
ADAPT:

Automated De-Coupled Adaptive Program Transformation

Michael J. Voss and Rudolf Eigenmann
Purdue University

School of Electrical and Computer Engineering
fmjvoss,eigenmang@ecn.purdue.edu

Abstract

Dynamic program optimization o�ers performance
improvements far beyond those possible with traditional
compile-time optimization [1, 2, 3, 4]. These gains
are due to the ability to exploit both architectural and
input data set characteristics that are unknown prior
to execution time. In this paper, we propose a novel
framework for dynamic program optimization, ADAPT
(Automated De-coupled Adaptive Program Transfor-
mation), that builds on the strengths of existing ap-
proaches. The key to our framework is the de-coupling
of the dynamic compilation of new code variants from
the dynamic selection of these variants at their points
of use. This allows code generation to occur concur-
rently with program execution, removing dynamic com-
pilation overheads from the critical path. We present
a compilation system, based on the Polaris optimizing
compiler [5], that automatically applies this framework
to general \plugged-in" optimization techniques. We
evaluate our system on three programs from the SPEC

oating point benchmark suite by dynamically applying
loop distribution, loop unrolling, loop tiling and auto-
matic parallelization. We show that our techniques can
improve performance by as much as 70% over statically
optimized code.

1 Introduction

Compile-time optimization is often limited by a lack
of information about the program input and/or target
architecture. It is not uncommon that a program is
installed on a network �le system server, and is run
on machines of varying con�gurations. Some of these
machines may be uniprocessors, somemay be multipro-
cessors, and each machine may have di�erent processor
speeds and memory hierarchies of di�ering depths and
sizes. Even if a program is compiled for a single ma-

chine, optimization decisions are still limited by the
lack of information about the input data set. Whether
a technique should be applied, and if so with what pa-
rameters, can often not be determined at compile-time
due to these unknown quantities. Rather, a solution at
runtime is necessary.

We propose a novel framework for dynamic program
optimization that builds on the strengths of existing
approaches. Automated de-coupled adaptive program
transformation (ADAPT) separates the generation of
new code variants from their use. A translator runs
concurrently with the application and, using values ob-
tained through compiler-inserted instrumentation, op-
timizes code sections in the context of the current in-
put data and machine con�guration. Because we over-
lap code generation with program execution, standard
compilers can take the place of the highly specialized
code generators of many dynamic compilation systems.

As new variants are created, they are added to those
available to the dynamic selection mechanism, which is
the runtime decision algorithm that chooses the best
code variant to run. Our dynamic selection framework
allows for program sampling similar to the dynamic
feedback approach [2]. That is, at runtime, program
variants are timed and the best one is chosen. In addi-
tion, our scheme can prune the search space of program
variants through conditions de�ned by the user, i.e. the
developer of the actual optimization techniques. Using
the instrumentation that is added to the application,
ADAPT monitors the environment to ensure that de-
cisions based on sampling are, and remain, valid.

We have implemented the ADAPT scheme using the
Polaris compiler infrastructure. It generates the frame-
work for invoking one or several di�erent compilers at
runtime and for selecting from the resulting code vari-
ants. It also inserts the instrumentation that is neces-
sary for monitoring critical program variables and the
machine environment. Compiler developers can \plug
in" new transformation techniques by describing, in the

1



form of a C++ class, the compilation tool's command
line, and (optional) conditions for guiding their run-
time selection. Our ADAPT compiler translates pro-
grams fully automatically. No user interaction is nec-
essary. The user speci�es neither the code sections on
which to operate nor the applicable transformations.
The scheme works for both uniprocessors and multi-
processors.

