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Adaptive, problem-tailored variational quantum eigensolver
mitigates rough parameter landscapes and barren plateaus
Harper R. Grimsley 1, George S. Barron 2, Edwin Barnes2, Sophia E. Economou 2 and Nicholas J. Mayhall 1✉

Variational quantum eigensolvers (VQEs) represent a powerful class of hybrid quantum-classical algorithms for computing
molecular energies. Various numerical issues exist for these methods, however, including barren plateaus and large numbers of
local minima. In this work, we consider the Adaptive, Problem-Tailored Variational Quantum Eiegensolver (ADAPT-VQE) ansätze,
and examine how they are impacted by these local minima. We find that while ADAPT-VQE does not remove local minima, the
gradient-informed, one-operator-at-a-time circuit construction accomplishes two things: First, it provides an initialization strategy
that can yield solutions with over an order of magnitude smaller error compared to random initialization, and which is applicable
in situations where chemical intuition cannot help with initialization, i.e., when Hartree-Fock is a poor approximation to the ground
state. Second, even if an ADAPT-VQE iteration converges to a local trap at one step, it can still “burrow” toward the exact solution by
adding more operators, which preferentially deepens the occupied trap. This same mechanism helps highlight a surprising feature
of ADAPT-VQE: It should not suffer optimization problems due to barren plateaus and random initialization. Even if such barren
plateaus appear in the parameter landscape, our analysis suggests that ADAPT-VQE avoids such regions by design.
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INTRODUCTION
Quantum computers have long been viewed as a promising
technology for quantum simulation1. However, the limited
capabilities of Noisy, Intermediate-Scale Quantum (NISQ) devices
restrict the types of algorithms that can be implemented at
present2. While quantum phase estimation (QPE) provides a route
to efficient molecular simulation3, the presence of both noise and
errors on NISQ devices make near-term implementation of large-
scale phase estimation intractable.
In response to the intractability of QPE, the variational quantum

eigensolver (VQE) was introduced by Peruzzo et al.4 as a hybrid
quantum-classical approach to finding approximate eigenvalues
of a Hamiltonian, H. In VQE, a quantum processor is used to apply
a parameterized unitary transformation expressed as a quantum
circuit (or even a direct pulse5–7), U θð Þ, to some easily prepared
reference state, 0j i4,8–11. The target Hamiltonian is then measured
with the prepared state to obtain the energy as a function of
circuit parameters:

E θð Þ ¼ 0h jUy θð ÞHU θð Þ 0j i: (1)

Using such quantum resources to prepare states and measure
observables, a VQE will classically optimize θ in order to minimize
E θð Þ. The quality of the optimal energy for a given VQE is naturally
dependent on the quality of the parameterization U θð Þ, but because
unitary operators are norm-preserving, the energy in Eq. (1) is
variationally bounded from below by the ground-state energy of H.
The main advantage of VQEs is relatively low circuit depth4, avoiding
the long, coherent evolutions of QPE12. This makes VQEs more
appealing in the absence of fault-tolerant quantum computers. The
circuit depth of a VQE is defined by the choice of U , so that there is
generally a trade-off between accuracy and circuit depth.
An outstanding challenge with many VQE ansätze is that the

cost function, Eq. (1), creates a rough parameter landscape full of
local minima, complicating the parameter optimization. Bittel and

Kliesch have identified situations where there are so many far-
from-optimal local minima that VQEs must be NP-hard in
general13. The problem of local minima can be ameliorated
through overparametrization in both quantum optimal control5,14

and classical neural network settings15,16. This idea of over-
parametrization avoiding local minima has since been applied to
VQEs: Rivera-Dean et al. used this philosophy by employing a
neural network to distort their cost function landscape mid-VQE17.
This enabled them, in some cases, to escape from local minima.
(The neural network temporarily adds additional “weight” para-
meters to the optimization. Even when the neural network is then
reset to the identity, a better set of parameters θ was sometimes
found for the undistorted cost function.) Alternative strategies for
avoiding local minima include collectively optimizing an ansatz for
several Hamiltonians at the same time with a “snake” algorithm18

and a “sweeping” approach to energy minimization called Unitary
Block Optimization19.
A recent theoretical analysis by Larocca et al. suggests that

