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ABSTRACT | Communication networks are the key enabling

technology for our digital society. In order to sustain their

critical services in the future, communication networks need

to flexibly accommodate new requirements and changing con-

texts due to emerging diverse applications. In contrast to tra-

ditional networking technologies, software-oriented network-

ing concepts, such as software-defined networking (SDN) and

network function virtualization (NFV), provide ample opportu-

nities for highly flexible network operations, enabling fast and

simple adaptation of network resources and flows. This paper

identifies the opportunities and challenges of adaptable soft-

warized networks and introduces a conceptual framework for

adaptations in softwarized networks. We first explain how soft-

warized networks contribute to network adaptability through

the functional primitives observation, composition, and con-

trol. We review the wide range of options for fine-granular

observations as well as fine-granular composition and control
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provided by SDN and NFV. The multitude of fine-granular

“tuning knobs” in adaptable softwarized networks complicates

the decision making, which is the main focus of this paper.

We propose to enhance the functional primitives observation,

composition, and control with data-driven decision making,

e.g., machine learning modules, resulting in deep observation,

composition, and control. The data-driven decision making

modules can learn and react to changes in the environment,

e.g., new flow demands, so as to support meaningful deci-

sion making for adaptation in softwarized networks. Finally,

we make the case for employing the concept of empowerment

to realize truly “self-driving” networks.

KEYWORDS | Data-driven networking (DDN); empowerment;

machine learning (ML); network function virtualization (NFV);

self-driving networks; software-defined networking (SDN).

I. I N T R O D U C T I O N

A. Motivation: Need for Flexible
Network Adaptation

Today’s communication networks are continuously

exposed to new contexts and have to react to new

demands. Large-scale software updates, user streaming

of social mega events, overnight popularity, or sudden

drops in popularity of recently introduced apps contribute

to unprecedented dynamics in terms of changing traffic

patterns and resource demands. Given the critical role

that communication networks play in our digital soci-

ety, it is important to account for and to accommodate

such dynamics. In other words, communication networks
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are required to be flexible and to react, supporting fast

and simple adaptations of the network resources and

flows. Emerging software-oriented networking paradigms,

in particular, software-defined networking (SDN) [1]–[3]

and network function virtualization (NFV) [4], [5], oper-

ating either individually or in combination, promise to

provide such flexibilities. SDN and NFV unlock the flex-

ibilities through a new level of indirection as well as

new interfaces for programming the control plane and for

setting up virtual network functions (VNFs) and network

flows on demand [6], [7].

We illustrate some example opportunities that are pro-

vided by the softwarized networks in Fig. 1. To support

the connectivity, an SDN-based controller directly config-

ures the respective flows at runtime and steers the traffic

toward the VNFs in a data center. Fig. 1 shows two flows:

one from a factory site (blue line) toward a network service

composed of VNFs in the upper right data center for some

real-time data processing, and the other from a mega event

in the city (green line). In the event of link failure in the

network infrastructure, an adaptation is triggered, i.e., the

migration of the factory related flow (blue dashed line),

to maintain connectivity. In addition, in case the upper

right data center becomes overloaded, one of the running

VNFs is migrated to the bottom right data center. More

generally, softwarized networks require a flexible adaptive

VNF lifecycle management that encompasses the initial

placement of the VNFs, the migration of VNFs to ensure

continuous scalable service, as well as the mechanisms for

VNF fault tolerance and the coordinated teardown of VNFs

that are no longer needed.

In general, network adaptation involves three main

phases [8]–[10]: 1) detection of an event that requires

adaptation, e.g., change in the environment, such as traffic

conditions, or receipt of a request for a new network

function chain; 2) decision on what and how to adapt,

e.g., find an optimal placement for a function chain; and

3) execution of the adaptation, e.g., migrating functions

and steering flows through them.