We evaluate ADAPT by applying it to three SPEC

oating-point benchmarks: Mgrid, Swimand Tomcatv.
To each code, the implementation of our scheme in
the Polaris/ADAPT compiler applies loop distribution,
loop tiling, loop unrolling and automatic paralleliza-
tion. We present results for ADAPT's performance
when searching for the best combination of these tech-
niques. For comparison, we also combine these tech-
niques statically without using architectural and input
data set knowledge. These results are collected on both
a multiprocessor and uniprocessor system, and show
that ADAPT can outperform the statically generated
combinations by as much as 70%.

In Section 2, we present an overview of our frame-
work. In Section 3, we describe our compiler-supported
system for automatically applying this framework. In
Section 4, we show experimental results. In Section 5,
we discuss related work. In Section 6 we present our
conclusions.

2 An Overview of ADAPT

Figure 1 shows the basic structure of the ADAPT
framework, an extension of our previous work found in
[6]. Optimization occurs at the granularity of Inter-
vals, which are code sections with a single entry and
single exit point, typically loop nests. Each interval is
replaced in the original code by an if-else block that
selects between a call to the Dynamic Selector and the
default static version of the interval. The default static
version is used during a shelter period if the execution
time falls below a pro�tability threshold. The if test
and the periodic re-evaluation are the only overheads
incurred by a code section that cannot bene�t from our
scheme.

Environment Monitoring: In order to adapt to a
runtime environment, it must be monitored. The In-
spector contains a number of routines for collecting en-
vironmental and program characteristics. These char-
acteristics can include timings, performance counter
values, and even results from microbenchmarks. Calls
to these routines are embedded in the Dynamic Selec-
tor and other support code. The information returned
by the monitoring routines is stored into descriptors for

the code variants, the intervals, or the machine con�gu-
ration. The execution times collected by the Inspector
are used to maintain and prioritize the Optimization
Queue.

Code Triage: The Optimization Queue is a priority
queue that orders the interval descriptors by execution
time. Optimization is performed on hot-spots �rst, by
choosing the most time-consuming interval from this
queue. Hot-spot detection, along with the shelter pe-
riod described above, make up the triage services pro-
vided by our system.

Dynamic Selection: If an interval has a su�ciently
large execution time, it will call the Dynamic Selector.
When the Dynamic Selector is called, it selects the best
code variant based on the interval descriptor and the
descriptors of the available code variants. By default, it
selects the previous best variant, unless it has become
stale. A code variant becomes stale after a user-set
time interval. Developers may also specify additional
criteria for determining staleness. For example, a de-
veloper may set a threshold for code variants that have
loop tiling applied to them; they become stale if the
number of array accesses fall below this threshold.

If the current code variant becomes stale, a new vari-
ant is selected using a combination of pruning and sam-
pling mechanisms. The variants available to an interval
for execution are �rst screened using conditions de�ned
by the developer of the optimization. For example, a
developer may choose to limit the selection of a paral-
lelized variant such that it can only be selected if the
application is executing on a multiprocessor. After the
available variants are pruned, the remaining variants
are sampled in order to select a best variant, that is
each variant will be used once, and the one with the
shortest execution time will be selected.

Our sampling phase monitors the data set. In our
implementation, the loop bounds are recorded at the
beginning of the sampling phase. Timings are only
considered comparable if these bounds match. If the
bounds change continually, ADAPT is forced to select
variants somewhat arbitrarily. However, if the appli-
cation has several phases, with constant loop bounds
within but not across phases, ADAPT will restart sam-
pling at the phase boundaries.

Dynamic Code Generation: ADAPT is di�erent
from many dynamic optimization schemes by its abil-
ity to generate new code variants at runtime. The Lo-
cal Optimizer Thread runs concurrently with the ap-
plication. It selects the most important interval from
the Optimization Queue, and through a remote pro-
cedure call, activates the Remote Optimizer. It then

2



Inspector

- A collection of rountines
- Provides monitoring
- Maintains the various

Intervals

- Sections of code
- The granularity of optimization
- Can be user or compiler selected

Links in

Code Variant

- An executable variant of an interval
- Is described by a code descriptor
- Statically or dynamically created

