
98

AdaMICA: Adaptive Multicore Intermittent Computing

KHAKIM AKHUNOV, University of Trento, Italy
KASIM SINAN YILDIRIM, University of Trento, Italy

Recent studies on intermittent computing target single-core processors and underestimate the efficient parallel execution of
highly-parallelizable machine learning tasks. Even though general-purpose multicore processors provide a high degree of
parallelism and programming flexibility, intermittent computing has not exploited them yet. Filling this gap, we introduce
AdaMICA (Adaptive Multicore Intermittent Computing) runtime that supports, for the first time, parallel intermittent
computing and provides the highest degree of flexibility of programmable general-purpose multiple cores. AdaMICA is
adaptive since it responds to the changes in the environmental power availability by dynamically reconfiguring the underlying
multicore architecture to use the power most optimally. Our results demonstrate that AdaMICA significantly increases the
throughput (52% on average) and decreases the latency (31% on average) by dynamically scaling the underlying architecture,
considering the variations in the unpredictable harvested energy.

CCS Concepts: • Computer systems organization → Embedded software; Multicore architectures; • Computing
methodologies→ Parallel computing methodologies.

Additional Key Words and Phrases: batteryless systems, intermittent computing, energy-aware adaptive systems, multicore
systems, parallelism

ACM Reference Format:
Khakim Akhunov and Kasim Sinan Yildirim. 2022. AdaMICA: Adaptive Multicore Intermittent Computing. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 6, 3, Article 98 (September 2022), 30 pages. https://doi.org/10.1145/3550304

1 INTRODUCTION
By 2030, it is expected that there will be about 50 billion Internet-of-Things (IoT) devices worldwide [74]. The vast
majority of modern IoT devices rely on batteries, which are nondurable, heavy, and relatively expensive chemical
energy storage. In contrast, battery-free devices with minimal energy buffer that are powered by harvestable
ambient energy can dramatically extend the operating lifecycle of the IoT systems [17]. Lightweight devices are
perfectly integrable into wearable technology, while the environmental-friendly nature of these devices expands
the idea of ubiquitous computing, enabling new applications in the wild world, in the bowels of the earth, in
space, and in other delicate or harsh environments. These devices can even pave the way for the hyped vision of
ubiquitous computing such as the Smart Dust [42] and the TerraSwarm [48].

Energy-harvesting battery-free devices can exploit energy from various sources such as radio waves, sunlight,
kinetic power. However, the fluctuating availability of ambient energy causes frequent power failures, forcing the
systems to operate intermittently. When power is available, a battery-free device gradually accumulates energy
in a small storage component, e.g., in a capacitor. Once the amount of stored energy in the capacitor reaches a
certain threshold, the device starts executing tasks, rapidly dissipating the stored energy. The device turns off

Authors’ addresses: Khakim Akhunov, khakim.akhunov@unitn.it, University of Trento, via Sommarive 9, Trento, TN, Italy, 38123; Kasim
Sinan Yildirim, kasimsinan.yildirim@unitn.it, University of Trento, via Sommarive 9, Trento, TN, Italy, 38123.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2022 Association for Computing Machinery.
2474-9567/2022/9-ART98 $15.00
https://doi.org/10.1145/3550304

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

HTTPS://ORCID.ORG/0000-0001-9585-6722
HTTPS://ORCID.ORG/0000-0002-9528-6923
https://doi.org/10.1145/3550304
https://orcid.org/0000-0001-9585-6722
https://orcid.org/0000-0002-9528-6923
https://orcid.org/0000-0002-9528-6923
https://doi.org/10.1145/3550304
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550304&domain=pdf&date_stamp=2022-09-07

98:2 • Akhunov and Yildirim

Fig. 1. AdaMICA enables programmers to annotate parallelizable code blocks that can be executed over multiple cores
intermittently. Considering the available power, it reconfigures the multicore architecture to obtain the maximum benefit
from the ambient energy and parallelism.

when it consumes all stored energy, which leads to the loss of the volatile computational states (e.g., registers,
stack). Therefore, power failures interrupt the execution of programs, which might prevent the computation
from progressing forward and leave the memory in an inconsistent state [65].
Recent research has proposed solutions for intermittent systems, considering both software, e.g., [18, 44, 78],

and hardware, e.g., [13, 19, 22, 35], aspects, guaranteeing execution progress and maintaining memory consistency.
While efficient, the proposed solutions target off-the-shelf single-core ultra-low-power microcontrollers (MCU)
with limited flexibility and performance capability. These MCUs are energy efficient and ideal for performing
low-cost tasks, but they pose limitations to executing computationally intense tasks intermittently [30]. These
limitations are critical since the machine-learning (ML) paradigm, the number one disruptive technology of the
moment, demands the execution of high-cost inference tasks on edge devices. The reason is that sending large
amounts of raw sensor data wirelessly to offload the high-cost tasks to the cloud is too energy-intensive for
energy-harvesting devices.
As of now, only a few studies addressed the development of software- and hardware-based techniques to

execute high-cost computational tasks intermittently and efficiently under energy constraints. Unfortunately,
these studies pose significant deficiencies, as we explain below.
P1-Lack of Multicore Parallelism. High-cost ML tasks are highly parallelizable. When the ambient energy
permits, splitting these tasks over multiple cores and executing them in parallel can increase the throughput
significantly. Even though ordinary homogeneous multicore systems commencing to spread widely in ultra-
low-power embedded devices [29, 43], intermittent computing has not benefited them yet. Current studies
mainly exploit accelerators to execute high-cost tasks and exploit parallelism [30, 31, 49, 52], which have crucial
drawbacks. As an example, [49] and [30] exploit the low-energy accelerator (LEA) on MSP430FR5994 [36], which

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:3

is one of the mainstream MCUs for intermittent computing, to support vector-based signal processing operations.
However, this accelerator exhibits functional limitations, and it has limited parallelism since it only supports
dense operations [30, Section 10]. Besides, accelerators are generally task-specific, which does not satisfy the
flexibility demand of IoT edge nodes [29]. Moreover, they lose their computational state upon power failures,
which requires reconfiguration and repeated data transfer from volatile/non-volatile memory to their internal
memory buffers.
P2-Missing Parallel Programming Support. In existing systems such as SONIC [30], programmers need to
exploit underlying parallelism manually by interacting directly with the accelerator, which is cumbersome. For
example, LEA has a set of specific vector operations (some generic vector operations are not supported [30,
Section 7]), which makes exploiting parallelism difficult. The programmable general-purpose multiple cores
provide the highest degree of flexibility [29, 69], but the intermittent computing community has overlooked
them so far. Existing intermittent computing runtimes, e.g., [18, 44, 54, 78], do not support parallelism and do not
provide language constructs to express parallelizable code blocks.
P3- Rigid Hardware Configuration. The availability of energy and the strength of incoming power affects
the charging and discharging cyclical nature of an intermittent system [24]. When incoming power is strong
enough, the device charges rapidly and spends more time for computation. Similarly, low input power forces
the system to spend more time collecting energy rather than computing. Existing works [11, 40, 56–59] have
provided software-based adaptation strategies, such as degrading the computational accuracy, to respond to
ambient power dynamics and increase the throughput. However, they work on a fixed hardware configuration.
Recent works [6, 53] have proposed a dynamic voltage and frequency scaling technique to scale computational
support, concerning the input power. However, these solutions still target systems limited by the performance
of a single-core processor. Another strategy is to switch between different compute units that have different
performance and energy consumption characteristics [49]. However, this solution does not employ multi-core
parallelism, which has its own benefits as we mentioned previously.
Goal and Challenges. Our objective is to execute parallelizable tasks over multiple cores intermittently and
efficiently by considering the dynamic environmental power. We seek for an intermittent computing runtime that
dynamically reconfigures the underlying multicore architecture and adjusts the amount of parallelism, thereby
benefiting from data and task parallelism when input power is high and avoiding aggressive computations when
incoming power does not support them. However, intermittent computing introduces several unique factors
that affect the efficiency of multicore architectures. In particular, the store and recovery overheads (e.g., due to
checkpoints [44]) upon frequent power failures is the primary dominant factor that might shade the benefits of
multicore architectures.
Contributions.We introduce AdaMICA (AdaptiveMulticore Intermittent Computing), an intermittent computing
runtime that supports parallel intermittent multicore computing and provides the highest degree of flexibility of
programmable general-purpose multiple cores. AdaMICA adaptively switches to the best multicore configuration
considering the dynamic input power. Therefore, it allows an intermittent system to benefit from workload
parallelization, thereby running complex computational tasks faster to increase systems throughput and decrease
end-to-end delay while considering the energy availability. Figure 1 provides a high-level overview of the
AdaMICA operating principle. In this figure, when the incoming solar power is high at a certain point in time, the
energy buffer can be charged rapidly. At that point, AdaMICA configures the underlying multicore architecture
to use the strong power in the most optimal way to quickly complete a task and move on to the next. However,
when the power weakens and cannot support the fast depletion of energy from the capacitor, AdaMICA decides
to downgrade the system configurations to utilize the available resources more consummately. Our evaluation
has shown that AdaMICA significantly increases the system’s throughput (1.38× on average) by dynamically
scaling the underlying architecture while considering variations in unpredictable harvested energy.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:4 • Akhunov and Yildirim

Table 1. A comparison of the main features of AdaMICA with the relevant runtime architectures. AdaMICA is the only
intermittent computing runtime that fully utilizes parallelism, adapts multicore systems to environmental dynamics, and
provides missing programming support for multicore parallelism.

Intermittent Runtime Parallelism
Support

Parallel
Programming Programming Flexibility Adaptation

Support

Dewdrop [15], Mementos [66], DINO [51],
QuickRecall [41], Chain [18], Hibernus++ [13],

Ratchet [75], Alpaca [54], Mayfly [34], HarvOS [14],
Chinchilla [55], InK [78], Coati [70], TICS [44],

ImmortalThreads [79]

Single core ✗ No ✗
General purpose (non-parallel)

applications ✓

Computational
workload scaling
(SW-only) ✓

Camaroptera [59], Zygarde [40], Coala [57], CatNap [56],
ePerceptive [58], Rehash [11], Julienning [32] Single core ✗ No ✗

General purpose (non-parallel)
applications ✓

Task degradation
(SW-only) ✓

Spendthrift [53], D2VFS [6] Single core ✗ No ✗
Not general purpose (application

specific platform) ✗
Voltage and

frequency scaling ✓

Neuro.ZERO [49] Accelerator ✓
Low-level
accelerator

instructions ✗

Not general purpose (application
specific platform) ✗

Switching between a
core and an
accelerator ✓

SONIC & TAILS [30] Accelerator ✓
Low-level
accelerator

instructions ✗

Not general purpose (application
specific platform) ✗

No adaptation ✗

AdaMICA
(this work) Multicore ✓

Runtime support
✓

General purpose (parallel)
applications ✓

Activating and
deactivating cores

✓

To summarize, our contributions include:
(1) Multicore Intermittent Computing.We introduce the missing software support that enables, for the

first time, parallel intermittent computing over multiple cores.
(2) Power-scaling Runtime.We introduce the first intermittent runtime that provides the missing parallel

programming language constructs and adaptively reconfigures the multicore system concerning the
environmental power strength.

2 BACKGROUND AND MOTIVATION
Making embedded devices battery-free reduces the cost of their maintenance, shrinks the size of the devices,
and saves nature from an overabundance of toxic and corrosive chemicals. Batteryless devices rely solely on
the energy harvested from environmental sources, such as sunlight, radio waves, or vibration. When power is
obtainable, such a device slowly collects energy in a small energy buffer such as a capacitor (charging cycle).
On reaching a certain voltage threshold in the buffer, the device starts computing a task, fast discharging the
energy storage (discharging cycle). In such circumstances, data-sensing applications run intermittently and must
be resistant to frequent power failures.

