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Abstract

Background: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean

networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The

computational complexity to analyze the complete dynamics of these models grows exponentially in the number of

variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they

either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many

users as they require understanding the underlying algorithm and implementation, do not have a graphical user

interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed.

Results: We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of

Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM

converts several discrete model types automatically into polynomial dynamical systems and analyzes their

dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete

model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra.

Based on extensive experimentation with both discrete models arising in systems biology and randomly generated

networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the

structure maintained by most biological systems, namely sparseness and robustness. For a large set of published

complex discrete models, ADAM identified the attractors in less than one second.

Conclusions: Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is

a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based

on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of

complex models accessible to a larger community, as it is platform independent as a web-service and does not

require understanding of the underlying mathematics.

Background
Mathematical modeling is a crucial tool in understanding

the dynamic behavior of complex biological systems. In

addition to the popular ordinary differential equations

(ODE) models, discrete models are now increasingly used

for this purpose [1-3]. Model types include (probabilistic)

Boolean networks, logical networks, Petri nets, cellular

automata, and agent-based (individual-based) models, to

name the most commonly found ones [4-9]. While

discrete models tend to be more intuitive than those

based on differential equations, they do not have the

broad range of mathematical analysis tools available that

have been developed for ODE models. For small models,

exhaustive enumeration of all possible state transitions of

the model is the method of choice. But since the size of

the state space grows exponentially in the number of

model variables, this method is very limited in its applic-

ability. For larger models sampling methods can be used

to get some information about model dynamics. There

are several existing sophisticated software tools available

that allow users to analyze and simulate discrete net-

works, focused on a particular model type. These tools

use a variety of computational and analytical tools for
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analysis purposes, with a range of different user inter-

faces; see, e.g., [10-16]. They will be discussed in detail in

a later section.

The software tool introduced in this paper, Analysis of

Dynamic Algebraic Models (ADAM) complements existing

software packages in several ways. By translating models

into the rich mathematical framework of polynomial dyna-

mical systems over a finite number system, we can bring

to bear a variety of theoretical results, computational algo-

rithms, and available software packages from computer

algebra and computational algebraic geometry on the ana-

lysis of model dynamics. For this purpose we provide

implemented algorithms that import models created in

with other packages, so that the user does not need to

learn a new mathematical framework [17,18]. The basic

computational workhorse underlying our software tool is

the (symbolic) solution of systems of (nonlinear) polyno-

mial equations over a finite number system. This is a well-

studied problem in computer algebra and sophisticated

algorithms are implemented for this purpose, which we

make use of. An efficient computational implementation

results in the ability to analyze model dynamics for quite

large discrete models without having to resort to heuristic

algorithms. We offer ADAM as a web service, avoiding the

problems associated with software downloads and differ-

ent computational platforms.

Results and Discussion
In this manuscript, we present the web-based tool ADAM,

Analysis of Dynamic Algebraic Models [19], a tool to

study the dynamics of a wide range of discrete models.

ADAM provides efficient analysis methods based on math-

ematical algorithms as a web-based tool for several differ-

ent input formats, and it makes analysis of complex

models accessible to a larger community, as it is platform

independent as a web-service and does not require under-

standing of the underlying mathematics. ADAM is the

successor to DVD, Discrete Visualizer of Dynamics [20], a

tool to visualize the temporal evolution of small polyno-

mial dynamical systems.

As the underlying computational approach, we propose

a novel method to identify attractors of a discrete model.

This method relies on the fact that many discrete models

can be translated into the algebraic framework of polyno-

mial dynamical systems. Using these polynomials, one can

construct a system of polynomial equations, such that its

solutions correspond to fixed points or limit cycles. Thus,

the problem of identifying attractors becomes equivalent

to solving a system of polynomial equations over a finite

field. This is a long-studied problem in computer algebra,

and can usually be solved efficiently by using Gröbner

basis methods [21]. We emphasize that this method is not

a new mathematical algorithm to solve polynomial equa-

tions, but a novel approach to the analysis of discrete

dynamical systems that uses a novel encoding of the peri-

odic points of such a system as the solutions of polynomial

systems derived from the model when expressed in the

algebraic framework. ADAM allows users unfamiliar with

polynomial dynamical systems or Gröbner bases to benefit

from this efficient algorithm. We tested the method on

several examples and had an average run time of less than

one second, comparable to the performance of other soft-

ware tools; and we were able to identify limit cycles of sys-

tems with more than 32 variables in less than one second.