B. Functional Primitives for Adaptation in
Softwarized Networks: Observation,
Composition, and Control

Adaptation is a key feature of SDN- and NFV-based

softwarized networks to accommodate dynamic changes,

as illustrated in the example in Fig. 1. For adaptation of a

communication network, we not only consider the control

of the connectivity and transport of traffic flows across the

network but also the control of the storage and processing

capabilities in the network, including data center nodes

that support the composition of network functions [4], [5].

Adaptations in softwarized networks mainly comprise

the observation of events, e.g., overload situations,

as well as the composition and the control of network

resources [1]–[3]. We denote these three adaptation com-

ponents as the three functional primitives of adaptation in

softwarized networks.

Fig. 1. Example illustration of softwarized network scenario that

combines SDN and NFV technologies. Upper part: A central SDN

controller directs traffic to particular network services upon demand

and sets up a new path (dashed) when a physical link fails. Lower

part: Network services are composed of (virtualized) network

functions in different data centers. When one of the data centers

becomes overloaded (e.g., due to a mega event), some functions are

migrated to another data center to ensure load balancing.

The softwarized network technologies that we consider

here, namely, SDN and NFV, contribute differently to these

primitives. Both provide opportunities for data collection

through new interfaces and partially centralized views

of the network, providing the observation primitive. The

main focus of NFV is on adaptation through compo-

sition. Network functions can be (de)activated, config-

ured, placed, composed (and decomposed), migrated, and

chained [4], [11]. Control-related adaptation is, on the

other hand, mainly attributed to SDN. SDN provides a

fine-granular view of the flows, thus supporting opportu-

nities for flow steering (e.g., to compose VNFs into more

complex services) and traffic engineering [5].

C. Mapping Adaptation Phases (Detection,
Decision, and Execution) to Functional
Primitives in Softwarized Networks

The functional primitives of softwarized networks

(observation, composition, and control) map in a straight-

forward manner to the general adaptation phases (detec-

tion, decision, and execution), as illustrated in Fig. 2. The

observation primitive supports the detection phase, while

the composition and control primitives support the execu-

tion phase. Moreover, the fine-grained observation options

provided by SDN and NFV as well as the fine-grained

SDN and NFV composition and control options lead to a

highly complex decision making. Hence, new approaches

are required for meaningful and efficient decision making

in softwarized networks.

The example shown in Fig. 1 illustrates the adaptation

phases: observations can relate to the current demands and

link status; this information can then be accounted for in

the execution phase where the composition primitive can

compose NFVs in new ways and migrate NFVs, while the

control primitive can reroute flows. The decision making

can be very challenging as it concerns several combinato-

rial problems that are known to be hard, e.g., when and

how to compose and migrate the VNFs, as well as how to

reroute and traffic engineer the flows. We will elaborate

on these and related computationally hard problems in

Section III-B and make the case for attractive solutions

based on data-driven approaches.
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Fig. 2. Conceptual framework for adaptation in softwarized

networks. Adaptation commonly comprises three phases: detection,

decision, and execution. The detection of events, e.g., a sudden

traffic increase, triggers adaptations. The decision phase needs to

answer the questions of what and how to adapt in the network.

Adaptation tasks are carried out in the execution phase through NFV

and control actions, e.g., change the flow steering through SDN.

SDN and NFV provide functional primitives for observation,

composition, and control that mainly map to the detection and

execution phases. The fine-grained observation information as well

as the functions and “knobs” available with SDN and NFV result in

highly complex decision making, which calls for data-driven

approaches. This paper is motivated by the insight that the

enhancement of the functional primitives with data-driven concepts

leads to deep observation, composition, and control.

