
AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Corinna Cortes 1 Xavier Gonzalvo 1 Vitaly Kuznetsov 1 Mehryar Mohri 2 1 Scott Yang 2

Abstract

We present new algorithms for adaptively learn-

ing artificial neural networks. Our algorithms

(ADANET) adaptively learn both the structure

of the network and its weights. They are

based on a solid theoretical analysis, including

data-dependent generalization guarantees that we

prove and discuss in detail. We report the re-

sults of large-scale experiments with one of our

algorithms on several binary classification tasks

extracted from the CIFAR-10 dataset and on the

Criteo dataset. The results demonstrate that our

algorithm can automatically learn network struc-

tures with very competitive performance accura-

cies when compared with those achieved by neu-

ral networks found by standard approaches.

1. Introduction

Multi-layer artificial neural networks form a powerful

learning model which has helped achieve a remarkable per-

formance in several applications in recent years. Repre-

senting the input through increasingly more abstract lay-

ers of feature representation has shown to be very ef-

fective in natural language processing, image captioning,

speech recognition and several other areas (Krizhevsky

et al., 2012; Sutskever et al., 2014). However, despite the

compelling arguments for adopting multi-layer neural net-

works as a general template for tackling learning problems,

training these models and designing the right network for a

given task has raised several theoretical questions and faced

numerous practical challenges.

A critical step in learning a large multi-layer neural net-

work for a specific task is the choice of its architecture,

which includes the number of layers and the number of

units within each layer. Standard training methods for neu-

ral networks return a model admitting precisely the number

1Google Research, New York, NY, USA; 2Courant Institute
of Mathematical Sciences, New York, NY, USA. Correspondence
to: Vitaly Kuznetsov <vitalyk@google.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

of layers and units specified since there needs to be at least

one path through the network for the hypothesis to be non-

trivial. Single weights can be pruned (Han et al., 2015)

via a technique originally termed Optimal Brain Damage

(LeCun et al., 1990), but the global architecture remains

unchanged. Thus, this imposes a stringent lower bound on

the complexity of the model, which may not match that

of the learning task considered: complex networks trained

with insufficient data may be prone to overfitting and, in

reverse, simpler architectures may not suffice to achieve an

adequate performance.

This places a considerable burden on the user who is left

with the requirement to specify an architecture with the

right complexity, which is often a difficult task even with a

significant level of experience and domain knowledge. As a

result, the choice of the network is typically left to a hyper-

parameter search using a validation set. This search space

can quickly become exorbitantly large (Szegedy et al.,

2015; He et al., 2015) and large-scale hyperparameter tun-

ing to find an effective network architecture often waste-

ful of data, time, and resources (e.g. grid search, random

search (Bergstra et al., 2011)).

This paper seeks precisely to address some of these issues.

We present a theoretical analysis of the problem of learn-

ing simultaneously both the network architecture and its

parameters. To the best of our knowledge, our results are

the first generalization bounds for the problem of structural

learning of neural networks. These general guarantees can

guide the design of a variety of different algorithms for

learning in this setting. We describe in detail two such al-

gorithms (ADANET algorithms) that directly benefit from

our theory.

Rather than enforcing a pre-specified architecture and

thus a fixed network complexity, our ADANET algorithms

adaptively learn the appropriate network architecture for

a learning task. Starting from a simple linear model, our

algorithms incrementally augment the network with more

units and additional layers, as needed. The choice of the

additional subnetworks depends on their complexity and is

directly guided by our learning guarantees. Remarkably,

the optimization problems for both of our algorithms turn

out to be strongly convex and thus guaranteed to admit a

unique global solution.

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Figure 1. An example of a general network architecture: the out-

put layer (in green) is connected to all of the hidden units as well

as some input units. Some hidden units (in red and yellow) are

connected not only to the units in the layer directly below, but

also to units at other levels.

The paper is organized as follows. In Appendix A, we give

a detailed discussion of previous work related to this topic.

Section 2 describes the general network architecture and

therefore the hypothesis set that we consider. Section 3

provides a formal description of our learning scenario. In

Section 4, we prove strong generalization guarantees for

learning in this setting, which help guide the design of the

algorithm described in Section 5, as well as a variant de-

scribed in Appendix C. We report the results of our experi-

ments with ADANET in Section 6.

2. Network architecture

In this section, we describe the general network architec-

ture we consider for feedforward neural networks, thereby

also defining our hypothesis set. To simplify the presenta-

tion, we restrict our attention to the case of binary classifi-

cation. However, all our results can be straightforwardly

extended to multi-class classification, including the net-

work architecture, by augmenting the number of output

units, and, our generalization guarantees, by using existing

multi-class counterparts of the binary classification ensem-

ble margin bounds we use.

A common model for feedforward neural networks is the

multi-layer architecture where units in each layer are only

connected to those in the layer below. We will consider

more general architectures where a unit can be connected

to units in any of the layers below, as illustrated by Fig-

ure 1. In particular, the output unit in our network architec-

tures can be connected to any other unit. These more gen-

eral architectures include as special cases standard multi-

layer networks (by zeroing out appropriate connections) as

well as somewhat more exotic ones (He et al., 2015; Huang

et al., 2016). In fact, our definition covers any architecture

that can be represented as a directed acyclic graph (DAG).

