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Abstract: Robot arms are one of many assistive technologies used by people with motor impairments.
Assistive robot arms can allow people to perform activities of daily living (ADL) involving grasping
and manipulating objects in their environment without the assistance of caregivers. Suitable input
devices (e.g., joysticks) mostly have two Degrees of Freedom (DoF), while most assistive robot arms
have six or more. This results in time-consuming and cognitively demanding mode switches to
change the mapping of DoFs to control the robot. One option to decrease the difficulty of controlling
a high-DoF assistive robot arm using a low-DoF input device is to assign different combinations of
movement-DoFs to the device’s input DoFs depending on the current situation (adaptive control). To
explore this method of control, we designed two adaptive control methods for a realistic virtual 3D
environment. We evaluated our methods against a commonly used non-adaptive control method that
requires the user to switch controls manually. This was conducted in a simulated remote study that
used Virtual Reality and involved 39 non-disabled participants. Our results show that the number
of mode switches necessary to complete a simple pick-and-place task decreases significantly when
using an adaptive control type. In contrast, the task completion time and workload stay the same. A
thematic analysis of qualitative feedback of our participants suggests that a longer period of training
could further improve the performance of adaptive control methods.

Keywords: assistive robotics; human–robot interaction (HRI); shared user control; augmented reality;
virtual reality; visual cues

1. Introduction

Robotic solutions are becoming increasingly prevalent in many areas of our pro-
fessional and personal lives and have started to evolve into collaborators [1,2]. A non-
negligible number of people live with motor impairments, ranging from slight limitations
to severe paralysis [3]. While a near-complete integration into professional and social life is
the final goal, current assistive robotic technologies focus on performing activities of daily
living (ADLs). These include tasks ranging from essentials such as eating and drinking to
more complex behaviors such as grooming and activities associated with leisure time [4].

A general problem with assistive robotic solutions is finding suitable methods and
technologies for controlling such robots. Assistive robotic devices are often characterized as
having a large number of Degrees of Freedom (high-DoF). For example, a robotic arm with
a simple gripper can freely operate in 3D space and move along Cartesian space as well as
yaw, pitch, and rotate. This typically results in five to seven DoFs. Standard input devices,
such as joysticks, only cover two DoFs. To control a high-DoF device with a low-DoF input
device, mode switching is used. This means that at any point in time, the user has to select
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a mode, which then maps the two DoFs of the input device to two of the total available
DoFs of the robot while neglecting the others. While high-DoF input devices do exist, they
are not often accessible for people with motor impairments.

Using a human–computer interface with a standard button-based mode switching
setup, Herlant et al. discovered that more than one-sixth of the total execution time is spent
changing the currently selected mode [5]. They showed that automatic mode switching
leads to increased user satisfaction within a deterministic simulation environment and with
a predefined goal.

Our latest research findings provide a proof-of-concept for a novel method of shared
control of an assistive robot. We evaluated the idea within a 2D simulation environment [6].
The novel control method uses a Convolutional Neural Network (CNN) to adaptively
generate DoF mappings based on camera data of the current situation. From a user
perspective, this system can help the user choose an optimal mapping of available control
DoFs for a low-DoF input device, either automatically or upon the user’s request. In this
paper, we build on this approach, focusing in particular on the user interface. Having an
adaptive mapping of control DoFs to the input device can be challenging to understand
and learn, which is why there is a need for visual feedback to convey that information to
the user. The approach in our previous work included visual cues in the form of arrows.
While the results are promising (see Section 2), the limitation of a 2D environment means
that it is difficult to predict how this approach transfers to 3D. For example, certain DoF
combinations might be more difficult to display with arrows in a 3D environment and lead
to visual clutter.

The goal of this paper is to explore the proposed novel control method, as well as
possible visual cues for the DoF mappings. In particular, we want to explore how the
novel, adaptive control method performs in a 3D environment compared to the standard
mode-switch approach with cardinal DoF mappings and whether changes in the visual
cues have an impact on the performance of the adaptive control method.

We conducted a remote online study with 39 non-disabled participants, in which we
compared three different control types with different DoF mapping behaviors and visual
cues. These were Classic and Double Arrow, which used two arrows attached to the fingers
as visual cues, and a visually reduced variant Single Arrow. Single Arrow only used one
arrow through the middle of the gripper (see Section 3 for a detailed description of each
control type).

The study was conducted inside a 3D Virtual Reality (VR) environment, utilizing Head-
Mounted Displays (HMDs) for an immersive experience (see Section 4.3 for a complete
description of the virtual environment). The participants repeatedly performed a simple
pick-and-place task, controlling a virtual robot arm using the three control types (see
Section 4.5 for a detailed description of the study design).

Due to the ongoing COVID-19 pandemic, we opted to recruit non-specific participants
that had access to the required hardware (an Oculus Quest VR-HMD) to participate in our
study. None of the recruited participants reported living with any motor impairments. We
acknowledge this limitation and discuss how our findings can be transferred to the target
group of people with motor impairments in Section 7.

As our main contribution, we present findings from our study, which compare our
two adaptive control types with the standard mode-switch control type, explicitly focusing
on task completion times, number of mode switches and workload. In addition, we
contribute an extensive discussion of qualitative results from voice recordings of our
participants, providing a deeper understanding of the benefits and challenges of each of
the three control types.

2. Related Work

To assist people with physical or cognitive impairments, prior research often suggests
possible solutions that use robots that automate specific tasks [7–10]. Assistive robots
are found in a variety of designs. There are stationary robots specifically designed for
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meal-assistance [11], socially assistive robots for elderly people and people with cognitive
impairments [12], navigational robots for blind people [13], and many more examples,
both in research and commercially. Besides stationary robots (e.g., fixed to a table) [14],
there are also moving robots attached to mobile platforms [15,16] or mounted to the user’s
wheelchair [9].

To help people with motor impairments, assistive robot arms are widely used, both
within the workspace and in performing ADLs [17]. Their flexibility allows for many
different applications, such as feeding assistance [18], fetch and pick-up tasks [15], and
cataloging of books [7].

Robotic assistance is generally well-received by people with motor impairments. Drol-
shagen et al. found that people with disabilities quickly accept working with robots, even if
the robots are in close proximity [19]. Regarding ADLs specifically, Pascher et al. conducted
an ethnographic study with 15 participants with tetraplegia, multiple sclerosis, Locked-In
Syndrome, and similar diseases [20]. They found that people with motor impairments
would prefer to perform ADLs themselves with the help of a robotic aid as opposed to
with the help of another person. People with motor impairments want to “live more
independently” and “gain increased autonomy”.

However, automating ADLs, as suggested in research, can have unintended conse-
quences. Pollak et al. conducted a study comparing manual and autonomous modes of
collaboration with a collaborative robot (cobot) [21]. They found that using the manual
mode in which the cobot would perform tasks only upon interaction with the participants
decreased stress significantly. The participants felt “more capable of coping with and
controlling the situation” than in the autonomous mode.