D. Enhancing Functional Primitives in
Softwarized Networks With Data-Driven
Decision Making

1) Overview: We believe that data-driven approaches

are well suited for meaningful and efficient decision mak-

ing in softwarized networks. We propose to combine the

observation functional primitive of SDN and NFV with

data-driven decision making, e.g., machine learning (ML)-

based decision making, so as to give a “deep observation”

functionality that spans the detection phase and a part of

the decision phase (see Fig. 2). The “deep observation”

functionality should be designed to optimally support net-

work adaptation decision algorithms. Moreover, we pro-

pose to combine the composition and control functional

primitives of SDN and NFV with data-driven decision

making to give “deep composition” and “deep control” (see

Fig. 2) so as to accomplish meaningful network adaptation.

2) From SDN/NFV Observation to Deep Observation: The

observation functional primitive provided by SDN and NFV

supports the detection phase by enabling the collection of

unprecedented amounts of fine-grained observation data.

In particular, SDN and NFV provide tools for the collection

of network observation data, ranging from the equivalent

of binoculars for long-range observations to microscopes

for fine-grained local observations.

A critical part of the decision making is to optimize

the extraction and processing of the observation data.

Deep observation combines the SDN and NFV observation

functional primitives with data-driven decision making

modules. The goal of deep observation is to collect data

to detect and interpret an emerging new situation so as

to support the decision making and optimization of the

execution actions that are carried out by deep composition

and control. The decision making modules of deep obser-

vation have to select and extract the most useful data

for supporting network adaptation decisions, e.g., through

ML-based dimensionality reduction of relational network

data, as elaborated in Section IV-B1.

3) From SDN/NFV Composition and Control to Deep

Composition and Deep Control: SDN and NFV provide

composition and control functional primitives for exe-

cuting the network adaptations. More specifically, within

the adaptation capabilities provided by SDN and NFV,

the decision making needs to select the specific opti-

mal adaptation mechanisms, i.e., the optimal composi-

tion and control actions, as well as the corresponding

optimized composition and control parameter settings.

Composition refers to the configuration of the network

functions and the related network resources. Composition

includes function (de)composition, chaining, placement,

and configuration, as well as the configuration of the net-

work topology [4], [5]. In particular, composition includes

all functionalities that are accomplished through packet

processing in physical or virtual computing elements,

such as multiaccess edge computing. Control refers to

instructing the data plane elements how to process packets

and how to steer packets and flows. In particular, con-

trol encompasses all functionalities that are accomplished

through direct instructions to data plane elements, such as

OpenFlow (OF) switches, specifying the prescribed actions

on packets [12], [13].

The vast range of fine-grained composition and control

capabilities enabled by SDN and NFV in conjunction with

the deep observation capabilities pose highly complex

novel optimization problems that need to be solved in

the decision phase, i.e., the decision phase is critical for

effective composition and control in softwarized networks.

We propose to combine the data-driven decision making

modules, e.g., data-driven ML modules, with the com-

position and control functional primitives of SDN and

NFV, leading to deep composition and deep control. More

specifically, the decision phase in the middle of Fig. 2 will

typically feature several data-driven decision making mod-

ules. Some of these modules are not directly associated

with the observation, composition, and control functional

primitives, such as modules on general long-term network

infrastructure planning or other higher order decision

making. On the other hand, there will be several modules

that make decisions regarding the composition and control

functional primitives. For instance, data-driven ML deci-

sion making modules can enhance composition and control
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by predicting the feasibility of VNF or routing requests and

by reducing the search spaces for composition and control

decisions (see Section IV-B2). We propose to combine these

data-driven decision modules with the composition and

control functional primitives to form deep composition and

deep control, as illustrated in Fig. 2.

We briefly note that adaptive softwarized network oper-

ation involves continuous cycling through the deep obser-

vation as well as deep composition and deep control.

In particular, the effects of deep composition and control

actions are monitored through the deep observation to

inform the decision making for the next adaptation steps.