2.1 Intermittent Computing Approaches
Today’s off-the-shelf batteryless computing devices are extremely resource-constrained. For example, MSP430FR
family MCUs [36], the mainstream MCUs in existing batteryless systems [22], operate at 1-16𝑀𝐻𝑧 frequency and
include a mixed volatility memory architecture (1-4 𝑘𝐵 SRAM and 32-256 𝑘𝐵 FRAM (Ferroelectric RAM)). Upon
power failures, SRAM and internal hardware state (e.g., registers) of the microcontroller are cleared, thereby
both the current state and the intermediate results of a program are lost, which, in turn, violates both forward
progress of computation and consistency of the memory [50]. Several approaches, discussed by Lucia et al. in [50],
have been proposed to develop power failure tolerant programs. Today’s software-based intermittent computing
solutions are either checkpointing systems, e.g., [5, 44], or task-based systems, e.g., [18, 78]. Checkpointing systems
save the current state of a program in non-volatile memory (i.e., FRAM) via manually or automatically placed

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:5

checkpoints. Task-based systems require developers to decompose their programs into atomic re-executable
tasks, at the end of which the critical data are recorded to the non-volatile memory. There are also hardware-
based studies, e.g., [13], which require dedicated hardware that continuously monitors the supply voltage and
checkpoints when the supply voltage drops below a threshold. It is worth mentioning that FRAM exhibits
low-power characteristics (requires up to 10× lower voltage) and faster write performance (faster up to 1000×)
compared to flash memories [38]. More importantly, FRAM has almost inexhaustible write endurance (has 1015
write endurance, e.g., 150000 write operations per second will lead to approximately 211 years lifetime). This
feature is crucial since intermittent computing requires frequent access to non-volatile memory due to frequent
power failures. Therefore, MCUs with only embedded flash memory wear out in a short time, which makes them
unsuitable for intermittent computing.

2.2 Adaptive Power and Energy Scaling
A unique property for intermittent energy harvesting systems is that the energy comes for free but with a time-
varying nature. Intermittent systems must adapt to frequently changing environmental energy conditions to
exploit the available energy more efficiently. However, due to the limited capacitance of the energy buffer, the
excess energy cannot be stored [53]. Thus, when the devices’ power consumption is lower than the input power,
the devices can draw more power to execute more computational loads. When the input power is lower than
their power consumption, these devices can use the incoming power more conservatively. Some intermittent
computing studies, e.g., [11, 56, 78], have proposed software solutions that respond to environmental energy
availability. The main idea is to scale down the computational loads, e.g., sacrificing the accuracy but reducing the
energy demands by considering the input power. There are also studies, e.g., [6, 12, 53], that have proposed voltage
and frequency-based scaling (DVFS) for intermittent computing systems. For instance, [12] considers matching
the instantaneous power consumption of the device with the input harvested power. Similarly, [53] and [6]
consider maximizing the forward progress by aggressively consuming energy when it is available. They employ
dynamic voltage and frequency scaling to adjust the operating frequency of the microcontroller concerning the
voltage level of the capacitor and incoming power.

2.3 The Need for Multicore Intermittent Computing
As of now, the majority of intermittent computing systems comprise single-core processing elements. Improving
the performance of single-core systems further is difficult due to closely approached fundamental limits. Power
constraints prevent further increase in operating frequency, instruction-level parallelism is well-exploited, and
memory hierarchy scarcely improves. Moreover, there is a trend to shift machine learning (ML) inference to edge
devices or sensors since communication costs order-of-magnitude more energy and time compared to the cost
of local sensing and computation on a resource-constrained device. If we want energy harvesting intermittent
edges to execute modern machine-learning-based applications in a reasonable time, these devices should exploit
data and task parallelism in inference computations.

Recent studies have shown the feasibility of ML inference on the batteryless edge devices, e.g., [30, 31, 49, 58],
by software frameworks and hardware accelerators. However, accelerators support limited parallelism (via their
rigid instruction set), and they are generally task-specific. Moreover, it is difficult to program accelerators, and
they lose their configuration upon power failures. The general-purpose programmable multicore processors
are task-agnostic and flexible solutions for IoT [29, 43, 69]. However, there is no prior study on intermittent
computing that has exploited parallelism via multicore processing yet. Therefore, the next step is to benefit from
multicore parallelization and execute intermittent inference more efficiently over multiple cores to decrease
end-to-end delay and increase throughput.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:6 • Akhunov and Yildirim

2.4 Adaptive Architectural Scaling
Multicore architectures introduce a certain complexity to a system despite their parallelization benefits. Task
scheduling, task partitioning, and data sharing make multicore systems more challenging. Intuitively, one can
think resource-constrained devices operating intermittently by relying only on ambient energy cannot tolerate
this overhead and complexity. Frequent power failures that can violate computation progress and memory
consistency might even make things worse and complicated. Despite these difficulties, intermittent systems can
adapt to frequently changing environmental energy conditions to exploit parallelism when it is beneficial. More
specifically, when input power is high, energy harvesting devices can benefit from data and task parallelism
as long as the environmental energy availability permits. For example, energy harvesting devices can execute
high-cost parallelizable tasks faster by dynamically scaling the number of cores, i.e., reconfiguring multicore
architecture on the fly. This strategy is the key insight behind our work—adaptive parallelism increases the
system throughput and significantly decreases the end-to-end delay.

2.5 Our Differences
We compare the main features of AdaMICA with state-of-the-art intermittent runtimes in Table 1. Former
studies have already provided software adaptation on single-core systems by scaling the computational load or
degrading tasks concerning environmental power dynamics. Two studies [6, 53] propose hardware adaptation by
tuning the operating voltage and frequency in response to input power, but they are also limited to single-core
systems. The system in [49] provides hardware adaptation at runtime by switching between different compute
units that differ in performance and energy consumption. Both [30] and [49] exploit accelerators, which are
cumbersome to program, application-specific, and support parallelism for certain operations only. Unlike all
these studies, AdaMICA fully utilizes parallelism over multiple cores, provides the missing software support to
enable intermittent parallel processing, and adapts multicore systems to environmental dynamics.

3 MODELING MULTICORE INTERMITTENT SYSTEMS
Before presenting AdaMICA, we analyze the impact of the main parameters that affect the end-to-end performance
of intermittent execution of tasks on multicore devices. To represent the energy and performance models (whose
parameters are summarized in Table 2), we take as a basis the models proposed in [71] and [24].

3.1 Intermittent Computing Dynamics
Energy Storage. The charging time (𝑇𝑐ℎ𝑎𝑟𝑔𝑒) depends on both incoming power (𝑃𝑖𝑛𝑝𝑢𝑡) from ambient energy

harvester device and capacitance of an energy buffer (𝐸𝑐𝑎𝑝) (in other words, the amount of energy can be stored
in a buffer):

𝑇𝑐ℎ𝑎𝑟𝑔𝑒 = 𝐸𝑐𝑎𝑝/𝑃𝑖𝑛𝑝𝑢𝑡 , 𝐸𝑐𝑎𝑝 = (𝑉 2
𝑐𝑎𝑝 ∗𝐶)/2, (1)

where 𝑉𝑐𝑎𝑝 denotes the maximum voltage of the capacitor and 𝐶 denotes the capacitance.

Power Failures. How often a system will be interrupted by power failures (𝑁𝑝𝑜𝑤−𝑓 𝑎𝑖𝑙) is inversely proportional
to 𝐸𝑐𝑎𝑝 feeding the energy demand of the entire intermittent system (𝐸𝑠𝑦𝑠𝑡𝑒𝑚):

𝑁𝑝𝑜𝑤−𝑓 𝑎𝑖𝑙 = 𝐸𝑠𝑦𝑠𝑡𝑒𝑚/𝐸𝑐𝑎𝑝 . (2)

Forward Progress and Recovery. We consider an intermittent computing system that exploits a checkpointing
approach that is triggered just before the power failure [13]. Upon a power failure, the device charges the energy
buffer, boots the system again, and restores backed up state in checkpoint data, restarting execution from the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:7

Table 2. List of the input parameters of the model.

Parameter Description
𝐹𝑠𝑒𝑞 Sequential fraction of a task
𝐸𝑐𝑎𝑝 Energy stored in a capacitor
𝑇 (𝐸)𝑡𝑎𝑠𝑘 Time(Energy) per execution of a task
𝑇 (𝐸)𝑚𝑜𝑛𝑖𝑡𝑜𝑟

Time(Energy) per spend to monitor
power and voltage levels

𝑇 (𝐸)𝑐𝑜𝑚 Time(Energy) per communication
𝑇 (𝐸)𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡Time(Energy) per a checkpoint
𝑇 (𝐸)𝑏𝑜𝑜𝑡 Time(Energy) per a boot

interrupted point. Therefore,

𝑁𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 = 𝑁𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑁𝑏𝑜𝑜𝑡 = 𝑁𝑝𝑜𝑤−𝑓 𝑎𝑖𝑙 (3)

holds since the number of checkpoints and number of restores (𝑁𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡) become equal to number of power
failures, number of charges (𝑁𝑐ℎ𝑎𝑟𝑔𝑒), and number of boots (𝑁𝑏𝑜𝑜𝑡).

3.2 Multicore Energy Consumption
Assumptions. We consider a shared memory multicore system where a main-core (mn) executes the sequential

part of a given task, then distributes parallelized part of the task among secondary (sd) cores and equally
contributes to parallel execution. The energy spent for checkpointing and booting is controlled by the number of
cores (n) since a single power failure leads to multiple checkpoints and boots in a multicore system. In addition,
energy (𝐸𝑐𝑜𝑚) depleted by the main-core when communicating with the secondary cores contributes to the total
system energy consumption. This communication overhead incorporates commands passing, cores waking up,
and memory copying since we assume a shared memory multicore system in this work. Moreover, the model
allows for the amount of energy gathered during different stages of intermittent execution by subtracting it from
the amount of energy spent for a certain stage, as described in [71].

Task Energy Cost. We show in Eq. (4) that energy consumed by amulticore system to execute a task encompasses
additional parameters to ensure that multicore overhead is factored in:

𝐸𝑡𝑎𝑠𝑘 = 𝐸𝑡𝑎𝑠𝑘−𝑚𝑛 + 𝐸𝑡𝑎𝑠𝑘−𝑚𝑛−𝑠𝑑 + 𝐸𝑡𝑎𝑠𝑘−𝑠𝑑 ∗ (𝑛 − 1) + 𝐸𝑡𝑎𝑠𝑘−𝑠𝑑−𝑚𝑛 ∗ (𝑛 − 1) − 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 , (4)

where n denotes the number of cores. Table 3 presents the description of each product in Eq. (4).

System Energy to Execute Task. In order to model the energy required to execute a task with energy consumption
of 𝐸𝑡𝑎𝑠𝑘 , we take into account the energy consumed for inter-core communication (𝐸𝑐𝑜𝑚), for power and voltage
level monitoring (𝐸𝑚𝑜𝑛𝑖𝑡𝑜𝑟), for checkpoints (𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡), and for booting (𝐸𝑏𝑜𝑜𝑡):

𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑡𝑎𝑠𝑘 + 𝐸𝑚𝑜𝑛𝑖𝑡𝑜𝑟 + 𝐸𝑐𝑜𝑚 ∗ (𝑛 − 1) + (𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 ∗ 𝑛 + 𝐸𝑏𝑜𝑜𝑡 ∗ 𝑛) ∗ (𝐸𝑠𝑦𝑠𝑡𝑒𝑚/𝐸𝑐𝑎𝑝)

=
𝐸𝑡𝑎𝑠𝑘 + 𝐸𝑚𝑜𝑛𝑖𝑡𝑜𝑟 + 𝐸𝑐𝑜𝑚 ∗ (𝑛 − 1)

1 − (𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡+𝐸𝑏𝑜𝑜𝑡)∗𝑛
𝐸𝑐𝑎𝑝

, (5)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:8 • Akhunov and Yildirim

Table 3. Description of the products in Eq. (4)-(9).

