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Abstract—Code updates, such as those for debugging purposes,
are frequent and expensive in the early development stages of
wireless sensor network applications. We propose AdapCode, a
reliable data dissemination protocol that uses adaptive network
coding to reduce broadcast traffic in the process of code updates.
Packets on every node are coded by linear combination and
decoded by Gaussian elimination. The core idea in AdapCode
is to adaptively change the coding scheme according to the
link quality. Our evaluation shows that AdapCode uses up to
40% less packets than Deluge in large networks. In addition,
AdapCode performs much better in terms of load balancing,
which prolongs the system lifetime, and has a slightly shorter
propagation delay. Finally, we show that network coding is doable
on sensor networks in that (i) it imposes only a 3 byte header
overhead, (ii) it is easy to find linearly independent packets, and
(3) Gaussian elimination needs only 1KB of memory.

I. INTRODUCTION AND MOTIVATION

Wireless sensor networks have been widely used to perceive

and interact with the physical world for different purposes such

as military surveillance [6], habitat monitoring [15], structural

monitoring [18], and medical applications [4]. Sensor network

applications are typically developed and debugged in the lab

then deployed in a representative environment (e.g., outdoors),

where the remaining environment-dependent bugs are elimi-

nated. Often, such troubleshooting requires frequent upload

of new code, motivating efficient broadcast. The broadcast

must be reliable, fast, and minimal in the amount of network

bandwidth consumed. Furthermore, it is desired that the load it

imposes on the network be balanced in order to balance energy

consumption, which reduces the need for battery recharge

during field debugging.

Network coding has been recently introduced to reduce

traffic in general networks [1]. A lot of work in both wired

and wireless networks followed this idea. This reduction of

traffic makes the most sense in wireless sensor networks,

where nodes have very scarce resources. Moreover, since

communication is slow compared to computation, a trade-off

between computation and communication can be exploited. It

becomes acceptable to do more sophisticated computation in

order to reduce the need for transmission. In addition, the

broadcast nature of wireless sensor networks increases the

benefits of network coding. Due to the one-to-many property,

the sink needs to update codes or sends protocol configuration

messages to all nodes [7]. We focus on making this broadcast

scenario efficient. Encoding packets in intermediate nodes and

then sending only coded packet instead of individual packets

reduces the traffic and saves energy without increasing delay.

Previous work [8] applying network coding to wireless

networks cannot be applied to sensor networks. In sensor

networks, memory is so limited that nodes cannot cache over-

heard packets which might not be useful, and energy is also

too precious to broadcast the packets nodes have overheard. A

protocol running in sensor networks must be simple and easily

implemented. Moreover, the dynamic environment of wireless

sensor networks should be considered; nodes can temporarily

disconnect or fail and the link quality between nodes can vary

over time. A good algorithm should be adaptive to reflect this

dynamic nature.

This paper proposes AdapCode, a reliable data dissemina-

tion protocol using adaptive network coding, to reduce traffic

in the process of code updates. Our coding methodology is

to randomly generate N coefficients and compute the linear

combination of N packets. Gaussian elimination is used to

decode the original packets. From our preliminary work, we

found that the best coding scheme (i.e., one that produces

the least packets) varies depending on the link density. For

example, N = 8 is the best when nodes have 12 neighbors,

while N = 2 is the best when they have only 5 neighbors.

Generally, if nodes have more neighbors, they can encode

more packets together without losing reliability since they

can get enough combinations from their neighbors to decode.

Taking advantage of variations in connectivity, we present an

adaptive network coding protocol, where nodes dynamically

decide N based on how many neighbors they have. Since

the broadcast must be received by all nodes, 100% reliability

is required and guaranteed by NACK messages. We compare

AdapCode with Deluge, a state-of-the-art protocol for prop-

agating new code images, in TinyOS version 2. The results

show that AdapCode uses less packets than Deluge does to

send an image of the same size in dense deployments. For

example, in a large network, AdapCode uses up to 40% less

packets to send a code image of 1024 packets and up to 30%

less packets to send a code image of 128 packets when nodes

have about 7 neighbors on average. Furthermore, AdapCode

outperforms Deluge in terms of load balancing. The number

of packets sent in AdapCode from the top 10% most-sending

nodes is significantly smaller per node than that with Deluge.

This property delays the need for changing batteries since

the power consumption is more equally distributed across all
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nodes in those topologies. Moreover, AdapCode propagates

new image of that size within a propagation delay that is up

to 15% shorter compared to that of Deluge.