Generates

Selects

Calls

Monitors

Dynamic Selector

- A collection of routines
- Provides selection services
- Selects and calls variants

The Main Application

- A local thread
- Made up of 1 or more intervals 

Contains

Monitors

Directs

Monitoring Services

Remote Optimizer

- A thread running on a remote machine
- Provides remote optimization services
- Generates new code variants

Local Optimizer Thread

- A local thread
- Calls remote optimizer
- Links in the new variants 

Calls

Dynamic Code Generation Services

Dynamic Selection Services

Optimization Queue

- A data structure
- Used for code triage
- Prioritizes intervals

Code Triage Services

Figure 1. Overview of the ADAPT optimization framework.

waits for the Remote Optimizer to return a new code
descriptor, describing a newly generated code variant
and its location. Upon receiving the code descriptor,
it dynamically links in the new variant and adds it
to those available to the Dynamic Selector. Finally it
marks the interval's currently chosen variant as stale,
and begins the process again with the current top of
the Optimization Queue. If the Remote Optimizer re-
turns an empty code descriptor, the interval is marked
as fully optimized, removing it from the queue. The
interval will be reconsidered if its current `best' version
becomes stale, allowing optimization to be performed
in the context of the changed runtime environment.

The Remote Optimizer runs in the background on a
remote machine, or a free processor of a multiproces-
sor, waiting for calls from the client application. It can
generate a new code variant using any combination of
restructurers and compilers, since it is not limited by
the requirement for a short execution time. The Re-
mote Optimizer is passed an interval descriptor, which
includes information about the current runtime envi-
ronment and the past behavior of the interval. It then
generates a new version based upon this descriptor and
the history of previous optimizations it has applied.
After generating a new variant in a shared library, it
creates a new code descriptor, updates the variant cat-
alog �le, and returns the code descriptor to the Local
Optimizer.

3 Compiler-support for ADAPT

We have implemented comprehensive support for
ADAPT in the Polaris optimizing compiler [5], which

is a Fortran 77 source-to-source restructurer and par-
allelizer. Polaris/ADAPT automatically selects inter-
vals, encapsulates them in newly created subroutines,
and replaces them in the original code with an if-else
block that conditionally calls the Dynamic Selector.
It then generates the dynamic selector, inspector, and
the local and remote optimizers. The framework ap-
plies developer-described stand-alone restructurers and
back-end compiler 
ags.

A user description of a technique includes the follow-
ing elements: (1) the number of di�erent sampling vari-
ants and (2) the names of these variants. A sampling
variant is simply an implementation of the technique.
If multiple variants are supplied, Polaris/ADAPT will
generate the framework such that the Dynamic Selec-
tor chooses the best code. This is the method by which
a user turns on our sampling mechanism. If one of the
sampling variants is speci�ed as OFF, ADAPT will also
sample the performance of the code without the tech-
nique applied. If no pruning criteria is provided by the
developer, a technique is applied to all intervals, and
variants using this technique can always be selected.
All code variants become stale after a con�gurable time
interval.

A user may optionally specify additional informa-
tion to prune the sampling space, including: (1) a
compile-time method for screening out intervals on
which a technique should not be applied, (2) condi-
tions under which the technique should be invoked,
(3) conditions under which variants generated by this
technique should be selected, and (4) conditions un-
der which variants generated by this technique become
stale. If multiple techniques are de�ned, all combina-
tions that pass these screening criteria will be sampled.

3



class DistributionTechnique : public Technique

{

public:
void screen(ProgramUnit &pgm) {

choose_imperfectly_nested_loops(pgm);

}
List<StringElem> *tools(String interval,

ProgramUnit &pgm) {
List<StringElem> *hold = new List<StringElem>();

hold->ins_last(new StringElem(OFF));

hold->ins_last(new StringElem("distributor "));
return hold;

}

int num_tools(String interval, ProgramUnit &pgm)
{return 2;}

};

Figure 2. User de�nition of a stand-alone loop dis-
tributor. This module shows the typical code a user
must write to plug-in a transformation.