More formally, the artificial neural networks we consider

are defined as follows. Let l denote the number of interme-

diate layers in the network and nk the maximum number of

units in layer k ∈ [l]. Each unit j ∈ [nk] in layer k repre-

sents a function denoted by hk,j (before composition with

an activation function). Let X denote the input space and

for any x ∈ X, let Ψ(x) ∈ R
n0 denote the corresponding

feature vector. Then, the family of functions defined by the

first layer functions h1,j , j ∈ [n1], is the following:

H1 =
{
x 7→ u ·Ψ(x) : u ∈ R

n0 , ‖u‖p ≤ Λ1,0

}
, (1)

where p ≥ 1 defines an lp-norm and Λ1,0 ≥ 0 is a hyperpa-

rameter on the weights connecting layer 0 and layer 1. The

family of functions hk,j , j ∈ [nk], in a higher layer k > 1
is then defined as follows:

Hk =

{
x 7→

k−1∑

s=1

us · (ϕs ◦ hs)(x) :

us ∈ R
ns , ‖us‖p ≤ Λk,s, hk,s ∈ Hs

}
, (2)

where, for each unit function hk,s, us in (2) denotes the

vector of weights for connections from that unit to a lower

layer s < k. The Λk,ss are non-negative hyperparameters

and ϕs ◦ hs abusively denotes a coordinate-wise compo-

sition: ϕs ◦ hs = (ϕs ◦ hs,1, . . . , ϕs ◦ hs,ns
). The ϕss

are assumed to be 1-Lipschitz activation functions. In par-

ticular, they can be chosen to be the Rectified Linear Unit

function (ReLU function) x 7→ max{0, x}, or the sigmoid

function x 7→ 1
1+e−x . The choice of the parameter p ≥ 1

determines the sparsity of the network and the complexity

of the hypothesis sets Hk.

For the networks we consider, the output unit can be con-

nected to all intermediate units, which therefore defines a

function f as follows:

f =

l∑

k=1

nk∑

j=1

wk,jhk,j =

l∑

k=1

wk · hk, (3)

where hk = [hk,1, . . . , hk,nk
]⊤∈ H

nk

k and wk ∈ R
nk is

the vector of connection weights to units of layer k. Ob-

serve that, for us = 0 for s < k− 1 and wk = 0 for k < l,
our architectures coincides with standard multi-layer feed-

forward ones.

We will denote by F the family of functions f defined by

(3) with the absolute value of the weights summing to one:

F =

{
l∑

k=1

wk · hk : hk ∈ H
nk

k ,

l∑

k=1

‖wk‖1 = 1

}
.

Let H̃k denote the union of Hk and its reflection, H̃k =
Hk ∪ (−Hk), and let H denote the union of the families

H̃k: H =
⋃l

k=1 H̃k. Then, F coincides with the convex

hull of H: F = conv(H).

For any k ∈ [l], we will also consider the family H∗
k de-

rived from Hk by setting Λk,s = 0 for s < k − 1, which

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

corresponds to units connected only to the layer below. We

similarly define H̃∗
k = H∗

k ∪ (−H∗
k) and H∗ = ∪lk=1H

∗
k,

and define F∗ as the convex hull F∗ = conv(H∗). Note

that the architecture corresponding to the family of func-

tions F∗ is still more general than standard feedforward

neural network architectures since the output unit can be

connected to units in different layers.

3. Learning problem

We consider the standard supervised learning scenario and

assume that training and test points are drawn i.i.d. accord-

ing to some distribution D over X× {−1,+1} and denote

by S = ((x1, y1), . . . , (xm, ym)) a training sample of size

m drawn according to Dm.

For a function f taking values in R, we denote by R(f) =
E(x,y)∼D[1yf(x)≤0] its generalization error and, for any

ρ > 0, by R̂S,ρ(f) its empirical margin error on the sample

S: R̂S,ρ(f) =
1
m

∑m
i=1 1yif(xi)≤ρ.

The learning problem consists of using the training sam-

ple S to determine a function f defined by (3) with small

generalization error R(f). For an accurate predictor f , we

expect many of the weights to be zero and the correspond-

ing architecture to be quite sparse, with fewer than nk units

at layer k and relatively few non-zero connections. In that

sense, learning an accurate function f implies also learning

the underlying architecture.

In the next section, we present data-dependent learning

bounds for this problem that will help guide the design of

our algorithms.

4. Generalization bounds

Our learning bounds are expressed in terms of the

Rademacher complexities of the hypothesis sets Hk. The

empirical Rademacher complexity of a hypothesis set G for

a sample S is denoted by R̂S(G) and defined as follows:

R̂S(G) =
1

m
E
σ

[
sup
h∈G

m∑

i=1

σih(xi)

]
,

where σ = (σ1, . . . , σm), with σis independent uniformly

distributed random variables taking values in {−1,+1}.
Its Rademacher complexity is defined by Rm(G) =

ES∼Dm [R̂S(G)]. These are data-dependent complexity

measures that lead to finer learning guarantees (Koltchin-

skii & Panchenko, 2002; Bartlett & Mendelson, 2002).

As pointed out earlier, the family of functions F is the con-

vex hull of H. Thus, generalization bounds for ensemble

methods can be used to analyze learning with F. In particu-

lar, we can leverage the recent margin-based learning guar-

antees of Cortes et al. (2014), which are finer than those

that can be derived via a standard Rademacher complex-

ity analysis (Koltchinskii & Panchenko, 2002), and which

admit an explicit dependency on the mixture weights wk

defining the ensemble function f . That leads to the follow-

ing learning guarantee.

Theorem 1 (Learning bound). Fix ρ > 0. Then, for any

δ > 0, with probability at least 1 − δ over the draw of a

sample S of size m from Dm, the following inequality holds

for all f =
∑l

k=1 wk · hk ∈ F:

R(f) ≤ R̂S,ρ(f) +
4

ρ

l∑

k=1

∥∥wk

∥∥
1
Rm(H̃k) +

2

ρ

√
log l

m

+ C(ρ, l,m, δ),

where C(ρ, l,m, δ) =
√⌈

4
ρ2 log(

ρ2m
log l)

⌉
log l
m + log(2/δ)

2m =

Õ
(

1
ρ

√
log l
m

)
.