Similarly, Kim et al. conducted a study with subjects with spinal cord injuries using
an assistive robot arm in either a manual or an autonomous mode [22]. They found that
overall task completion times for manual and autonomous usage for trained participants
were similar, but user satisfaction was higher in manual mode. This is despite the fact
that autonomous usage decreased the effort necessary to perform tasks significantly. The
authors call for more flexible interfaces to control assistive robot arms.

When interacting with robots that carry out movements, a study by Cleaver et al.
showed that users generally prefer to have a visual representation of the robot’s future
movements. However, having this visualization does not significantly affect the perfor-
mance when executing tasks using the robot [23]. When using a visual representation of
robot motion intent, the most prominent solution is to show the robot’s movement using
arrows [24–26]. In addition, most of these approaches rely on Augmented Reality to overlay
the visual representation on the user’s real environment.

Heeding the call for more flexible interfaces, we proposed in our recent work an
adaptive control concept for assistive robot arms that promises to allow users to be in
control at all times while still providing them with more assistance during ADLs than the
standard mode switch control concept [6]. In this proposed concept, a CNN interprets the
video feed of a camera attached to the robot arm and adaptively outputs the most likely
movement DoFs.

With current control concepts, users with low-DoF input devices, such as simple
joysticks, can only move the gripper of an assistive robot arm in cardinal directions (i.e.,
movement and rotation around Cartesian X-, Y-, and Z-Axes). The user has to switch and
choose between the provided mappings of input DoFs to some of the robot’s DoFs. This
may include the pairings of different DoFs of the robot that are less than ideal for the given
situation, resulting in many time-consuming and mentally demanding mode switches.
Additionally, in any given mode, an input on an axis of a low-DoF device would move the
gripper only in the cardinal direction currently assigned to this input DoF. Combinations of
multiple output DoFs (such as orbiting an object, which is the combination of rotation and
translation) require more than one input DoF (e.g., both the X- and Y-Axes of a joystick) to
be engaged simultaneously in such systems.
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To solve this problem, we proposed a representation of these assignments of input
DoFs to output DoFs in the form of a matrix similar to the one seen in Figure 1 in our
previous work. Each row in that matrix represents a cardinal output DoF, while each
column represents the input DoFs of an input device. The values in a column determine
which movement the robot’s gripper will perform if the input DoF is engaged. For example,
an identity matrix would yield a behavior identical to the cardinal mode switch approach,
as each input DoF is only mapped to one cardinal output DoF.
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Figure 1. Two different DoF-mappings as matrices—Left: Classic control (one input-DoF controls
one cardinal output-DoF), Right: Arbitrarily combined controls (one input-DoF controls more than
one cardinal output-DoF at the same time).

This representation allows for combinations of multiple output-DoFs for one input-
DoF. For example, if the first column contains a value of 0.5 in the first two rows, engaging
the first input-DoF would result in a diagonal movement along the XY-plane of the robot’s
coordinate system (see the matrix on the right in Figure 1). According to the current
situation, the proposed control concept adaptively fills this matrix to create the most useful
combination of output-DoFs.

We then conducted a small study with a 2D proof-of-concept simulation for our pro-
posed control concept. 23 participants used a “standard”, and an “adaptive” control
type for a simulated 2D robot that could drive forwards, sideways, rotate around
its center, and close its fingers to move blue boxes to target red boxes (see Figure 2).
This is the 2D equivalent to a simple pick-and-place task in 3D. Both control types
switched modes after five seconds without user input.

The results of our study showed that subjectively the “adaptive” control was
experienced as significantly faster but significantly more difficult than the “stan-
dard” control. “Adaptive” control also led to significantly shorter sequence execu-
tion times.

While these findings are promising, the concept requires further evaluation in
3D and in a more complex environment with devices that have more DoFs. We set
out to do precisely that: evaluate the proposed concept of adaptive control in a more
complex environment with a robot arm with seven DoFs.

Figure 1. Two different DoF mappings as matrices—(Left): classic control (one input DoF controls
one cardinal output DoF); (Right): arbitrarily combined controls (one input DoF controls more than
one cardinal output DoF at the same time).

This representation allows for combinations of multiple output DoFs for one input
DoF. For example, if the first column contains a value of 0.5 in the first two rows, engaging
the first input DoF would result in a diagonal movement along the XY plane of the robot’s
coordinate system (see the matrix on the right in Figure 1). According to the current
situation, the proposed control concept adaptively fills this matrix to create the most useful
combination of output DoFs.

We then conducted a small study with a 2D proof-of-concept simulation for our
proposed control concept. A total of 23 participants used a “standard” and an “adaptive”
control type for a simulated 2D robot that could drive forwards, sideways, rotate around
its center, and close its fingers to move blue boxes to target red boxes (see Figure 2). This
is the 2D equivalent of a simple pick-and-place task in 3D. Both control types switched
modes after five seconds without user input.

The results of our study showed that, subjectively, the “adaptive” control was sig-
nificantly faster but significantly more difficult than the “standard” control. “Adaptive”
control also led to significantly shorter sequence execution times.

While these findings are promising, the concept requires further evaluation in 3D
and in a more complex environment with devices that have more DoFs. We set out to
do precisely that: evaluate the proposed concept of adaptive control in a more complex
environment with a robot arm with seven DoFs.

Figure 2. The simulated robot with two out of the four cardinal DoFs (left) and two adaptive DoFs
(right) [6].

3. Control Types for a 3D Environment

To compare the standard control type of switching between cardinal modes to the
adaptive approach, we implemented three control types (see Figure 3) in a simulated 3D
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environment (see Section 4.3). This simulated environment is meant to act as a proxy for a
potential Augmented Reality (AR) implementation. There, users would control an assistive
robot arm and see the visual feedback superimposed on the real world and robot via an
AR-HMD device. Instead, in our 3D simulation, users wear an Oculus Quest VR-HMD,
which superimposes the visual feedback directly in the computed 3D scene. An overview
of the environment and the control types described in the following sections is provided as
a video (see Video S1).

All three control types use arrows as visual cues. Specifically, the arrows show which
direction the gripper will move if a user engages the corresponding input DoF. To allow the
users to predict the robot’s movement when engaging the input DoF with positive values
(e.g., pressing the control stick up) and negative values (e.g., pressing the control stick
down), the arrows have two heads. Each arrowhead points towards the corresponding
movement direction.

(a) (b) (c)

Figure 3. Visualization for the different control types: (a) Classic; (b) Double Arrow; (c) Single Arrow.

Using visual cues in 3D as opposed to 2D often causes visual obstruction, e.g., if the
gripper is close to the table, the active DoF would lower the gripper towards the table. In
that case, the arrows would clip through the table, making them partially invisible to the
user. It would also be common that the robot’s gripper itself obstructs parts of the arrows,
making them harder to see and interpret. To eliminate these problems, the arrows were
made translucent and are always rendered above all other objects yet shown at the correct
depth as if looking through whatever is blocking them. This behavior is similar to viewing
the scene through Augmented Reality glasses, which would overlay the arrows onto a real
scene as opposed to showing the arrows as part of the real world that can be blocked by
other real-world objects.