In addition to providing access to mathematical theory

for efficient analysis, algebraic models are a unifying fra-

mework and systematic approach for several model types.

This allows for an effective comparison of heterogeneous

models, such as a Boolean network model and an agent-

based model. For community integration in the biological

sciences, ADAM contains a model repository of previously

published models available in ADAM specific format [22].

This allows new users to familiarize themselves quickly

with ADAM and to validate and experiment with existing

models. In the following section, we discuss general fea-

tures of ADAM briefly and explain new features in more

detail.

General Features of ADAM

ADAM is a tool for analyzing different types of discrete

models. It automatically converts discrete models into

polynomial dynamical systems, that is, time and state dis-

crete dynamical systems described by polynomials over a

finite field (see Appendix A.1 for definition and example).

The dynamics of the models is then analyzed by using

various computational algebra techniques. Even for large

systems, ADAM computes key dynamic features, such as

steady states, in a matter of seconds. ADAM is available

online and free of charge. It is platform independent and

does not require the installation of software or a computer

algebra system.

ADAM translates the following inputs into (probabilistic)

polynomial dynamical systems and can then analyze them.

• Logical models generated with GINsim [10]

• polynomial dynamical systems

• Boolean networks

• probabilistic polynomial dynamical systems, prob-

abilistic Boolean networks (PBN) [6].

ADAM also translates Petri nets generated with

Snoopy and we plan to implement analysis methods for

Petri nets in future versions.

ADAM’s main application is the analysis of the dynamic

features of a model, which includes the identification of

stable attractors. These are either steady states, i.e., time-

invariant states, or limit cycles, i.e., time-invariant sets of

states. ADAM is capable of identifying all steady states and
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limit cycles of length up to a user-specified length m. The

process of finding long limit cycles is quite slow for large

models. However, in biological models limit cycles are

likely to be short, so that m can be chosen to be small in

general, i.e., less than 10.

The temporal evolution of the model can be visualized

by the state transition graph, the directed graph of all

possible states and edges indicating their transitions,

also called the state space. For small enough models, i.

e., less than eleven variables, ADAM generates a graph

of the complete state space; for larger models, ADAM

uses algebraic algorithms to determine dynamic proper-

ties. Independent of network size, ADAM generates a

wiring diagram. The wiring diagram, also known as

dependency graph, shows the static relationship between

the variables. All edges in ADAM’s wiring diagrams are

functional edges, that is, there exists at least one state

such that a change in the input variable causes a change

in the output variable (see Appendix A.2 for more

details). This means that ADAM determines all non-

functional edges, which is oftentimes of interest.

With ADAM, one can also study the temporal evolu-

tion of user-specified initial states. The trajectory of a

state describes the state’s evolution, and it can be com-

puted by repeatedly applying the transition function

until an attractor is reached.

All of these features can be computed assuming syn-

chronous updates or sequential updates according to an

update-schedule specified by the user. Note that the

steady states are the same independent of the update

schedule. This is due to the fact that updating any vari-

able at a steady state does not change its value. It is irre-

levant for a steady state analysis whether updates are

considered to happen sequentially or simultaneously.

For probabilistic networks, i.e., models in which each

variable has several choices of local update rules, ADAM

can generate a graph of all possible updates. This means

that states in the phase space can have out-degree greater

than one, since different transitions are possible. ADAM

can find all true steady states, in the context of probabilis-

tic networks, meaning all states that are time-invariant

independent of the choice of update function. For further

information of probabilistic networks, see [6].

For Boolean networks, ADAM calculates all functional

circuits (see Appendix A.2). Positive functional circuits are

a necessary condition for multi-stationarity. For a certain

class of Boolean networks, namely conjunctive/disjunctive

networks, ADAM computes a complete description of the

phase space as described in [23]. For further details on

conjunctive networks, see Appendix B.2.

In summary, ADAM can generate the following out-

puts.

• wiring diagram

• phase space for small models

• steady states (for deterministic and probabilistic

systems)

• limit cycles of specified length m

• trajectories originating from a given initial state

until a stable attractor is found

• dynamics for synchronous or sequential updates

• functional circuits for Boolean networks

• a complete description of the phase space for con-

junctive/disjunctive networks.