Figure 2 shows how loop distribution was described
to our system. DistributionTechnique provides a
compile-time method for screening intervals by de�n-
ing the screen function to only select imperfectly
nested loops. It then de�nes two sampling variants:
OFF and distributor. Based on this de�nition, Po-
laris/ADAPT will generate the framework such that
every imperfectly nested loop will have runtime vari-
ants generated with and without using loop distribu-
tion. At runtime, sampling determines the best of these
variants.

4 Experimental Evaluation

4.1 Setup

Our evaluation is performed using three Sun SPARC
machines: (1) an UltraSPARC Enterprise 4000 with six
250 MHz UltraSPARC-II processors, each with a 1 MB
L2 cache, and a 1.5 GB shared main memory, (2) an
UltraSPARC-II uniprocessor workstation with a single
300MHz UltraSPARC-II processor, a 500 KB L2 cache,
and a 1 GB main memory, and (3) a SPARCstation
20 with four 100 MHz hyperSPARC processors, each
with a 256 KB external data cache, and a 128 MB
shared main memory. Data is collected for both the
Enterprise and the UltraSPARC workstation, with the
SPARCstation 20 serving as a remote optimizer for the
Enterprise.

We evaluate ADAPT using three programs from
the SPEC 
oating point benchmark suite: Mgrid,
Swim and Tomcatv. For both Mgrid and Swim, the
SPEC'2000 versions are used, while for Tomcatv, the
SPEC'95 version is used. In all cases, the ref data sets
for the respective suites are used.

We evaluate the performance of our scheme in choos-
ing the best combination of loop distribution, loop
tiling, loop unrolling and automatic parallelization
for these three programs. A loop distributor and a
loop tiler were written using the Polaris infrastructure.
Loop unrolling was performed by using the -unroll 
ag
with the back-end compiler. Automatic parallelization
was performed by using Polaris as a parallelizer. Ta-
ble 1 contains a description of each technique and the
conditions provided to our system.

For comparison, we generated a static version by
combining each of these techniques, at compile-time,
without input data set and architectural information
provided. In addition, a static combination was gen-
erated using only the techniques that yielded a posi-
tive improvement when applied individually. The mea-
surements of these two program variants are important
reference points. They represent the performance of a
static compilation and that of a feedback-directed com-
pilation, respectively.

Figure 3 shows the results for both the Enterprise
and UltraSPARC workstation. On the Enterprise, we
collected timings for two con�gurations of ADAPT.
The �rst con�guration, RemoteDyn, performed the
dynamic compilation remotely on the SPARCstation
20, and the second con�guration, LocalDyn performed
compilation locally on the Enterprise. On the Ul-
traSPARC workstation, only a RemoteDyn scheme is
present, with optimization performed on the Enter-
prise. All dynamically optimized programs start with
the intervals unoptimized, that is, without loop distri-
bution, loop unrolling, loop tiling and automatic par-
allelization applied.

4.2 Results

Mgrid: Using the SPEC'2000 ref data set, the se-
quential execution time of Mgrid on the Enterprise ex-
ceeds 1 hour. Many of the major loop nests in Mgrid
have frequently changing loop bounds and so sampling
is ine�ective in this program. However as shown in Fig-
ure 3.a, ADAPT is still able to outperform both the
static and pro�le-based compilations by over 70% on
the Enterprise. This gain is due to the pruning mech-
anisms of ADAPT and the negative impact of inter-
optimization e�ects in the statically compiled version.
The LocalDyn version, in which the compilation is per-
formed on a free processor of the much faster Enterprise
machine, is able to slightly outperform the RemoteDyn
version of Mgrid.