E. Toward Data-Driven Empowered Networks

SDN and NFV not only improve adaptation, e.g.,

through resource and flow steering, but also open up new

dimensions of data collection and global views. Such data

and views can be used to further improve the network

management and, in particular, to devise novel algorithms

“bypassing” computationally hard network optimization

problems. In other words, the availability of new data

sets through softwarized network technologies is not only

beneficial for adaptation in general but also enables fun-

damentally new approaches for managing, operating, and,

hence, adapting networks. We envision that data-driven

softwarized networks integrate the knowledge of the past

for faster and more efficient executions of network algo-

rithms in the future. The use and processing of the increas-

ing amount of new data pose novel challenges, e.g., how to

efficiently represent data and how to efficiently implement

the data gathering process.

Taking the data-driven approach for supporting the

adaptation of softwarized networks one step further,

we arrive at the currently emerging paradigm of

self-driving networks [14]. Self-driving networks measure,

analyze, and control themselves in an automated manner,

even without a predefined objective function. The con-

cepts for such a self-driving network operation are in the

early developmental stages and require extensive future

research. We propose the concept of empowerment as a

promising feature for self-driving networks.

F. Article Structure

Fig. 2 illustrates the structure of this paper. Section II

elaborates on the observation, composition, and control

functional primitives of SDN and NFV. These SDN and

NFV functional primitives are employed in the detection

and execution phases of network adaptations. Section III-A

reviews the adaptation potentials of softwarized networks

based on SDN and NFV along with the state-of-the-art

adaptation examples. Section III-B discusses the challenges

that arise in the decision phase that links detection (obser-

vation) with execution (composition and control) in soft-

warized networks. Section IV gives an overview of recently

emerging new ML concepts that can be employed as

data-driven decision making modules in deep observation,

deep composition, and deep control. We emphasize that

this paper is not concerned with enhancing the SDN/NFV

capabilities. Instead, our main focus is on the judicious

use of the SDN/NFV capabilities through the combination

of the SDN/NFV capabilities with data-driven decision

making modules. Section V discusses the forward-looking

concept of future empowered, intelligent data-driven net-

works. Section VI concludes this paper, outlining further

open research challenges.

II. E N A B L E R S O F A D A P TA B L E

S O F T WA R I Z E D N E T W O R K S :

F U N C T I O N A L P R I M I T I V E S O F

S D N A N D N F V

This section provides a brief overview of key concepts

that enable high levels of flexibility and adaptability in soft-

warized networks, in particular SDN and NFV. The novel

abstraction and generalization introduced by SDN and NFV

provide extensive opportunities for adaptation. Leveraging

a combination of SDN and NFV further enhances the

adaptation potential.

As introduced in Section I, we identify three main SDN

and NFV functional primitives that enable fine-grained

adaptations: network observation, network composition,

and network control.

A. Software-Defined Networking

1) Overview: At the heart of SDN lies the idea of

outsourcing and consolidating control over data plane

elements (e.g., OF switches) to a logically centralized

software controller. With SDN, a controller directly con-

figures the forwarding behavior (e.g., forwarding tables)

of data plane elements through a standardized application

programming interface [12], [13], [15], [16]. The for-

warding tables of the switches store a set of match-action

rules: the match part of the rule is defined over packet

headers (e.g., specific header fields, but it may also be

protocol field independent), and the action part of the rule

defines what to do with the packets matched by a certain

rule, e.g., forward to a specific port, drop, or forward to

another table for additional classifications.

This decoupling of control from the data plane intro-

duces a novel abstraction and provides novel opportunities

for adaptation. Perhaps, most importantly, SDN enables

the evolution of the control plane independently of the

constraints and life cycles of the data plane [17]. This

comes with the following two main benefits.

1) Faster Innovation: Software often outpaces hardware

in terms of innovation speed. SDN makes it possible

to quickly replace and update control plane logic.

2) Specialization: SDN makes it possible to flexibly

tailor the control logic for specific organizational

needs. Many organizations, such as Google [18],

have specific control plane requirements that are not

readily provided by the existing (legacy) equipment

that has the control plane integrated with the data

plane.
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The SDN adaptation functionalities fall mainly into the

primitives of observation and control of the data plane,

whereas the composition primitive is mostly restricted to

the SDN control plane.