Overheads in AdapCode in our implementation are reason-

ably low. First, the packet header overhead occurs in two ways;

storing coefficients of the linear combination and handling

computation overflow. Our analysis shows that storing coeffi-

cients needs 17 bits and handling computation overflow needs

5 extra bits in our implementated setting. The total storage

overhead is therefore 3 bytes, not significant given the 46-

bytes TinyOS packet size. Second, once we randomly choose

the coefficients, it is possible to have linearly dependent com-

binations. This is another form of overhead since it required

more packets to be received such that they can be decoded.

We show that the expected number of extra packets needed to

obtain a given number of linear independent combinations of

messages is not large. Finally, we show that the computation

cost of Gaussian elimination is only 1KB memory.

The rest of this paper is organized as follows: Section 2 in-

troduces the related work. Section 3 provides some preliminary

experimental data that guide algorithm design. The section

explores the best coding scheme in different network densities.

Section 4 presents our design of AdapCode. We analyze

the overhead needed in Section 5. Finally, the evaluation of

AdapCode is shown in Section 6.

II. RELATED WORK

Our approach is to apply network coding in sensor networks

to reduce the traffic used in propagating large amounts of data.

Related research can be divided into three categories: data

dissemination, network coding, and network programming.

Power is one of the most critical resources in wireless

sensor networks. Since packet transmission is a very energy-

consuming action for sensors, a lot of work has focused on

reducing packet transmissions. One of the most widely used

approaches is to do data aggregation [12]. This approach

cannot be used when all the original packets are needed at

the received as is the case with propagating code updates.

In this paper, we focus on the packet broadcast problem in

which all nodes need to receive all the packets. Obviously,

naive flooding is also not desirable since it leads to the

broadcast storm problem [13]. An approach trying to minimize

the number of packets required for a sink to flood queries is

probabilistic broadcast [11] [5]. We experimentally show that

network coding outperforms probabilistic broadcast.

Network coding [1] is used to improve throughput or save

bandwidth. The core idea of network coding is to allow

the mixing of data (e.g., by an XOR operation or a linear

combination) at intermediate network nodes. Network coding

has been applied in general networks. Li et al. applied network

coding in wired networks [10]. For wireless networks, Katti et

al. take advantage of overheard packets [8]. Their work takes

advantage of cross links, which is not feasible in our one-to-

many scenario. The approach also incurs overhead since nodes

need to broadcast overheard packets they receive. Recently,

network coding has been introduced in wireless sensor net-

works for ubiquitous data collection [3] and continuous data

collection [16]. These coding schemes are used for data stor-

age in query-based applications but not for saving bandwidth.

Widmer et al. apply network coding in delay-tolerant networks

and shows that network coding compares very favorably to

probabilistic routing in reliability and robustness [17].

Deluge is now perhaps the most popular data dissemination

protocol used for reliable sensor network broadcast [7]. It is

heavily used for network code upload [2] [19]. It can dis-

seminate data with 100% reliability at nearly 90 bytes/second.

Deluge builds off Trickle, a protocol for maintaining code up-

dates in sensor networks [9]. Trickle uses the epidemic/gossip

approach where a node suppresses its own broadcast if

it overhears a similar code summary. The advertising rate

changes depending on whether the node is up-to-date or not.

Trickle can re-program an entire network in as little as twenty

seconds. Trickle only provides a mechanism for determining

when nodes should propagate code and only deals with single

packets. Deluge adds full support for the dissemination of large

data objects. Deluge has been integrated into TinyOS and was

recently ported to TinyOS version 2. We aim at further reduce

the traffic needed in the network programming process.

III. PRELIMINARY EXPLORATION

Network coding helps in sensor networks for two main

reasons. First, sensor nodes are extremely resource restricted

and hence traffic needs to be minimized. One may be willing

to pay the cost of computation in order to reduce traffic.

Second, sensor networks have a broadcast nature. Previous

research applying network coding in wireless networks fo-

cused on unicast since there are not many broadcast scenarios

in wireless networks. In contrast, we study the case where

some information (e.g., code updates [7] or network re-

configuration), needs to be known by all nodes.

Our work tries to use network coding to reduce the traffic of

code dissemination. A simple example of how network coding

reduces traffic in such a broadcast scenario can be seen in

Figure1. The sink, A, needs to broadcast 2 packets, a and

b. If nodes simply forward the messages they receive, A, B,

and C need to send a total of 6 packets (2 packets each).

With network coding, B and C can a combination of a and b,

say a + b and a + 2b respectively. D and E can then simply

decode the packets by solving linear equations. We thus save

two packets in total.