Product Description

𝐸𝑡𝑎𝑠𝑘−𝑚𝑛
Energy spent on the sequential part of the code executed by the main-
core

𝐸𝑡𝑎𝑠𝑘−𝑚𝑛−𝑠𝑑 Energy spent on the parallel part of the code executed by the main-core

𝐸𝑡𝑎𝑠𝑘−𝑠𝑑
Energy spent on the parallel part of the code executed by the secondary
cores

𝐸𝑡𝑎𝑠𝑘−𝑠𝑑−𝑚𝑛
Energy consumed by the secondary cores when waiting for the main-
core to complete the sequential part of the code

𝐸𝑏𝑦𝑡𝑒−𝑚𝑒𝑚
Energy consumed for reading and writing operations to memory per
byte

𝐸𝑏𝑦𝑡𝑒−𝑠𝑒𝑛𝑑 Energy consumed for data sending operation per byte
𝐸𝑠𝑦𝑠𝑡𝑒𝑚−𝑏𝑜𝑜𝑡Energy spent on system initial booting process
𝐸𝑠𝑎𝑚𝑝𝑙𝑒 Energy consumed for sampling power and voltage levels
𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 Energy harvested during particular operation
𝑁𝑏𝑦𝑡𝑒 Number of bytes required to be sent, stored, or restored
𝑁𝑠𝑎𝑚𝑝𝑙𝑒 Number of power and voltage samplings per task

where n denotes the number of cores. All that components depend on the amount of bytes needed to be
manipulated and also consider the energy harvested simultaneously:

𝐸𝑚𝑜𝑛𝑖𝑡𝑜𝑟 = (𝐸𝑠𝑎𝑚𝑝𝑙𝑒 ∗ 𝑁𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 , (6)
𝐸𝑐𝑜𝑚 = (𝐸𝑏𝑦𝑡𝑒−𝑠𝑒𝑛𝑑 ∗ 𝑁𝑏𝑦𝑡𝑒) − 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 , (7)

𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 = (𝐸𝑏𝑦𝑡𝑒−𝑚𝑒𝑚 ∗ 𝑁𝑏𝑦𝑡𝑒) − 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 , (8)
𝐸𝑏𝑜𝑜𝑡 = 𝐸𝑠𝑦𝑠𝑡𝑒𝑚−𝑏𝑜𝑜𝑡 + (𝐸𝑏𝑦𝑡𝑒−𝑚𝑒𝑚 ∗ 𝑁𝑏𝑦𝑡𝑒) − 𝐸ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 . (9)

The description of all equation parts can be found in Table 3.
Eq. (5) confirms that an intermittent system has to spend energy for checkpointing and booting upon each

power failure presented in Eq. (3). The last part of Eq. (5) indicates that 𝐸𝑐𝑎𝑝 cannot be less than or equal to the
total energy consumed by checkpointing and booting processes, otherwise, we will have zero or negative value
as a denominator. The capacity of the capacitor determines how often an intermittent system must be interrupted
to recharge, i.e., how frequently a system spends energy for checkpoints and boots.

3.3 Multicore System Performance
Task Execution Time. The performance of parallel execution obeys the Amdahl’s law. Thus, task execution for a

multicore system is distributed among the available processors, while allocation depends on the task’s sequential
fraction (𝐹𝑠𝑒𝑞), which is executed exclusively by the main-core. The remaining part (1 − 𝐹𝑠𝑒𝑞) of the task can be
run on several processors in parallel:

𝑇𝑡𝑎𝑠𝑘 = 𝑇𝑡𝑎𝑠𝑘−𝑚𝑛 ∗ 𝐹𝑠𝑒𝑞 +𝑇𝑡𝑎𝑠𝑘−𝑠𝑑 ∗
1 − 𝐹𝑠𝑒𝑞

𝑛
, (10)

where 𝑇𝑡𝑎𝑠𝑘−𝑚𝑛 denotes the task execution time of the main-core and 𝑇𝑡𝑎𝑠𝑘−𝑠𝑑 denotes the task execution time of
the secondary cores.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:9

(a) Input power range 0–5000 (b) Input power range 5000–35000 (c) Input power range 35000–50000

Fig. 2. Three parts of the performance dependence on the incoming power and the number of cores working on a task. Red,
yellow, blue dots represent high, medium, and low point of the marked line respectively.

End-to-end Delay. The multicore intermittent system’s end-to-end delay can be modeled as:

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑇𝑡𝑎𝑠𝑘 +𝑇𝑚𝑜𝑛𝑖𝑡𝑜𝑟 +𝑇𝑐𝑜𝑚 + (𝑇𝑐ℎ𝑎𝑟𝑔𝑒 +𝑇𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 +𝑇𝑏𝑜𝑜𝑡) ∗ (𝐸𝑠𝑦𝑠𝑡𝑒𝑚/𝐸𝑐𝑎𝑝)

= 𝑇𝑡𝑎𝑠𝑘 +𝑇𝑚𝑜𝑛𝑖𝑡𝑜𝑟 +𝑇𝑐𝑜𝑚 + (𝐸𝑐𝑎𝑝/𝑃𝑖𝑛𝑝𝑢𝑡 +𝑇𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 +𝑇𝑏𝑜𝑜𝑡) ∗ (
𝐸𝑡𝑎𝑠𝑘 + 𝐸𝑚𝑜𝑛𝑖𝑡𝑜𝑟 + 𝐸𝑐𝑜𝑚 ∗ (𝑛 − 1)
𝐸𝑐𝑎𝑝 − (𝐸𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 + 𝐸𝑏𝑜𝑜𝑡) ∗ 𝑛

). (11)

The end-to-end delay depends on execution time (𝑇𝑡𝑎𝑠𝑘), charging time (𝑇𝑐ℎ𝑎𝑟𝑔𝑒), checkpointing time (𝑇𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡),
booting time (𝑇𝑏𝑜𝑜𝑡), power monitoring time (𝑇𝑚𝑜𝑛𝑖𝑡𝑜𝑟), and the inter-core communication time (𝑇𝑐𝑜𝑚) that takes
into account time to switch a secondary core from a low power mode to the active mode. The last part of Eq. (11)
is derived from the middle part by substituting 𝐸𝑠𝑦𝑠𝑡𝑒𝑚 with the value from Eq. (5). The model shows that the
capacitance of an energy buffer (𝐸𝑐𝑎𝑝) affects the performance of a system. Note that checkpointing and booting
for several cores can be performed simultaneously (since we assume a voltage-level triggered checkpointing) and
it is not needed to multiply their time overhead by the number of cores. Furthermore, 𝑇𝑐𝑜𝑚 , 𝑇𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 , and 𝑇𝑏𝑜𝑜𝑡
directly depend on the number of bytes needed to be processed, while simultaneous charging when performing
different stages only affects the number of power failures and is thus expressed in the energy model (Eq. (5)).

4 USER EXPLORATION OF MULTICORE INTERMITTENT EXECUTION
Most of energy harvesting devices can harvest energy meanwhile they are executing tasks [19], contributing to
performance and execution progress. Eq. (11) shows that 𝐸𝑐𝑎𝑝 , n, and the strength of incoming power are the main
parameters affecting the overall performance of a system.

The availability and stability of environmental power are unforeseeable. However, when the system encounters
a high power availability in the environment, it can increase the throughput by adapting to the changing
environmental conditions. For instance, multiple cores can exploit task and data-level parallelism of emerging
applications (e.g., fast ML inference) when the ambient power (which comes for free) is strong enough to charge
the energy buffer quickly. Therefore, when the environment supports:

min
𝑛∈[1,𝑛𝑎𝑣]
𝑃𝑖𝑛𝑝𝑢𝑡 ∈ℜ≥0

(
𝑇𝑠𝑦𝑠𝑡𝑒𝑚𝑀𝐶

𝑇𝑠𝑦𝑠𝑡𝑒𝑚𝑆𝐶

) < 1, (12)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:10 • Akhunov and Yildirim

(a) Red rectangle frames the area
where the surface reaches its lowest
point.

(b) Highest performance with different
capacitors. Red dashed line reflects the
line in the red rectangle in Fig. 3a.

(c) Multicore versus single-core
energy efficiency.

Fig. 3. Comparison of the speed up and the energy efficiency drop of multicore intermittent systems.

where 𝑛𝑎𝑣 denotes the number of available cores, 𝑇𝑠𝑦𝑠𝑡𝑒𝑚𝑀𝐶 denotes the performance of a multicore intermittent
system, and𝑇𝑠𝑦𝑠𝑡𝑒𝑚𝑆𝐶 denotes the performance of a single-core intermittent system, then it is desirable to exploit
the parallel execution.
Based on the model from Section 3, we developed a tool1 implemented in Python that helps the developer to

check at an early stage if multicore deployment is beneficial for a particular application. We performed simulations
with this tool to understand the performance of executing a computational task concerning a different number of
cores, input power levels, parallelization factors, and capacitor sizes. We present the parameter values used in
our simulations in Table 4 (row for the Section 4). It is worth mentioning that these values are collected from our
testbed setup presented in Section 6.

4.1 Input Power and Number of Cores
We gradually increased the input power from 50 to 50000 `𝑊 using a fixed capacitor value of 𝐶 = 40`F and
assumed that 50% of the task is parallelizable. The resulting system’s behaviour is split into three parts and
presented in Figures 2a, 2b, and 2c. As seen from these wire-frames, a change in the input power changes the
system performance markedly. For instance, when the input power is very low (Figure 2a), the single-core system
(blue dot) outperforms any multicore system running the same task (e.g., yellow and red dots). However, when the
input power reaches 5000 `𝑊 (Figure 2b), some multicore configurations (e.g., dual-core system, blue dot) benefit
from the faster energy buffer charging time and complete a task earlier than the single-core system (yellow dot).
With further increasing the input power (Figure 2c), the single-core system (red dot) can no longer compete with
multicore systems, and even an 8-core system (yellow dot) can outperform the single-core system by 20%. We
can conclude that under different environmental conditions, different system configurations become optimal. We
extracted the optimal number of cores, as visualized in Figure 3a. The stepped line in the red rectangle presents
the points where the surface reaches the local or global minimums, i.e., the number of cores for a multicore
system with the fastest execution time.

1Available on GitHub (https://github.com/tinysystems/adamica)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:11

4.2 Capacitance and Sequential Fraction
Figure 3b shows the optimal number of cores, in terms of system performance, for various input power and
capacitance. Note that the larger energy storage a system has, the more cores it can activate to increase the
performance. It is worth noting that with some capacitance-input power level combinations, single-core computing
is more beneficial than switching to the multicore mode. Figure 3c (top) compares the performance of each
optimal number of cores configuration, presented in Figure 3b, against the single-core implementation. At the
bottom part of Figure 3c, we show the energy efficiency drop with increasing the number of active cores. This
additional energy overhead is reasonable since the system activates extra technical resources to use probably
short-term high free input power periods to execute as many tasks as possible. Having an intermittent system
with a capacitor of 60 `𝐹 , at the high input power, we can speed up the execution by around 30%, consuming
about 20% more energy. We omit our simulation results concerning the sequential fraction, for the interest of
space. We conclude that the shorter the sequential part of a task, the sooner a system can switch to multicore
mode to speed up.

4.3 Obtaining Minimum Power Requirements.
System designers can use our exploration tool to observe the minimum power requirements to switch between
the multicore configurations. By approximating or directly measuring the parameters listed in Table 2, users can
observe the minimum power required to activate other cores and benefit from parallelism. As an example, Figure
3(b) clearly shows that with a capacitor size of 20`𝐹 , an input power should be more than 5𝑚𝑊 to turn on the
secondary core and benefit from parallelism. Having a priori information on the energy harvesting environment
and the minimum/maximum harvestable power, designers can also make a decision on the maximum number of
cores that can be deployed in the system.

5 ADAMICA: ADAPTIVE MULTICORE COMPUTING
This section presents AdaMICA2—a dynamically configurable multicore runtime for intermittent computing
that can perform computational tasks at different performance and efficiency levels by switching between
various modes concerning the input power from the environment. AdaMICA can control multiple homogeneous
or heterogeneous full-fledged computing units that share memory and operate at different frequencies. The
main core, where AdaMICA resides, is responsible for bootstrapping, monitoring input power, deciding on
appropriate configurations, activating secondary cores, and assigning parallel subtasks among them. Figure 5
gives an overview of the multicore intermittent execution flow where additional actions taken by AdaMICA are
shown in light blue. We explain all the blocks in the following subsections.

5.1 Programmers’ View
Software developers provide information on the parallelizable tasks in the form of program metadata. They
mark the parallelizable blocks of their programs by using begin_parallel and end_parallelmacros (Figure 4a,
lines 4–16). The begin_parallel macro creates a void C function with a given name (line 1) and inserts the
call to the runtime to reconfigure the multicore architecture (lines 2–3). The end_parallel macro inserts the
code that handles the necessary communication actions between the main core and the secondary cores (lines
17–23). Secondary cores signal the main core when they finish their computational tasks. The main core waits
for notification from secondary cores and progresses after all secondary cores finish their parallel computation.
Programmers also need to provide the values of parameters listed in Table 2, which capture the energy cost

of several operations as well as the parallel computational tasks. The simplest way to obtain this information

2Available on GitHub (https://github.com/tinysystems/adamica)

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:12 • Akhunov and Yildirim

(a) A parallelizable code block. The programmer uses
begin_parallel and end_parallel to indicate parallizable
code sequences. AdaMICA runtime activates the cores based
on the available power to increase the throughput.