Applications

We show how to use ADAM on a well-understood model

of the expression pattern of the segment polarity genes in

Drosophila melanogaster. Albert and Othmer developed

a model for embryonic pattern formation in the fruit fly

Drosophila melanogaster [24]. Their Boolean model con-

sists of 60 variables, resulting in a state space with more

than 1018 states. They analyze the model for steady states

by manually solving a system of Boolean equations. They

also analyze the temporal evolution of a specific initial

state corresponding to the wild type expression pattern

by repeatedly applying the Boolean update rules until a

steady state is found. The update schedule of the model

is synchronous with the exception of activation of SMO

and the binding of PTC to HH (activation of PH), which

are assumed to happen instantaneously. This can be

accounted for by substituting the equations for SMO and

PH into the update rules for other genes and proteins,

rather than using SMO and PH themselves.

To analyze the model, we first rename the variables in

the Boolean rules given in [24] such as wgi or SLPi to x1
... x60, to standardize their format. The variables xi and

their corresponding genes are listed in Table 1. Then we

use ADAM: the model type is Polynomial Dynamical

Systems, the number of states in a Boolean model is 2,

representing ‘present’ or ‘absent’. One can choose Boo-

lean, and enter the Boolean rules in the text-area or

upload a text file with the Boolean rules. Alternatively,

one can first convert the Boolean rules to polynomials

over F2 , and enter the polynomials with the choice

Polynomial. The file with the polynomial equations for

the model can be accessed at [22].

The rules in the model file are specified in Polynomial

form. Once the polynomials are uploaded, we need to set

the Analysis type. The model with 60 variables is too

complex for exhaustive enumeration, and we choose

Algorithm. This means that instead of exhaustive enu-

meration of the state space, analysis of the dynamics is

done via computer algebra by solving systems of equa-

tions. In Options, we set Limit cycle length to 1 because

we are interested in the steady states, i.e., time-invariant

states. We chose Synchronous as updating scheme. Once
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these choices have been made, we obtain the steady states

by clicking Analyze. ADAM returns a link to the wiring

diagram (or dependency graph), which captures the static

relations between the different variables. In addition,

ADAM returns the number of steady states and the

steady states themselves: see Figure 1. These steady states

are identical to those found in [24], half of which have

been observed experimentally.

Each row in the table in Figure 1 corresponds to a

stable attractor. Attractors are written as binary strings,

where 0 represents non-expression of a gene (or low

concentration of a protein), and 1 expression (or high

concentration); e.g., the binary string

(000111100010000000000011111110

100000001001101111000011111110)
(1)

corresponds to the genes (and proteins) being

expressed (or present in high concentration) in four

cells from anterior to posterior compartments (compart-

ment 1 to 4). The string can be translated back to a list

of genes that are expressed in this stable attractor; see

Table 2. This is the steady state obtained in [24] when

starting the system with an initial state representing the

experimental observations of stage 8 embryos. ADAM

can also generate trajectories for a given initial state. For

example, we can choose the initial state that was used in

[24] representing stage 8 embryos. Again, we enter Poly-

nomial Dynamical Systems with 2 as the number of

states and upload the polynomials describing the model.

Instead of Algorithms, we now choose Simulation. Since

we are not interested in the number of steady states or

the complete phase space, but in a single trajectory ori-

ginating from a specific initial state, we choose One tra-

jectory starting at an initial state as the simulation

option. We enter the state corresponding to the initial

state shown in table 3 as a binary string:

(000101000000000000000010001000

100000010001000110000010001000).
(2)

Table 1 Correspondence of genes and variable names

Cell 1 SLP
x1

wg
x2

WG
x3

en
x4

EN
x5

hh
x6

HH
x7

ptc
x8

PTC
x9

PH
x10

SMO
x11

ci
x12

CI
x13

CIA
x14

CIR
x15

Cell 2 SLP
x16

wg
x17

WG
x18

en
x19

EN
x20

hh
x21

HH
x22

ptc
x23

PTC
x24

PH
x25

SMO
x26

ci
x27

CI
x28

CIA
x29

CIR
x30

Cell 3 SLP
x31

wg
x32

WG
x33

en
x34

EN
x35

hh
x36

HH
x37

ptc
x38

PTC
x39

PH
x40

SMO
x41

ci
x42

CI
x43

CIA
x44

CIR
x45

Cell 4 SLP
x46

wg
x47

WG
x48

en
x49

EN
x50

hh
x51

HH
x52

ptc
x53

PTC
x54

PH
x55

SMO
x56

ci
x57

CI
x58

CIA
x59

CIR
x60

Genes and proteins in [24] and their corresponding variable names x1,..., x60.