Our methodology of coding is to combine n packets into one

coded packet using linear combination. In node t, we generate

n coefficients at,1 ∼ at,n and compute bt = at,1 · p1 + at,2 ·
p2 + . . . + at,n · pn, where pk is the kth packet and bt is the

coded packet. The n coefficients are included in the header of

the coded packet. Therefore, a node receiving n coded packets

can easily solve Ap = b by Gaussian elimination.

In the following two subsections, we present a preliminary

performance exploration of naiive network coding that moti-

vates AdapCode design. First, we show by simulation that the

choice of the optimal number of packets to combine into one
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Category Parameter Value

Channel PATH LOSS EXPONENT 4.0
SHADOWING STANDARD DEVIATION 4.0 dB
PL D0 55.0 dB

Radio NOISE FLOOR -105.0 dBm
WHITE GAUSSIAN NOISE 4

TABLE I: Parameter setting of our simulations

Fig. 1: The network coding diagram.

depends on network density. We quantify this dependency and

exploit it later in our adaptive algorithm.

Second, given a well-tuned scheme (that combines, say,

every N packets), we show that naiive network coding outper-

forms a store-and-forward approach given the same bandwidth

consumption. Observe that, in the network coding scheme, a

node sends one message for every N messages it receives.

In other words, compared to naiive flooding, the bandwidth

saved is up to N−1
N

. Another active approach saving an equal

amount of bandwidth is probabilistic forwarding, where a

node re-broadcasts an incoming message with probability 1
N

.

Comparing the two schemes gives some preliminary insight

into the raw advantages of network coding.

We performed our preliminary experimental exploration

using the TOSSIM simulator [14]; a standard tool in sensor

network simulation that runs actual network code on simu-

lated nodes. The parameter settings are shown in Table I.

We considered a 10 × 10 grid of nodes. In the simulated

deployment, there is a source in the network that keeps on

sending broadcast messages. The node density is represented

by the average number of neighbors, which is varied from 4

to 12, per node.

A. A Motivation for Adaptive Coding

When performing network coding, nodes cannot decode

packets until they can get enough combinations to decode.

If a sufficient number of independent combinations is not

received, reliability is lost. Hence, it is interesting to explore

the reliability implications of chosing the number of packet

to combine. We refer to a particular choice of such number

by coding scheme. Hence, it is interesting to compare the

reliability of different coding schemes in a given network.

Fig. 2: Each curve shows the reliability of different coding

schemes in a specific density. The density is shown in terms

of number of neighbors.

To compute reliability, we ran different coding schemes on

at different network densities. In each scheme, we specify N ,

the number of packets to be combined. In other words, each

node will send out one packet containing a linear combination

of N messages upon receiving enough data. Therefore, the

number of packets sent using network coding is 1
N

of that of

naiive flooding. Obviously, a node cannot decode any message

until it receives N packets. We compute reliability, defined

as the fraction of nodes that can successfully decode all the

messages. The result is shown in Figure 2. As intuition,

reliability will drop as N increases and density decreases

because it becomes harder to receive enough packets to decode

data successfully. However, most nodes can still decode all

messages under network coding as long as the node density

is high enough. For example, when nodes have 12 neighbors,

more than 98% of them can decode all messages when N is

8. In a sparse scenario, where nodes only have 5 neighbors,

the reliability remains 97% if we reduce N to 2 (which

means we can save 50% traffic without considering NACKs

and retransmission). This result clearly suggests that network

coding can reduce traffic without significant loss on reliability,

but N must be adapted to network connectivity.

In the ultimate implementation, we need 100% reliabil-

ity. Therefore, we add Negative-ACK (NACK) to the naiive

scheme. Observe that without the NACKs, a node receiving

N−1 packets and a node receiving no packets at all are equally

problematic because neither of them can decode any of the

original N messages. When NACKs are used, nodes receiving

less than N packets can send out NACKs to retrieve missing
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Fig. 3: Number of expected transmissions per packet for

different node densities. The density is shown in terms of

number of neighbors.

data they need that has already been decoded elsewhere. In

the above example, a node receiving N − 1 packets will need

only one more packets to decode all the messages.

To reflect the effect of NACKs on performance, we measure

another metric, which we call the number of expected trans-

missions. The number of expected transmissions is defined

as the total number of transmissions plus twice the number of

missing packets. The intuition behind the definition is that once

a node misses a packet, it must send out one NACK to one of

its neighbors. The neighbor will reply with the needed packet.