quantum neural networks (of which VQEs are a special case) undergo
a sort of phase transition where local minima cease to be a
problem20. This transition tends to occur when the number of
parameters surpasses the dimension of the associated ansatz’s
dynamical Lie algebra, or DLA. The DLA for an ansatz of the form
Ψj i ¼ eθ1A1eθ2A2 ¼ eθMAM ϕ0j i is defined as the span of the set of
repeated commutators of fÂig. As the authors point out, their results
imply that this desirable overparametrization is likely to be
unachievable for ansätze due to the exponential scaling of the
DLA dimension with ansatz length. Perhaps even more alarmingly,
Wierichs et al. were able to identify situations where adding
additional parameters actually hurts the performance of gradient
descent methods 21.
In addition to the problems with local traps, it has recently been

recognized that VQEs might also become impossible to optimize
(even to a local mininum) as the system size increases. For
sufficiently flexible or expressive VQE ansätze (formal arguments
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have largely been restricted to 2-design structures), it has been
found that the energy landscape flattens (as quantified by the
variance in the parameter gradients) exponentially fast as the system
size increases22. The exponential growth of these flat landscapes (so-
called “barren plateaus”), means that only a vanishingly small region
of parameter space exists which has gradients large enough to
measure with high enough precision to perform gradient descent.
This region of concentrated cost has been termed a “narrow
gorge”23. As a result, initializing the optimization from a random
point in parameter space is bound to land in a barren plateau,
meaning that the number of circuit executions (shots) needed to
resolve the search direction increases exponentially with the
number of qubits, preventing any opportunity for quantum
advantage. While intelligent heuristics for parameter initializations
might help protect an optimization from getting stuck in a barren
plateau (e.g., starting from a Hartree-Fock solution in molecular
VQEs), the success is largely determined on a case-by-case basis 22.
In this work, we present arguments and numerical simulations

that indicate that our recently introduced adaptive variational
algorithm, ADAPT-VQE24, is expected to be effectively immune to
local minima and barren plateaus in the parameter landscape, at
least in the noise-free case. Both issues are avoided because the
algorithm systematically “burrows” a deep well in the landscape
until the global minimum is reached. In other words, ADAPT-VQE
dynamically modifies its parameter landscape in such a way that
problematic regions are never explored. This phenomenon can be
understood directly from the gradient criterion used to iteratively
update the wavefunction ansatz. We illustrate this behavior with
simulations of several different molecules. In Supplementary Note 2,
we also show that the smoothness of the landscape can be
controlled by intentionally overparameterizing the ansatz. In
Supplementary Note 6, we show how the fidelity (overlap with
the target state) is affected by the number of parameters.

METHODS
ADAPT-VQE
In recent work, we developed a dynamic framework for
constructing ansätze that have much faster energy convergence
with respect to circuit depth. This approach, referred to as ADAPT-
VQE24,25, uses measurements of the molecular energy gradient to
dynamically grow an ansatz, operator by operator, creating a
highly compact ansatz that quickly converges to the exact
solution. Defining a pool of anti-Hermitian operators, A ¼ fAig,
we outline the steps in Algorithm 1.

Algorithm 1. ADAPT-VQE Algorithm

At each ADAPT-VQE iteration, the gradient, ∂E
∂θi
, is measured with

respect to all operators in the pool. The operator with the largest

gradient magnitude is then added to the ansatz with the
associated parameter initialized to zero. The other parameters in
the ansatz are initialized using the optimal values from the
previous step (we refer to this as parameter “recycling”). At this
point, an ordinary VQE is performed using some classical
optimization algorithm. In this work, we exclusively use the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method26, a quasi-
Newton strategy, because we are explicitly seeking information
about local minima, and because we are not including any noise
models in our simulations. In all cases, a gradient norm of 1 × 10−8

was pursued, but not necessarily achieved, by the solver. In cases
where the solver could not achieve this accuracy, its output was
still used. Because we initialize the new parameter added during
each ADAPT-VQE iteration to zero, the new trial circuit is
equivalent to the previous one during the first VQE iteration.
Consequently, the energy can only improve during this VQE, i.e.,
the energy decreases monotonically. Parameters are added one-
by-one in this fashion until some convergence criteria are
achieved. Reasonable choices include the norm (either l2 or l∞)
of the vector of gradients, g, or the number of operators in the
ansatz.
All simulations were conducted using a locally developed code