2) Observation: Access to the fine-grained insights into

network configurations and operations is a prerequisite for

the softwarized network adaptations. The de facto standard

protocol for interfacing the data plane nodes with the SDN

control plane is the OF protocol [12]. The OF protocol can

be used to observe behaviors, e.g., the behaviors of packets

as well as flows and their performance, and to collect

observation data from the data plane. For instance, OF pro-

vides the interface to collect network statistics with several

granularities, e.g., flow as well as switch port statistics on

an individual or group basis. The entities observed by SDN,

such as switch ports, queues, and flows, can be abstracted

through information models, e.g., graph-oriented database

constructs, as elaborated in Section IV-B1.

Importantly, due to the centralized nature of SDN con-

trol, the collected network observations can be centrally

viewed and analyzed. This centralized perspective can fur-

ther simplify the detection of events, such as failures, and

can serve as a basis for optimizing the network. Generally,

the (logically) centralized SDN control enables fast adap-

tation; with a centralized view, it is possible to overcome

inefficiencies, e.g., from distributed reconvergence after

failures, and to predefine different algorithms for reacting

to events in the data plane through fine-grained control.

3) Composition: The SDN composition primitive is

mainly focused on the SDN control plane. A logically

centralized SDN control plane can be formed in a scalable

manner through interacting distributed controllers. The

composition of the distributed SDN controllers providing

the logically centralized SDN control functionality can

adapt in response to varying loads or application demands.

One aspect of the composition is to operate a meaningful

number of SDN controllers, through control plane adap-

tation, to avoid overload and, hence, performance degra-

dation and to judiciously balance loads so as to achieve

scalability [19].

Another aspect of the composition is the SDN controller

placement. To meet the performance requirements, such

as control plane delay constraints, distributed SDN con-

trollers can be strategically added, removed, and placed in

the underlying network substrate, close to the data plane

events (and data plane hot spots) that these controllers

handle.

Availability can be further improved through cluster-

ing; distributed SDN controllers can be clustered and

mapped to data plane nodes to meet resilience and effi-

ciency targets [20]. For example, multicontroller composi-

tion assigns multiple distributed SDN controllers to a given

data plane node to compose the SDN control functionality.

Clearly, more controllers may also increase synchroniza-

tion overhead among controllers, which can be considered

as the cost of adaptation. This needs to be accounted for

when determining the number of controllers and their

placement.

The SDN control plane composition and controller

placement can be adapted dynamically to react to the

current network status or emerging events, such as a

sudden traffic increase or a change of the flow distribution

in the traffic mix. As a result, controllers may be migrated

at runtime so as to implement the optimal placement

decisions.

4) Control: The main focus of the SDN functionali-

ties is on the control of data plane adaptations. Unlike

traditional switches whose behavior can only depend on

Layer-2 header fields, an OF switch can match Layer-2,

Layer-3, and Layer-4 header fields or, in the future, may go

beyond the existing header field structure entirely. In other

words, the distinction between layers becomes blurry, and

network management tasks, such as traffic engineering,

become more flexible. For example, packets may be for-

warded depending on the application data they carry; http

packets may be forwarded to a different port (e.g., toward

a web cache) than the ftp traffic headed toward the same

IP destination address.

In traditional communication networks, flows are usu-

ally defined by their destination address (e.g., IP routing),

a combination of source and destination addresses (e.g.,

oblivious routing), or an MPLS label, using pattern match-

ing over the header. In contrast, OF makes it possible to

arbitrarily tune the granularity of rules, from very fine

grained, e.g., microflows for specific combinations of IP

addresses and TCP ports, to very coarse grained, e.g.,

using wild cards over the header fields [21]. Moreover,

OF offers the possibility to define whether certain flows

should be handled proactively or reactively, introducing

further flexibilities but also overheads [22].