1 void adamica(fn_ptr *func) {
2 // sample input power
3 uint32_t power = sampleADC();
4 // decide on the number of cores
5 numCores = DMT(func, power);
6 // activate secondary cores
7 activate(numCores, func);
8 }

(b) AdaMICA runtime pseudo-code that reconfigures the
multicore architecture.

Fig. 4. AdaMICA programming model and abstractions.

is utilizing the energy profiling tool, EnergyTrace [27], which demonstrates high measurement accuracy and
resolution. It is worth mentioning that it is possible to automatize these measurements, as depicted in [28].

In analogous to any parallel programming technique, AdaMICA requires software developers to write their code
in a form that can be split equally among the active cores. AdaMICA follows the principle idea of OpenMP [16], a
flexible and open-source shared-memory programming model actively used in embedded systems for parallel
programming [69]. In our implementation, programmers use adamicaCores macro (Figure 4a, lines 6 and 7) at
runtime to get the number of cores activated by AdaMICA. Due to the shared memory architecture, each core
should compute only a portion of the output, and they should not overwrite the outputs of each other.

5.2 Runtime Execution Flow
Figure 5 presents the main flow of the AdaMICA runtime. Upon the start of the system, the main-core boots first
and then starts the execution of the program 1○. When the main-core hits a parallel code block 2○, it samples
the input power 3○ and calls AdaMICA decision-making procedure 4○ via adamica function by providing the
parallel block’s address as a parameter (Figure 4a, line 3). At this point, AdaMICA activates the secondary cores
to exploit the parallel execution if it is beneficial based on the input power 5○. In this case, the main-core and the
activated secondary cores execute the equally partitioned computational load 6○. After the main-core finishes its
execution, it waits for all other cores to finish their executions 7○. Secondary cores signal the main-core after
they finalize their computation and transition to sleep mode to save power until they are activated again. The
main-core continues executing the sequential part of the program before hitting the next parallel part or going to
sleep mode 8○.

5.3 Just-in-time Checkpoints and Handling Power Failures
AdaMICA exploits just-in-time (JIT) checkpointing. It monitors the energy buffer (via voltage monitoring
circuitry [13]) to check if the voltage level is below a certain voltage threshold. The voltage monitoring circuitry

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:13

Fig. 5. AdaMICA operating overview. Light blue boxes are additional actions helping AdaMICA to successfully operate on a
multicore system.

signals the main-core when this condition holds, and the backup actions start. This checkpointing strategy
requires fewer backups and does not suffer from wasted work, i.e., the work needs to be repeated after power
restores. Moreover, the dedicated voltage monitoring hardware also allows for tracking input power, which is
essential for making decisions to reconfigure multicore architecture.

AdaMICA requires that the energy stored in the capacitor when reaching the specified low voltage threshold is
sufficient to checkpoint all available cores and guarantee execution progress. The low voltage threshold is specified
by a system designer in advance, considering the mentioned condition. However, AdaMICA requires several low
voltage thresholds because checkpointing overhead increases with the number of active cores. The developer
specifies these constant threshold values in a dedicated data structure of AdaMICA used upon decision making
(Section 5.5). Note that threshold interruption is implemented using a window comparator of an analog-to-digital
converter (ADC) to monitor analog signals without any CPU interaction. Both the lower and upper bounds of
the window are adjustable just by rewriting the values in particular registers [37].
Upon backups, the main-core, in addition to saving its own computational state, signals the other nodes to

perform the checkpoint 9○. The red input line to 9○ shows that power failures can occur while executing a
task (6○, 7○) or staying in a low power mode 8○. This suggests that the energy-harvesting system is equipped
with a sufficient capacitor that ensures both seamless execution of steps 1○- 5○, 10○, 11○ and forward computation
progress. When the capacitor is charged and the system can restart its operation, AdaMICA restores from the
last checkpoint 10○ and proceeds with power monitoring 3○ and checking for a pending secondary core(s) job 11○.
The latter information is collected during step 4○ and is used to keep track of the secondary cores that did
not complete their parts of a task before the last power failure. This insignificant in size (core ID and subtask
parameters) but essentially important information helps AdaMICA to ensure the completion of the interrupted
subtasks by reactivating them on reboot. For example, if AdaMICA detects pending secondary core jobs 11○ and
decides that there is enough input power to resume multicore mode 4○, it wakes up necessary cores and continue
executing the task. If power is not strong enough, AdaMICA sequentially executes all the pending jobs in a
single-core mode.

5.4 Communication Among the Cores
Depending on themulticore architecture, themain-core canwake up the secondary cores using special instructions
or serial communication protocols such as SPI. AdaMICA dedicates distinct regions in shared memory for
command or data exchange among the cores. For instance, AdaMICA records the address of the parallel code
block to be executed by the secondary cores in a dedicated data structure in memory. When a secondary core is
activated (Figure 4b, line 7), it reads the address value to understand which parallel block to execute.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:14 • Akhunov and Yildirim

When the main-core completes its part of the computation, it waits for the interrupt signal from secondary
cores indicating the completion of their job (Figure 4a, line 20). Upon receiving this signal, the main-core updates
the pending jobs data.

5.5 Decision Making and Adaptive Multicore Reconfiguration
AdaMICA uses a decision-making table (DMT) at runtime to decide on the number of cores to activate. The DMT,
which maps the input power levels to the corresponding optimal system configurations, is filled in by AdaMICA
at runtime. By applying the values for the parameters from Table 2 and the energy cost of the parallel tasks to
the models presented in Section 3, AdaMICA generates the DMT entries on-demand. An alternative strategy is
to use our tool (presented in Section 4) to generate DMT by using the parameters specified in Table 2 and the
energy cost of the parallel tasks, and to upload DMT into the device memory along with the program code.
Figure 4b presents the AdaMICA reconfiguration pseudo-code triggered when it hits a parallel code block.

AdaMICA samples input power using an ADC (line 3) and uses it to compute the corresponding entry of the DMT.
It obtains the desired multicore configuration, which is mapped to the corresponding input power level in the
DMT (line 5). The main-core then activates the required number of secondary cores and assigns their subtasks
(line 7). If the parallelization will bring no benefit (based on the returned configuration in line 5), the main-core
starts executing the task sequentially. It is worth mentioning that the calculation of the optimal configuration for
each power level is performed only once. If AdaMICA encounters the same power level, it grasps the previously
computed value from the DMT. AdaMICA keeps the DMT’s structure very simple. It consists of two columns -
power level and the number of active cores. The computation for each entry is also composed of simple arithmetic
operations (as depicted in Eq. 12) and depends on the number of available cores, which is unlikely greater than
eight for modern embedded low-power systems.
AdaMICA can exploit one-shot and dynamic decision making procedures. In the one-shot decision-making

approach, AdaMICA obtains the desirable multicore configuration at the beginning of the parallel task (via line
5), switches mode immediately, and the selected configuration remains unchanged till the end of the parallel
task block or until the next power failure. This approach is simple and less costly in terms of implementation.
The simulated behavior of the on-shot made decisions (using the parameter values in Table 4, row Section 5.5) is
depicted in Figure 6a, representing a slice of the real irradiance power trace for indoor/outdoor activity sourced
from [46]. As seen, AdaMICA reacts promptly, strictly following the predefined configuration in the DMT.
The dynamic approach can be more efficient since it involves making more informed decisions. Using the

information aggregated in the past, it tries to "anticipate" the behavior of an ambient energy supply, bypassing
the mode switching on short-term power spikes and drops. This implementation avoids activating unnecessary
system configurations, e.g., when input power encounters an instantaneous power drop, the DMT recommends
switching to the single-core mode. History prediction [1, 9] is a suitable algorithm for making dynamic decisions,
due to its simplicity and has reasonably good accuracy [2]. The key idea of this algorithm concerning our dynamic
decision-making approach is to slide the window of predefined length over 𝑃𝑖𝑛𝑝𝑢𝑡 values and predict the next
value by the following calculation:

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =
𝑊𝐿 ∗ 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃𝑝𝑎𝑠𝑡

𝑊𝐿 + 1
, (13)

where𝑊𝐿 denotes the user-defined length of the sliding window, 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑃𝑝𝑎𝑠𝑡 denote input power
predicted, current, and past values, respectively. To have a dense history of input power levels, AdaMICA samples
these values upon restoring from power failure and reaching parallelizable code blocks.

Figure 6b reflects the AdaMICA’s dynamic reaction with the fixed𝑊𝐿 value in Eq. 13. Although the algorithm
introduces fewer mode switching, it suffers from significant delay in some cases. However, online adjustment of
the sliding window length with respect to error rate helps to balance between the number of switches and the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:15

(a) One-shot approach reacts immedi-
ately.

(b) Dynamic approach with fixed𝑊𝐿 . (c) Dynamic approachwith adjustable
𝑊𝐿 .

Fig. 6. The behavior of different decision-making approaches.

reaction pace (Figure 6c). We use the following control rule to update𝑊𝐿 :

𝑊𝐿 = min(𝑊𝑚𝑎𝑥 ,max(𝑊𝑚𝑖𝑛,𝑊𝐿 − 𝛼 ∗ 𝑑

𝑑𝑡
𝑒𝑟𝑟), (14)

𝑒𝑟𝑟 = (𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡)2, (15)

where 𝛼 is the control gain, 𝑒𝑟𝑟 is the squared error,𝑊𝑚𝑎𝑥 and𝑊𝑚𝑖𝑛 are the predefined max and min values of
𝑊𝐿 , respectively.

5.6 AdaMICA Overheads
Inevitably, AdaMICA introduces memory and computation overheads to the system. The DMT is stored in
non-volatile memory, and its size depends on both the application and the underlying multicore architecture. For
example, the DMT of a dual-core system with a fixed-size capacitor and a few parallelizable code blocks requires
less space compared to that for a quad-core system with a re-configurable energy buffer and many parallelizable
code blocks.

AdaMICA needs to sample the output of the harvester using an ADC. These measurements can be extremely
cheap in terms of energy by using the recent advancements in circuits [77]. The decision-making requires simple
computations to decide on the multicore configuration, which introduces almost negligible time and energy
overheads.
Due to the shared memory architecture, the communication cost among the cores is also negligible. On the

other hand, the wake-up time and energy cost of the secondary cores are architecture-specific and constant.
According to our observations, these values do not have a significant impact on the system’s performance, as the
next section shows that AdaMICA is superior compared to the rigid systems configurations.

6 EVALUATION AND RESULTS
In this section, we demonstrate how AdaMICA enables adaptive multicore architectural scaling at runtime—for
the first time, we demonstrate successful multicore intermittent execution and architectural adaptation. We
evaluated AdaMICA using various benchmarks and applications in our real-world setup. We found that AdaMICA
increases the throughput of parallelizable code blocks significantly compared to rigid multicore configurations
that do not respond to power availability.

6.1 Benchmarks Performance
To verify AdaMICA’s efficiency, we created an emulation setup with fully controlled system input parameters.
Such emulation allows us to effortlessly, rapidly, and repeatedly discover the realistic behavior of the proposed
system under a variety of conditions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:16 • Akhunov and Yildirim

Table 4. Values for the experimental parameters used in different sections of the article. T -𝑚𝑠 , E - `𝐽

Section in the article 𝐹𝑠𝑒𝑞 𝐸𝑐𝑎𝑝
task monitor com checkpoint boot W

𝛼 n
T E T E T E T E T E max min

Section 4 0.5 90-260 2200 18040 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 8
Section 5.5 0.5 190 2200 18040 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 4
Section 6.1 (CNN) 0.3 190 2200 18040 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 8
Section 6.1 (MM) 0.1 190 180 1440 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 8
Section 6.1 (RSA) 0.4 190 265 2147 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 8
Section 6.2 (MNIST) 0.3 432×101, 2200 18040 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2

216×103
Section 6.2 (ESC-10) 0.4 432×101, 3100 25420 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2

216×103
Section 6.2 (CATalogue) 0.2 432×101, 3500 28700 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2

216×103
Section 6.3 (Tennis) 0.4 648×101 1800 14800 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2
Section 6.3 (Animals) 0.35 130×102 6500 53300 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2
Section 6.3 (Plants) 0.2 130×102 5200 42640 0.15 0.02 0.05 0.01 1.155 11.435 1 0.367 600 200 0.1 2

6.1.1 Target Platform and Multicore Emulation. To our best knowledge, there are no multicore MCUs with
internally embedded FRAM on the market. Multicore MCUs with embedded flash memory are not suitable for
intermittent computing due to the high energy requirements, low speed, and limited write endurance of the flash
memory, as we mentioned in Section 2. To mimic the shared-memory multicore computing architecture, we
used MSP430FR5994 [37], which is the de facto ultra-low-power MCU for intermittent computing systems. This
MCU is single-core, and it contains 256 𝐾𝐵 and 8 𝐾𝐵 of embedded FRAM and SRAM memory, respectively. We
set the MCU operating frequency to 16 𝑀𝐻𝑧, which is the highest frequency that results in the most energy-
efficient performance (we provide more details in Section 6.5 on the voltage-frequency related issues). To emulate
shared-memory multicore execution on a single-core device, we employed a simple yet effective strategy. For
the parallelizable blocks within the program code, we performed the calculations of the secondary cores in
advance and embedded their results in the device memory. When the main-core executes its part, it merges
its result with the pre-calculated results from the other cores staying in memory. We take into account the
parameters introduced in Section 3 to have the fine-grain approximation of the multicore execution time and
energy consumption.