To more easily communicate the currently active mode, all control types show a blue
indicator above the robot gripper consisting of four spheres, each representing a mode (see
Figure 3). The sphere representing the currently active mode is darker and less translucent
than the inactive ones, indicating how many modes are left to switch through before
returning to the first.

3.1. Manually Designed DoF-Calculations

The focus of this study was to evaluate how adaptively changing DoF mappings
would impact the participant’s experience in a more complex 3D environment. While we
proposed a CNN to perform these calculations in our previous work [6], there are other
ways of calculating these DoF mappings. We developed a manually scripted method of
calculating these DoF mappings for the specific task used in the study instead of training a
CNN. This method generates a matrix with the same rules described in our previous work
(see Figure 1) to represent DoF mapping, thus providing the possibility of equal movements
as generated by a CNN trained on camera data. Since our primary focus is the participant’s
experience with the adaptively changing DoF mappings, we assumed that this approach
would significantly decrease the possibility of unpredictable behavior while having little
impact on the applicability of our findings to a system using a CNN. A detailed description
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of the generated output values is presented in the description of the adaptive control types
(see Sections 3.3 and 3.4).

This approach is akin to the widely used “Wizard of Oz” method, in which the output
of a proposed system is instead provided by a human to test the user experience of that
proposed system before finishing the implementation. In our case, we instead simulated
the output of a complex CNN using a simpler system. As with “Wizard of Oz” experiments,
our results should therefore be applied to the user experience with the system using a CNN,
but the absolute performance measures may vary.

We developed three control types—Classic, Double Arrow, and Single Arrow—to func-
tion with different assistive robot arms and different input devices. To conduct the study,
we decided to use the widely available stand-alone VR headset Oculus Quest. The Oculus
Quest consists of the headset itself, and two motion controllers, one for each hand, with
several buttons and a control stick each. Participants executed a simple pick-and-place
task (see Section 4.6) in our VR environment using a virtual model of the Kinova Jaco robot
arm using each of the control types (see Section 4.3 for a detailed description of the virtual
environment and the VR setup).

3.2. Classic Control Type

The Classic control type implements the standard mode switch control type most
commonly used to control assitive robot arms. This means that an input DoF always
corresponds to a cardinal output DoF. Given the seven cardinal DoFs of the Jaco robot arm
(X-Translation, Y-Translation, Z-Translation, Roll, Yaw, Pitch, Open/Close fingers) and two
input DoFs (the X-Axis and Y-Axis on a motion controller’s control stick) four modes are
available to the users:

1. X-Translation + Y-Translation;
2. Z-Translation + Roll;
3. Yaw + Pitch;
4. Open/Close fingers + Nothing.

The last mode has no assigned output DoF for the X-Axis on the control stick to allow
the users to learn an axis-to-action mapping.

Users can switch modes by pressing the A-Button on the right-hand motion controller.
This allows them to perform the tasks at their own pace and assess the usefulness of a
mode as long as they need to. Whenever the A-Button is pressed while the fourth mode is
active, the first mode is selected again, allowing the users to cycle through modes at will.

Two arrows attached to the fingers of the gripper show the users which motion the
gripper would perform, given a user’s input on the respective input DoF. Red arrows repre-
sent the movement assigned to the Y-Axis of the control stick, and green arrows represent
the movement assigned to the X-Axis of the control stick. As the motion controllers are also
rendered in the virtual environment, we added a visual representation onto the control
stick rendered in-game. A cross with one red axis and one green axis is shown on the
motion controller to indicate which direction corresponds to which color. A blue sphere
surrounds the A-Button to match it to the blue mode indicator (see Figure 4).
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Figure 4. The virtual motion controller with directional indicators and the robot arm with matching
arrows visualizing the currently selected mode.

3.3. Double Arrow Control Type

The Double Arrow control type implements the proposed adaptive control method
using two arrows to show the position of the fingers if a user engages an input DoF.
Therefore, each input DoF corresponds to a combination of cardinal DoFs determined
based on the current situation. To ensure comparability with the Classic control type in
regards to the number of mode switches necessary to return to the starting mode, four
modes were developed. The modes are ordered by their complexity and usefulness to the
users’ goal of reaching the next target.

As in the Classic control type, two arrows attached to the fingers of the gripper show
the users which motion the gripper would perform, given a user’s input on the respective
input DoF. Red arrows represent the movement assigned to the Y-Axis of the control stick,
and green arrows represent the movement assigned to the X-Axis of the control stick.

The first mode assigns the Y-Axis of the control stick to a movement that both rotates
and translates the gripper towards the next target simultaneously. More precisely, if the
gripper is further than 10 cm away from the target, the movement is oriented towards a
point 15 cm above the target. If the gripper is closer than 10 cm to the target, the movement
is oriented towards the actual target. This ensures that the gripper tends to grasp and
let go of objects from above, as opposed to trying to do so from the sides and thereby
possibly crashing into the table. If the gripper is within reach of an object or target point
where an object is supposed to be placed by the users, it also allows them to open and
close the fingers. The X-Axis of the control stick in the first mode is assigned the same
movement as the Y-Axis but rotated by 90◦ to allow for corrections perpendicular to the
Y-Axis movement.

To provide users with more options, the second mode assigns the Y-Axis of the control
stick to a linear translational movement towards the object and the X-Axis of the control
stick to a rotational movement of the gripper towards the next target. Both of these
assignments were chosen since only moving or only rotating are less likely to further
the goal of the users. However, the individual movements themselves are still integral
movements for coordinating the gripper orientation and some movement towards the
goal. In the optimal case, this means that users would not need to use this mode, as both
orientation and positioning would be taken care of simultaneously by the first mode.
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The third mode assigns the Y-Axis of the control stick to the opening or closing the
fingers, depending on whether an object was currently held or not. The X-Axis of the
control stick has no assignment in this mode to ensure comparability with the Classic
control type.

If users stop moving the gripper, they should always be able to move the same way
they did before. To ensure this, the fourth mode always assigns the X- and Y-Axis of
the control stick the same mappings that were last used to move the gripper. Otherwise,
users who would want to assess if they had moved the robot far enough for their personal
preference using a given mapping would have no possibility to correct their course.

The system calculates the next movement mappings whenever the users stop moving
the robot. However, the system does not instantly assign the first mode to be active, as
this would disrupt the users’ flow of control (i.e., they might have stopped to asses the
situation and then decided to continue with the DoF mapping they were using). Moreover,
this would harm comparability to the Classic control type (as no automatic mode switches
happen in that control type). This means that whenever the users stop moving, the blue
mode indicator would show the fourth mode as being active, and a press on the A-Button
would lead to the newly calculated first mode.

3.4. Control Type Single Arrow

During the development of Classic and Double Arrow we discovered that, while two
arrows are a perfectly suitable visualization for a 2D environment, these arrows can result
in a large amount of visual clutter during complex movement in 3D environments. We
decided to develop a visualization that reduces visual clutter in a 3D environment and
compare its usage to the Double Arrow control type.