Figure 1 ADAM: Analysis of steady states of Drosophila model. Each row in the table corresponds to a stable attractor. Attractors are

written as binary strings, where 0 represents non-expression of a gene (or low concentration of a protein), and 1 expression (or high

concentration). Steady states of Drosophila Melanogaster as found with ADAM.

Hinkelmann et al. BMC Bioinformatics 2011, 12:295

http://www.biomedcentral.com/1471-2105/12/295

Page 4 of 11



By clicking Analyze, we obtain the temporal evolution

of this particular state until it reaches a steady state; see

Figure 2. As predicted in [24], the steady state is the

state corresponding to the state shown in Table 2. To

summarize, ADAM correctly identified the steady states

in less than one second. All steady states have been

determined previously in [24] by labor-intensive manual

investigation of the system.

Furthermore, we used ADAM to verify that there are

no limit cycles of length two or three. The model has

not been analyzed previously for limit cycles. The

absence of two- and three-cycles strengthens confidence

in the model, since oscillatory behavior has not been

observed experimentally. Computations for limit cycles

of length greater than three have not been conducted,

as composing the system several times with itself is

computationally complex. The model file in ADAM for-

mat can be accessed at [22].

Benchmark Calculations

We analyzed logical models available in the GINsim

model repository [25] as of August 2010. The repository

consists of models in GINsim XML format previously

published in peer-reviewed journals. We converted all

but two models into polynomial dynamics systems. For

these 26 models we computed the steady states. All cal-

culations finished in less than 1.5 seconds; see Figure 3.

In addition to the published models in [25], we ana-

lyzed randomly generated networks that have the same

structure that we expect from biological systems, namely

sparse, i.e., while the number of nodes in a biological

network may be quite large, each node is affected only

by a small number of other nodes, and robust, i.e., small

number of attractors. We tested a total of 50 networks

with 50-150 nodes (1015 - 1045 states) and an average of

average in-degrees of 1.6848. The steady state calcula-

tions took less than half a second for each network on a

2.7 GHz computer.

Comparison to Other Systems

In this section, we describe the functionality of several

state-of-the-art software tools for the analysis of discrete

models of biological systems. They are all capable of

identifying steady states and limit cycles by exhaustive

enumeration of the state space for small models (less

than 32 variables) [10,11,13-16]. For larger models, GIN-

sim is capable of analyzing models for steady states, and

several tools provide heuristic analysis methods. None

of them identifies limit cycles deterministically for mod-

els with more than 32 variables. It is important to stress

that ADAM provides a web-interface and does not

require local installation as all the other tools do, which

makes them less accessible to users. Table 4 summarizes

the features of the different software tools, which we

will now explain in detail.

GINsim (Gene Interaction Network simulation) is a

package designed for the analysis of gene regulatory net-

works [10]. As input, it accepts logical models. Logical

models are an extension of Boolean models; they consist

of similar switch-like rules, but allow for a finer data dis-

cretization with more than two states per variable, e.g.,

low, medium, and high. Logical models can be updated

synchronously or asynchronously. For the latter, the tem-

poral evolution of a logical model is non-deterministic

because the variables are updated randomly in an asyn-

chronous fashion. In either case, updates of every variable

are continuous, meaning that no variable changes its

value by more than one unit in one time-step, see section

Remarks about Logical Models for a detailed discussion.

GINsim provides algorithms that use binary decision

diagrams (BDD) for the determination of steady states

[7]. Analysis of limit cycles is executed by simulating

every trajectory, i.e., generating the complete state space,

called state transition graph in GINsim, and therefore

limited by network size. We tested GINsim on logical

models with up to 72 variables; determining the steady

states took less than one second. More complex logical

networks were not available to us.

BoolNet R package provides methods for inference and

analysis of synchronous, asynchronous, and probabilistic

Boolean networks [11]. It is a package for the free statistics

software R, and it is run via the R command-line. It is help-

ful, if the user is already familiar with R. Steady state analy-

sis is implemented as exhaustive search of the state space,

heuristic search, random walk, or Markov Chain analysis

[6].