6.1.2 Energy Harvesting and Power Failures. We used pre-recorded irradiance power traces to emulate the energy
harvesting process. We chose three different traces sourced from a specific community dataset [46]: constantly
low, in a city at night; constantly high, during a car ride on a sunny day; mixed, during indoor-outdoor daily
routine. Using power traces gave us full control and made our experiments more observable. Since the power
traces give information in `𝑊 /𝑐𝑚2, we considered a 10 𝑐𝑚2 solar panel with 10% efficiency. We set the energy
buffer of size 40 `𝐹 . It is worth mentioning that the size and efficiency of the solar panel should be carefully
selected depending on the application needs and target environment, since these parameters affect the strength
of power harvested, which is directly proportional to the system performance (see Eq. 11). For example, the
specified above parameters are sufficient to generate up to 30𝑚𝑊 power, which is enough to switch to the 4-core
architecture (see Figure 2b). However, if a smaller solar panel is required by the application, one can select a panel
with higher efficiency, which can reach 30% today [60]. For emulating the energy harvesting and consumption
behavior, we set a timer with a period of 5𝑚𝑠 to generate probes. At each probe, we calculate the harvested

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:17

(a) Car travel. (b) Night city. (c) Indoor/outdoor.

Fig. 7. AdaMICA dynamic configuration and throughput results for different irradiance power traces.

and consumed energy, based on our model described in Section 3 by using the power trace, the system’s power
consumption, and the time passed from the previous probe. We use this calculation to emulate the charging and
discharging of the energy buffer. When the stored energy reaches the lower threshold, we mimic a power failure
that introduces checkpointing, charging, and booting procedures.

6.1.3 Experimental Parameters. We reserved 0.5 𝐾𝐵 of memory to fit the entire DMT for the input power range
from 50 to 50000 `𝑊 in increments of 100 `𝑊 . The DMT is stored as a lookup table to speed up the search for
AdaMICA decisions. Table 4 (rows for the Section 6.1) shows the settings of the experimental parameters. All the
values in this table are calculated using the device’s datasheet information and the experiments performed on the
device by profiling the energy consumption using the EnergyTrace [27] software tool.

6.1.4 Dynamic Decisions. The dynamic decisions for the adaptive system are made upon reaching a parallelizable
block. AdaMICA calculates on-the-fly or uses the DTM (if the calculation has already been done) and decides on
the number of cores to activate. Based on the decision made by AdaMICA, we recompute the time and energy
to complete the parallelizable block: we take into account inter-core communication, we count the number of
power failures, multiply them by the time and energy for checkpointing, charging, and booting to obtain the
actual task execution values for actual time and energy consumption during multicore execution.

6.1.5 Benchmarks. We run our emulations for three different benchmarks that represent different sequential
code fractions: (i) LeNet-5 inference for image recognition [47] adapted to a 28×28 pixels input handwritten digit
image from MNIST database [23] (CNN, 𝐹𝑠𝑒𝑞=0.3); (ii) 32×32 matrix-matrix multiplication (MM, 𝐹𝑠𝑒𝑞=0.1); (iii)
parallelized RSA encryption described in [10] (RSA, 𝐹𝑠𝑒𝑞=0.4). The topology of the CNN is sourced from [30],
which shows 99.00% of accuracy. Running each benchmark, we use the number of tasks the system can execute
for the duration of a trace as a performance metric.

6.1.6 Results. Figure 7 demonstrates our emulation results for the three power traces we use, comparing our
adaptive system against four fixed-configuration intermittent systems: single-core and three multicore systems
(2, 4, 8 cores). Figure 7a shows that having a high level of environmental power, AdaMICA spends most of the
time in the multicore mode, switching within the region between two and four cores. The throughput bars
show that AdaMICA performs as well as the best multicore option presented (4-core fixed) for all applications,
outperforming the single-core system by 32%.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:18 • Akhunov and Yildirim

When the irradiance power is too low (Figure 7b), the adaptation mechanism keeps the system in the low
energy consumption mode by running tasks on a single core. With the constantly low power input, AdaMICA
just monitors periodically the power level and lets the main-core perform the whole task as an optimal option.
Therefore, AdaMICA outperforms each of the multicore systems presented, when the speed-up for an 8-core
system can reach 47%.
Figure 7c demonstrates a typical example of the frequent fluctuation of incoming power in a short period

of time, which leads to the frequent switching of the system mode. However, the dynamic decision-making
algorithm described in subsection 5.5 reduces the frequent mode switches. In an environment where the incoming
power changes frequently within a wide range of levels, AdaMICA also shows better results. The throughput
bars demonstrate that our adaptive architecture surpasses all the compared systems, for instance, inferencing
more images in a given amount of time. In such circumstances, the performance of a single-core system can be
improved by 37%.

6.2 Real-World Energy-Harvesting Evaluation
In this subsection, we demonstrate the effectiveness of AdaMICA in our real-world energy-harvesting setups. We
present two evaluation setups. The first one emulates the real dual-core system with multi-ported shared memory.
In this setup, the cores have all necessary data in advance in their internal memory allowing for simultaneous
access for the same data. The second setup reflects the other reality in which the cores need to access a real
shared memory presented by external FRAM. However, this memory chip is single-ported, so it can only be
accessed sequentially. Our setups are closer to the conventional multicore shared-memory approaches, with two
differences: our cores have no cache memory and conduct commands via a separate SPI bus interface. Hardware
platforms with an optimized memory bus and memory hierarchy can decrease the multicore communication
overhead, increasing the benefits of AdaMICA adaptation. To make picture clear, we compare SPI and AMBA,
a parallel bus protocol widely used in embedded systems [8], by considering 32-bit data transfer. By using the
power and energy requirements reported in [61], we calculate that a system spends 64× less time and 26× less
energy to send 32-bit data via AMBA. Besides, data caching (which is not an exclusive feature of a multicore
systems) is beneficial for ML applications, which are well-structured for data reuse. Having a memory hierarchy
with cache can also be beneficial to decreasing not only memory access overhead but also checkpointing overhead
in intermittent computing, as presented in [73]. All these improvements reduce the time and energy overhead
when multiple cores are active, which would lead to even an increased throughput via AdaMICA adaptation
since these overheads are directly proportional to the system performance (see Eq. 11).

6.2.1 Benchmarks. We evaluate AdaMICA on three CNN applications. The first application recognizes a written
digit and receives as input a 28×28-pixel grayscale image of handwritten digits from the MNIST dataset [23].
The CNN model (8×103 parameters) includes two convolutional layers with ReLU and MaxPool functions and
two fully connected layers followed by the output layer. The second CNN classifies ten environmental sounds.
The ESC-10 dataset [63] contains 5s audio clips sampled at 44.1 𝐾𝐻𝑧. We use the 1s audio downsampled five
times. This network model (55×103 parameters) comprises three convolutional layers and one fully connected.
The third CNN model is trained to recognize the presence of an animal in the given image. The model (14×103
parameters) comprises four convolutional layers and one fully connected. The images of animals are sources
from the Camera CATalogue dataset [76], which consists of 520K images of 55 animal species from 750 cameras
in South Africa. The sizes of the images are large and not unified. To fit an image into the MCU’s memory, we
move the target object (animal) to the center by cropping the image and then downsample it to 32×32 pixels. The
applications have different sequential fractions: MNIST - 30%, ESC-10 - 40%, and CATlogue - 20%. All three CNN
models are pruned and quantized to 8-bit integers.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:19

(a) Dual-core emulation setup.
(b) Dual-core setup with shared FRAM.

(c) Dual-core setup for the real-world
application.

Fig. 8. Components of our dual-core experimental setups.

6.2.2 Baselines. We compare AdaMICA with four distinct implementations targeting intermittent computing:
SONIC, SONIC LEA, Single-core fixed, Dual-core fixed. SONIC [30] is the state-of-the-art single-core solution
that performs inference on resource-constrained devices operating intermittently, including MSP430FR series
microcontrollers. SONIC is a task-based intermittent system reinforced by three techniques to optimize inference
execution: loop continuation, ordered buffering, and sparse undo-logging [30, see Section 6]. SONIC LEA (named
as TAILS in [30]) exploits the low-energy vector accelerator (LEA) found on MSP430FR series microcontrollers.
SONIC LEA benefits from the hardware acceleration and can improve inference tasks [30, see Section 7]. Our
two other baselines, Single-core fixed and Dual-core fixed, are just-in-time checkpointing intermittent systems
(see Section 5.3) with no adaptation to ambient power.

6.2.3 Experimental Setup and Multicore Emulation. We refer to the results of this setup as 1C, 2C, and AdMC
with multi-port emulated memory access for single-core fixed, dual-core fixed, and AdaMICA configurations,
respectively. We also use this setup to implement SONIC and SONIC LEA. Figure 8a shows all components of our
experimental setup. As an energy harvesting module, we exploit the Powercast TX91501-3W [20] RF transmitter
to emit the energy and the P2110-EVB [21] RF receiver with two different capacitors (1 mF and 50 mF) to harvest,
store, and convey that energy to our computing unit. The computing unit combines two MSP430FR5449 [37]
evaluation boards acting as a dual-core system. All data is captured using either the EnergyTrace [27] and the
logic analyzer [26]. We mimic a dual-core system with shared memory using two MSP430 MCUs operating at 16
MHz. To emulate the behavior of multi-port shared memory, we embed the computational results of parallelizable
blocks in advance in the device memory. Therefore, when a core finishes its dedicated part of the computation, it
can find the results of the other core in memory. We set one of the boards as the main-core. The other device (i.e.,
the secondary core) stays in a low-power mode, waiting for activation. The main-core wakes up the secondary
core by sending commands via SPI communication.
Real Multicore Setting with Shared External FRAM. We refer to the results of this setup as 1C-Sh, 2C-
Sh, and AdMC-Sh with shared sequential memory access for single-core fixed, dual-core fixed, and AdaMICA
configurations, respectively. To experiment even closer to the realistic dual-core system, we augment our previous
setup with the shared external Adafruit SPI FRAM of 4 MB (Figure 8b). The external SPI FRAM is single-port,
which allows only sequential access to the shared non-volatile memory and limits the real performance of our
multicore setup. However, this is the only feasible realistic multicore demonstration using easily accessible
off-the-shelf components.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:20 • Akhunov and Yildirim

(a) Fluctuating Input Power. (b) Low Input Power.

Fig. 9. Throughput results for running CNN inference on our real energy-harvesting setups. SONIC, SONIC LEA, 1C, 2C,
AdMC belong to the setup with emulated multi-ported memory access (Figure 8a). 1C-Sh, 2C-Sh, AdMC-Sh belong to the
setup with a real external single-ported shared memory (Figure 8b). The dashed lines indicate the worst throughput for the
corresponding capacitor configuration.

Intermittent Execution. A single energy harvester powers both boards. We set the appropriate lower threshold
values (1.81 and 1.82 𝑉 for single-core and dual-core configurations, respectively) for the capacitor to guarantee
uninterruptible checkpoints for both cores. When the threshold is reached the main-core signals to the secondary
core to start the backup process together. Upon the completion of the recharging process, the main-core follows
the sequence of actions indicated in Figure 5 to continue the interrupted execution.
Power Measurements. The main-core uses its onboard ADC to sample and convert the capacitor voltage on the
P2110-EVB RF receiver. An additional P2110-EVB is required to sample the environmental power strength, since

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:21

Powercast receivers do not allow simultaneous monitoring and energy harvesting. We positioned two P2110-EVB
harvesters as identically as possible and used the second harvester to monitor the input power.