Dubbed Single Arrow, the input-to-output DoF mappings are calculated in the exact
same way as the mappings in Double Arrow. Switching between modes is also handled in
the same way as in Double Arrow. However, the visualization changes from displaying two
arrows at the tips of the fingers to displaying one arrow in the middle of the gripper, with a
slight offset to allow certain movements to be displayed. This reduces visual clutter for all
situations except when the fingers move.

4. Materials and Methods

We present a remote study with 39 participants to compare the proposed concept of
adaptive control (in two variations) against the standard mode-switch control concept. In
particular, we measured task completion times, the number of mode switches necessary to
perform a task, the workload necessary to use the different control concepts via a NASA
Raw-TLX (NASA Raw Task Load Index), and the participants’ personal ranking of the
three presented control types. Participants used their own Oculus Quest headset to perform
a simple pick-and-place task using a virtual robot inside a realistic 3D environment.

4.1. Hypotheses

We propose the following hypotheses:

• Average Task Completion Time

– H1 Double Arrow leads to lower task completion time than Classic. The adaptive
control of Double Arrow should significantly reduce the movements necessary
to perform the task by combining different cardinal DoFs into one continuous
movement, which otherwise would each have to be adjusted separately.

– H2 Single Arrow leads to lower task completion time than Double Arrow. Only using
one arrow for each DoF mapping should reduce visual clutter. This should lead
to a shorter processing time of the suggested movements, reducing the total time
to execute a task.

• Average Number of Mode Switches
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– H3 Double Arrow leads to fewer mode switches than Classic. The adaptive control
of Double Arrow should reduce the necessity to switch modes significantly. Since
different DoFs are combined depending on the current situation, a change in po-
sition and rotation brings the robot arm closer to the target and can be performed
without mode switches.

– H4 Single Arrow and Double Arrow need roughly an equal number of mode switches.
The behavior of the two adaptive control types is the same. Thus, while it might
take participants longer to understand what movements they can perform with
Double Arrow as opposed to Single Arrow, they should switch modes approxi-
mately as often in both control types.

• Workload

– H5 Double Arrow leads to lower NASA TLX scores than Classic. The adaptive
control of Double Arrow calculates sensible movements to reach the next goal
position and rotation. Thus, it should alleviate the participants from having to
think of a sequence of movements to reach their goal, reducing workload. This is
in contrast to the findings of our previous study, in which participants perceived
the Adaptive control as more complex than the Standard control [6]. We expect the
benefit of pre-calculated DoF combinations and the workload of developing a
sequence of movements in cardinal DoFs to be higher in a 3D environment than
in a 2D environment. Therefore, the workload for the adaptive control types
should be lower than for Classic in 3D.

– H6 Single Arrow leads to lower NASA TLX scores than Double Arrow. Since we
assume that reduced visual clutter leads to a shorter processing time for the
suggested movements, the NASA TLX scores of Single Arrow should be lower.

4.2. Participants

In total, 39 people participated in our study (12 female, 26 male, 1 non-binary), which
led to a data-set of 936 individual trials (8 per control type, 24 per participant). The
age of participants ranged from ≤19 to 69, with 20 to 29 being the largest group with
22 participants. Four participants had prior experience with controlling an assistive robot
arm, and no participants declared any motor impairments. All participants received EUR
10 as compensation unless they specifically denied the offer.

Due to the ongoing COVID-19 pandemic, we opted to perform a remote study using
VR. We did not specifically search for participants with motor impairments because the
potential target audience for people with VR setups at home that also have motor impair-
ments appeared too small. There would not be enough time to gather enough participants
in a realistic time frame. Instead, we searched for any participants that had access to the
necessary equipment (an Oculus Quest headset, see Section 4.3) and were able to install our
study software on their devices. With these non-specific participants, the performance mea-
sures for executing the tasks in our study with the different control types (see Section 4.6)
can be compared relative to one another, even though they may not be representative of
the intended target audience of such an assistive device. We acknowledge this limitation,
which is further discussed in Section 7.

Participants were recruited via announcements in different social media communi-
ties relating to VR (e.g., r/OculusQuest: https://www.reddit.com/r/OculusQuest/, ac-
cessed on 3 January 2022), social media communities regarding assistive technologies (e.g.,
r/AssistiveTechnologies: https://www.reddit.com/r/AssistiveTechnology/, accessed on
3 January 2022), and platforms for acquiring participants specifically for XR studies (e.g.,
XRDRN: https://www.xrdrn.org/, accessed on 3 January 2022) among other more local
announcements.

To ensure that VR sickness symptoms did not influence our results, the participants
filled out the Virtual Reality Sickness Questionnaire (VRSQ) at the end of the study [27]. The
VRSQ measures nine items on a four-point Likert scale and results in a value between 0 and
100, where 0 means no symptoms experienced and 100 means all symptoms were severe.

https://www.reddit.com/r/OculusQuest/
https://www.reddit.com/r/AssistiveTechnology/
https://www.xrdrn.org/
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Reported values were low (Mean: 11.30, Std.-Dev.: 11.38), and none of the participants
selected the “Severe” option for any of the items.

4.3. Apparatus

We designed a Virtual Reality environment based on a photogrammetry scan of a real
room. The environment included a virtual model of the Kinova Jaco (Kinova Jaco robot arm:
https://assistive.kinovarobotics.com/product/jaco-robotic-arm, accessed on 3 January
2022) robot arm attached to a table, a red target surface, a blue block, and two virtual
screens—one for descriptions and questionnaires and one that would show example photos
of the control types (see Figure 5). We decided to use a virtual model of a real robot arm
(Kinova Jaco) to stay as close to a physical system as possible. Additionally, the Kinova Jaco
robot arm is specifically designed and often used as an assistive device for people with
motor impairments [5].

Figure 5. The virtual environment: description screen (Left); screen with example photos of the
control types (not shown); Kinova Jaco with visualisation for control type Single Arrow (Right); table
with blue block and red target (Bottom).

The virtual environment was created with the Unreal Engine 4.26 and was developed
to be deployed to the Oculus Quest VR headset. Participants had to either own or have
access to such a headset and be able to install the study software on that headset using a
computer (Windows, macOS, and Linux could be used). Although we tested our software on
the original Oculus Quest hardware, we did not explicitly exclude the use of the newer and
very similar Oculus Quest 2 headset. The Oculus Quest consists of the VR headset and two
motion controllers, one for each hand. Each motion controller has several buttons and a
control stick. Participants controlled the robot using the right motion controller of the VR
headset. In particular, the control stick of the motion controller moved the robot according
to the currently active control type. This enabled the participants to control which DoFs
were being used and how fast the robot would move. The A-Button was used to switch to
the next mode cyclically, returning to the first mode when a mode switch was performed in
the last mode.