which can be found on GitHub at https://github.com/hrgrimsl/
adapt. OpenFermion27 was used to construct matrix representa-
tions of operators under the Jordan-Wigner transformation and
PySCF28 was used to obtain molecular integrals. Because our focus
in this work is to first understand the noise-free parameter
landscapes associated with ADAPT-VQE, all simulations are
performed without any noise models. Future work will explore
how the presence of noise affects the landscapes. For all the
ADAPT-VQE calculations in this work, the unitary coupled cluster
with singles and doubles (UCCSD) operator pool is used24, without
spin-complemented or spin-adapted operators. While many
different pools can be used for ADAPT-VQE calculations, in this
paper we focus primarily on the original fermionic pool due to its
robustness in that it seems to consistently converge to an exact
eigenstate and has a connection with the stationary conditions of
the Anti-Hermitian Contracted Schrödinger equation29. Details of
this pool are provided in Supplementary Note 1.

RESULTS
Prevalence and distribution of local minima
In this section, we numerically explore the parameter landscapes
of several example systems using ADAPT-VQE. Our aim is to
characterize the way in which the number and distribution of local
minima change as ADAPT-VQE gradually increases the length of
the ansatz (and thus the depth of the circuit). For each molecule
and bond distance considered, we first run ADAPT-VQE normally,
where the initial parameter values used in the VQE at each
iteration of the algorithm are chosen to be the “recycled”
parameters, i.e., the optimal values obtained from the previous
iteration. This yields an ansatz that reproduces the target ground
state with high accuracy.
After using ADAPT-VQE to define the ansatz, we then use this

ansatz to search for local minima by repeatedly reinitializing each
VQE with randomly chosen parameters, and reoptimizing. (Each
parameter was randomly initialized on an interval of length 2π in
order to coincide with the period of eAiθi for the chosen pool.) In
this work, we performed 1000 such random initializations for each
ansatz considered unless otherwise specified. The numbers of
samples were chosen due to computational considerations, and
tests were performed to verify that increasing the number of
random initializations does not change the results qualitatively.
For each layer of the ansatz and each random initialization, we
record the minimum energy obtained by the VQE subroutine.
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These values correspond to the energies of local minima in the
landscape associated with each ansatz.
In addition to these random initializations, we also include both

the “recycled” parameters from the previous VQE (the default
initialization in ADAPT-VQE24) and the 0 parameter vector
associated with the Hartree-Fock (HF) reference. All 1002
initializations of a given ansatz are then optimized with BFGS,
and the resulting energy errors are shown with rainbow-colored
bars in each figure. The colors indicate relative energy ordering at
a given ansatz, such that red corresponds to the highest energy
and violet to the lowest energy. The recycled initialization’s
outcome is of particular interest since this is the default,
deterministic initialization for ADAPT-VQE, and the approach used
when growing the ansätze used in the data. These conventions
will be used throughout this work.
We consider linear H4 (8 qubits) at 1 and 3Å and linear H6 (12

qubits) at 1, 2, and 3Å as toy models exhibiting varying degrees of
electron correlation (and entanglement in the target wavefunc-
tion). While not interesting as chemistry agents, the fictitious
molecules H4 and H6 provide an excellent testbed for quantifying
the effect of strong correlation. Such ‘molecules’ are often used as
surrogates for real strongly correlated systems such as ones
involving transition metals, which are too large to simulate
classically. In addition, we study LiH (12 qubits) at 1.62 Å and BeH2

(14 qubits) at 1.33 Å as examples of real molecules at equilibrium
geometries. These geometries were obtained through optimiza-
tion at the B3LYP30/6-31G*31–34 level of theory in PySCF28, and are
included as a separate file. All ADAPT-VQE calculations were
performed in the STO-3G35,36 basis. No symmetries were used to
reduce the number of qubits. In cases where the exact solution
was not obtained, the number of ADAPT-VQE iterations was
determined by computational considerations.