Non-heuristic analysis is limited to networks with 29

variables. For larger networks, steady states can be

inferred heuristically, which does not guarantee that all

steady states are identified.

DDLab is an interactive graphics software for discrete

models, including cellular automata, Boolean and multi-

valued networks [13]. As it is mainly a visualization tool,

Table 2 Genes and proteins present in steady state

compartment 1 en, EN, hh, HH, SMO

compartment 2 ptc, PTC, PH, SMO, ci, CI, CIA

compartment 3 SLP, PTC, ci, CI, CIR

compartment 4 SLP, wg, WG, ptc, PTC, PH, SMO, ci, CI, CIA

Genes and proteins present in steady state corresponding to binary string (1).

Table 3 Genes and proteins present in initial state

compartment 1 en, hh

compartment 2 ptc, ci

compartment 3 SLP, ptc, ci

compartment 4 SLP, wg, ptc, ci

Genes and proteins present in initial state corresponding to binary string (2).
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analysis is based on exhaustive enumeration of the state

space, and model size is limited to 31 variables.

BN/PBN Toolbox is a toolbox written in Matlab [14].

It uses the state transition matrix to compute attractors.

Statistics for networks with more than 27 variables can-

not be computed ("Maximum variable size allowed by

the program is exceeded”). In addition to analyzing

deterministic Boolean networks, the toolbox can analyze

probabilistic Boolean networks and calculate statistics

such as numbers and sizes of attractors, basins, transient

lengths, Derrida curves, percolation on 2-D lattices, and

influence matrices.

Remarks about Logical Models

In this manuscript, we distinguish between three differ-

ent update types: synchronous, sequential according to

an update schedule, and asynchronous. ADAM allows

for synchronous or sequential updates according to a

given update schedule. In models with synchronous

updates, all variables are updated simultaneously at

every time step. In models with sequential updates

according to an update schedule, all variables are

updated at every time-step in the order given by the

schedule. Both these model types are deterministic.

In models with asynchronous updates, as is common

for logical models, one variable is updated at random at

every time step, which results in a non-deterministic

model. Models with sequential updates according to an

update schedule produce dynamics that are different

from that of models with asynchronous updates, i.e.,

logical models.

In GINsim, all models are continuous in the sense that

at each time-step, each variable increases or decreases

by at most one unit. Though logical models are discrete,

there are no jumps skipping intermediate states. For

example, in a model with three states, low, medium, and

high, no variable can drop from high to low in a single

update step. This interpretation is different from the

common meaning of continuous, which usually refers to

models of ordinary or partial differential equations. The

parameters entered in GINsim specify the target value

Figure 2 ADAM: Trajectory of Drosophila model. Temporal evolution of given initial state until steady state is reached.

Figure 3 Runtime of steady state calculations of several logical models from [25]. Executed on a 2.7 GHz computer.
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towards which the variable changes, i.e., the value

increases by one, decreases by one, or remains constant

if the target value is larger, smaller, or equal than the

initial value, respectively. The state transition graph gen-

erated with ADAM might differ from the state transition

graph generated in GINsim. To obtain the exact same

state transition graph, every variable in the logical

model must contain an explicit self-loop, and all para-

meters must be entered such that the target value differs

by at most one from the value of the variable to be

updated. Any logical model can be specified in this way

without changing its state transition graph. Boolean

models are always continuous.

In multi-valued logical models, variables can have dif-

ferent maximum values. In an algebraic model, all vari-

ables are defined over the same algebraic field, i.e., have

the same maximum value. When a multi-valued logical

model is translated into an algebraic model, extraneous

states might be introduced such that all variables are

defined over the same field. An example of such an

extension is given in Table 5, the extra states are the

states in the last row, which are given the same values

as the states above to extend the model in a meaningful

way. The extra states should be ignored when analyzing

the dynamics. For more details, see [17].

Architecture

ADAM is available as a web-based tool that does not

require any software installation. ADAM’s user interface

is implemented in HTML. We use JavaScript to

generate a dynamic website that adapts as the user

makes various choices. This simplifies the process of

entering a model. For example, after defining the model

type, i.e., Polynomial Dynamical System, Probabilistic

Network, Petri net, and Logical Model the next line

changes to the number of states, k-bound, or nothing,

appropriately. Input can be entered directly into the text

area, or uploaded as a text document.