To simulate the movement of the robot arm, the inputs did not move the joints of the
robot as they would with a physical robot arm. Rather, the gripper of the virtual robot arm
is moved in 3D space according to the inputs, and the arm of the robot is programmed to
adopt a correct pose automatically. This was implemented using the physics system of the
Unreal Engine.

https://assistive.kinovarobotics.com/product/jaco-robotic-arm
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4.4. Procedure

Participants were directed to a website with a brief introduction to the study, the
duration of the study (around 30 to 45 min), the technical and non-technical prerequisites
to participate in the study, and a description about what data would be collected during
the study. Participants were informed that certain metrics and usage data, such as task
completion times, will be recorded and sent to our servers during the study. They were
also informed that they would need to fill out a short questionnaire after each condition of
the study and that they would be able to record a short audio message after each condition.
Lastly, participants were informed that cookies were being used on our website. Each
participant gave informed consent by pressing a clearly labeled button to continue and
start the study. After giving their consent, participants were instructed on how to install
and open the study application and what to do when they were finished with the part
of the study inside the VR headset. During the study, neither a video of the participants
surroundings through the VR headsets external cameras and sensors nor a screen-recording
was captured.

Next, the participants put on their VR headsets and opened our study application.
They were greeted with a brief explanation of the study on a large virtual screen. Except for
the questionnaires after each control type, any text that was available to read on that screen
was also simultaneously read aloud as a prerecorded voice-over. The participants interacted
with this screen via a common interaction method that was also used in the menus of the
Oculus Quest headset: pointing a ray that originated from the motion controller towards
the screen and using the trigger to confirm input.

After the study explanation, the participants were presented with a description of the
first control type they would be using and the task they would be performing. This explana-
tion was supplemented with an image on a second smaller virtual screen. The descriptions
were written in a way that described how the gripper would move in relation to the current
situation. We did not explicitly describe the intentions behind the different modes and their
order in Double Arrow and Single Arrow (to provide ideally optimal mappings) to prevent
possible biases. Otherwise, the participants might have been inclined to trust the adaptive
mappings against their own judgment, thereby changing their behavior.

The explanation of each control type was followed by a series of trials of our pick-and-
place task (see Section 4.6) the participants had to execute to progress through the study.
For each control type, the task was performed once as a training trial and then eight more
times for the same control type. During these eight trials, the task completion time and the
number of mode switches performed was recorded.

After executing all trials for a control type, the participants were presented with the
NASA Raw-TLX questionnaire to capture the participants’ workload. Additionally, the
participants could record a short audio message to point out additional things they felt
were relevant during the execution of the trials. The recording of the audio message was
optional. After filling out the questionnaire and optionally recording an audio message,
the participants would continue with the next control type until they had executed all trials
for all three control types.

Upon finishing the VR part of the study, participants received a unique code to
be entered in a form on our website to complete the VRSQ [27] and our questionnaire.
We asked the participants to report their demographic data and rank the control types
presented in the VR section of the study. Lastly, participants left their contact information
to receive the compensation.

4.5. Study Design

We used a within-subjects design with the control type as an independent variable
with three levels: (1) Classic, (2) Double Arrow, and (3) Single Arrow. Each participant
performed eight trials of a pick-and-place task for each of the three control types (see
Section 4.6). Additionally, they performed one training trial for each control type to
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familiarize themselves with the control type. The order of control types shown to the
participants was fully balanced.

We measured three dependent variables for each control type: Average Task Completion
Time, Average Number of Mode Switches, and Workload via a NASA Raw-TLX questionnaire.

Average Task Completion Time in seconds While participants executed each trial with
the robot arm, the time to complete the task was measured for each participant. Then, the
average task completion time for each control type was calculated across all participants.
Average Number of Mode Switches While participants executed each trial with the robot
arm, each mode switch executed by pressing a button on the input device was counted and
stored as the number of mode switches. Then, the average number of mode switches for
each control type was calculated across all participants.
Workload via a NASA Raw-TLX questionnaire After completing all trials within each
control type, the participants were asked to fill out a NASA Raw-TLX questionnaire to
obtain information about the participants’ perceived workload. The questionnaire consists
of the following six criteria, which participants would rate on a scale of 0 to 100 in steps
of 5: mental demand, physical demand, temporal demand, performance, effort, and
frustration [28].

In addition, the participants could record a short description of their experiences
in the form of a voice message, although this was not mandatory. The recorded voice
messages were transcribed and analyzed by multiple researchers to identify underlying
themes and common impressions the participants had while using the virtual robot arm
(see Section 5.2). Participants also provided a personal ranking of the three control types in
a questionnaire at the end of the study.

4.6. Task

Participants were asked to repeatedly place a blue block onto a red target using the
assistive robot. Participants performed this task eight times per control type. We did not
use two blocks per trial to reduce variability in our results. We decided to use a simple pick-
and-place task instead of a specific ADL (e.g., drinking from a glass) since pick-and-place
tasks are part of many ADLs. Moreover, a specific ADL might have caused problems with
participants’ preconceived notions of that task (e.g., they would approach the glass in a
particular way, while the adaptive system would approach it differently). This would have
possibly distracted them from evaluating the control types as a whole, which we wanted
to avoid.

In each of the eight trials per control type, the position of the blue block changed to one
of eight predefined positions around the red target surface. The order in which the positions
were used in the eight trials was randomized for each participant and control type.

5. Results

We recorded both quantitative and qualitative data from the participants during the
trials. This section presents the results of each section from our data analysis.

5.1. Quantitative Results

The recorded quantitative data for each trial included task completion time (in seconds)
and the number of mode switches. For each control type, the quantitative data included the
NASA Raw-TLX results and the Rank given to the control type by the participants (lower
rank numbers are better). The used abbreviations and symbols are:

• IQR: Interquartile Range;
• SD: Standard Deviation;
• SE: Standard Error;
• p: p-value as an expression of the level of statistical significance;
• N: Sample Size;
• χ2(2): Chi-Squared with two degrees of freedom;
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• F: F-Statistic for the Repeated-Measures ANOVA;
• M: Mean;
• df: Degrees of Freedom for the calculation of χ2 for the Friedman Tests.

5.1.1. Task Completion Time

For each participant, we averaged the task completion times (see Table 1) of the trials
for each control type. In an exploratory analysis, we removed outliers that had average
task completion times ≥ 2.2 ∗ IQR of the mean task completion time in at least one control
type [29] (see Figure 6). Four outliers were excluded this way, leaving 35 participants for
analysis of task completion times. An inspection of QQ-plots found the resulting data-set
to follow a normal distribution.

Table 1. Statistics for average task completion times (in seconds, N = 35).

Classic Double Arrow Single Arrow

Mean 47.41 42.62 44.04
Median 44.66 37.75 41.23
Std.-Dev. 12.55 19.28 22.24
IQR 14.03 24.33 31.68

Figure 6. Boxplots for average task completion times.

To determine whether the control types had an effect on average task completion
times, we performed a Repeated-Measures ANOVA (RM-ANOVA). However, we found no
significant main effect (F(2, 64) = 1.31, p = 0.28).