The proof of this result, as well as that of all other

main theorems are given in Appendix B. The bound of

the theorem can be generalized to hold uniformly for all

ρ ∈ (0, 1], at the price of an additional term of the form√
log log2(2/ρ)/m using standard techniques (Koltchin-

skii & Panchenko, 2002).

Observe that the bound of the theorem depends only log-

arithmically on the depth of the network l. But, perhaps

more remarkably, the complexity term of the bound is a

‖wk‖1-weighted average of the complexities of the layer

hypothesis sets Hk, where the weights are precisely those

defining the network, or the function f . This suggests that

a function f with a small empirical margin error and a deep

architecture benefits nevertheless from a strong generaliza-

tion guarantee, if it allocates more weights to lower layer

units and less to higher ones. Of course, when the weights

are sparse, that will imply an architecture with relatively

fewer units or connections at higher layers than at lower

ones. The bound of the theorem further gives a quantita-

tive guide for apportioning the weights, depending on the

Rademacher complexities of the layer hypothesis sets.

This data-dependent learning guarantee will serve as a

foundation for the design of our structural learning algo-

rithms in Section 5 and Appendix C. However, to fully

exploit it, the Rademacher complexity measures need to

be made explicit. One advantage of these data-dependent

measures is that they can be estimated from data, which

can lead to more informative bounds. Alternatively, we can

derive useful upper bounds for these measures which can

be more conveniently used in our algorithms. The next re-

sults in this section provide precisely such upper bounds,

thereby leading to a more explicit generalization bound.

We will denote by q the conjugate of p, that is 1
p + 1

q = 1,

and define r∞ = maxi∈[1,m] ‖Ψ(xi)‖∞.

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Our first result gives an upper bound on the Rademacher

complexity of Hk in terms of the Rademacher complexity

of other layer families.

Lemma 1. For any k > 1, the empirical Rademacher

complexity of Hk for a sample S of size m can be upper-

bounded as follows in terms of those of Hss with s < k:

R̂S(Hk) ≤ 2

k−1∑

s=1

Λk,s n
1

q
s R̂S(Hs).

For the family H∗
k, which is directly relevant to many of

our experiments, the following more explicit upper bound

can be derived, using Lemma 1.

Lemma 2. Let Λk=
∏k

s=1 2Λs,s−1 and Nk=
∏k

s=1 ns−1.

Then, for any k ≥ 1, the empirical Rademacher complexity

of H∗
k for a sample S of size m can be upper bounded as

follows:

R̂S(H
∗
k) ≤ r∞ΛkN

1

q

k

√
log(2n0)

2m
.

Note that Nk, which is the product of the number of units

in layers below k, can be large. This suggests that values of

p closer to one, that is larger values of q, could be more

helpful to control complexity in such cases. More gen-

erally, similar explicit upper bounds can be given for the

Rademacher complexities of subfamilies of Hk with units

connected only to layers k, k − 1, . . . , k − d, with d fixed,

d < k. Combining Lemma 2 with Theorem 1 helps derive

the following explicit learning guarantee for feedforward

neural networks with an output unit connected to all the

other units.

Corollary 1 (Explicit learning bound). Fix ρ > 0. Let

Λk =
∏k

s=1 4Λs,s−1 and Nk=
∏k

s=1 ns−1. Then, for any

δ > 0, with probability at least 1 − δ over the draw of a

sample S of size m from Dm, the following inequality holds

for all f =
∑l

k=1 wk · hk ∈ F∗:

R(f) ≤ R̂S,ρ(f) +
2

ρ

l∑

k=1

∥∥wk

∥∥
1

[
r∞ΛkN

1

q

k

√
2 log(2n0)

m

]

+
2

ρ

√
log l

m
+ C(ρ, l,m, δ),

where C(ρ, l,m, δ) =
√⌈

4
ρ2 log(

ρ2m
log l)

⌉
log l
m +

log(2

δ
)

2m =

Õ
(

1
ρ

√
log l
m

)
, and where r∞ = ES∼Dm [r∞].

The learning bound of Corollary 1 is a finer guarantee than

previous ones by Bartlett (1998), Neyshabur et al. (2015),

or Sun et al. (2016). This is because it explicitly differenti-

ates between the weights of different layers while previous

bounds treat all weights indiscriminately. This is crucial

to the design of algorithmic design since the network com-

plexity no longer needs to grow exponentially as a function

of depth. Our bounds are also more general and apply to

more other network architectures, such as those introduced

in (He et al., 2015; Huang et al., 2016).

5. Algorithm

This section describes our algorithm, ADANET, for adap-

tive learning of neural networks. ADANET adaptively

grows the structure of a neural network, balancing model

complexity with empirical risk minimization. We also de-

scribe in detail in Appendix C another variant of ADANET

which admits some favorable properties.

Let x 7→ Φ(−x) be a non-increasing convex function

upper-bounding the zero-one loss, x 7→ 1x≤0, such that Φ
is differentiable over R and Φ′(x) 6= 0 for all x. This surro-

gate loss Φ may be, for instance, the exponential function

Φ(x) = ex as in AdaBoost (Freund & Schapire, 1997), or

the logistic function, Φ(x) = log(1 + ex) as in logistic

regression.

5.1. Objective function

Let {h1, . . . , hN} be a subset of H∗. In the most general

case, N is infinite. However, as discussed later, in practice,

the search is limited to a finite set. For any j ∈ [N], we

will denote by rj the Rademacher complexity of the family

Hkj
that contains hj : rj = Rm(Hkj

).