This procedure results in two extra transmissions. Although the

number of expected transmissions is only a rough estimate, it

can serve as a guideline on how to choose a reasonable N .

Figure 3 depicts the number of expected transmissions per

message sent by source under different node densities and

coding schemes. Note that, there are always 100 nodes in

our topologies. Hence, without network coding, at least 100

messages are incurred when the source wants to broadcast a

packet. Using this figure, we can obtain the coding scheme that

can result in the fewest number of expected transmissions for

topologies with different grid size. For example, when nodes

have 8 neighbors, setting N = 4 can achieve the minimum

number of expected transmissions.

This helps us understand how good network coding can be

in different densities. Coding lots of packets together helps

reduce the traffic, but it also decreases reliability. Once the

reliability drops, we need more NACK/reply traffic to alleviate

the situation. The number of expected packets enables us to

balance the tradeoff between traffic and reliability. The best

coding scheme for various densities is shown in Table II to

demonstrate how network coding is using up redundant links.

B. Network Coding versus Forwarding

Next, we compare naiive network coding (with no NACKs)

to forwarding for the same bandwidth consumption. As alluded

above, to ensure same bandwidth consumption, the forwarding

N = 2
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Fig. 4: Reliability of network coding(NC) and gossip

scheme must forward received packets with a probability of

1/N (i.e., it is a gossip scheme) whereas the network coding

scheme reduces every N received packets into one forwarded

packet, ensuring the same receive to forward ratio. The results

of this comparison for different N are shown in Figure 4. In

most cases, network coding has better reliability than gossip.

For example, when N = 6, the reliability of network coding

remains 99% when nodes have 10 neighbors. Meanwhile, the

reliability of gossip becomes 36% under the same setting.

Network coding is therefore preferable in the sense that it

will require less NACK overhead to ensure reliable broadcast.

This preliminary experiment suggests network coding is a

better way to disseminate data across the whole network. It is

not difficult to see why gossip behaves so poorly. When we use

gossip, a node randomly decides whether to forward a received

packet or not. It is very likely for two neighboring nodes

to forward the same packet, resulting in useless duplicate

packets. Network coding, on the other hand, sends out a

random linear combination of all the N packets. It is less

probable for two nodes to choose the same (or a dependent)

linear combination. Therefore, useless duplicate packets occur

less frequently when we use network coding.

IV. ADAPCODE DESIGN

The results of the previous section suggest that we can

reduce traffic by applying network coding and if the coding
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Avg. number of neighbors 12 11 10 9 8 7 6 5 4

Best coding scheme N=8 N=8 N=7 N=5 N=4 N=3 N=2 N=2 N=1

TABLE II: Best coding scheme derived from simulation

scheme is adaptive to network conectivity, the overhead of

reliable broadcast can be kept small. We next summarize

the properties of a code distribution protocol that we aim to

satisfy:

• Reliability: When performing code distribution, every

node in the network should correctly receive the updated

code. This is accomplished by using NACKs. In this

paper, we do not address temporary node failures and

reboots.

• Adaptation: Although Table II has shown us the best

coding scheme under different connectivity, in a real

deployment, node densities may not be known a priori.

Also, since nodes may run out of energy or suffer changes

in radio range, node connectivity may not remain static.

Therefore, a protocol using network coding should be

able to decide its coding scheme adaptively using each

node’s local knowledge.

• Low Memory Usage: Memory is a limited and valuable

resource in sensors. A MicaZ sensor typically has only

4 kilobytes of RAM. Hence, a protocol using network

coding should not require large memory usage (e.g., for

doing Gaussian elimination). Observe that any memory

used by dissemination protocol can be released after code

distribution finishes. Therefore, doing network coding

during the code distribution period will not interfere with

sensor operations that follow such distribution. Neverthe-

less, it is still vital that our protocol can fit into the RAM

of sensors.

• Rapid Propagation: When a developer wants to do

code distribution frequently, a desired feature is that the

updated image is propagated to every node in the network

rapidly. The time taken to propagate the updated image

should be of the order of seconds.

• Low Traffic: The traffic required by code distribution

should be very small. If too much traffic is introduced,

the code distribution procedure may use up too much

energy and hurt battery life.

• Load Balancing: The traffic sent by each sensor should

be approximately balanced. If a small portion of sensors

incur a significantly larger amount of traffic than others,

those heavy-loaded sensors may fail much quicker.

Next, we describe a protocol that achieves the above perfor-

mance goals.