H4 molecule. In Fig. 1 we show the energies (relative to the global
minimum obtained from a full configuration interaction (FCI)
calculation) of the various local minima as a function of ansatz
length (as defined by the ADAPT-VQE algorithm). After a short
period without local minima, the random initializations begin to
diverge to an increasing number of distinct local minima as the
number of parameters increases. In contrast to the random
initializations, both the HF and the recycled initializations

converge to the same minimum for H4 at 1 Å, which is consistently
better than the average random initialization. This is our first
indication that good initializations can reliably avoid high-energy
traps. Interestingly, even though ADAPT-VQE doesn’t always find
the lowest energy trap, it does eventually converge. Additionally,
we observe that there are still many local minima even after these
“chemically informed” guesses are able to reach the exact ground
state. In Supplementary Note 2, we consider the prospect of
removing local minima through systematic overparameterization
for H4 at 1 Å. While we are successful in removing local minima
using our “ADAPTN” approach, deeper circuits are actually
required to achieve the overparameterization than to simply
add operators until ADAPT-VQE reaches the ground state in spite
of local minima.
In Fig. 2, we see that for the more strongly correlated 3 Å bond

distance, the HF and recycled initializations differ. The recycled
initialization is able to reach the ground state with fewer
parameters than the HF initialization, though this behavior is not
consistently observed in other systems. Again, we see ADAPT-VQE
converging to the exact solution far faster than a typical
(yellow–green) random initialization.

H6 molecule. In Fig. 3, we begin to see the true power of an
intelligent guess by simulating H6 at 1 Å. As the ansatz grows
longer, a massive gap opens up between the random guesses
and the HF/recycled ones. This gap implies that in practice, it is
very difficult to do better than simply recycling the previous
parameters in ADAPT. This gap is further numerical evidence of a
“narrow gorge”, in which the exact solution is hypothesized to
exist23. Although such a landscape is often associated with
optimization difficulties, here we see that ADAPT-VQE is able to
stay very close to the narrow gorge, avoiding such issues. We
emphasize that this feature is not only a result of good
initialization37, but rather a cooperative effect between initi-
alization and the gradient-guided ansatz construction. In
Supplementary Note 4, we demonstrate this explicitly by
performing simulations using the recycled initialization, but on
randomized (not gradient-guided) ansätze. We finally notice a
sharp increase in the median around 140 parameters. This
indicates that as the number of parameters increases, so too
does the number of local traps. Furthermore, these new traps
are preferentially high in energy, thus moving the median
solution to higher energies. This further implies that as the
system grows in size, the overwhelming number of solutions will
be high in energy, making random sampling of VQE initializa-
tions intractable.
In Fig. 3, the same gap appears for H6 at 2 Å that appeared at

1 Å. As the ansatz grows in depth (i.e., around 50 parameters),
we notice an earlier rise in the median energy of the traps found.
In Fig. 3, for H6 at 3 Å, the energy distribution of the local traps

Fig. 1 ADAPT-VQE results for H4 at 1Å. The x-axis corresponds to
the number of ADAPT-VQE iterations, i.e. the number of operators in
the ansatz at a given step. The y-axis corresponds to the error from
the exact FCI energy. The red curve corresponds to the energy
obtained through BFGS minimization using an HF guess, i.e. one
where all parameters are zero. The green curve corresponds to the
energy obtained through BFGS minimization using the standard
ADAPT-VQE in which optimal parameter values in one iteration are
recycled as initial guesses in the next iteration, and with the new
parameter initialized to zero. The colored dots correspond to all the
energies obtained through BFGS optimizations, with red being the
highest energy and violet the lowest.

Fig. 2 ADAPT-VQE results for H4 at 3Å. The axes and colors are as
in Fig. 1.
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significantly increases at the beginning, but chokes up around
100 parameters where the large gap is seen again. The HF and
recycled initializations are still far better than random ones. We
see the sharp increase in the median again here.

LiH molecule. In Fig. 4 we see similar behavior for LiH to that of
H6 at 1Å. While the solution gap is less pronounced, both HF and
the recycled initialization are always significantly better than
nearly every random initialization.

BeH2 molecule. We observe similar behavior once again in Fig. 5
for BeH2, with the exception that a large gap is observed.
In all cases, we observe that for more than a few parameters,

local minima emerge, and for large numbers of parameters, these
minima often dominate the energy landscape. In many cases
initializing all parameters to 0 (HF) is a reasonable choice that
leads to low energy minima.

Trap “Burrowing”. The problem of local minima seems to be
partially mitigated by ADAPT-VQE itself. Even in cases where the
recycled initialization converges to a high-energy trap, ADAPT-
VQE progresses by adding an operator which is chosen to
preferentially deepen the current trap (via the gradient criterion).
As such, over a sequence of ADAPT-VQE iterations, the current
trap becomes increasingly deep relative to the other parameter
traps, such that a gap can open up between the current minimum
(which approaches the global minimum) and all other local
minima. Thus ADAPT-VQE appears to “burrow” into the parameter
landscape, creating a single deep well as opposed to stabilizing all
local minima (i.e., reaching overparameterization). This burrowing
effect is depicted graphically in Fig. 6.