ADANET seeks to find a function f =
∑N

j=1 wjhj ∈
F∗ (or neural network) that directly minimizes the data-

dependent generalization bound of Corollary 1. This leads

to the following objective function:

F (w) =
1

m

m∑

i=1

Φ
(
1− yi

N∑

j=1

wjhj

)
+

N∑

j=1

Γj |wj |, (4)

where w ∈ R
N and Γj = λrj + β, with λ ≥ 0 and

β ≥ 0 hyperparameters. The objective function (4) is a

convex function of w. It is the sum of a convex surrogate

of the empirical error and a regularization term, which is a

weighted-l1 penalty containing two sub-terms: a standard

norm-1 regularization which admits β as a hyperparame-

ter, and a term that discriminates the functions hj based on

their complexity.

The optimization problem consisting of minimizing the ob-

jective function F in (4) is defined over a very large space

of base functions hj . ADANET consists of applying coor-

dinate descent to (4). In that sense, our algorithm is similar

to the DeepBoost algorithm of Cortes et al. (2014). How-

ever, unlike DeepBoost, which combines decision trees,

ADANET learns a deep neural network, which requires new

methods for constructing and searching the space of func-

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

(a)

(b)

Figure 2. Illustration of the algorithm’s incremental construction

of a neural network. The input layer is indicated in blue, the out-

put layer in green. Units in the yellow block are added at the first

iteration while units in purple are added at the second iteration.

Two candidate extensions of the architecture are considered at the

the third iteration (shown in red): (a) a two-layer extension; (b)

a three-layer extension. Here, a line between two blocks of units

indicates that these blocks are fully-connected.

tions hj . Both of these aspects differ significantly from the

decision tree framework. In particular, the search is par-

ticularly challenging. In fact, the main difference between

the algorithm presented in this section and the variant de-

scribed in Appendix C is the way new candidates hj are

examined at each iteration.

5.2. Description

We start with an informal description of ADANET. Let

B ≥ 1 be a fixed parameter determining the number of

units per layer of a candidate subnetwork. The algorithm

proceeds in T iterations. Let lt−1 denote the depth of the

neural network constructed before the start of the t-th itera-

tion. At iteration t, the algorithm selects one of the follow-

ing two options:

1. augmenting the current neural network with a subnet-

work with the same depth as that of the current network

h ∈ H∗B
lt−1

, with B units per layer. Each unit in layer k of

this subnetwork may have connections to existing units in

layer k − 1 of ADANET in addition to connections to units

in layer k − 1 of the subnetwork.

2. augmenting the current neural network with a deeper

subnetwork h
′ ∈ H∗B

lt−1
, with depth lt−1 + 1. The set of

connections allowed is defined in the same way as for h.

The option selected is the one leading to the best reduction

of the current value of the objective function, which de-

pends both on the empirical error and the complexity of the

subnetwork added, which is penalized differently in these

two options.

Figure 2 illustrates this construction and the two options

just described. An important aspect of our algorithm is that

the units of a subnetwork learned at a previous iteration

(say h1,1 in Figure 2) can serve as input to a deeper subnet-

work added later (for example h2,2 or h2,3 in the Figure).

Thus, the deeper subnetworks added later can take advan-

tage of the embeddings that were learned at the previous

iterations. The algorithm terminates after T rounds or if

the ADANET architecture can no longer be extended to im-

prove the objective (4).

More formally, ADANET is a boosting-style algorithm that

applies (block) coordinate descent to (4). At each iteration

of block coordinate descent, descent coordinates h (base

learners in the boosting literature) are selected from the

space of functions H∗. These coordinates correspond to

the direction of the largest decrease in (4). Once these co-

ordinates are determined, an optimal step size in each of

these directions is chosen, which is accomplished by solv-

ing an appropriate convex optimization problem.

Note that, in general, the search for the optimal descent

coordinate in an infinite-dimensional space or even in fi-

nite but large sets such as that of all decision trees of some

large depth may be intractable, and it is common to resort

to a heuristic search (weak learning algorithm) that returns

δ-optimal coordinates. For instance, in the case of boosting

with trees one often grows trees according to some partic-

ular heuristic (Freund & Schapire, 1997).

We denote the ADANET model after t − 1 rounds by

ft−1, which is parameterized by wt−1. Let hk,t−1 de-

note the vector of outputs of units in the k-th layer of the

ADANET model, lt−1 be the depth of the ADANET archi-

tecture, nk,t−1 be the number of units in k-th layer after

t − 1 rounds. At round t, we select descent coordinates

by considering two candidate subnetworks h ∈ H̃∗
lt−1

and

h
′ ∈ H̃∗

lt−1+1 that are generated by a weak learning algo-

rithm WEAKLEARNER. Some choices for this algorithm in

our setting are described below. Once we obtain h and h
′,

we select one of these vectors of units, as well as a vector of

weights w ∈ R
B , so that the result yields the best improve-

ment in (4). This is equivalent to minimizing the following

objective function over w ∈ R
B and u ∈ {h,h′}:

Ft(w,u)=
1

m

m∑

i=1

Φ
(
1− yift−1(xi)− yiw · u(xi)

)

+ Γu‖w‖1, (5)

where Γu = λru + β and ru is Rm

(
Hlt−1

)
if u =

h and Rm

(
Hlt−1+1

)
otherwise. In other words, if

minw Ft(w,h) ≤ minw Ft(w,h′), then

w
∗ = argmin

w∈RB

Ft(w,h), ht = h

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

ADANET(S = ((xi, yi)
m
i=1)

1 f0 ← 0
2 for t← 1 to T do

3 h,h′ ← WEAKLEARNER
(
S, ft−1

)

4 w← MINIMIZE
(
Ft(w,h)

)

5 w
′ ← MINIMIZE

(
Ft(w,h′)

)

6 if Ft(w,h′) ≤ Ft(w
′,h′) then

7 ht ← h

8 else ht ← h
′

9 if F (wt−1 +w
∗) < F (wt−1) then

10 ft ← ft−1 +w
∗ · ht

11 else return ft−1

12 return fT

Figure 3. Pseudocode of the ADANET algorithm. On line 3 two

candidate subnetworks are generated (e.g. randomly or by solving

(6)). On lines 3 and 4, (5) is solved for each of these candidates.

