi-
nate system, luminosity/scatter model, image formats, etc.). In
this sense, ADAM is a toolbox and a set of building blocks rather
than a ready-made program.

The main idea behind ADAM is the efficient use of the
Fourier transform in handling both images and one-dimensional
projection data. Fourier analysis has long been used in e.g. image
compression because it conveniently captures the essential infor-
mation in a hierarchy of resolution. In the same vein, the FT ap-
proach in ADAM is ideal for producing models of desired levels
of resolution, especially in the low- to medium-resolution cat-
egory. In this framework, the goodness-of-fit function between
the model and the data is easy to compute and use in optimiza-
tion. In addition, with this method, its convergence properties
are more robust than if the images are used directly. In fact, one
does not necessarily even have to look at the images or know
much about the instrument that produced them. An analogy of
this paradox is the simple one-dimensional problem of realign-
ing two phase-shifted copies of a dual-frequency signal. If one
does this by minimizing the signal difference by optimizing the
shift in the original amplitude space, there are multiple local
minima, but in frequency space the offset is found immediately.

Despite its automatic character, ADAM should not be used
as a black box: asteroid reconstruction is a complicated inverse
problem, and one should be familiar with its mathematical prin-
ciples to understand the limitations and information content of
the data sources.
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Appendix A: Sample ADAM functions

In order to make the structure of ADAM more concrete, we show
an example of how the program is divided into sub-routines. We
consider only the part of the program that computes the heat flux
density of an object and its Jacobian (i.e. the partial derivatives
of each modelled flux data point w.r.t. the free parameters), as all

the other modules are structurally similar. In the case of optical
images, the flux is replaced by brightness from scattering; for
radar, by the signal strength in the range-Doppler plane.

The partial derivatives w.r.t. the shape parameters are ini-
tially calculated with respect to the vertex coordinates, mak-
ing the routines independent of the parametrization we used.
The Jacobian is determined using the chain rule only in the fi-
nal phase. The functions are complex-valued, since the fitting is
done on the frequency plane. In the optimization, the data are di-
vided into real and imaginary parts and fitted separately. Usually,
the Levenberg-Marquardt or the conjugate gradient method is
used to optimize the χ2-fit.

Three different coordinates systems are used in ADAM: the
asteroid-centric coordinate frame with coordinate axes fixed to
the asteroid, the asteroid-centric inertial frame, and the camera
frame, which is determined by the instrumental orientation ge-
ometry. The plane-of-sky view of an asteroid is obtained by pro-
jecting the asteroid in the camera frame to the xy-plane.

The Jacobian and the vector, consisting of simulated values
corresponding to the observations, are computed using the fol-
lowing subroutines:

– Generate_HF_Matrix calls the subroutine
Calc_Heat_Flux for each observation, and then com-
bines the Jacobian submatrices into a full Jacobian matrix
corresponding to all the observations.

– Calc_Heat_Flux calculates the Fourier transform of the
two-dimensional plane-of-sky flux density and its par-
tial derivatives by calling the subroutines Calc_Temp,
Rot_Matrix, Cam_Matrix, Calc_Vis and Calc_FT. After
the flux density of each facet is determined, the routine trans-
forms the triangular mesh to the camera frame and projects
the visible part of the mesh onto the xy-plane by discarding
the z-coordinate. Finally, each vertex is transformed to the
frequency plane using the Calc_FT subroutine and the con-
tributions of the Fourier-transformed facets are summed.

– Calc_Temp determines the temperature of the facets
corresponding to the observation geometry, using the
FFT method. The partial derivatives of the temperature with
respect to the shape parameters are also calculated. This sub-
routine also calls subroutines Rot_Matrix and Calc_Vis.

– Rot_Matrix calculates the rotation matrix needed to trans-
form the object to the inertial frame. The rotation matrix is
determined by the spin vector and the observation time.

– Cam_Matrix determines the matrix needed to transform the
inertial frame to the camera frame. This depends on the in-
strument location and orientation. The z-coordinate codes the
relative distance from the instrument.

– Calc_Vis determines the visibility of facets using ray-
tracing. In contrast to the optical case, a facet can be visible
to the observer even if it is not illuminated by the sun.

– Calc_FT calculates the Fourier transform of a triangle pro-
jected onto the xy-plane together with the corresponding
partial derivatives.

The most important setup factors determining the computation
time of ADAM are the numbers of facets and data points (the
number of images and their pixels). The computation time in-
creases approximately linearly with both numbers. The cost of
actual optimization steps increases superlinearly with the num-
ber of free parameters, but with large data sets (such as the
radar example above) most of the computation is spent on deter-
mining function values and their partial derivatives with respect
to the vertex coordinates. In such cases, the number of shape
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parameters is not critical for the computational cost in the mid-
resolution regime, so one is free to choose a number that best
corresponds to the resolution level (and set the number of facets
accordingly). When the data set is small, the computation time is
short in any case, and the model is likely to be low resolution, so
again the number of parameters is not an issue. The cost of vis-
ibility determination by ray-tracing is insignificant as the poten-
tial blocker facets can be precomputed (Kaasalainen & Torppa
2001).

The shape reconstruction from observations is an easily par-
allelizable problem. There are two obvious levels of parallelism:
each observation can be calculated independently; or, within
each observation, the contribution of each facet may be deter-
mined simultaneously. The best choice depends on the com-
puter’s architecture. The observation-level parallelism may be
easily exploited using the MATLAB parallel computing tool-
box, or more effectively by using the OpenMP API in the C lan-
guage. The reduction in execution time scales almost linearly
with the number of CPU cores. This is the approach currently
implemented in ADAM.

While it is possible to implement facet-level parallelism on
the CPU by dividing the facet computations between several
CPU cores, a more natural approach is to use one thread per
facet. This kind of implementation is inefficient on the CPU,
since the thread-switching latency is high compared to the run-
ning time of a thread. However, the ability of the GPU to run
thousands of lightweight threads simultaneously combined with
the virtually costless thread switching makes it possible to attain
orders of magnitude faster computation than with CPU. We will
implement GPU acceleration in ADAM using the Nvidia CUDA
programming platform.
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