All mathematical algorithms are programmed in

Macaulay2 [26]. Macaulay2 is a powerful computer alge-

bra system. The routines for which fast execution is cru-

cial are implemented in C/C++ as part of the Macaulay2

core. Logical Models and Petri nets in XML format are

parsed using Ruby’s XmlSimple library. The interplay

between HTML and Macaulay2 is also programmed in

Ruby.

Output graphs are generated with Graphviz’s dot com-

mand. When Simulation is chosen as analysis method,

Graphviz’s ccomps - connected components filter for

graphs is used to count the connected components. A

Perl script directs the execution of the Graphviz

commands.

Model Repository

A model repository is part of the ADAM website [22].

The repository consists of a collection of several pre-

viously published models in ADAM format. The models

are extracted from publications, and rewritten in ADAM

specific format, i.e., all variables are renamed to xi and

the update rules from the original publication are refor-

mulated as Boolean rules or polynomials. The central

repository with models in a unified format allows for

quick verification and experimentation with published

models. By changing parameters or initial states, users

can gain a better understanding of the models.

New users can also use the repository to quickly

familiarize themselves with the main functionalities of

ADAM. In addition to the model itself, the database

entries contain a short summary of the biological system

and relevant graphs, together with an analysis of

dynamic features determined by ADAM and their biolo-

gical explanation. The repository is work in progress by

Table 4 Software Comparison

Steady State
Analysis

Limit Cycle
Analysis

Input
Format

System
Requirements

ADAM Yes‡ Yes◊ Boolean (or polynomial) functions Logical Models (GINsim) None, web based

GINsim Yes‡ For small models Parameters (non-zero truth tables) Logical Model Java virtual machine○

BoolNet R package For small † models For small † models Boolean functions R statistics software

DDLab For small models For small models Logical tables ○

BN/PBN Matlab Toolbox For small models For small models Logical tables Matlab

Comparison of different software tools regarding attractor analysis: ‡ less than 1 second on published gene regulatory networks with up to 72 variables; ◊ only

for short limit cycles; † heuristic methods are available for larger networks; ○ installation necessary, available for common operating systems.

Table 5 Multi-valued models

next state of x2 low x2 medium x2 high x2

x1 absent low x2 medium x2 high x2

x1 present medium x2 high x2 high x2

extension x1 present medium x2 high x2 high x2

Updates for variable x2 in a logical model, where x2 depends on x1 and itself.

The states 0 and 1 represent absent and present for the Boolean variable x1;

0, 1, and 2 represent low, medium, and high for the multi-valued variable x2.

The last row is introduced in the polynomial dynamical system such that all

variables are defined over F3 . The extra states (2, 0), (2, 1), (2, 2) in the state

space should be ignored when interpreting the dynamics.
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researchers from several institutions generating more

entries for the repository. We invite all interested

researchers to submit their models. Because of their

intuitive nature, discrete models are an excellent intro-

duction to mathematical modeling for students of the

life sciences. ADAM’s model repository is a great start-

ing point to familiarize students with the abstraction of

discrete models such as Boolean networks.

Conclusions
Discrete modeling techniques are a useful tool for ana-

lyzing complex biological systems and there is a need in

the biological community for easy to use analysis soft-

ware. ADAM provides efficient methods as a web-based

tool and will allow a larger community to use complex

modeling techniques, as it is platform independent and

does not require the user to understand the underlying

mathematics. Upon translating discrete models, such as

logical networks, Petri nets, or agent-based models into

algebraic models, rich mathematical theory becomes

available for model analysis, e.g., for steady state and

limit cycle analysis.

After extensive experimentation with both discrete mod-

els arising in systems biology and randomly generated net-

works, we found that the algebraic algorithms presented in

this manuscript are fast for sparse systems with few attrac-

tors, a structure maintained by most biological systems.

All algorithms have been included in the software package

ADAM [19], which is user-friendly and available as a free

web-based tool. ADAM is highly suitable to be used in a

classroom as a first introduction to discrete models

because students can use it without going through an

installation process.

ADAM provides methods to analyze the key dynamic

features, such as steady states and limit cycles, for large-

scale (probabilistic) Boolean networks and logical models.

ADAM unifies different modeling types by providing ana-

lysis methods for all of them and thus can be used by a

larger community.