In addition to the effect of control types, we examined whether the starting condition of
a participant had an impact on task completion times. We included the starting condition as
a between-subjects factor for the RM-ANOVA and discovered a significant interaction effect
between the starting condition and the task completion times (F(4, 64) = 8.86, p < 0.001).
Analyzing simple main effects, we discovered that the task completion times for Classic
stayed roughly the same regardless of the starting condition. However, both adaptive
control types heavily suffered when they were the starting condition (see Figure 7). A post
hoc pairwise comparison (Estimated Marginal Means, Bonferroni adjusted) showed that
task completion times for Single Arrow (M = 54.66 s, SE = 5.9) were significantly longer than
those for Double Arrow (M = 33.74 s, SE = 4.6) if Single Arrow was the starting condition
(p = 0.001). Conversely, task completion times for Double Arrow (M = 57.89 s, SE = 5) were
significantly longer than those for Single Arrow (M = 37.82 s, SE = 6.41) if Double Arrow was
the starting condition instead (p = 0.002). Another significant difference was found if Single
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Arrow was the starting condition: Classic task completion times (M = 48.23 s, SE = 3.57)
were longer than those of Double Arrow (M = 33.74 s, SE = 4.6) in that case (p = 0.013). The
other comparisons yielded insignificant results.

Figure 7. Estimated Marginal Means for average task completion times.

5.1.2. Mode Switches

To determine whether there were differences between the average number of mode
switches between control types we used an RM-ANOVA. Due to a software error, mode
switch data were only recorded correctly for 20 participants. We found a significant effect of
control types on the average number of mode switches (F(2, 38) = 8.08, p = 0.001). Pairwise
comparisons revealed that there were significant differences (p < 0.05) between the average
number of mode switches for both adaptive control methods (Double Arrow: M = 12.93,
SD = 3.91; Single Arrow: M = 14.23, SD = 5.15) and the Classic control method (M = 17.87,
SD = 4.8). We found no significant difference between the average number of mode switches
for Single Arrow compared to Double Arrow (p = 0.11, see Table 2 and Figure 8).

Figure 8. Boxplots for average number of mode switches.
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Table 2. Statistics for average number of mode switches (N = 20).

Classic Double Arrow Single Arrow

Mean 17.87 12.93 14.23
Median 16.50 11.63 12.31
Std.-Dev. 4.80 3.91 5.15
IQR 7.00 5.09 7.91

5.1.3. Workload and Rank

Each participant completed a NASA Raw-TLX questionnaire after completing the task
with each control type, rating each dimension on a scale from 1 to 100. To evaluate whether
there were any differences between the control types regarding workload, Friedman Tests
were performed for both the overall NASA TLX value as well as the individual dimensions
of the questionnaire. No significant differences were found for either the overall NASA
TLX value (χ2(2) = 5.33, p = 0.07) or the individual dimensions (see Table 3).

We also evaluated whether the users preferred one control type over the others. To do
so, the participants ranked the control types after completing all tasks. A lower number
means the participant ranked that control type higher. No significant differences were
found for the ranks (χ2(2) = 0.97, p = 0.65) (see Table 4).

Table 3. Statistics for individual NASA TLX Dimensions on a scale from 1 to 100 (df = 2, N = 39 for
all Friedman Tests).

Mental Physical Temporal Performance Effort FrustrationDemand Demand Demand

Classic (Mean) 53.33 30.26 36.92 32.05 48.59 41.41
Classic (Std.-Dev.) 24.64 21.67 21.07 20.48 24.84 24.52

Double Arrow (Mean) 56.28 28.21 40.38 38.97 52.82 43.08
Double Arrow (Std.-Dev.) 22.93 16.20 25.06 25.50 24.08 26.40

Single Arrow (Mean) 48.97 27.56 36.03 40.64 51.41 38.33
Single Arrow (Std.-Dev.) 24.69 22.94 20.56 26.61 23.25 26.34

Mean Ranks

Classic 2.04 1.92 1.96 1.73 1.79 1.92
Double Arrow 2.21 2.17 2.18 2.15 2.18 2.17
Single Arrow 1.76 1.91 1.86 2.12 2.03 1.91

Friedman Tests

χ2 4.23 2.07 2.38 4.86 3.15 1.76
Exact Significance 0.12 0.37 0.31 0.09 0.21 0.43

5.2. Qualitative Results

Participants were asked to describe their experience with the control type they used
in a voice message. They were asked to elaborate on the ease of controlling the robot,
their understanding of movement directions, and the predictability of the next movement
directions.

In total, 23 of the 39 participants recorded a message for all three control types. In
addition, only four participants recorded voice messages for two of the three control types,
and one participant just recorded a single voice message. This resulted in 26 voice messages
for each control type.
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Table 4. Statistics for NASA TLX on a scale from 1 to 100 and ranking on a scale from 1 to 3 (df = 2,
N = 39 for all Friedman Tests).

NASA TLX Rank

Classic (Mean) 40.43 1.87
Classic (Std.-Dev.) 17.11 0.77

Double Arrow (Mean) 43.29 2.05
Double Arrow (Std.-Dev.) 15.32 0.86

Single Arrow (Mean) 40.49 2.08
Single Arrow (Std.-Dev.) 17.29 0.84

Mean Ranks

Classic 1.85 1.87
Double Arrow 2.29 2.05
Single Arrow 1.86 2.08

Friedman Tests

χ2 5.33 0.97
Exact Significance 0.07 0.65

5.2.1. Thematic Analysis

The voice recordings were analyzed with the Thematic Analysis method described by
Braun and Clarke [30]. This method was chosen because it has the flexibility to identify
themes within the unstructured feedback from the recorded voice messages. Throughout
the analysis, we identified themes related to our hypotheses, which gave us a better insight
into how participants perceived their experience and success in executing the given tasks.

First, we transcribed the voice messages to be able to analyze them. Although most
participants recorded their messages in English, a few recorded them in German. Some of
the statements in the following chapters were therefore translated into English. Second, two
of our researchers performed the Thematic Analysis using the six-phase method described
by Braun and Clarke [30]. Each researcher read each transcribed voice message to become
familiar with the participant’s feedback. They then marked certain paragraphs and phrases
to identify underlying topics related to our hypotheses that were relevant within multiple
data-sets. Each marked phrase was assigned a short code describing its topic. We used
the software Obsidian (Obsidian markdown note-taking software: https://obsidian.md,
accessed on 3 January 2022) for managing and tagging the transcribed messages in a simple
markdown text format with links and tags. Third, codes were organized and grouped into
themes, and descriptive titles were assigned to each theme. For a visual representation,
we developed visual thematic graphs; one of which is shown in Figure 9. Although some
comments were related to several themes, we decided to sort them into the theme with
the best fit. Fourth, themes were revised and evaluated by reading the related phrases
and codes again to ensure that each theme was internally homogeneous. Fifth, both
researchers worked together to refine the themes and compile them into a single thematic
map presented in Figure 10. Sixth, a summary of the results was written based on the final
thematic map.

https://obsidian.md
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Figure 9. Early thematic map with codes shown in yellow and themes shown in blue.

Figure 10. Final thematic map with themes shown in green and sub-themes shown in gray.

5.2.2. Results of the Thematic Analysis

We identified the following themes in the combined thematic map: visualization of
robot movement, cognitive demand, predictability of mode switching, predictability of movement
and learning. The excerpts from one participant’s audio messages were marked with the
participant’s unique number (e.g., P26 for the 26th participant out of the total 39 partici-
pants). Since participants often referenced the previous control types they used, we also
added which control type they were referring to in brackets when citing them.