Both StaticCombo and Pro�leCombo apply all of
the techniques in Mgrid and show a signi�cant degrada-
tion over automatic parallelization applied alone. The
combination of loop distribution and automatic paral-

4



Technique Purpose Static Runtime Stale Sampling

Screening Screening Condition Variants

LpDist loop facilitates imperfect none none OFF

distribution optimizations nests only distributor

LpUnr loop increase ILP & none none none -unroll=0

unrolling decrease loop -unroll=4

overheads -unroll=8

LpTile loop exploit is tilable and refs > cache refs < cache tiler

tiling temporal reuse has temp reuse

LpPar loop-level exploit none procs > 1 procs == 1 polaris

parallelization parallelism

Table 1. Description of the various techniques added to our system. The symbols refs refers to the number of array
references within the interval, cache refers to the machine's L2 cachesize, and procs refers to the number of processors
available in the system.

lelization degrades performance by splitting some par-
allel nests into multiple parallel nests, thereby increas-
ing fork/join overheads. In Mgrid, loop distribution
uncovers no new opportunities for optimization and so
only contributes this overhead. Unfortunately since
sampling fails in Mgrid, and loop distribution is se-
lected solely based upon sampling, ADAPT arbitrarily
chooses the distributed version. A further decrease in
execution time of over 1 minute could have been ob-
tained had the non-distributed version been selected.

The combination of tiling and parallelization like-
wise degrades the performance of Mgrid on the Enter-
prise. Since the loop bounds are not known, tiling is
applied to several nests in cases where the tile size ex-
ceeds the number of iterations of the loops being tiled.
The compiler attempting to reduce the number of syn-
chronization points, selects the outermost loop of these
tiled nests as the parallel loop. In Mgrid, these tile con-
trol loops have only a single iteration and therefore the
nest is essentially serialized. ADAPT, having both the
iteration counts and the cache size available to it at
runtime, does not tile these nests and therefore this
degradation is not seen.

On the Enterprise, our framework begins with a
sequential, unoptimized program, and is able to out-
perform both StaticCombo and Pro�leCombo by over
70%. On the UltraSPARC uniprocessor workstation,
the local optimizer thread is running on the same pro-
cessor. However as shown in Figure 3.b, the ADAPT
version of Mgrid is still able to perform to within 1%
of the best static combination.

Swim: Using the SPEC'2000 ref data set, Swim like-
wise executes in over 1 hour on the Enterprise. Unlike
Mgrid, it has runtime constant loop bounds and there-
fore allows sampling to converge. In Swim, again Stat-
icCombo degrades over LpPar on the Enterprise due
to con
icts between tiling and automatic paralleliza-
tion. Pro�leCombo applies only loop distribution and

automatic parallelization. Unlike Mgrid, Swim bene�ts
from this combination of distribution and paralleliza-
tion; it enables loop interchange of a major loop nest.
Therefore, a simple-minded heuristic of never apply-
ing loop distribution with parallelization is not su�-
cient. ADAPT shows performance near this pro�le-
based static compilation, outperforming StaticCombo
by 26%. In this case, Pro�leCombo is exactly the cor-
rect combination of techniques and therefore represents
a lower bound on the execution time.

ADAPT is able to begin with an unoptimized ver-
sion of Swim and to perform to within 2% of this lower
bound. On the uniprocessor workstation, ADAPT is
able to slightly outperform StaticCombo and to per-
form within 5% of Pro�leCombo.

Tomcatv: Our measurements of Tomcatv use the
SPEC'95 ref data set. The sequential execution time
of this code is signi�cantly shorter than the other two
programs, being less than 5 minutes on the Enterprise.
While waiting for optimized code to be available, sub-
optimal variants are used instead. Because of its short
execution time, the time spent in these suboptimal
variants is a signi�cant factor.

On the Enterprise, only parallelization improves per-
formance when applied alone. Interestingly the blind
combination of all techniques in StaticCombo outper-
forms Pro�leCombo by 6%, highlighting the di�culty
in selecting appropriate combinations. Due to its short
execution time, both dynamic versions perform signif-
icantly worse than the static combinations. However,
LocalDyn does perform much better than RemoteDyn.