We hope to expand ADAM to a more comprehensive

Discrete Toolkit which incorporates new analysis methods,

better visualization, and automatic conversion for more

model types. We also hope to analyze controlled algebraic

models and expand theory to stochastic systems.

Methods
Logical models, Petri nets, and Boolean networks are

converted automatically into the corresponding polyno-

mial dynamical system as described in [17], so that algo-

rithms from computational algebra can be used to

analyze the dynamics. In polynomial dynamical systems

over a finite field, states of a variable are assigned to

values in the field, and the update (or transition) rule

for each variable is given as a polynomial rather than a

Boolean or logical expression. For more details, see

Appendix A.1. Using these polynomials, one can con-

struct systems of polynomial equations, such that their

solutions correspond to fixed points or limit cycles.

Thus, the problem of identifying attractors becomes

equivalent to solving a system of polynomial equations

over a finite field. This is a long-studied problem in

computer algebra, and can usually be solved efficiently

by Gröbner basis methods.

Gröbner basis calculation is for polynomial systems

what Gauss-Jordan elimination is for linear systems: a

structured way to transform the original system to trian-

gular shape without changing its solution space. The tri-

angular shape of the resulting systems allows for

stepwise retrieval of the solutions of the system. For a

more in depth discussion of Gröbner bases, see for

example [21].

In the worst case, computing Gröbner bases for a set

of polynomials has complexity doubly exponential in the

number of solutions to the system. However, in practice,

Gröbner bases are computable in a reasonable time. It

has been suggested, that in robust gene regulatory net-

works genes are regulated by only a handful of regula-

tors [27]. Thus, the polynomial dynamical systems

representing such biological networks are sparse, i.e.,

each function depends only on a small subset of the

model variables. From our experience, a Gröbner basis

calculation for sparse systems with few attractors, a

structure common for biological systems, is actually

quite fast.

A Mathematical Background

A.1 Polynomial Dynamical Systems

To be self-contained, we briefly explain polynomial

dynamical systems and their key features. A polynomial

dynamical system(PDS) [28] over a finite field k is a

function

f = (f1, ..., fn) : kn → kn,

with coordinate functions fi Î k[x1,..., xn], the ring of

polynomials in the variables xi, with coefficients in k.

Iteration of f results in a time-discrete dynamical system.

A PDS can be used to describe the dynamic behavior of

a biological system: every variable xi corresponds to a

biological substrate, for example a protein or gene, and

the polynomials fi describe the evolution of xi depending

on the previous state of the variables x1,..., xn.

PDS have several dynamic features of biological rele-

vance. These include the number of components, com-

ponent sizes, steady states, limit cycles, and limit cycle

lengths.
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Example Let k = F2 and f = (f1, f2, f3): F
3
2 → F

3
2 with

f1 = x1x2x3 + x1x2 + x2x3 + x2

f2 = x1x2x3 + x1x2 + x1x3 + x1 + x2

f3 = x1x2x3 + x1x3 + x2x3 + x1 + x2.

The wiring diagram of f, which shows the static inter-

action of the three variables, is depicted in Figure 4

along with its phase space in Figure 5. The state transi-

tion graph shows the temporal evolution of the system.

Each state is represented as a vector of the values of the

three variables (x1, x2, x3). The PDS described by f has

two stable attractors: a steady state, (000), and a limit

cycle of length three, consisting of the states (010),

(111), and (011).

A probabilistic PDSover a finite field k is a collection

of functions

f = ({f1,1, ..., f1,r1
}, ..., {fn,1, ..., fn,rn

}) : kn → kn,

together with a probability distribution for every coor-

dinate that assigns the probability that a specific func-

tion is chosen to update that coordinate. The coordinate

functions fi, j are elements in k[x1,..., xn]. Probabilistic

PDS, specifically Boolean probabilistic networks (PBN),

have been studied extensively in [6]. ADAM analyzes

probabilistic PDS. It can simulate the complete state

transition graph for sufficently small models, by generat-

ing every possible transition and labeling the edge with

its probability according to the distribution. If no distri-

bution is given, ADAM assumes a uniform distribution

on all functions. For large networks, ADAM’s Algorithm

choice computes steady states of probabilistic networks.