On lines 5-7 the best subnetwork is selected and on lines 9-11

termination condition is checked.

and otherwise

w
∗ = argmin

w∈RB

Ft(w,h′), ht = h
′

If F (wt−1 + w
∗) < F (wt−1) then we set ft = ft−1 +

w
∗ · ht and otherwise we terminate the algorithm.

There are many different choices for the WEAKLEARNER

algorithm. For instance, one may generate a large number

of random networks and select the one that optimizes (5).

Another option is to directly minimize (5) or its regularized

version:

F̃t(w,h)=
1

m

m∑

i=1

Φ
(
1−yift−1(xi)−yiw · h(xi)

)

+R(w,h), (6)

over both w and h. Here R(w,h) is a regularization term

that, for instance, can be used to enforce that ‖us‖p ≤ Λk,s

in (2). Note that, in general, (6) is a non-convex objective.

However, we do not rely on finding a global solution to

the corresponding optimization problem. In fact, standard

guarantees for regularized boosting only require that each

h that is added to the model decreases the objective by a

constant amount (i.e. it satisfies δ-optimality condition) for

a boosting algorithm to converge (Rätsch et al., 2001; Luo

& Tseng, 1992).

Furthermore, the algorithm that we present in Appendix C

uses a weak-learning algorithm that solves a convex sub-

problem at each step and that additionally has a closed-

form solution. This comes at the cost of a more restricted

search space for finding a descent coordinate at each step

of the algorithm.

We conclude this section by observing that in our descrip-

tion of ADANET we have fixed B for all iterations and

only two candidate subnetworks are considered at each

step. Our approach easily extends to an arbitrary number

of candidate subnetworks (for instance of different depth l)
as well as varying number of units per layer B. Further-

more, selecting an optimal subnetwork among the candi-

dates is easily parallelizable allowing for efficient and ef-

fective search for optimal descent directions. We also note

that the choice of subnetworks need not be restricted to

standard feedforward architectures and more exotic choices

can be employed including the ones in (He et al., 2015;

Huang et al., 2016). In our experiments we will restrict

attention to simple feedforward subnetworks.

6. Experiments

In this section we present the results of our experiments

with ADANET. Some additional experimental results are

given in Appendix D and further implementation details

presented in Appendix E.

6.1. CIFAR-10

In our first set of experiments, we used the CIFAR-10

dataset (Krizhevsky, 2009). This dataset consists of 60,000
images evenly categorized in 10 different classes. To

reduce the problem to binary classification, we consid-

ered five pairs of classes: deer-truck, deer-horse,

automobile-truck, cat-dog, dog-horse. Raw

images have been pre-processed to obtain color histograms

and histogram of gradient features. The result is 154 real

valued features with ranges in [0, 1].

We compared ADANET to standard feedforward neural

networks (NN) and logistic regression (LR) models. Note

that convolutional neural networks are often a more nat-

ural choice for image classification problems such as

CIFAR-10. However, the goal of our experiments was not

to obtain state-of-the-art results for this particular task, but

a proof-of-concept showing that our structural learning ap-

proach can be very competitive with traditional approaches

for finding efficient architectures and training correspond-

ing networks.

Our ADANET algorithm requires the knowledge of com-

plexities rj , which, in some cases, can be estimated from

data. In our experiments, we used the upper bound of

Lemma 2. Our algorithm admits a number of hyperparam-

eters: regularization hyperparameters λ, β, number of units

B in each layer of new subnetworks that are used to extend

the model at each iteration, and a bound Λk on weights u

in each unit. As discussed in Section 5, there are different

approaches to finding candidate subnetworks in each itera-

tion. In our experiments, we searched for candidate subnet-

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Table 1. Experimental results for ADANET, NN, LR and NN-GP for different pairs of labels in CIFAR-10. Boldfaced results are

statistically significant at a 5% confidence level.

Label pair ADANET LR NN NN-GP

deer-truck 0.9372 ± 0.0082 0.8997 ± 0.0066 0.9213 ± 0.0065 0.9220 ± 0.0069
deer-horse 0.8430 ± 0.0076 0.7685 ± 0.0119 0.8055 ± 0.0178 0.8060 ± 0.0181
automobile-truck 0.8461 ± 0.0069 0.7976 ± 0.0076 0.8063 ± 0.0064 0.8056 ± 0.0138
cat-dog 0.6924 ± 0.0129 0.6664 ± 0.0099 0.6595 ± 0.0141 0.6607 ± 0.0097
dog-horse 0.8350 ± 0.0089 0.7968 ± 0.0128 0.8066 ± 0.0087 0.8087 ± 0.0109

works by minimizing (6) with R = 0. This also requires

a learning rate hyperparameter η. These hyperparamers

have been optimized over the following ranges: λ ∈
{0, 10−8, 10−7, 10−6, 10−5, 10−4}, B ∈ {100, 150, 250},
η ∈ {10−4, 10−3, 10−2, 10−1}. We have used a single Λk

for all k > 1 optimized over {1.0, 1.005, 1.01, 1.1, 1.2}.
For simplicity, we chose β = 0.