Insensitivity to barren plateaus
In the previous section, we demonstrated that while the
parameter landscapes exhibit a large number of local traps that
are high in energy, ADAPT-VQE is robust due to the fact that any
local minimum in early stages of the algorithm can often be
deepened into a global minimum at later stages. This same
mechanism implies a similar robustness to the presence of barren
plateaus. As mentioned above, the barren plateau phenomenon
has been recently recognized as a serious obstacle to the use of
VQEs in practical settings. The problem arises from the observa-
tion that highly expressive ansätze (more specifically, circuits
which form a 2-design), which are attractive from an accuracy
perspective, exhibit an exponentially decreasing gradient variance
with increasing system size. This means that the vast majority of
parameter space becomes essentially flat. In the course of

Fig. 3 ADAPT-VQE results for H6. The axes and colors are as in Fig. 1. Plots a, b, and c correspond to bond lengths 1, 2, and 3Å respectively.

Fig. 4 ADAPT-VQE results for LiH at 1.62Å. The axes and colors are
as in Fig. 1.

Fig. 5 ADAPT-VQE results for BeH2 at 1.33Å. The axes and colors
are as in Fig. 1.

Fig. 6 Burrowing diagram. Schematic cartoon of how the
parameter landscapes change as parameters are added using (a)
ADAPT-VQE, and (b) a “controllable” or overparameterized ansatz
which has a greater number of parameters than the rank of the DLA.
Here the y-axis is meant to convey error, and the x-axis is meant to
convey a generalized coordinate in parameter space.
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optimizing the parameters of such an expressive ansatz, a
randomly chosen initialization will (with overwhelming probabil-
ity) correspond to a point in parameter space where the gradient
of the cost function is so small that an exponentially large number
of measurements are needed to resolve a meaningful search
direction in the presence of noise. As a result, the ability to
optimize or train such expressive circuits is suspect at best. While a
physically inspired parameter initialization can be effective (e.g.,
HF initialization), difficult cases (like those exhibiting strong
correlation) may prevent efficient initialization.
Unlike the non-adaptive situation in which a static ansatz is first

defined and then optimized, ADAPT-VQE slowly brings a given
stationary point (initially the reference state) to the exact solution,
via this burrowing mechanism. As such, each VQE subroutine
performed along the way is “warm-started”, in that one already
has a decent initialization coming from the previous optimization.
Using this recycled initialization, we have a clear characterization
of the parameter landscape about the initial point: all previous
parameters are optimized, and thus have zero gradients, and the
newly added operator has a large gradient by design, since we
specifically add the operator with the largest gradient. This means
that each VQE subroutine in the ADAPT-VQE algorithm is
initialized with a single parameter which is guaranteed to be
greater than ϵ (the ADAPT-VQE convergence threshold). Based on
this argument, we do not expect difficulty due to barren plateaus
when training ADAPT-VQE ansätze as system sizes are scaled up.
We emphasize that this argument does not suggest that the
ansätze constructed by ADAPT-VQE are free from barren plateaus,
only that our algorithm remains localized to a region in parameter
space with significant gradients.
We note that our analysis focuses exclusively on barren plateaus

that arise from highly expressive circuits. ADAPT-VQE may still
suffer from noise-induced barren plateaus (NIBP’s)38, which
present problems for any VQE ansatz that scales polynomially in
depth with system size, since they are a direct consequence of
decoherence. Due to the problem-tailored nature of ADAPT-VQE
and the computational difficulty of simulating increasingly large
system sizes classically, we do not yet know how ADAPT-VQE
ansätze scale with system size. Extrapolations from small system
simulations will likely provide an overly pessimistic estimation due
to the fact that correlation length will not simultaneously increase
(at least for gapped systems). For a constant accuracy threshold,
we expect the ansatz length to scale at least linearly (and thus
ultimately suffer from NIBP’s), though a detailed study of this is
not yet available. However, even if we assume that ADAPT-VQE
might have an exponential scaling asymptotically, the problems of
interest to chemistry are far from the asymptotic limit (around 100
logical qubits), and it is possible that a quantum advantage could
still be demonstrated on finite problem instances. As such, further
investigation into ADAPT-VQE’s performance in the presence of
noise in general is indeed warranted.