6.2.4 Results. We change the distance between the RF transmitter and harvester to experiment with input power
fluctuations. For each capacitor setting, we run our experiment for 10 minutes. The results collected from our
energy-harvesting setup are very consistent with those of the benchmarks. Figure 9 presents the results for both
setups with emulated shared memory (SONIC, SONIC LEA, 1C, 2C, AdMC) and with real external shared memory
(1C-Sh, 2C-Sh, AdMC-Sh). The figure shows that when power is mostly strong (Figure 9a), SONIC performs as
well as our 1C configuration with just-in-time checkpointing, while SONIC LEA performs slightly (around 5%)
faster than SONIC. However, when power is low (Figure 9b), the performance of SONIC LEA decreases due to the
memory movement overhead introduced by the accelerator at each power failure, while SONIC can outperform
the 1C configuration by about 6% due to improved checkpointing overhead in SONIC.

Figure 9 shows that AdaMICA successfully switches between single-core and dual-core architectures, adapting
to environmental power. By doing so, AdaMICA outperforms both fixed architectures for different energy buffer
sizes. The system with AdaMICA can recognize, for example, 67% more sound clips compared to the single-core
system in the ESC-10 application when power is high (Figure 9a). The figure also shows that the number of
inferences increases for the setup with multi-port emulated memory. This is due to the decreased memory access
latency, while the external memory creates a bottleneck by its single-ported (sequential) access in this particular
setup. Also, note that the reason for the throughput decrease for the single-core deployments with the larger
capacitor is the increase of charging time, which, in most cases, coincides with low incoming power periods.
When incoming power is mostly low (Figure 9b), the fixed dual-core system cannot be beneficial anymore. Under
such conditions, AdaMICA decides to switch to dual-core mode only when the input power is feasible while
keeping the system in the less energy-consuming mode for the other time. This strategy enables 89% more image
inferences for the CATalogue dataset.
The comparison of the above setups (Figures 8a and 8b) highlights the beneficial feature of a multicore

system with shared multi-ported memory, where all cores can access memory simultaneously. The overall result
demonstrates that AdaMICA can successfully tolerate different environmental cases, improving throughput.

6.3 Real-world Applications
We demonstrate the performance of AdaMICA on three real-world batteryless ML applications: gesture recogni-
tion, wild world tracking, and plant health monitoring.
Gesture Recognition. It is one essential ability of ML that helps humans in various domains, such as human
to computer interaction, gaming, medical operations, training, physical rehabilitation, and others. We focus on
recognizing three patterns of tennis strokes performed by a trainee (serve, groundstroke, and volley) to help
trainees to practice their skills of stroking on their own [45].
Wild World Tracking. It is a key technique for ecologists to monitor changes in the environment [76]. In this
application, we focus on animal tracking, using a camera and microphone, whereas the intermittent system is
powered by two sources: the animal’s body heat and the sunlight.
Plant Health Monitoring. It can significantly increase agricultural productivity by promptly forecasting disease,
nutrient deficiencies, or drought [68]. For our experiment, we consider an image-based plant disease diagnostic
batteryless system equipped with two cameras: color (RGB) and thermal.

6.3.1 Experimental Setup. We used the hardware setup shown in Figure 8c during the experimental evaluation
of our applications.
Multicore Setup and Sensors. In this setup, we used the same realistic shared external SPI FRAM setting as in
the previous subsection, where inputs and outputs of common CNN layers reside in FRAM. As cores, we use the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:22 • Akhunov and Yildirim

same MSP430 boards running at 16MHz. The GY-521 is an I2C-featured standard MPU-6050 device that combines
a 3-axis gyroscope and a 3-axis accelerometer on the same silicon die. We used this sensor (mounted on a glove)
for the gesture recognition. For image and sound in wild world tracking and plant health monitoring applications,
we considered the Arducam OV2640 2MP RGB camera [7], the Adafruit AMG8833 thermal camera [4], and the
Adafruit Electret MAX4466 microphone with amplifier [3].
Energy Harvesting Sources. We used Analog Devices DC2080 [25] harvester that can generate 1.72-3.3 V,
which comprises a 1.5 mF capacitor, a 13.5 𝑐𝑚2 solar cell and a thermal energy generator (TEG). We powered the
gesture recognition and plant health monitoring applications using solar cells in this harvester. Besides, in the
plant monitoring application, more power is needed to activate the second core and turn on the thermal cameras
to detect the plant health more precisely. For this purpose, we used the Powercast RF transmitter and receiver.
For the wild world tracking application, we assume that the tracking device is attached to an animal body which
allows the device to be recharged from the animal’s body heat. Therefore, we used energy harvesting via TEG for
this purpose. During the day, the available sunlight enables energy harvesting using solar cells.

6.3.2 Application Scenarios and CNN Models. Using TensorFlow Lite, we trained different CNNs targeting our
applications. We achieved different accuracy levels for CNN models: 96% for gesture recognition, 85% for sound
classification, 81% for animal image classification, and 92% for plant RGB and thermal image classification.
Tennis Stroke Classification. To infer the tennis gestures (serve, groundstroke, and volley), we utilized the
same CNN model that we used in Section 6.2 for the recognition of handwritten digits (MNIST). To match the
output of an MPU-6050 sensor to the input of the CNN model, we transformed the data from gyroscope and
accelerometer to a 2D image by performing three main steps: (i) estimation of rotational orientation, having 3D
angular orientation as output; (ii) transformation of the 3D data into 2D positional coordinates; (iii) drawing lines
between those coordinates on a 2D 28×28 pixels image.
Animal Tracking. The sound is used for the preliminary classification of surrounding animals and the RGB
image for the final confirmation. The sound and image are captured simultaneously. If an animal is detected by
the sound, the image is then processed by another CNN, otherwise the image is discarded. We used the ESC-10
and CATalogue datasets and their CNN models described in Section 6.2 for training by considering ten different
animal sounds and images.
Plant Monitoring. We used two different cameras: RGB and thermal. Periodically, the device turns on the RGB
camera to detect if there is any plant disease. We used our RF transmitter to deliver more power so that the device
can turn on its thermal camera to detect the plant health more precisely. To evaluate this application, we used the
dataset of rice plant images [80] and trained the same CNN model that we used for animal image classification
with a slight modification in the output layer.

6.3.3 Software Architecture. We split the application software into two functional parts: sensing and computing.
The sensing part collects data from a sensor, preprocess them, and delivers data to the input layer of the
corresponding CNN. We perform the sensing that ensures the sampling and preprocessing of data in one
discharging cycle, limiting its energy burst to 𝐸𝑐𝑎𝑝 (see Table 4). Following this limitation allows us to have a
seamless sensing process. The sensing part of the tennis stroke recognition application collects accelerometer and
gyroscope samples, preprocess them, and outputs data in gray-scale 28×28 image format. We set the sampling rate
of both sensors to 200𝐻𝑧 and start the sampling process only when the capacitor is full. We collect data for 330𝑚𝑠 ,
spending half of the energy in the capacitor while using the remaining energy for data preprocessing and storing
the input for the computing part. The sensing part of the animal tracking application requires more energy since
it is responsible for collecting and preprocessing the sound and image. The sound must be transformed to the
spectrogram, while the RGB image must be downsampled. The sampling 1s audio with a highly energy-efficient
microphone and extracting spectrogram consumes 15% of the 1.5𝑚𝐹 capacitor. However, the energy consumed by
the sensing and preprocessing of the image exceeds the energy stored in the capacitor 1.5×. Although we select

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:23

Table 5. Performance of AdaMICA in different applications. (ms)

Environment SONIC LEA Single-core Dual-core AdaMICA
Tennis stroke

Indoor 17106 15460 18050 15520
Outdoor (shade) 11760 12380 13560 12515
Outdoor (sun) 8925 10080 7860 7900

Overall 37791 37920 39470 35935
Animal tracking

Night (TEG) 21900 21540 25250 21120
Day (shade) 19005 20560 22010 20010
Day (sun) 15230 17380 10400 9900
Overall 56135 59480 57660 51030

Plant monitoring
Day (cloudy) 15520 15180 19150 14750

Day (cloudy + RF) 16520 17150 12290 11980
Day (sunny) 16130 16900 12030 11650
Overall 48170 49230 43470 38380

the lowest resolution for the RGB camera (160×120 px), each pixel has three channels (colors), and the camera
has a relatively slow (8𝑀𝐻𝑧) SPI interface and requires 300𝑚𝑊 in active mode. To ensure the uninterrupted
execution of the sensing part of this application, we add the second 1.5𝑚𝐹 capacitor, which is used only for the
sensing part. Thus the sensing starts only when both capacitors are full. The plant monitoring application is also
manageable with two capacitors since the thermal camera introduces relatively low power consumption (15𝑚𝑊)
and resolution (8×8 px) and requires no image preprocessing. The computing part of all applications, directed by
AdaMICA, receives and delivers the output of the sensing part to CNN that performs the classification.

6.3.4 Evaluation and Results. Table 4 (rows for the Section 6.3) contains all the energy profiling measurements
for AdaMICA in our experiments. Table 5 presents the performance results of the execution of four intermittent
computing systems with external FRAM (SONIC LEA, Single-core fixed, Dual-core fixed, and AdaMICA) under
different environmental conditions for the three applications. For each scenario, we conducted 20 experiments.
We measure the time that the systems take to produce a single classification. The results show that AdaMICA
aligns with the most performing system configuration and can reach 75% of speed up (for tracking animals in
the sunlight). As seen, SONIC LEA outperforms the single-core and dual-core solutions for some scenarios due
to its specialization in CNN applications. For example, when we place the experimental setup in a shaded area
outdoor (see Outdoor (shade) and Day (shade) in Table 5), input power increases, reducing the number of power
failures, which improves the performance of SONIC LEA being ahead of other architectures. In this environment,
input power is still not sufficient to fully benefit from the dual-core parallel execution. Therefore, AdaMICA
mostly stays in the single-core mode, which is circa 7% slower than the LEA implementation. However, when
power is low (e.g., indoor, night, or cloudy day), SONIC LEA cannot improve the single-core solution due to the
significant memory transfer checkpointing overhead of LEA. Moreover, when power is high (e.g., on sunny days),
SONIC LEA lags behind the dual-core system because of the limited set of supported operations. For example,
functions such as ReLU, MaxPool, or downsampling cannot be performed using LEA, where the dual-core system
can easily split these tasks among cores. Furthermore, the rightmost column of the table shows that the dynamic
decisions of AdaMICA allow for increasing the performance of ML applications by the hardware reconfiguration
at runtime.
Based on the results in Sections 6.2 and 6.3, we estimate the average values of throughput and latency

improvements that AdaMICA provides. To evaluate the throughput, we performed twelve sets of experiments
(see Figure 9), six experiments for each setup (see Figures 8a and 8b). To evaluate the latency, we performed nine

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:24 • Akhunov and Yildirim

(a) Time overhead. (b) Energy overhead.

Fig. 10. AdaMICA overheads.

sets of experiments (see Table 5). For both throughput and latency, we calculated the ratio of AdaMICA values to
the worst values in each set. Summing all these ratios and dividing the sum into the number of experiments,
we calculated the mean values of the improvements. We conclude that AdaMICA can improve the intermittent
system’s performance, increasing the throughput by 52% on average and decreasing the latency by 31% on
average.

6.4 AdaMICA Overheads
In our real-world application setup, we measured the time and energy overheads of the AdaMICA dynamic
decision procedure by using EnergyTrace. Figure 10 shows the breakdown of both overheads. We distinguish four
groups of time and energy consumers concerning AdaMICA. The monitoring group contains power monitoring to
make a decision and voltage monitoring to control the lower threshold of the capacitor. This group makes 24% of
the energy overhead due to expensive ADC operations, but it barely affects the performance since done with no
CPU intervention. The next is the decision-making group that contributes 6.5% to the energy overhead and includes
dynamic power prediction, DMT search, and pending job check. The power prediction is the most consuming
part because AdaMICA needs to compute the next power level depending on the history window (Equation 13).
The DMT search performs model calculation first few iterations and then uses already calculated data from
the DMT. Both DMT and the pending job data are stored as a hash table to increase search performance and
energy efficiency. The third group is the communication group that is reduced to sending appropriate commands
to the secondary core via SPI and pushing necessary bytes of data to the shared memory to initiate multicore
computation. The last one, checkpointing group, comprises the most demanding components: backup, boot, and
restore. The checkpointing makes 79% of time and 69% of energy overheads of AdaMICA. However, the total
overhead of AdaMICA has a cost of 2.3% and 2.2% of the whole task time and energy consumption, respectively,
which is acceptable concerning performance benefits.