A. Protocol Overview

In our protocol, we assume there are n data messages, each

with fixed length that can fit into a packet. There is one single

source in the system. The source will keep sending packets

containing those messages. All the other nodes will help

spread messages they receive. Those nodes will use network

coding to minimize the number of transmission while ensuring

that every active node in the system will correctly receive those

messages.

We divide the messages into sequentially numbered pages.

Each page contains a fixed number M of messages. We

explicitly require M to be a power of 2. In our system, we

choose M equals 8. The source will keep on transmitting

packets and will pause for a period of T milliseconds after

finishing a page. This pause of source is necessary to allow

other nodes to start propagate previous pages. The choice of T
is a tradeoff between traffic and propagation time, which we

will discuss in section VI. When a node receives a packet,

it first runs Gaussian elimination to see if it has gathered

enough information to decode all messages in the packet’s

page. When it succeeds in decoding all messages within

a page, it determines its coding scheme, N , according to

the number of its neighbors. We require N to be a factor

of M . This also implies that N must be a power of 2.

After determining the coding scheme, the node sends out M
N

packets, each containing a linear combination of N messages

in the page. The coefficients of each linear combination are

randomly chosen from 0 to p−1, where p is a prime number.

Furthermore, we make the leading coefficient of every linear

combination be 1. In the implementation, we choose p to equal

5. Also, to avoid multiple sensors transmitting at the same

time, which can cause serious collisions, sensors will randomly

backoff for a short time before they try to transmit. In our

design, the period of backoff is uniformly chosen between

10ms and 74ms. After finishing transmitting those packets,

the sensor puts the messages it just decoded into program

memory.

B. Adaptively Determining Coding Scheme

As mentioned above, we determine the coding scheme by

the number of neighbors that a sensor has. When a sensor starts

to buffer packets for a page, it keeps a counter, curNeighbor.

This counter is defined as the number of different sources of

the packets that the sensor knows of. After the sensor succeeds

in decoding that page, it computes its long-term number of

neighbors, avgNeighbor, using the formula: avgNeighbor =
α × avgNeighbor + (1 − α) × curNeighbor. The value

of α should be determined according to the stability of the

network. For example, if nodes in the network fail frequently,

we should have a small value of α to be resilient against

topology changes. On the contrary, if the topology remains

quite static over time, we should set α to a larger value to

obtain a more accurate number. In our implementation, we

choose α = 2
3 .

The sensor then decides N according to avgNeighbor and

Table II. From Table II, we can obtain a set of 2-tuples with the

form (a, b), where a is the average number of neighbors and b
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is the best coding scheme. The decision on N is made as the

largest power of 2 such that there exists a 2-tuple (a, b) with

a ≥ avgNeighbor and b ≤ N . Table III shows the resulting

decision derived from the above procedure.

C. Dealing with NACKs

During the code update process, every node keeps a count-

down timer. A node will send out a NACK to the local

broadcast address when the timer fires. In the NACK packet,

the sensor will indicate the page number it is asking for and

messages it needs to decode all messages in the page. Since

the source will pause for T milliseconds between pages, the

delay between pages is at least Tms. The value of the timer

is initially set to 2T milliseconds.

A key problem in dealing with NACKs is to determine

which node should respond to the NACK. If multiple nodes

respond simultaneously, they not only incur unnecessary

transmissions but may also cause serious packet collisions

and channel congestion. To solve the problem, we design a

mechanism to distributively select the responder to the NACK

without any maintenance overhead. When a node receives

a NACK message, it first checks whether it can reply with

the needed data. If it can do so, the node will delay for a

random period of time to see if any of its neighbors is replying

to this NACK. If no reply is heard before the timeout, this

node will respond to the NACK. Using this mechanism, we

can significantly reduce the risk of simultaneous responses to

NACKs.

Further, we adopt a ”lazy NACK” mechanism to reduce

the number of NACKs. When a node sends out a NACK, it

doubles the value of its countdown timer. The value of the

timer will be restored to T once the node receives a packet

in its page. Also, if a node overhears a NACK containing the

same page number as its own, it will reset its timeout timer

to avoid sending duplicate NACK.

The detailed algorithm of AdapCode design is shown as

follows.

V. COST ANALYSIS

Wireless sensors have very limited memory and trans-

mission ability. Many widely used techniques for wireless

networks can not be carried out on sensor networks since their

costs are too high for the capacities of wireless sensors. In this

section, we study the cost of our network coding protocol.