“Gradient troughs”
Although barren plateaus seem to pose no threat to the ability to
scale up ADAPT-VQE based on the arguments in the previous
section, there is still a related issue that might prevent ADAPT-VQE
from converging to accurate solutions. As described above, at
each ADAPT-VQE step, the ansatz is extended using the operator
with the largest gradient:

∂E
∂θi

¼ ψðθÞh j½H; Âi� ψðθÞj i: (2)

The ansatz is then repeatedly extended until the largest
gradient in the operator pool is smaller than some threshold, ϵ.
(In the first paper the convergence criterion was taken to be the
norm of the gradients in the pool, rather than the maximum.)
Noise on a NISQ device, however, defines some lowest possible

threshold, ϵmin, that can be resolved using a given shot allowance.
In our earlier work24, we sometimes observed non-monotonic
convergence of the gradients as a function of ansatz length
(although the energy convergence is guaranteed to be mono-
tonic), such that as the ansatz is extended, the pool gradients
might first decrease, then increase again before finally converging.
This “gradient trough”, therefore presents a challenge in the
presence of noise. If a gradient trough appears and drops below
the NISQ resolvable threshold, ϵmin, then the ADAPT-VQE
algorithm may halt prematurely.
How do these gradient troughs grow with system size? If we

were to find that they grow exponentially fast, meaning that the
largest gradient in the operator pool is exponentially suppressed
as the number of qubits increases, then this would suggest
concern for the scalability of ADAPT-VQE. However, this does not
need to be the case. Choosing a local orbital basis one can
imagine trivial situations where the gradients not only avoid
exponential suppression, but any suppression at all. (One is always
free to rotate occupied or virtual orbitals without changing the
associated Slater determinant, due to orbital subspace rotational
invariance.) Consider the nth iteration of an ADAPT-VQE calcula-
tion of a molecular wavefunction, ψnj i. If one were to double the
number of qubits by adding another molecule (at infinite distance
so as to remove interactions between the systems), the total
wavefunction at iteration 2n would have a product form,
ψAB
2n

�
�

� ¼ ψA
n

�
�

�

ψB
n

�
�

�

. Any pool operator Ôi that is local to either
subsystem has the exact same gradient in the supersystem, ψAB

2n

�
�

�

,
as it does in the subsystem, ψA

n

�
�

�

. For example, consider an
operator, Ô

A
i , local to subsystem A:

∂EAB

∂θi
¼ ψAB

2n

� �
�½H; Ô

A
i � ψAB

2n

�
�

�

¼ ψAB
2n

� �
�½HA þHB; Ô

A
i � ψAB

2n

�
�

�

¼ ψA
n

� �
�½HA; Ô

A
i � ψA

n

�
�

�

ψB
njψB

n

� �

¼ ∂EA

∂θi
:

(3)

The additive separability of non-interacting subsystems is referred
to as “size-consistency” in the chemistry literature. However, in
addition to additive separability of the energy, size-extensive
wavefunctions (like UCCSD) also demonstrate “size-intensivity” for
intensive properties (e.g., density, optical gaps, etc). As shown in
Eq. (3), the gradient with respect to a local rotation is not affected
by the presence of an additional non-interacting system, thus
demonstrating size-intensivity.
In the limit of a large system, any further additions to the

system size will necessarily be too far away from a given
subsystem to interact. Based on this argument, we don’t expect
gradient troughs to deepen asymptotically with system size.
However, more work is needed to characterize the behavior of
gradient troughs as the system size increases in the presence of
interactions.