Visualization of robot movement: This theme comprises the difficulties and benefits
of the visualization of the robot’s movement. As expected when transferring over a
visualization from a 2D environment to 3D, perspective was one source of errors across all
three control types. P5 stated, “Depending on the orientation of the robot arm, I could not
see exactly which way the arrows were going.” P4 added, “Sometimes moving the robot
was a bit difficult because it just did not feel natural from different perspectives.”

Regarding the control types Double Arrow and Single Arrow, many participants men-
tioned that the arrows are either hard to interpret or hard to see. Interestingly, the partici-
pants did not mention this problem with the Classic control type. Participants stated, “[. . . ]
the arrows that follow the change of the movement direction are a little more difficult and
a little bit less intuitive to understand than the previous trial [control type Classic]” (P9),
and “I think it is more difficult than the previous control type because it has more abstract
movement [. . . ]” (P25). Besides the curved arrows, many participants found it difficult to
associate the differently colored arrows of the visualization with the different input DoFs
across all three control types. P31 made this clear after using the Single Arrow control type.
They said, “The hardest part working with this method of motion was determining which
direction pushing the analog stick would actually move the robot.”

Across both adaptive control types, participants mentioned the helpfulness of the
arrows. P25 commented, “I think it was confusing at first, but those red and green arrows
helped a lot to understand how the robot moved.” After using the Double Arrow control
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type, P8 mentioned, “Controlling the robot was better than before [control type Single
Arrow], because one could tell more easily where the arm would go, based on the multiple
arrows”. This suggests the possible benefits of having multiple arrows in the Double Arrow
control type.

Cognitive demand: In this theme, we consolidated statements that describe a higher
or lower cognitive demand while using a specific control type. Across all three control
types, some participants mentioned a high cognitive demand. After using the Single Arrow
control type, P17 stated, “This one was more cognitively demanding than the previous
one [control type Classic], maybe because this one did not have straight movement but a
lot of rotational movements”. P18 found it to be “a bit confusing, but okay.” Participants
described the Classic control type as “confusing” (P8) and “counter intuitive” (P18). Using
the Double Arrow control type, P21 expressed the need to focus on the task and added, “I
do not think you could do anything else while using this control method”.

While mentions of lower cognitive demand were equally frequent in total, many
participants found the Classic control type to be “easy” or “easy to understand” (P6, P9,
P25, P27, among others). After using the Classic control type, P39 added, “Here it was best
to intuitively remember where each function was”. This suggests a connection with the
next two themes regarding predictability.

Predictability of mode switching: This theme describes the ability of the participants
to anticipate the next set of movement combinations that the system provides when the
participant executes a mode switch. Many of the difficulties participants had with the
predictability were with the adaptive control types Single Arrow and Double Arrow. When
using the Double Arrow control type, P17 noted, “In this condition, I was not sure whether
cycling through the different types of movements in there always were consistent. That
was very confusing.” We also identified this statement as an expression of an increase
in cognitive demand. For the same control type, P21 added, “I did not know which
combination would be next when I pressed A”. Using the Double Arrow control type, P23
mentioned, “I could not predict the next movement, because I did not understand in
which order the different movements are shown to me next.” We think this participant
confused the ever-changing nature of the adaptive suggestions with the different modes.
Only a few participants mentioned difficulties with predicting the next mode in the Classic
control type. P37 said, “Predictability was uncertain as well, until the later moves where
I had enough training to do it effectively.” Additionally, many participants mentioned
that they had to switch modes many times to find the proper movement they needed in a
given situation, especially with the adaptive control types. Using the Double Arrow control
type, P3 stated, “So if I wanted it to go down I would have to switch through multiple
modes [. . . ]”. Furthermore, using the Double Arrow control type, P5 mentioned, “I had to
click through many modes to find the movement that I thought would bring me closer to
the block”.

Mentions of good predictability were also spread across all three control types, al-
though these were less common. For the Classic control type, P39 stated, “It was very easy
to understand and especially the predictability was the easiest here”. Using the Single Arrow
control type, P37 mentioned, “The ease of understanding the movement was a lot easier as
well. With some of the movement directions being easier to understand and predict before
they show up.” After executing the tasks with the Double Arrow control type, P37 added,
“It seemed more predictable and overall, a more optimum way of doing things”.

Predictability of movement: In contrast to the previous theme, this theme is about
predicting how and where the robot arm will move when using the currently selected
mode. As visualization plays a big part when predicting the robot’s movement, this theme
is related to the first theme about visualization. Only a few participants mentioned the
predictability of movement directly. After using the Double Arrow control type, P4 said, “So
I tried to do one thing and it would do a completely other thing. It felt really unnatural
to try and get to the cube and even to pick it up”. For the Classic control type, P10 stated,
“Because of the immediate predictability [. . . ], it was much easier to control the robot and
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to steer it into different vectors to approach the block in the different positions”. Using
the Single Arrow control type, P10 added, “Therefore I could understand very well how it
would move and how it would work out so I could reach the target”.

Learning: This theme describes the participants’ impression of their learning experi-
ence while using the different control types. Across all three control types, participants
reported that they grew better at performing the tasks over time. For the Classic control
type, P26 stated, “Using this robot arm is pretty easy if you learn how to use them, [. . . ]”.
After using the Double Arrow control type, P25 mentioned, “The predictability of the next
movement directions, I think, is easier as you practice with it, [. . . ]”. For the Single Arrow
control type, P39 said, “The more I practiced, the more confidence I got [. . . ]”.

As participants used the different control types, they noticed a learning effect even
across the different control types. After finishing all trials of all control types, ending
with the Double Arrow control type, P25 said, “The predictability of the next movement
directions, I think, is easier as you practice with it, [. . . ]” After using the Single Arrow
control type, P33 stated, “Maybe I simply have more experience now, if I performed better
in this task in any way”.

Even though many participants felt that they needed more practice with the tasks so
that they are easier to perform, some described that the process of learning felt relatively
easy. When finishing the tasks with the Classic control type, P16 stated, “It was quicker
to get familiar with the system.” P33 expressed some difficulties with the Double Arrow
control type but added, “At least it did not take long to notice a learning effect”.

Additionally, we identified many instances where participants reported that they liked
the second adaptive control type they used better than the one before, regardless of which
control type came first and which came second. This also suggests that a learning effect
is taking place. After using the Double Arrow and then the Single Arrow control types, P27
stated, “I don’t know what is the difference between double arrow and single arrow, but
single arrow is much easier to control”. For the Double Arrow control type, P31 stated, “This
method is a little bit easier to use than the second method [Single Arrow control type], but I
think that was more a function of having a little bit more experience”.

6. Discussion

Initially, our assumptions were that the overall task performance would be best when
using the Single Arrow control type, followed by Double Arrow, and Classic would have
the worst task performance. In comparison to the results of our previous study [6], the
new results are not as pronounced in a realistic virtual 3D setting, at least not without
considering the learning effects.