Figure 4 shows the breakdown of execution time of
each of the intervals in Swim and Tomcatv into their
components. The intervals are ordered by the time that
they are �rst dynamically compiled in the RemoteDyn
version. In Swim, the Tlag overhead clearly dominates
Tfdbk, showing that the unavailability of best variants
due to de-coupling has a more signi�cant impact on

5



(a) 4 Processors of an UltraSPARC Enterprise (b) A Uniprocessor UltraSPARC Workstation

Figure 3. The performance of optimizations on (a) the multiprocessor UltraSPARC Enterprise and (b) the uniproces-
sor UltraSPARC workstation. The individual techniques were applied at compile-time without architectural and data
set information. The StaticCombo is the compile-time combination of all techniques. Pro�leCombo is the combination
of techniques that improved performance when applied individually at compile-time. RemoteDyn is the performance
of ADAPT when dynamic compilation is performed remotely. On the Enterprise, RemoteDyn performs compilations
on the SPARCstation 20. On the UltraSPARC workstation, RemoteDyn performs compilations on the Enterprise.
LocalDyn is the performance of ADAPT when dynamic compilation is performed locally. The LocalDyn approach
is only shown for the multiprocessor Enterprise. All times are normalized to the execution time of the unoptimized
code.

performance than does sampling. The breakdown of
the loops in Mgrid showed similar trends. In Tomcatv,
which has a much shorter total execution time, the
e�ect of Tlag is dramatic.

When compilation is done remotely on the slower
100 MHz hyperSPARC workstation, only 2 intervals
are optimized before the program completes. The con-
tribution of Tlag from just these two intervals accounts
for 16% of the total program execution time. If the
best variant of these two intervals had been used from
the start of the execution, the program would be 16%
faster. Due to the lag time, the majority of the code re-
mains unoptimized. 70% of the execution time is spent
in this part of the code.

When compilation is done locally, all of the signi�-
cant loop nests in Tomcatv are able to be optimized.
The short execution of the program still causes Tlag to
be signi�cant, being directly responsible for over 30%
of the execution time. However, time spent in com-
pletely unoptimized code sections becomes negligible,
and the total program execution time improves by over
15%.

On the uniprocessor, none of the techniques improve
performance in Tomcatv. Therefore, only the overhead
of the ADAPT framework is seen. This leads to a per-
formance degradation with respect to the original code;
however, this degradation is still an improvement over
the loss seen by StaticCombo.

5 Related Work

One of the earliest methods proposed for performing
runtime optimization was multiple version loops [7]. In
this technique, several variants of a loop are generated
at compile-time and the best version is selected based
upon runtime information. Since multiversioning can-
not make use of runtime information to prune useless
variants, it may cause signi�cant code explosion. Typ-
ically, to avoid such an explosion, only a few variants
are generated for each code section.

Gupta and Bodik [8] proposed adaptive loop trans-
formations to allow the application of many standard
loop transformations at runtime using parameteriza-
tion. They provide a framework for applying loop fu-
sion, loop �ssion, loop interchange, loop alignment and
loop reversal e�ciently at runtime. We are currently
adding support for parameterization to the ADAPT
framework to increase its 
exibility.