Effect of low-lying FCI eigenstates
In order to understand the nature of the “gradient troughs”
discussed in Sec. III C, and shown in Figs. 7 and 8, we
superimposed the low-lying FCI energies with the ADAPT-VQE
energies computed. The FCI spectrum is plotted as a set of blue
horizontal lines. We only plot H4 and H6, as the other systems
studied have no nearby excited states, nor do they exhibit any
gradient troughs. In the region of the gradient trough, the energy
also becomes very flat, (i.e., consider operators 9-16 in Fig. 7 and
operators 50–100 in Fig. 8).
By plotting the exact eigenstates on top of these curves, one

readily sees that the gradient troughs occur when ADAPT-VQE falls
inside of a nearly degenerate manifold of FCI excited states.
Should the ADAPT-VQE threshold be chosen loose enough (or if
there is too much device noise to measure the gradient below this
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value) that the algorithm is aborted in this region, then ADAPT-
VQE will be unable to advance further toward the ground state,
remaining stuck as an approximation to an excited state (or in
general some arbitrary superposition of the nearly degenerate
eigenstates). This appearance of gradient troughs was first noticed
in the paper that introduced ADAPT-VQE24, however the origin of
the onset and the interpretation was not clear at that time.
As a consequence, although ADAPT-VQE isn’t expected to

suffer from the more general problem of barren plateaus, more
work is needed to understand how to escape any gradient
troughs to ensure smooth convergence to the exact solution,
particularly when noise is included. This remains an out-
standing problem associated with ADAPT-VQE, warranting
more research.

DISCUSSION
Underparameterized ansätze are difficult to optimize due to large
numbers of local minima, while highly expressive ansätze are
difficult to optimize due to barren plateaus. In this paper, we find
that ADAPT-VQE does not necessarily suffer from these challenges.

We have studied the parameter landscapes arising from various
ADAPT-VQE generated ansätze and have arrived at the following
conclusions:

1. Chemically informed initialization helps avoid traps: ADAPT-
VQE’s process of re-using parameters at each step focuses
the search space on a local region, keeping the algorithm
relatively easy to train despite the rough overall landscape.
The parameter vector from the previous iteration tends to
be a relatively good initial guess for the following ADAPT-
VQE iteration. This means that by simply “recycling” the
parameters from one ADAPT-VQE iteration to the next, the
vast majority of parameter traps are entirely avoided.
Similarly, it seems that the chemical intuition granted by
the HF state avoids most traps.

2. Trap burrowing corrects local minima: Even if the early
iterations get stuck in a trap, the adaptive construction
iteratively extends the ansatz in a direction that is
guaranteed to improve the cost function near the current
stationary point. By continuously focusing on a local point in
parameter space, ADAPT-VQE can “burrow” into a given
local minimum, even if the vast majority of traps remain
high in energy.

3. Barren plateau avoidance: The nature of the ADAPT-VQE
algorithm suggests that barren plateaus should not prove
problematic in the parameter optimization step. This
originates from the fact that ADAPT-VQE specifically adds
a large gradient operator, generating a steep landscape,
such that a search direction is resolvable without an
exponential number of shots.

4. Gradient troughs: ADAPT-VQE can still exhibit numerical
challenges. An exponentially vanishing pool operator
gradient could potentially arise, resulting in ADAPT-VQE
becoming stuck during the operator addition step (in
contrast to the parameter optimization step). Numerical
evidence suggests that these gradient troughs appear when
the ADAPT-VQE energy starts to converge near one or more
excited states. Heuristics for diagnosing and addressing
such issues will be the focus of future work.

Despite the presence of local minima and the possibility of
barren plateaus in standard ADAPT-VQE ansatze, we conclude
that ADAPT-VQE can be optimized reasonably well through

Fig. 8 Gradient troughs at eigenstates. Overlay of the ADAPT-VQE error vs. iteration (red line, right axis) with the FCI excited states (blue
horizontal lines, right axis) for H6. Plots a, b, c, and d correspond to bond lengths 2, 3, 4, and 5Å respectively. The x-axis corresponds to the
ADAPT-VQE iteration. The largest pool gradient associated with the operator to be added at each step is shown in green (left axis).

Fig. 7 ADAPT-VQE with recycled parameters for H4 at 3Å.
The x-axis corresponds to the ADAPT-VQE iteration. The green
curve depicts the gradient associated with the operator to be added
at each step, while the red curve depicts the energy at each ADAPT-
VQE step. The blue lines depict the excited FCI eigenstates which are
lower than the HF energy.
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parameter recycling. Consequently, in addition to being
parameter- and gate- efficient, ADAPT-VQE appears to be
relatively immune to the problems of both local minima and
barren plateaus in VQEs.

DATA AVAILABILITY
All data were generated with code available at https://github.com/hrgrimsl/adapt.
Data is available upon request.

CODE AVAILABILITY
Code developed for this project is open-source and available at https://github.com/
hrgrimsl/adapt.
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