Neural network models also admit a learning rate η
and a regularization coefficient λ as hyperparameters, as

well as the number of hidden layers l and the num-

ber of units n in each hidden layer. The range of

η was the same as for ADANET and we varied l in

{1, 2, 3}, n in {100, 150, 512, 1024, 2048} and λ ∈
{0, 10−5, 10−4, 10−3, 10−2, 10−1}. Logistic regression

only admits as hyperparameters η and λ which were opti-

mized over the same ranges. Note that the total number of

hyperparameter settings for ADANET and standard neural

networks is exactly the same. Furthermore, the same holds

for the number of hyperparameters that determine the re-

sulting architecture of the model: Λ and B for ADANET

and l and n for neural network models. Observe that, while

a particular setting of l and n determines a fixed architec-

ture, Λ and B parameterize a structural learning procedure

that may result in a different architecture depending on the

data.

In addition to the grid search procedure, we have con-

ducted a hyperparameter optimization for neural net-

works using Gaussian process bandits (NN-GP), which

is a sophisticated Bayesian non-parametric method for

response-surface modeling in conjunction with a bandit

algorithm (Snoek et al., 2012). Instead of operating on

a pre-specified grid, this allows one to search for hy-

perparameters in a given range. We used the following

ranges: λ ∈ [10−5, 1], η ∈ [10−5, 1], l ∈ [1, 3] and

n ∈ [100, 2048]. This algorithm was run for 500 trials,

which is more than the number of hyperparameter settings

considered by ADANET and NN. Observe that this search

procedure can also be applied to our algorithm but we chose

not to use it in this set of experiments to further demonstrate

competitiveness of our structural learning approach.

In all our experiments, we use ReLu as the activation func-

tions. NN, NN-GP and LR are trained using stochastic

gradient method with batch size of 100 and maximum of

10,000 iterations. The same configuration is used for solv-

ing (6). We use T = 30 for ADANET in all our experi-

ments although in most cases algorithm terminates after 10
rounds.

In each of the experiments, we used standard 10-fold cross-

validation for performance evaluation and model selection.

In particular, the dataset was randomly partitioned into 10
folds, and each algorithm was run 10 times, with a different

assignment of folds to the training set, validation set and

test set for each run. Specifically, for each i ∈ {0, . . . , 9},
fold i was used for testing, fold i + 1 (mod 10) was used

for validation, and the remaining folds were used for train-

ing. For each setting of the parameters, we computed

the average validation error across the 10 folds, and se-

lected the parameter setting with maximum average accu-

racy across validation folds. We report the average accu-

racy (and standard deviations) of the selected hyperparam-

eter setting across test folds in Table 1.

Our results show that ADANET outperforms other meth-

ods on each of the datasets. The average architectures

for all label pairs are provided in Table 2. Note that NN

and NN-GP always select a one-layer architecture. The

architectures selected by ADANET also typically admit a

single layer, with fewer nodes than those selected by NN

and NN-GP. However, for the more challenging problem

cat-dog, ADANET opts for a more complex model with

two layers, which results in a better performance. This fur-

ther illustrates how our approach helps learn network ar-

chitectures in an adaptive fashion, based on the complexity

of the task.

As discussed in Section 5, different heuristics can be used

to generate candidate subnetworks on each iteration of

ADANET. In a second set of experiments, we varied the

objective function (6), as well as the domain over which

it is optimized. This allowed us to study the sensitiv-

ity of ADANET to the choice of a heuristic used to gen-

erate candidate subnetworks. In particular, we consid-

ered the following variants of ADANET. ADANET.R uses

R(w,h) = Γh‖w‖1 as a regularization term in (6). As

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Table 2. Average number of units in each layer.

Label pair ADANET NN NN-GP

1st layer 2nd layer

deer-truck 990 0 2048 1050
deer-horse 1475 0 2048 488
automobile-truck 2000 0 2048 1595
cat-dog 1800 25 512 155
dog-horse 1600 0 2048 1273

Table 3. Experimental results for different variants of ADANET,

for the deer-truck label pair in CIFAR-10.

Algorithm Accuracy (± std. dev.)

ADANET.SD 0.9309 ± 0.0069
ADANET.R 0.9336 ± 0.0075
ADANET.P 0.9321 ± 0.0065
ADANET.D 0.9376 ± 0.0080

the ADANET architecture grows, each new subnetwork is

connected to all the previous subnetworks, which signifi-

cantly increases the number of connections in the network

and the overall complexity of the model. ADANET.P and

ADANET.D are restricting connections to existing subnet-

works in different ways. ADANET.P connects each new

subnetwork only to the subnetwork that was added on the

previous iteration. ADANET.D uses dropout on the con-

nections to previously added subnetworks. Finally, while

ADANET is based on the upper bounds on the Rademacher

complexities of Lemma 2, ADANET.SD uses instead stan-

dard deviations of the outputs of the last hidden layer on

the training data as surrogates for Rademacher complex-

ities. The advantage of using this data-dependent mea-

sure of complexity is that it eliminates the hyperparame-

ter Λ, thereby reducing the hyperparameter search space.

We report the average accuracies across test folds for the

deer-truck pair in Table 3.

6.2. Criteo Click Rate Prediction

We also compared ADANET to NN on the Criteo Click

Rate Prediction dataset (https://www.kaggle.com/c/

criteo-display-ad-challenge). This dataset con-

sists of 7 days of data where each instance is an impression

and a binary label (clicked or not clicked). Each impres-

sion admits 13 count features and 26 categorical features.