Diniz and Rindard [2] proposed dynamic feedback, a
technique for dynamically selecting code variants based
upon measured execution times. In their scheme, a pro-
gram has alternating sampling and production phases.
In the sampling phase, code variants, generated at
compile-time using di�erent optimization strategies,
are executed and timed. This phase continues for a
user-de�ned interval. After the interval expires, the
code variant that exhibited the best execution time

6



Interval Interval

(a) (b)

Interval Interval

(c) (d)

Figure 4. Interval execution times on 4 processors of the UltraSPARC Enterprise when performing optimization on the
SPARCstation 20: (a) Swim RemoteDyn, (b) Swim LocalDyn, (c) Tomcatv RemoteDyn and (d) Tomcatv LocalDyn.
NTb is the time that the loop would take if the best generated variant had been used during each execution of the
loop. Tlag is the overhead due to executing suboptimal variants because the best generated variant was not yet
available. Tfdbk is the overhead due to executing suboptimal variants during sampling phases while the best variant
was available. NoOpts refers to time spent in completely unoptimized code.

during the sampling phase is used during the produc-
tion phase. ADAPT, unlike dynamic feedback, tracks
loop bounds ensuring that all comparisons are, and re-
main, valid.

A dynamic technique often discussed in relation to
parallel processing is runtime data dependence test-
ing. In [9, 10, 3], runtime tests are performed to un-
cover parallelism undetectable at compile-time. One
open issue is to decide when and where to apply
such tests since the overheads are often large. Run-
time dependence testing can easily be incorporated as
a technique into the Polaris/ADAPT infrastructure.
ADAPT could then dynamically determine where to
apply the technique pro�tably.

Much work has also been done on dynamic compi-
lation and code generation [11, 12, 13, 1, 14, 15, 16].
This work has primarily focused on e�cient runtime
generation and specialization of code sections that are
identi�ed through user-inserted code or directives. To
reduce the time spent in code generation, optimizations
are usually staged by using compilers that are special-
ized to the part of the program being optimized [11].
We attempt to minimize the need for specialized dy-
namic compilers by removing code generation from the
critical execution path of a program.

Plezbert and Cytron [17] have proposed continuous
compilation to overlap the \just-in-time" compilation
of Java applications with their interpretation. Compi-
lation occurs in the background as the program con-
tinues to be executed through interpretation. They
order the code section to be compiled by targeting
hot-spots �rst. This is also the approach taken by the
Java HotSpot Performance Engine [18]. Unlike our ap-
proach, there is no specialization performed using ma-
chine or input data set information. We have shown
that it is possible to specialize using relatively con-
stant runtime characteristics by compiling in the back-
ground.

6 Conclusions

Automated de-coupled adaptive program transfor-
mation (ADAPT) is a novel approach for dynamic pro-
gram optimization that builds on the strengths of ex-
isting schemes. It de-couples runtime code generation
from the dynamic selection of generated variants at
their points of use. The dynamic selection mechanism
in our scheme allows for sampling to be done, as in
the dynamic feedback approach, as well as for a prun-

7



ing of the sampling space. We have given an overview
of our framework and have presented and evaluated a
compiler-supported framework for applying it.

We have shown that ADAPT can improve perfor-
mance by up to 70% over statically optimized code.
Our framework performs best with applications that
are regular, and that have long execution times. Ap-
plications that have frequently changing loop bounds
may pro�t from techniques that do not use sampling as
a selection mechanism. Programs that have short exe-
cution times may improve in performance if the applied
optimizations have large impact, but the lag in the
availability of optimized variants, due to de-coupling,
can have a signi�cant impact on the execution time.

Our framework substantially simpli�es one of the
most di�cult tasks in traditional compiler design:
the decision making of when and where to apply a
transformation. ADAPT makes these decisions based
upon runtime measurements (i.e., sampling) and op-
tional user-supplied static and dynamic pruning cri-
teria. ADAPT uses \plugged-in" optimization tech-
niques, allowing developers to easily add new optimiza-
tions. We believe that our framework and comprehen-
sive compiler support provides, for the �rst time, a
practical method for using and experimenting with di-
verse dynamic program optimizations. It facilitates the
combination of a wide variety of new and existing opti-
mization techniques and the development of strategies
for orchestrating them in an optimal way.

References

[1] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, e�ective dynamic compilation.
In Proc. of the SIGPLAN '96 Conf. on Program Lan-

guage Design and Implementation, May 1996.