A. Packet Overhead

When a node transmits a packet containing a linear combi-

nation of messages, it needs to put the coefficients it chooses

in the packet. This will induce additional overhead. A packet

can be composed by at most M messages. Since we make the

leading coefficient be 1, there are at most M − 1 coefficients

left to be specified. These coefficients can be any integer

between 0 and p−1. Therefore, there are pM−1 choices for the

coefficients, which need at most ⌈log2 pM−1⌉ bits to specify.

Overhead is also induced by the possibility of overflow

when doing linear combination. Suppose each message has

Algorithm 1 ADAPTCODE

1: coeffMatrix ← a M × M matrix

2: invMatrix ← a M × M matrix

3: curNeighbor ← 0
4: timerV alue ← 2T
5: set countdown timer equals timerV alue ms

6: while code distribution is going on do

7: if a packet is received then

8: sender ← the sender of the packet

9: pageNumber ← the page number of the packet

10: if sender has not been seen before then

11: curNeighbor ← curNeighbor + 1
12: timerV alue ← 2T
13: set countdown timer equals timerV alue ms

14: construct coeffMatrix using coefficients from

packets in page pageNumber
15: rank ← Gaussian(coeffMatrix, invMatrix)
16: if rank = M then

17: solve all messages in the page by invMatrix
18: avgNeighbor = α × avgNeighbor + (1 − α) ×

curNeighbor
19: determine N using avgNeighbor
20: broadcast M

N
packets

21: curNeighbor ← 0
22: pageNumber ← pageNumber + 1
23: if a NACK is received then

24: pageNumber ← the page number of the packet

25: if page pageNumber is already received then

26: wait for a random period

27: if no response heard during the period then

28: reply to the NACK

29: if timer timeouts then

30: send a NACK

31: timerV alue ← 2 × timerV alue
32: set countdown timer equals timerV alue ms

Algorithm 2 Gaussian(coeffMatrix, invMatrix)

1: run Gaussian elimination on coeffMatrix
2: if coeffMatrix is invertible then

3: invMatrix ← the inverse matrix of coeffMatrix
4: return the rank of coeffMatrix

t bits. Its numeric value will be no larger than 2t − 1. The

linear combination involves at most M messages, each with

coefficient at most p−1. Hence, the numeric value of the linear

combination is at most (p−1)×M × (2t−1). The number of

bits needed to represent this value is ⌈log2(p − 1) × M⌉ + t.
Overhead caused by overflow is hence ⌈log2(p − 1) × M⌉.

In our implementation, we choose M to be 8 and p to be 5.

The overhead caused by coefficients is 17 bits. The overhead

caused by overflow is 5 bits. Hence, the overall overhead for

our protocol is at most 22 bits, which is less than 3 bytes.

Compared to a standard MicaZ packet, which has 46 bytes,

the overhead is acceptably small.
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avgNeighbor 0 – 5 5 – 8 8 – 11 11 –

N 1 2 4 8

TABLE III: The choice of N according to avgNeighbor

B. Solvability of Gaussian Elimination

Ideally, we need M different linear combinations of mes-

sages to yield the original messages in a page. However,

since we limit the choice of coefficients to integers between

0 and p − 1, it is possible that some linear combinations are

linear dependent. In this section, we derive an upper bound

on the expected number of packets needed to obtain M linear

independent combinations of messages.

We treat the coefficients of every linear combination as a

vector with length M . Our goal is to derive the number of

vectors needed to obtain M linearly independent vectors, given

that every entry, except the first one, in a vector are randomly

chosen between 0 and p − 1 and the first entry is 1. For the

ease of analysis, we consider the linear dependency in ZM
p ,

the residue class of modulo p. In Zp, all operations are treated

as modulo operations. For example, in Z5, we have 3+3 = 1
and 2 × 3 = 1. Since every set of linearly dependent vectors

is also linearly dependent in ZM
p , our simplification will yield

the upper bound of the expected number of vectors needed.

Let Ei, 1 ≤ i ≤ M , be the expected number of vectors

needed to obtain i linear independent vectors in ZM
p . Our

goal is to derive the value of EM . Obviously, E1 = 1.