Count features have been transformed by taking the natu-

ral logarithm. The values of categorical features appear-

ing less than 100 times are replaced by 0. The rest of the

values are then converted to integers, which are then used

as keys to look up embeddings (that are trained together

with each model). If the number of possible values for a

feature x is d(x), then the embedding dimension is set to

Table 4. Experimental results for Criteo dataset.

Algorithm Accuracy

ADANET 0.7846
NN 0.7811

6d(f)1/4 for d(f) > 25. Otherwise, the embedding di-

mension is d(f). Missing feature values are set to 0. We

split the labeled set provided in the link above into train-

ing, validation and test sets.1 Our training set covered the

first 5 days of data (32,743,299 instances) and the valida-

tion and test sets consisted of 1 day (6,548,659 instances).

Gaussian processes bandits were used to find the best hy-

perparameter settings on validation set both for ADANET

and NN. For ADANET we optimized over the following

hyperparameter ranges: B ∈ {125, 256, 512}, Λ ∈ [1, 1.5],
η ∈ [10−4, 10−1], λ ∈ [10−12, 10−4]. For NN the ranges

were as follows: l ∈ [1, 6], n ∈ {250, 512, 1024, 2048},
η ∈ [10−5, 10−1], λ ∈ [10−6, 10−1]. We trained NNs

for 100,000 iterations using mini-batch stochastic gradient

method with batch size of 512. The same configuration was

used at each iteration of ADANET to solve (6). The max-

imum number of hyperparameter trials was 2,000 for both

methods. The results are presented in Table 4. In this exper-

iment, NN chooses an architecture with four hidden layers

and 512 units in each hidden layer. Remarkably, ADANET

achieves a better accuracy with an architecture consisting

of single layer with just 512 nodes. While the difference

in performance appears to be small, it is in fact statistically

significant in this challenging task.

7. Conclusion

We presented a new framework and algorithms for adap-

tively learning artificial neural networks. Our algorithm,

ADANET, benefits from strong theoretical guarantees. It

simultaneously learns a neural network architecture and its

parameters, by balancing a trade-off between model com-

plexity and empirical risk minimization. We reported fa-

vorable experimental results demonstrating that our algo-

rithm is able to learn network architectures that perform

better than those found via a grid search. Our techniques

are general and can be applied to other neural network ar-

chitectures such as CNNs and RNNs.

Acknowledgments

The work of M. Mohri and that of S. Yang were partly

funded by NSF awards IIS-1117591 and CCF-1535987.

1The test set available from this link does not include ground
truth labels and therefore could be used in our experiments.

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

References

Alvarez, Jose M and Salzmann, Mathieu. Learning the

number of neurons in deep networks. In NIPS, 2016.

Arora, Sanjeev, Bhaskara, Aditya, Ge, Rong, and Ma,

Tengyu. Provable bounds for learning some deep rep-

resentations. In ICML, pp. 584–592, 2014.

Arora, Sanjeev, Liang, Yingyu, and Ma, Tengyu. Why are

deep nets reversible: A simple theory, with implications

for training. arXiv:1511.05653, 2015.

Baker, Bowen, Gupta, Otkrist, Naik, Nikhil, and Raskar,

Ramesh. Designing neural network architectures using

reinforcement learning. CoRR, 2016.

Bartlett, Peter L. The sample complexity of pattern classi-

fication with neural networks: the size of the weights is

more important than the size of the network. Information

Theory, IEEE Transactions on, 44(2), 1998.

Bartlett, Peter L. and Mendelson, Shahar. Rademacher and

Gaussian complexities: Risk bounds and structural re-

sults. JMLR, 3, 2002.

Bergstra, James S, Bardenet, Rémi, Bengio, Yoshua, and

Kégl, Balázs. Algorithms for hyper-parameter optimiza-

tion. In NIPS, pp. 2546–2554, 2011.

Chen, Tianqi, Goodfellow, Ian J., and Shlens, Jonathon.

Net2net: Accelerating learning via knowledge transfer.

CoRR, 2015.

Choromanska, Anna, Henaff, Mikael, Mathieu, Michael,

Arous, Gérard Ben, and LeCun, Yann. The loss surfaces

of multilayer networks. arXiv:1412.0233, 2014.

Cohen, Nadav, Sharir, Or, and Shashua, Amnon. On the ex-

pressive power of deep learning: a tensor analysis. arXiv,

2015.

Cortes, Corinna, Mohri, Mehryar, and Syed, Umar. Deep

boosting. In ICML, pp. 1179 – 1187, 2014.

Daniely, Amit, Frostig, Roy, and Singer, Yoram. Toward

deeper understanding of neural networks: The power of

initialization and a dual view on expressivity. In NIPS,

2016.

Eldan, Ronen and Shamir, Ohad. The power of depth for

feedforward neural networks. arXiv:1512.03965, 2015.

Freund, Yoav and Schapire, Robert E. A decision-theoretic

generalization of on-line learning and an application to

boosting. Journal of Computer System Sciences, 55(1):

119–139, 1997.

Ha, David, Dai, Andrew M., and Le, Quoc V. Hypernet-

works. CoRR, 2016.

Han, Hong-Gui and Qiao, Jun-Fei. A structure optimisation

algorithm for feedforward neural network construction.

Neurocomputing, 99:347–357, 2013.

Han, Song, Pool, Jeff, Tran, John, and Dally, William J.

Learning both weights and connections for efficient neu-

ral networks. In NIPS, 2015.

Hardt, Moritz, Recht, Benjamin, and Singer, Yoram. Train

faster, generalize better: Stability of stochastic gradient

descent. arXiv:1509.01240, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,

Jian. Deep residual learning for image recognition.

CoRR, abs/1512.03385, 2015.

Huang, Gao, Liu, Zhuang, and Weinberger, Kilian Q.