6.5 AdaMICA versus Dynamic Voltage and Frequency Scaling
In recent work [6], the authors has proposed their power-aware DVFS technique on MPS430G2553 MCU where
the maximum operating frequency (16 MHz) is limited by the voltage range from 3.3 to 3.6 V (Figure 11a). This
restriction limits the active cycle of the MCU operating at the highest frequency, so switching to a lower frequency
domain prolongs the active cycle of the MCU and utilizes the capacitor energy more rationally.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:25

(a) MSP430G [6]. (b) MSP430FR (this work).

Fig. 11. Voltage range and current consumption for different types of MCU.

For our evaluation, we employ an MSP430FR5994 MCU that can operate at any available frequency (1-16 MHz)
within the voltage range from 1.8 to 3.6 V. Figure 11b presents the current and voltage measurements performed
using a multimeter. As can be observed, the most efficient configuration in terms of energy spent per clock cycle
is the highest frequency level, which is 16 MHz. Therefore, we fixed the frequencies of all cores at 16 MHz, which
allowed the MCUs to operate in the most energy-optimal configuration while entirely using the stored energy.
Thus, there was no need to integrate DVFS techniques in our implementation

As a side note, systems that exploit only DVFS, e.g. [6], are not scalable. In other words, with growing task
demands and input power, the system hits the maximum frequency, missing the excess energy that does not fit into
its energy buffer. Moreover, these approaches do not address the parallelism introduced in a task, which can be
easily handled by a multicore system. AdaMICA, in contrast, can scale up the system capability when input power
allows but also restrains the system energy consumption when necessary. DVFS can provide system developers
with additional leverage to increase the efficiency of multicore embedded platforms, enabling adaptation within
the cores if the operating frequencies are limited by different voltage levels.

7 DISCUSSION AND FUTURE WORK
We now compare AdaMICA against existing solutions and discuss how it could coexist with them, eliminating
current limitations.
Data-level and Instruction-level Parallelism. Systems presented in [30, 49] exploited data or instruction-level
parallelism using specific accelerators to hide the low performance of single-core embedded processors. AdaMICA
cores can also exploit these onboard accelerators. Moreover, AdaMICA can leverage vector, superscalar, or any
other specific computational unit to further improve multicore system’s performance.
Programmer Burden. As explained in Section 5, the programmer needs to provide application metadata,
explicitly specifying parallelizable blocks in the code. From this perspective, the main duty of a multicore
intermittent system programmer is the same as for a multicore constantly powered system. However, the
programmer has the burden of the task energy profiling and DMT generation, which can be handled by a software
tool automatically. We leave this feature for our future work.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

98:26 • Akhunov and Yildirim

Decision-making Approach.We considered the dynamic decision-making approach during our evaluations
since this technique is more flexible and has greater scientific value. Applying more sophisticated control theory-
based and ML algorithms to implement the dynamic decision-making approach leads to new key research
challenges, which we suggest as interesting follow-up work.
Other Platforms. AdaMICA suits any energy-harvesting MCUs equipped with non-volatile memory. The
MSP430FR family is a unique platform since it includes an embedded non-volatile memory (FRAM) and an
optimized bus between the MCU and FRAM. To use AdaMICA on the off-the-shelf multicore MCUs, it is necessary
to use an external FRAM memory. However, this will not be as efficient as in the embedded FRAM case. AdaMICA
brings about the need for multicore platforms with embedded FRAM.

8 RELATED WORK
Our work addresses crucial gaps in the intermittent computing parallelism, which are inevitable since the
multicore models are already approaching energy-harvesting systems. Although most of the related work was
discussed in Section 2, it should be noted that there are other studies on adaptive and parallel systems.
Processing-in-Memory Accelerators.MOUSE [67] is an intermittent accelerator built on top of computational
RAM (CRAM) utilizing the emerging idea of spintronics-based processing-in-memory (PIM). The authors demon-
strate that spintronics-based logic operations are inherently idempotent and can be safely used by intermittent
computations. CRAM does not need explicitly specified checkpoints, since the memory cells are non-volatile. PIM
and specific memory cell layout introduce different levels of parallelism (column-parallelism, tile-parallelism).
While time-, energy-, and area-efficient, MOUSE has no easy accessible programming interface, and it has a
specific instruction set. As of now, there is no high-level programming language and a compiler to program
CRAM-based systems. An intermittent accelerator operating on the same principle and having the same draw-
backs [64] has been proposed as a co-processor to a generic MCU powered by a battery. However, both solutions
target operation-specific accelerators based on the processing-in-memory, which is orthogonal to our work
covering general-purpose ultra-low-power MCUs.
Workload Switching Solutions. Switching workload between several compute units that differ in performance
and energy consumption is another strategy to respond to changing input power [52]. However, this technique
does not exploit parallelism in any form. The authors in [72] propose to enable intermittent computing on
high-performance systems-on-chip, focusing mostly on booting and checkpointing operations. They cover very
briefly multicore deployment aspects, omit other important parameters, such as the incoming power strength or
the energy buffer size.
Multicore Reconfiguration.While GreenArrays [62], Core Fusion [39], and REDEFINE [33] propose recon-
figurable many-core architectures for low-power embedded systems in various fields, none of them target
intermittent computing.

9 CONCLUSION
For intermittent computing systems, execution performance and parallelism are crucial properties gaining
importance. Existing energy-harvesting devices are extremely limited in performance and introduce little flexibility.
Initial steps have begun to be taken by the intermittent community in the direction of parallelism, but are still
not sufficient enough for battery-free devices to take full advantage of it. To boost the parallelism adoption, we
proposed AdaMICA, which is the first adaptive runtime that enables multicore parallel intermittent computing.
We evaluated AdaMICA based on the benchmarks emulated on a real MCU. To validate the emulation results,
we run real-world ML applications on our real energy-harvesting setup. Our evaluation results showed that
AdaMICA outperforms single-core and multicore fixed-configured intermittent systems by 52% on average due
to the successful adaptation to changing environmental conditions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

AdaMICA: Adaptive Multicore Intermittent Computing • 98:27

ACKNOWLEDGMENTS
We thank the anonymous reviewers of MICRO 2021, ASPLOS 2022, IPSN 2022, and IMWUT for their valuable
comments and feedback that led us to improve our paper.

REFERENCES
[1] Cristinel Ababei and Nicholas Mastronarde. 2014. Benefits and costs of prediction based DVFS for NoCs at router level. In 2014 27th

IEEE International System-on-Chip Conference (SOCC). IEEE, 255–260.
[2] Cristinel Ababei and Milad Ghorbani Moghaddam. 2018. A survey of prediction and classification techniques in multicore processor

systems. IEEE Transactions on Parallel and Distributed Systems 30, 5 (2018), 1184–1200.
[3] Adafruit. 2022. Adafruit AMG8833 IR Thermal Camera. Technical Report. Adafruit. https://www.adafruit.com/product/1063
[4] Adafruit. 2022. Electret Microphone Amplifier - MAX4466 with Adjustable Gain. Technical Report. Adafruit. https://www.adafruit.com/

product/3538
[5] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2019. Efficient intermittent

computing with differential checkpointing. In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, and Tools for Embedded Systems. 70–81.

[6] Saad Ahmed, Qurat Ul Ain, Junaid Haroon Siddiqui, Luca Mottola, and Muhammad Hamad Alizai. 2020. Intermittent Computing with
Dynamic Voltage and Frequency Scaling.. In EWSN. 97–107.

[7] Arducam. 2022. Arducam Mini Module Camera Shield with OV2640 2 Megapixels Lens. Technical Report. Arducam. https://www.
uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-arduino-uno-mega2560-board.html

[8] ARM. 2022. AMBA Specifications. Technical Report. ARM. https://www.arm.com/architecture/system-architectures/amba/amba-
specifications

[9] Raid Zuhair Ayoub and Tajana Simunic Rosing. 2009. Predict and act: dynamic thermal management for multi-core processors. In
Proceedings of the 2009 ACM/IEEE international symposium on Low power electronics and design. 99–104.

[10] Md Ahsan Ayub, Zishan Ahmed Onik, and Steven Smith. 2019. Parallelized RSA Algorithm: An Analysis with Performance Evaluation
using OpenMP Library in High Performance Computing Environment. In 2019 22nd International Conference on Computer and Information
Technology (ICCIT). IEEE, 1–6.

[11] Abu Bakar, Alexander G Ross, Kasim Sinan Yildirim, and Josiah Hester. 2021. REHASH: A Flexible, Developer Focused, Heuristic
Adaptation Platform for Intermittently Powered Computing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 3 (2021), 1–42.

[12] Domenico Balsamo, Anup Das, Alex S Weddell, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and Luca Benini. 2016. Graceful
performance modulation for power-neutral transient computing systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 35, 5 (2016), 738–749.

[13] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. 2016. Hibernus++: a self-calibrating and adaptive system for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 35, 12 (2016), 1968–1980.

[14] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient code instrumentation for transiently-powered embedded sensing. In
2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 209–220.

[15] Michael Buettner, Ben Greenstein, and David Wetherall. 2011. Dewdrop: an energy-aware runtime for computational rfid. In Proc.
USENIX NSDI. 197–210.

[16] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. 2007. Using OpenMP: portable shared memory parallel programming. MIT press.
[17] Zheng Jun Chew and Meiling Zhu. 2019. Adaptive self-configurable rectifier for extended operating range of piezoelectric energy

harvesting. IEEE Transactions on Industrial Electronics 67, 4 (2019), 3267–3276.
[18] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels for reliable intermittent programs. In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications. 514–530.
[19] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable energy storage architecture for energy-harvesting devices. In

Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems.
767–781.

[20] Powercast Corp. 2014. Powercast Hardware. Technical Report. https://www.powercastco.com/
[21] Powercast Corp. 2015. Powercast Hardware. Technical Report. https://www.powercastco.com/wp-content/uploads/2016/11/p2110-

evb1.pdf
[22] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław Pawełczak, and Josiah Hester. 2020. Reliable timekeeping for

intermittent computing. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems. 53–67.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

https://www.adafruit.com/product/1063
https://www.adafruit.com/product/3538
https://www.adafruit.com/product/3538
https://www.uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-arduino-uno-mega2560-board.html
https://www.uctronics.com/arducam-mini-module-camera-shield-w-2-mp-ov2640-for-arduino-uno-mega2560-board.html
https://www.arm.com/architecture/system-architectures/amba/amba-specifications
https://www.arm.com/architecture/system-architectures/amba/amba-specifications
https://www.powercastco.com/
https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf
https://www.powercastco.com/wp-content/uploads/2016/11/p2110-evb1.pdf

98:28 • Akhunov and Yildirim

[23] Li Deng. 2012. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing
Magazine 29, 6 (2012), 141–142.

[24] Harsh Desai and Brandon Lucia. 2020. A power-aware heterogeneous architecture scaling model for energy-harvesting computers. IEEE
Computer Architecture Letters 19, 1 (2020), 68–71.

[25] Analog Devices. 2021. Energy Harvesting (EH) Multi-Source Demo Board with Transducers. Technical Report. https://www.analog.com/
media/en/technical-documentation/user-guides/DC2080A.PDF

[26] Digilent. 2021. Analog Discovery 2 ReferenceManual. Technical Report. Digilent. https://reference.digilentinc.com/test-and-measurement/
analog-discovery-2/reference-manual

[27] Brittany Finch and William Goh. 2014. MSP430 Advanced Power Optimizations: ULP Advisor Software and EnergyTrace Technology.
Technical Report. Texas Instruments. https://ti.com/lit/an/slaa603/slaa603.pdf

[28] Daniel Friesel, Lennart Kaiser, and Olaf Spinczyk. 2021. Automatic energy model generation with MSP430 EnergyTrace. In Proceedings
of the Workshop on Benchmarking Cyber-Physical Systems and Internet of Things. 26–31.

[29] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini. 2020. PULP-NN: accelerating quantized neural
networks on parallel ultra-low-power RISC-V processors. Philosophical Transactions of the Royal Society A 378, 2164 (2020), 20190155.