Suppose we already have j linear independent vectors, namely,

v1, v2, · · · , vj . Now we are given another randomly generated

vector, vj+1, and we wish to compute the probability that vj+1

is independent from v1, v2, · · · , vj . If vj+1 is not independent

from those vectors, there exist constants c1, c2, · · · , cj such

that
∑j

k=1 ck × vk = vj+1. Now, note that the first entries

of all these vectors are 1. Hence we have
∑j

k=1 ck = 1. The

number of different choices of (c1, c2, · · · , ck) satisfying this

constraint is pj−1. This implies there are pj−1 different vectors

that are linearly dependent with v1, v2, · · · , vj . Since there are

pM−1 different choices for vj+1. The probability that vj+1

is linearly independent from the other vectors is 1 − pj

pM . In

other words, after obtaining j linearly independent vectors, we

need, on average, pM

pM
−pj more vectors to yield another linearly

independent vector. This results in the recursion formula:

Ei+1 = Ei + pM

pM
−pj , for all i ≥ 1. Solving this formula

we obtain EM = 1 +
∑M−1

j=1
pM

pM
−pj . In our implementation

settings, we have EM = E8 = 8.30, which is very close to 8,

the least number of packets needed to decode all messages in

one page.

C. Feasibility of Gaussian Elimination

Wireless sensors are known for having very limited memory.

It is very important that Gaussian elimination does not use

up too much memory. In this section, we study the memory

needed to run Gaussian elimination.

Typically, Gaussian elimination requires two M × M ma-

trixes, one to store the original coefficients and the other
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Fig. 5: The probability of receiving a packet from another node

in different distances

to store the inverse matrix. In our implementation, we store

numerators and denominator in different places, resulting in

four M × M matrixes. There are totally 4 × M2 elements in

those matrixes. What’s left is to determine the size of each

element.

Let A = [aij ] be the coefficient matrix composed of

coefficients in received packets and Aij be the matrix obtained

from A by deleting row i and column j. Also, let [A] be

the determinant of matrix A. Every element in the inverse

matrix A−1 will be in the form of
[Aij ]
[A] . Therefore, the

size of elements in the matrixes should be big enough to

hold the maximum possible value of [A]. Let DM be the

maximum possible value of determinant of the coefficient

matrix. Note that D1 = 1 since we require the leading

coefficient to be 1. According to the definition of determinant,

[A] =
∑M

i=1 ai1 × [Ai1], for all M > 1. Now that ai1 is

at most p − 1 and [Ai1] is no larger than DM−1, the value

of [A] is upper bounded by M × (p − 1) × DM−1 and we

can obtain the recursion: DM ≤ M × (p − 1) × DM−1.

Solving the inequality yields: DM ≤ M !×(p−1)M−1. In our

implementation settings, DM is less than 231, meaning that we

only need to allocate 4 bytes for each element in the matrixes.

Thus, the total memory usage of Gaussian elimination would

be 4×4×M2 = 210bytes = 1KB, which can fit in the memory

of most modern sensors. In our implementation, AdapCode

requires 1433 bytes in RAM.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

In this section, we present our simulation results for Adap-

Code. We consider a 10×10 grid of MICAZ nodes simulated

in TOSSIM of TinyOS version 2. Table I shows the simulation

settings. To have an idea about what the transmission range is

in this parameter setting, we show the probability of receiving

a packet from another node in Figure5.
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Fig. 6: Performance of AdapCode under different T

B. Interpage Pause Interval

As mentioned in section IV, the source will pause for T
milliseconds after transmitting a page. The choice of T is

a tradeoff between traffic and latency. Obviously, larger T
will result in longer latency. On the other hand, large T can

help reduce traffic due to two reasons: First, larger T implies

larger timeout intervals before a node sends out a NACK. The

number of unnecessary NACKs is hence reduced. Moreover,

since nodes decide their coding scheme based on the number

of neighbors heard in a page, larger T will allow nodes have

enough time to make a good estimation on their number of

neighbors. This will enable nodes to choose a coding scheme

that can incur the least traffic.

To show the influence of T on the performance of Adap-

Code, we measure both the mean number of packets sent

per node and the time needed to disseminate an image with

1024 packets. As shown in Figure 6b, the time needed to

disseminate the image almost grows linearly as T increases.

On the other hand, Figure 6a shows that increasing T reaches

deminishing returns in terms of reducing traffic. For example,

when we change T from 100 to 200, the mean number of

packets sent per node drops from 1115 to 813, resulting in

a 302 packet reduction. However, when we change T from

500 to 600, the reduction in traffic is merely 34 packets. In

our design, we choose T = 300 since this results in both low

traffic and low latency.

C. Traffic

In the following sections, we compare AdapCode with Del-

uge, the state-of-art code dissemination protocol. We evaluate

these two protocols using three metrics: traffic, load balance,

and propagation delay. We assume that the source needs to

broadcast a piece of code that can be divided into D packets.