Densely connected convolutional networks. CoRR,

2016.

Islam, Md. Monirul, Yao, Xin, and Murase, Kazuyuki.

A constructive algorithm for training cooperative neural

network ensembles. IEEE Trans. Neural Networks, 14

(4):820–834, 2003.

Islam, Md. Monirul, Sattar, Md. Abdus, Amin, Md. Faijul,

Yao, Xin, and Murase, Kazuyuki. A new adaptive merg-

ing and growing algorithm for designing artificial neural

networks. IEEE Trans. Systems, Man, and Cybernetics,

Part B, 39(3):705–722, 2009.

Janzamin, Majid, Sedghi, Hanie, and Anandkumar, Anima.

Generalization bounds for neural networks through ten-

sor factorization. arXiv:1506.08473, 2015.

Kawaguchi, Kenji. Deep learning without poor local min-

ima. In NIPS, 2016.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2014.

Koltchinskii, Vladmir and Panchenko, Dmitry. Empiri-

cal margin distributions and bounding the generalization

error of combined classifiers. Annals of Statistics, 30,

2002.

Kotani, Manabu, Kajiki, Akihiro, and Akazawa, Kenzo.

A structural learning algorithm for multi-layered neural

networks. In International Conference on Neural Net-

works, volume 2, pp. 1105–1110. IEEE, 1997.

Krizhevsky, Alex. Learning multiple layers of features

from tiny images. Master’s thesis, University of Toronto,

2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.

Imagenet classification with deep convolutional neural

networks. In NIPS, pp. 1097–1105, 2012.

AdaNet: Adaptive Structural Learning of Artificial Neural Networks

Kuznetsov, Vitaly, Mohri, Mehryar, and Syed, Umar.

Multi-class deep boosting. In NIPS, 2014.

Kwok, Tin-Yau and Yeung, Dit-Yan. Constructive algo-

rithms for structure learning in feedforward neural net-

works for regression problems. IEEE Transactions on

Neural Networks, 8(3):630–645, 1997.

LeCun, Yann, Denker, John S., and Solla, Sara A. Optimal

brain damage. In NIPS, 1990.

Lehtokangas, Mikko. Modelling with constructive back-

propagation. Neural Networks, 12(4):707–716, 1999.

Leung, Frank HF, Lam, Hak-Keung, Ling, Sai-Ho, and

Tam, Peter KS. Tuning of the structure and parame-

ters of a neural network using an improved genetic al-

gorithm. IEEE Transactions on Neural Networks, 14(1):

79–88, 2003.

Lian, Xiangru, Huang, Yijun, Li, Yuncheng, and Liu, Ji.

Asynchronous parallel stochastic gradient for nonconvex

optimization. In NIPS, pp. 2719–2727, 2015.

Livni, Roi, Shalev-Shwartz, Shai, and Shamir, Ohad. On

the computational efficiency of training neural networks.

In NIPS, pp. 855–863, 2014.

Luo, Zhi-Quan and Tseng, Paul. On the convergence of co-

ordinate descent method for convex differentiable mini-

mization. Journal of Optimization Theory and Applica-

tions, 72(1):7 – 35, 1992.

Ma, Liying and Khorasani, Khashayar. A new strategy

for adaptively constructing multilayer feedforward neu-

ral networks. Neurocomputing, 51:361–385, 2003.

Narasimha, Pramod L, Delashmit, Walter H, Manry,

Michael T, Li, Jiang, and Maldonado, Francisco. An

integrated growing-pruning method for feedforward net-

work training. Neurocomputing, 71(13):2831–2847,

2008.

Neyshabur, Behnam, Tomioka, Ryota, and Srebro, Nathan.

Norm-based capacity control in neural networks. In

COLT, 2015.

Rätsch, Gunnar, Mika, Sebastian, and Warmuth, Man-

fred K. On the convergence of leveraging. In NIPS, pp.

487–494, 2001.

Sagun, Levent, Guney, V Ugur, Arous, Gerard Ben, and

LeCun, Yann. Explorations on high dimensional land-

scapes. arXiv:1412.6615, 2014.

Saxena, Shreyas and Verbeek, Jakob. Convolutional neural

fabrics. CoRR, abs/1606.02492, 2016.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P.

Practical Bayesian Optimization of Machine Learning

Algorithms. In Pereira, F., Burges, C. J. C., Bottou, L.,

and Weinberger, K. Q. (eds.), NIPS, pp. 2951–2959. Cur-

ran Associates, Inc., 2012.

Sun, Shizhao, Chen, Wei, Wang, Liwei, Liu, Xiaoguang,

and Liu, Tie-Yan. On the depth of deep neural networks:

A theoretical view. In AAAI, 2016.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence

to sequence learning with neural networks. In NIPS,

2014.

Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet,

Pierre, Reed, Scott E., Anguelov, Dragomir, Erhan, Du-

mitru, Vanhoucke, Vincent, and Rabinovich, Andrew.

Going deeper with convolutions. In CVPR, 2015.

Telgarsky, Matus. Benefits of depth in neural networks. In

COLT, 2016.

Zhang, Saizheng, Wu, Yuhuai, Che, Tong, Lin, Zhouhan,

Memisevic, Roland, Salakhutdinov, Ruslan, and Bengio,

Yoshua. Architectural complexity measures of recurrent

neural networks. CoRR, 2016.

Zhang, Yuchen, Lee, Jason D, and Jordan, Michael I. ℓ 1-

regularized neural networks are improperly learnable in

polynomial time. arXiv:1510.03528, 2015.

Zoph, Barret and Le, Quoc V. Neural architecture search

with reinforcement learning. CoRR, 2016.