[30] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence beyond the edge: Inference on intermittent embedded
systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating
Systems. 199–213.

[31] Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan Beckmann, and Brandon Lucia. 2019. Manic: A vector-
dataflow architecture for ultra-low-power embedded systems. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 670–684.

[32] Andres Gomez, Andreas Tretter, Pascal Alexander Hager, Praveenth Sanmugarajah, Luca Benini, and Lothar Thiele. 2022. Data-flow
Driven Partitioning of Machine Learning Applications for Optimal Energy Use in Batteryless Systems. ACM Transactions on Embedded
Computing Systems (TECS) (2022).

[33] Tom Guillaumet, Aayush Sharma, Eric Feron, Madhava Krishna, Ranjani Narayan, Philippe Baufreton, Francois Neumann, and Emmanuel
Grolleau. 2016. Using reconfigurable multi-core architectures for safety-critical embedded systems. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC). IEEE, 1–6.

[34] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely execution on intermittently powered batteryless sensors. In Proceedings of
the 15th ACM Conference on Embedded Network Sensor Systems. 1–13.

[35] Matthew Hicks. 2017. Clank: Architectural support for intermittent computation. ACM SIGARCH Computer Architecture News 45, 2
(2017), 228–240.

[36] Texas Instruments. 2021. MSP430 microcontrollers. https://www.ti.com/product/MSP430FR5994
[37] Texas Instruments. 2021. MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers. Technical Report. Texas Instruments. https:

//www.ti.com/product/MSP430FR5994
[38] Texas Instruments. 2021. Non-Volatile Memory: Flash & FRAM. Technical Report. Texas Instruments. https://software-dl.ti.com/

trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/v4/Chapters/MSP430m09_FLASH_and_FRAM.pdf
[39] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F Martinez. 2007. Core fusion: accommodating software diversity in chip

multiprocessors. In Proceedings of the 34th annual international symposium on Computer architecture. 186–197.
[40] Bashima Islam and Shahriar Nirjon. 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered

Systems. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3, Article 82 (sep 2020), 29 pages.
[41] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghunathan. 2015. QuickRecall: A HW/SW approach for computing across

power cycles in transiently powered computers. ACM Journal on Emerging Technologies in Computing Systems (JETC) 12, 1 (2015), 1–19.
[42] Joseph M Kahn, Randy H Katz, and Kristofer SJ Pister. 1999. Next century challenges: mobile networking for “Smart Dust”. In Proceedings

of the 5th annual ACM/IEEE international conference on Mobile computing and networking. 271–278.
[43] Victor Kartsch, Marco Guermandi, Simone Benatti, Fabio Montagna, and Luca Benini. 2019. An Energy-Efficient IoT node for HMI

applications based on an ultra-low power Multicore Processor. In 2019 IEEE Sensors Applications Symposium (SAS). IEEE, 1–6.
[44] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah Hester, and Przemysław Pawełczak. 2020. Time-sensitive

intermittent computing meets legacy software. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 85–99.

[45] Marko Kos and Iztok Kramberger. 2018. Tennis stroke consistency analysis using miniature wearable IMU. In 2018 25th International
Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 1–4.

[46] David Kotz, Tristan Henderson, Ilya Abyzov, and Jihwang Yeo. 2009. CRAWDAD dataset dartmouth/campus (v. 2009-09-09). https:
//crawdad.org/columbia/enhants/20110407

[47] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc.
IEEE 86, 11 (1998), 2278–2324.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

https://www.analog.com/media/en/technical-documentation/user-guides/DC2080A.PDF
https://www.analog.com/media/en/technical-documentation/user-guides/DC2080A.PDF
https://reference.digilentinc.com/test-and-measurement/analog-discovery-2/reference-manual
https://reference.digilentinc.com/test-and-measurement/analog-discovery-2/reference-manual
https://ti.com/lit/an/slaa603/slaa603.pdf
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994
https://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/v4/Chapters/MSP430m09_FLASH_and_FRAM.pdf
https://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/v4/Chapters/MSP430m09_FLASH_and_FRAM.pdf
https://crawdad.org/columbia/enhants/20110407
https://crawdad.org/columbia/enhants/20110407

AdaMICA: Adaptive Multicore Intermittent Computing • 98:29

[48] Edward A Lee, Björn Hartmann, John Kubiatowicz, Tajana Simunic Rosing, John Wawrzynek, David Wessel, Jan Rabaey, Kris Pister,
Alberto Sangiovanni-Vincentelli, Sanjit A Seshia, et al. 2014. The swarm at the edge of the cloud. IEEE Design & Test 31, 3 (2014), 8–20.

[49] Seulki Lee and Shahriar Nirjon. 2019. Neuro. ZERO: a zero-energy neural network accelerator for embedded sensing and inference
systems. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems. 138–152.

[50] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. 2017. Intermittent computing: Challenges and opportuni-
ties. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[51] Brandon Lucia and Benjamin Ransford. 2015. A simpler, safer programming and execution model for intermittent systems. ACM
SIGPLAN Notices 50, 6 (2015), 575–585.

[52] Kaisheng Ma, Xueqing Li, Yongpan Liu, John Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015. Dynamic machine learning
based matching of nonvolatile processor microarchitecture to harvested energy profile. In 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 670–675.

[53] Kaisheng Ma, Xueqing Li, Srivatsa Rangachar Srinivasa, Yongpan Liu, John Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2017.
Spendthrift: Machine learning based resource and frequency scaling for ambient energy harvesting nonvolatile processors. In 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 678–683.

[54] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent execution without checkpoints. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–30.

[55] Kiwan Maeng and Brandon Lucia. 2018. Adaptive dynamic checkpointing for safe efficient intermittent computing. In 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18). 129–144.

[56] Kiwan Maeng and Brandon Lucia. 2020. Adaptive low-overhead scheduling for periodic and reactive intermittent execution. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 1005–1021.

[57] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin, Kasim Sinan Yildirim, Brandon Lucia, and Przemysław Pawełczak.
2020. Dynamic task-based intermittent execution for energy-harvesting devices. ACM Transactions on Sensor Networks (TOSN) 16, 1
(2020), 1–24.

[58] Alessandro Montanari, Manuja Sharma, Dainius Jenkus, Mohammed Alloulah, Lorena Qendro, and Fahim Kawsar. 2020. ePerceptive:
energy reactive embedded intelligence for batteryless sensors. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems. 382–394.

[59] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Camaroptera: A batteryless long-range remote visual sensing
system. In Proceedings of the 7th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems. 8–14.

[60] NREL. 2022. Best Research-Cell Efficiency Chart. Technical Report. NREL. https://www.nrel.gov/pv/cell-efficiency.html
[61] NXP. 2022. NXP’s Energy Efficient Cortex-M4 MCU with Cortex-M0+ and Advanced Security. Technical Report.

NXP. https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-
cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3

[62] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins, and Rastislav Bodik. 2014. Chlorophyll:
Synthesis-aided compiler for low-power spatial architectures. ACM SIGPLAN Notices 49, 6 (2014), 396–407.

[63] Karol J Piczak. 2015. ESC: Dataset for environmental sound classification. In Proceedings of the 23rd ACM international conference on
Multimedia. 1015–1018.

[64] Keni Qiu, Nicholas Jao, Mengying Zhao, Cyan Subhra Mishra, Gulsum Gudukbay, Sethu Jose, Jack Sampson, Mahmut Taylan Kandemir,
and Vijaykrishnan Narayanan. 2020. ResiRCA: A resilient energy harvesting ReRAM crossbar-based accelerator for intelligent embedded
processors. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 315–327.

[65] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile memory is a broken time machine. In Proceedings of the workshop on Memory
Systems Performance and Correctness. 1–3.

[66] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System support for long-running computation on RFID-scale devices. In
Proceedings of the sixteenth international conference on Architectural support for programming languages and operating systems. 159–170.

[67] Salonik Resch, S Karen Khatamifard, Zamshed I Chowdhury, Masoud Zabihi, Zhengyang Zhao, Husrev Cilasun, Jian-PingWang, Sachin S
Sapatnekar, and Ulya R Karpuzcu. 2020. MOUSE: Inference in non-volatile memory for energy harvesting applications. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 400–414.

[68] Jenna M Roper, Jose F Garcia, and Hideaki Tsutsui. 2021. Emerging technologies for monitoring plant health in vivo. ACS omega 6, 8
(2021), 5101–5107.

[69] Davide Rossi, Igor Loi, Francesco Conti, Giuseppe Tagliavini, Antonio Pullini, and Andrea Marongiu. 2014. Energy efficient parallel
computing on the PULP platform with support for OpenMP. In 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel
(IEEEI). IEEE, 1–5.

[70] Emily Ruppel and Brandon Lucia. 2019. Transactional concurrency control for intermittent, energy-harvesting computing systems. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 1085–1100.

[71] Joshua San Miguel, Karthik Ganesan, Mario Badr, Chunqiu Xia, Rose Li, Hsuan Hsiao, and Natalie Enright Jerger. 2018. The eh model:
Early design space exploration of intermittent processor architectures. In 2018 51st Annual IEEE/ACM International Symposium on

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

https://www.nrel.gov/pv/cell-efficiency.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3

98:30 • Akhunov and Yildirim

Microarchitecture (MICRO). IEEE, 600–612.
[72] Sivert T Sliper, Domenico Balsamo, Alex S Weddell, and Geoff V Merrett. 2018. Enabling intermittent computing on high-performance

out-of-order processors. In Proceedings of the 6th International Workshop on Energy Harvesting & Energy-Neutral Sensing Systems. 19–25.
[73] Sivert T Sliper, William Wang, Nikos Nikoleris, Alex S Weddell, Anand Savanth, Pranay Prabhat, and Geoff V Merrett. 2022. Pragmatic

Memory-System Support for Intermittent Computing using Emerging Non-Volatile Memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2022).

[74] Lionel Sujay Vailshery. 2018. IoT connected devices worldwide 2030. https://www.statista.com/statistics/802690/worldwide-connected-
devices-by-access-technology/

[75] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without hardware support or programmer intervention. In
12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16). 17–32.

[76] Marco Willi, Ross T Pitman, Anabelle W Cardoso, Christina Locke, Alexandra Swanson, Amy Boyer, Marten Veldthuis, and Lucy Fortson.
2019. Identifying animal species in camera trap images using deep learning and citizen science. Methods in Ecology and Evolution 10, 1
(2019), 80–91.

[77] Harrison Williams, Michael Moukarzel, and Matthew Hicks. 2021. Failure Sentinels: Ubiquitous Just-in-time Intermittent Computation
via Low-cost Hardware Support for Voltage Monitoring. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 665–678.

[78] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper, Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink:
Reactive kernel for tiny batteryless sensors. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems. 41–53.

[79] Eren Yıldız, Lijun Chen, and Kasim Sinan Yıldırım. 2022. Immortal Threads: Multithreaded Event-driven Intermittent Computing on
{Ultra-Low-Power} Microcontrollers. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). 339–355.

[80] Seyed Alireza Zamani and Yasser Baleghi. 2020. Visible-thermal database of rice field. In Mendeley Data, V1.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 98. Publication date: September 2022.

https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Intermittent Computing Approaches
	2.2 Adaptive Power and Energy Scaling
	2.3 The Need for Multicore Intermittent Computing
	2.4 Adaptive Architectural Scaling
	2.5 Our Differences

	3 Modeling Multicore Intermittent Systems
	3.1 Intermittent Computing Dynamics
	3.2 Multicore Energy Consumption
	3.3 Multicore System Performance

	4 User Exploration of Multicore Intermittent Execution
	4.1 Input Power and Number of Cores
	4.2 Capacitance and Sequential Fraction
	4.3 Obtaining Minimum Power Requirements.

	5 AdaMICA: Adaptive Multicore Computing
	5.1 Programmers' View
	5.2 Runtime Execution Flow
	5.3 Just-in-time Checkpoints and Handling Power Failures
	5.4 Communication Among the Cores
	5.5 Decision Making and Adaptive Multicore Reconfiguration
	5.6 AdaMICA Overheads

	6 Evaluation and Results
	6.1 Benchmarks Performance
	6.2 Real-World Energy-Harvesting Evaluation
	6.3 Real-world Applications
	6.4 AdaMICA Overheads
	6.5 AdaMICA versus Dynamic Voltage and Frequency Scaling

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