[2] Pedro Diniz and Matrin Rinard. Dynamic feedback:
An e�ective technique for adaptive computing. In
Proc. of the ACM SIGPLAN '97 Conf. on Program-

ming LanguageDesign and Implementation,May 1997.

[3] L. Rauchwerger and D. Padua. The LRPD Test: spec-
ulative run-time parallelization of loops with privati-
zation and reduction parallelization. In Proceedings of

the SIGPLAN 1995 Conference on Programming Lan-

guages Design and Implementation, June 95.

[4] R. Clint Whaley and Jack J. Dongarra. Automati-
cally tuned linear algera software. In SC'98: High

Performance Networking and Computing Conference,
November 1998.

[5] William Blume, Ramon Doallo, Rudolf Eigenmann,
John Grout, Jay Hoe
inger, Thomas Lawrence, Jae-
jin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel pro-
gramming with Polaris. IEEE Computer, 29(12):78{
82, December 1996.

[6] Michael J. Voss and Rudolf Eigenmann. A framework
for remote dynamic program optimization. In Pro-

ceedings of Dynamo'00: ACM SIGPLANWorkshop on

Dynamic and Adaptive Compilation and Optimization,
January 2000.

[7] M. Byler, J.R.B. Davies, C. Huson, B. Leasure, and
M. Wolfe. Multiple version loops. In International

Conf. on Parallel Processing, pages 312{318, August
1987.

[8] Rajiv Gupta and Rastislav Bodik. Adaptive loop
transformations for scienti�c programs. In IEEE Sym-

posium on Parallel and Distributed Processing, pages
368{375, October 1995.

[9] J. Saltz, R. Mirchandaney, and K. Crowley. Run time
parallelization and scheduling of loops. IEEE Trans-

actions on Computers, 40(5), May 1991.

[10] Lawrence Rauchwerger and David Padua. The PRI-
VATIZING DOALL Test: A Run-Time Technique for
DOALL Loop Identi�cation and Array Privatization.
Proceedings of the 8th ACM International Conference

on Supercomputing, pages 33{43, July 1994.

[11] Brian Grant, Matthai Philipose, Markus Mock, Craig
Chambers, and Susan J. Eggers. An evaluation of
staged run-time optimizations in DyC. In Proc. of the

SIGPLAN '99 Conf. on Program Language Design and

Implementation, May 1999.

[12] Renaud Marlet, Charles Consel, and Philippe Boinot.
E�cient incremental run-time specialization for free.
In Proc. of the SIGPLAN '99 Conf. on Program Lan-

guage Design and Implementation, May 1999.

[13] Massimiliano Polettto, Wilson C Hsieh, Dawson R
Engler, and M. Frans Kaashoek. 'C and tcc: A
language and compiler for dynamic code generation.
ACM Transactions on Programming Languages and

Systems, 21(2):324{369, March 1999.

[14] Charles Consel and Francois Noel. A general approach
for run-time specialization and its application to C.
In Proc. of the SIGPLAN '96 Conf. on Principles of

Programming Languages, January 1996.

[15] D. Engler. VCODE: a retargetable, extensible, very
fast dynamic code generation system. In Proc. of the

SIGPLAN '96 Conf. on Program Language Design and

Implementation, May 1996.

[16] P. Lee and M. Leone. Optimizing ML with run-
time code generation. In Proc. of the SIGPLAN '96

Conf. on Program Language Design and Implementa-

tion, May 1996.

[17] Michael P. Plezbert and Ron K. Cytron. Does \just in
time" = \better late than never"? In Proc. of the ACM
SIGPLAN-SIGACT '97 Symposium on Principles of

Programming Languages, January 1997.

[18] Sun Microsystems. The Java HotSpot Perfor-
mance Engine Architecture. Technical White Paper,
http://java.sun.com/products/hotspot/whitepaper.html,
April 1999.

8