Traditional traffic engineering is rather indirect. Tra-

ditional control planes are typically limited to the

shortest-path routing according to the link weights in the

network. The only way to influence routing paths and

to perform traffic engineering is through changing these

link weights, which is a rather indirect way of influencing

routes. In contrast, with SDN, paths can be influenced

directly by defining the forwarding rules. In fact, the result-

ing paths do not have to be shortest paths and do not even

have to be loop-free.

Given these opportunities to react and adapt to new

requirements, it is not surprising that the problem of how

to reconfigure (i.e., to update and adapt) SDN networks

quickly at runtime has been studied extensively over the

last years [22]. In Section IV-B2, we describe how ML can

enhance the control of networks to achieve deep control,

e.g., through reactive flow rules that dynamically adapt the

network control.

B. Network Function Virtualization

1) Overview: NFV is an enabler toward highly adaptable

and scalable networks responding to the dynamically
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changing needs of network services and customers.

Whereas current network function deployments rely on

hardware middleboxes, NFV promotes the deployment of

VNFs that are instantiated and operated on commercial

off-the-shelf (COTS) hardware. As for SDN, moving from

hardware- to software-based implementations not only

enables faster innovation but also more efficient network

resource utilization. In particular, to achieve higher

resource utilization, the NFV concept, as introduced by

the European Telecommunications Standards Institute

(ETSI) [23], [24], virtualizes hardware and networking

resources, i.e., computing, storage, and networking

resources of commodity hardware, e.g., provided by data

centers.

One widely accepted architecture view of NFV is pro-

moted by ETSI. The ETSI architecture consists of three

building blocks: the NFV Infrastructure (NFVI), the VNFs,

and the management and orchestration block (NFV

MANO). The main driver for adaptability and scalability is

provided by the NFVI, which virtualizes processing (CPU),

storage, and networking resources. The NFVI provides

the capability to operate VNFs on virtualized hardware;

hence, it inherits all the advantages from virtualization,

i.e., flexible provisioning, scaling, and migrating, while not

relying on the specific hardware implementations.

NFV has many potential applications [25] that mainly

fall into the adaptation primitives of observation and

composition.

2) Observation: Softwarization not only provides a

given set of interfaces for monitoring the VNF instances

but also enables fast ways of adding additional interfaces

to further improve the observability. Deep observation

enabled by NFV provides access to an extensive pool of

fine-grained observational data that have not been previ-

ously available with fixed hardware monitoring and event

detection implementations. VNFs facilitate the access to

fine-grained network function data and parameters, e.g.,

through benchmarking metrics for VNFs and the monitor-

ing of NFVIs. These fine-grained network function obser-

vations can be exploited to improve the network function

implementation, operation, and adaptation.

Moreover, considering the commodity server resources,

hypervisors can report CPU utilization or network through-

put at runtime—information that can be used to quantify

the performance of VNFs that are deployed on virtualized

commodity servers. Such information can help trigger

adaptations that are executed by the VNF orchestrators.

3) Composition: Mobile network functions, includ-

ing the Mobile Core Network and the Radio Access

Network (RAN) functions, are prominent examples ben-

efitting from the fine-grained composition of network

functions. Hardware functions, e.g., of the LTE Mobile

Core Network, i.e., of the Evolved Packet Core, can be

put into software according to their Third-Generation

Partnership Project standardization [26]. For instance,

the Mobility Management Entity (MME) and the Serving

and PDN-Gateways (S/P-GW) functions can be readily

softwarized. The MME and S/P-GW functions provide

time-critical adaptations in mobile networks; the MME

manages the mobility of users, while the S/P-GWs forward

and control the user data traffic. By virtualizing these

functions, operators gain the ability to scale their net-

works according to traffic fluctuations, e.g., daily user

traffic patterns [27], [28]. Further promising use cases for

mobile network function compositions are, for example,

the softwarization of content distribution networks or set

top boxes for multimedia applications.