We run both protocols 50 times in a grid deployment for each

grid size between 4m and 7m. To see how AdapCode behaves

under different code sizes, we evaluate the performance for

both D = 128 and D = 1024, which approximately corre-

sponds to code images with sizes 2KB and 20KB.

We first compare the mean number of packets per node

needed to broadcast D data packets. In addition to data

packets, we also count the number of NACKs and replies to

NACKs in AdapCode. Similarly, since Deluge uses epidemic

messages and request messages to trigger code dissemination,

we count the number of these two types of packets. Further, we
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Fig. 7: Number of packets sent per node for different grid

sizes

include naiive flooding as a performance baseline. In flooding,

every node needs to broadcast whatever messages it receives.

The mean number of packets per node needed for flooding is

computed as the number of data segments, which is 128 and

1024 for different settings on D. In other words, we assume

there is no packet loss and retransmission in flooding. The

mean number of packets sent per node for different grid sizes

are shown in Figure 7.

It is very clear from the figure that AdapCode uses signif-

icantly fewer packets than flooding for all grid length sizes.

Although we unfairly assume links in flooding never drop a

packet, AdapCode uses 41–80% and 33–83% fewer packets

than flooding for D = 128 and D = 1024, respectively.

AdapCode also has better performance when compared with

Deluge. The performance gain is greater when the grid size

is small. When D = 128, AdapCode uses up to 24% less

traffic than Deluge does. When D = 1024, the save of traffic

by AdapCode is even more significant, up to 40%, than that

by Deluge. These results prove that our protocol is adaptive

enough to choose a coding scheme that can reduce traffic

without incurring too many retransmissions.

D. Load Balancing

The main motivation for saving traffic is to reduce the

energy consumed and to prolong the lifetime of the network.

Therefore, load balancing is almost as important as bandwidth

usage efficiency. If some nodes are too heavily loaded, those

nodes will tend to die out quickly, which can potentially influ-

ence the connectivity and coverage of the network. To compare

the quality of load balancing of AdapCode and Deluge, we

compute the number of packets sent by the 10% nodes that

send the most packets. Figure 8 shows the average number

of packets transmitted per such node. The results show that

AdapCode achieves a much better load balance than Deluge.

Moreover, the differences between AdapCode and Deluge are

not severely influenced by grid sizes. When D = 128, the

heavy weighted nodes in AdapCode transmit 57–67 fewer

packets than those nodes in Deluge. When D = 1024, the

differences become 266–422 packets. Therefore, AdapCode

can do a better job in prolonging network lifetime by achieving

good load balance.

The reason why AdapCode has better load balancing prop-

erties is because AdapCode has better function distribution
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Fig. 9: Mean time required for all nodes to receive all data

properties. Every node in AdapCode needs to forward some

data packets once it decodes messages in a page. Hence,

the load of forwarding messages is equally distributed among

neighbors. Further, when a node receives a NACK, it needs

to backoff for a random period of time before it replies to

the NACK. This mechanism makes every node have similar

probability of replying to NACKs. Further, since a page in

AdapCode consists of only 8 messages, the burden of replying

to a single NACK is small.

E. Propagation Delay

Another important metric in code dissemination protocols

is the time taken to disseminate the code. Since developers

may usually want to frequently update code in the debug-

ging stages, high propagation delay will make the procedure

painfully slow. From Figure 9, we can see that AdapCode

satisfies the requirement of small propagation delay. Adap-

Code generally takes less time than Deluge to complete code

dissemination. When D = 128, AdapCode is quicker than

Deluge by about 10Furthermore, AdapCode is always quicker

than Deluge when D = 1024. The latency difference between

the two protocols can be as high as 20 seconds, or 15%. Since

Deluge is known to be a highly optimized code dissemination

protocol, this result shows AdapCode has much promise. We

have not yet optimized its implementation but have improved

over Deluge nevertheless.

VII. CONCLUSION

In this paper, we present AdapCode, a code dissemination

protocol that achieves low traffic, low latency, and good

load balancing. The core idea of AdapCode is to (i) take

advantage of redundant links in wireless sensor networks by

using network coding to reduce data packets, and (ii) exploit

adaptive behavior to choose the best coding scheme to reduce

NACK/reply packets.

We analyze the cost of network coding and conclude that

network coding is feasible on wireless sensors in terms of

overhead and memory size. We then implement AdapCode

and compare it against Deluge, the most widely used code dis-

semination protocol. We observe that AdapCode outperforms

Deluge in all three important performance metrics: traffic, load

balancing, and latency.
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