A.2 Functional Edges

An edge in the wiring diagram from xi to xj is consid-

ered functional, if there exists a state x̂ = (x̂1, ..., x̂n) such

that fj(x̂1, ..., a, ...x̂n) �= fj(x̂1, ..., b, ...x̂n), where a and b

are values for xi, in other words, if there is at least one

state, such that changing only xi but keeping all other

values fixed, changes the next state of xj. In ADAM, all

edges in the wiring diagram are functional. For Boolean

networks, ADAM identifies all functional elementary cir-

cuits. An elementary circuit is a finite closed path in the

wiring diagram in which all the nodes are distinct. The

existence of functional circuits is a necessary condition

for multi-stationarity and limit cycles. For a further dis-

cussion of functional circuits, see [7]. For multivalued

networks, circuit analysis has not yet been implemented.

B Algorithms

B.1 Analysis of stable attractors

Every attractor in a PDS is either a steady state or a

limit cycle. For small models, ADAM determines the

complete phase space by enumeration, for large models,
Figure 4 Wiring diagram: static relationship between variables.

Figure 5 Phase space: temporal evolution of the system.
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ADAM computes steady states and limit cycles of a

given length. A state is a steady state, if it transitions to

itself after one update of the system. A state is part of a

limit cycle of length m, if, after m updates, it results in

itself. Any steady state of a PDS satisfies the equation f

(x) = x, as no coordinate of x is changing as it is

updated. Similarly, states of a limit cycle of length m

satisfy the equation f m(x) = x. ADAM computes all

steady states by solving the system fi(x) - xi = 0 for i Î

{1,..., n} simultaneously. To efficiently solve the resulting

systems of polynomial equations, we first compute the

Gröbner basis in lexicographic order for the ideal gener-

ated by the equations. Choosing a lexicographic order

allows to easily obtain the solutions [21]. We use the

Gröbner basis algorithms distributed with Macaulay2,

version 1.3.1.1, and found that for quotient rings over a

finite field the implementation ‘Sugarless’ is more effi-

cient than the default algorithm with ‘Sugar’ [26,29]. For

limit cycles of length m, the solutions of fm(x) = x are

found and then grouped into cycles, by applying f to

each of the solutions.

Example Fixed points of the system shown in the exam-

ple in A.1 are solutions in F
3
2 of the system f(x) = x:

x1x2x3 + x1x2 + x2x3 + x2 = x1

x1x2x3 + x1x2 + x1x3 + x1 + x2 = x2

x1x2x3 + x1x3 + x2x3 + x1 + x2 = x3.

The only solution to this systems is the point (x1, x2,

x3) = (0, 0, 0). This is in accordance with the state tran-

sition graph depicted in Figure 5: (0, 0, 0) is the only

steady state. To investigate limit cycles of length two,

one has to look at the system f 2(x) = x,

g1(x) = f1(f1(x), f2(x), f3(x))

= x1 ∗ x2 + x2 ∗ x3 = x1

g2(x) = f2(f1(x), f2(x), f3(x))

= x1 ∗ x2 ∗ x3 + x1 ∗ x2 + x1 ∗ x3 + x1 + x2 = x2

g3(x) = f3(f1(x), f2(x), f3(x))

= x1 ∗ x2 ∗ x3 + x2 = x3.

Again, (0, 0, 0) is the only solution, which means that

there are no limit cycles of length two. Investigating f 3

(x) = x,

f1(g1(x), g2(x), g3(x)) = x1

f2(g1(x), g2(x), g3(x)) = x2

f3(g1(x), g2(x), g3(x)) = x3,

results in the solutions (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1,

1). (0, 0, 0) is a steady state, and (0, 1, 0), (0, 1, 1), (1, 1, 1)

are elements of a limit cycle of length 3. For all m >3, f m

(x) = x has no solutions, that means the system f has

exactly two attractors, a steady state a a limit cycle of

length 3.

B.2 Conjunctive/Disjunctive Networks

Some classes of networks have a certain structure that

can be exploited to achieve faster calculations. Jarrah et

al. show that for conjunctive (disjunctive) networks key

dynamic features can be found with almost no computa-

tional effort [23]. Conjunctive (respectively disjunctive)

networks consist of functions using only the AND

(respectively OR) operator. ADAM comes with an

implementation of this algorithm to analyze dynamics in

the case of conjunctive (disjunctive) networks. Currently,

this option is only implemented for networks with

strongly connected dependency graphs.
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