Regarding the task completion times, both Hypothesis 1 and Hypothesis 2 could
not be substantiated. However, the interaction effect between the starting condition and
task completion times suggests that, with time to learn, the adaptive control types could
perform better than the Classic type. This is corroborated by participants’ reports, as many
participants said that their performance and understanding of the adaptive control types
improved during the tasks. It is also worth noting that more participants experienced the
second adaptive control type as “better” than the first, implying a learning effect not only
for one control type but between control types.

Regarding mode switches, Hypothesis 3 and Hypothesis 4 could be substantiated
by our results. From Classic to Double Arrow, we measured a significant reduction in
the number of mode switches necessary to perform the task. In contrast, there was no
significant difference between Double Arrow and Single Arrow. Interestingly, this contrasts
the participants’ opinions that they felt they had to switch many times to get to a mode
that performed a movement they expected. However, this reduction in mode switches
might be of higher benefit for people with motor impairments than for non-disabled people.
Switching modes using a button requires a certain level of dexterity and causes the user to
constantly divert their attention away from the original task, so more mode switches can
cause more fatigue and time consumption, as explained by Herlant et al. [5]. The impact
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of this difference in the number of mode switches on people with motor impairments can
thus only be evaluated in a future study with participants with motor impairments.

Regarding workload, Hypothesis 5 and Hypothesis 6 could not be substantiated. This
could have multiple reasons. For example, the participants expressed that the predictability
of the adaptive control types was low and that they did not necessarily know how the robot
would move, even with the arrows. These impressions, combined with the statements
regarding positive learning effects and overall high cognitive demand, could mean that
with increased exposure to the adaptive control types, users could have a lower workload
than with Classic.

According to some participants, using visual cues in a 3D environment caused prob-
lems with perspective. This made it difficult for them to predict how the robot would
move, even with the visual cues provided by the arrows. To mitigate this problem, our
concept might be combined with a “digital twin” of the robot arm, which demonstrates the
movement virtually before the real robot performs it physically [31].

To improve the overall predictability of the system, both regarding the suggested
modes and the movements of the robot, a training mode could be implemented. In this
mode, the users would be able to teach the system the way they want specific tasks to
be performed [32]. This should increase predictability, as the participants would know
the proposed movements will be (partially) based on their own instructions. In addition,
Spatial Augmented Reality can help the user’s understanding of the robot’s perception, e.g.,
which object the robot assumes the user wants to interact with [33]. In combination with
the already implemented visual cues, this can help the users predict the robot’s movement
more accurately.

After further research and refinement of our proposed control methods, they might
allow assistive robot arms to help with ADLs that currently require the help of caregivers or
more complex robots, such as dressing [34] or bathing [35]. The fact that the users always
stay in control of the robot while the robot performs more fluent, natural movements could
also allow people with motor impairments to use the robot in social situations, e.g., at the
workplace [36].

7. Limitations

Our study did not specifically involve or focus on people with motor impairments.
Thus, we need to discuss how our results can be transferred to this target group. First,
the absolute performance measures cannot be generalized to this target group. Individual
differences are usually high within people with motor impairments due to varying degrees
of physical limitations [37]. However, the study did not aim to provide absolute results
in terms of performance but rather an insight into the relative performance of the three
different control types. Since they all rely on the same physical interaction concept, we
believe that the way motor impairments might affect performance should be comparable
for all three control types. Second, Augmented Reality is necessary to provide the user
with the type of visual feedback we implemented for our study. We are aware from our
prior research that current-generation AR-HMDs are often not accessible to people with
motor impairments. AR-HMDs such as the Microsoft HoloLens are too heavy and conflict
too often with health-supporting systems [38]. We conducted this research with the firm
belief that future AR hardware solutions will cope with requirements for people with motor
impairments. We acknowledge, however, that this might make the visual feedback designs
inapplicable for real-world systems at this point in time or the immediate future.

Additionally, our study involved the use of the Oculus Quest system and the Oculus
Quest Motion Controller as the only input device. In the real world, however, assistive robot
arms can be controlled with a wide range of input devices depending on the abilities and
preferences of the person using them. We specifically only used the most basic functionality
of the Motion Controller (the control stick and one button) to ensure that the results are
also applicable when using a different input devices with two input axes. It is still possible
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that the use of different input devices might add more complexity to the overall usage of
such a system.

Another limitation is the nature of our study being performed as a remote study. The
level of control is limited for such a method, which means that the level of engagement of
participants can vary. We addressed this limitation by keeping the duration of the study
relatively short (30–45 min) and designing the task so that we could easily identify cases
in which participants did not follow the study protocol. Our analysis further shows that
only a few participants were identified as extreme outliers. In addition, the focus on one
set of hardware devices made it possible to harmonize and control the kind of immersive
experience that participants engaged with, further reducing potential biasing effects, such
as low frame rates or other hardware-performance-related issues. Given the current COVID-
19 pandemic, we believe that our study setup is sensible and still able to provide robust
results. Still, we aim to replicate at least part of the study in a lab environment and with
people with motor impairments in the future.

It is possible that our study does not provide insight into the quality of adaptive
control through the means of a CNN. We simulated the adaptive control method to be
able to have full control in the study. Otherwise, imperfect DoF mappings would have
overshadowed the potential effects of the different visualizations, thus making it difficult
to draw conclusions. As discussed, we believe that our approach significantly decreases
the possibility of unpredictable behavior while having little impact on the applicability of
our findings to a system using a CNN, as long as this CNN is able to perform at a high
level of quality regarding the DoF mappings.

8. Conclusions

We conducted a study exploring and evaluating the user experience of an adaptive
control concept for assistive robot arms in a realistic virtual 3D environment. Our results
suggest a significant benefit of such an adaptive control concept regarding the necessary
number of mode switches. However, task completion times and workload do not change
when using an adaptive control concept without more intensive training.

By evaluating the interaction between the starting conditions and task completion
times and applying a thematic analysis of qualitative data, we conclude that there could
be a significant benefit of training that would reveal the potential of an adaptive control
concept. Therefore, future work should consider longer training sessions before evaluating
task completion times and workload. The targeted user group of assistive robot arms
would use such devices not just once but daily and over extended periods and thus have
more time to learn how to use the device. Therefore it is important to assess whether the
adaptive control concept might have high cognitive demand in the beginning but is better
than the Classic approach once the users are trained.

Our results seem to suggest that there is little to no difference between Single Arrow
and Double Arrow regarding how well they convey the robots currently active DoF mapping
to the users. However, an improved visualization could reduce the overall high cognitive
demand users have experienced. Therefore, future work will also focus on different types
of visualizations, which will not be restricted to MR-headsets and overlayed arrows but
could (additionally) show the robot’s future path using spatial Augmented Reality [39].

Future work should (whenever possible) include participants with motor impairments
since their experience is vital in designing assistive technology [4]. The impact of a lower
number of mode switches enabled by an adaptive control concept should be especially
evaluated with people with motor impairments. This could significantly improve their
execution of activities of daily living.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/technologies10010030/s1. Video S1: An Overview of the Envi-
ronment and Control Types.
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