In addition to the abstraction of network functions

from the underlying hardware through virtualization, one

important generalization that comes with NFV is the gen-

eralization of a given network function itself. This means

that a given network function can be composed of multiple

VNFs, where each VNF is implemented and deployed in a

tailor-made manner to specifically support its performance

needs. Therefore, a judicious decomposition of the net-

work functions into potential components is an important

and often neglected task in NFV. Returning to the example

of a Mobile Core Network, the S-/P-GWs require control

plane and data plane-related functions to forward and

control user traffic. A judicious decomposition can support

the separate placement of decomposed functions to meet

two main objectives: enforcing latency constraints while

exploiting the resource efficiency of VNFs [29]. The com-

position of VNFs is referred to as (service) function chain-

ing. The decomposition of functions into numerous com-

ponents enables tailor-made service adaptations as well

as the fine-grained orchestration of networking resources.

Ideally, an optimal function chain should connect all VNFs

in the correct order. As SDN is a candidate technology to

set up the flow control for such chains, we elaborate in

Section II-C on the combination of NFV and SDN.

The composition provided through NFV can generalize

the packet processing. While VNFs need to be compliant

with standardized network functions, NFV opens further

ways to process network packets. For instance, while

hardware implementations for tunneling match only on

prespecified fields, software implementations can extend

matches to arbitrary header fields. Beside this matching

aspect, new optimization and adaptation opportunities

arise with NFV; technologies, such as Intel DPDK [30]

or P4 [31], make it possible to accelerate the existing

software-based VNFs with hardware-close implementa-

tions, still compatible with COTS hardware. While recently

introduced technologies, such as Intel DPDK, rely on closed

hardware, there are new initiatives, such as Stratum [32],

that seek to combine the P4 capabilities with open-source

hardware. This delivers not only the abstraction capabili-

ties of P4 but also provides packet processing pipelines that

are tailor-made for network functions. Accordingly, NFV

opens the range of network function implementations from

pure software to software implementations accelerated

with hardware.

Moreover, composition can generalize how software

implementations use hardware resources, i.e., computing
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capacity, storage, and network resources can always be

used arbitrarily by any VNF—the general advantage of

virtualization. Furthermore, the use of resources can be

adapted over time; the composition concept can simply

tear down and bring up VNFs to support different network-

ing services on a given server infrastructure.

A further generalization is location-independence. VNFs

are not bound to specific physical locations anymore;

instead, they can be deployed anywhere by the VNF

orchestrator according to current demands. Having been

deployed, VNFs can also be quickly adapted, even at run-

time, again due to their software implementation nature.

Generally, with the migration from hardware- to

software-based implementations, and the deployment on

virtualized infrastructures, it is expected that NFV will

lower the cost not only of equipment (capex) but also the

operation cost (opex) due a more fine-granular resource

usage. In any case, VNFs should only rely on and make use

of as much server (CPU, storage) and networking resources

(link capacities) as currently needed.

C. Combination of NFV and SDN

Both SDN and NFV rely on the concepts of virtualiza-

tion and softwarization. Their combination opens further

opportunities for adaptation and offers additional design

options for highly adaptive softwarized networks. SDN

is a key enabler for the realization of adaptive traffic

routing for function chains composed by NFV. On the other

hand, the control opportunities provided by SDN can be

leveraged to realize network functions directly on the SDN

data plane.

1) Composition and Control—Chaining: Using SDN in

an NFV-based infrastructure can leverage the NFV’s full

potential. For instance, network traffic can be steered

to traverse multiple network functions to compose novel

and innovative network services, e.g., firewalls, network

address translation (NAT), and deep packet inspection.

As discussed earlier, such function chains can also emerge

from a judicious decomposition of a larger network func-

tion.

In any case, in order to realize such chains, a routing

path has to be set up. The routing path has to traverse

all functions in the correct order and has to fulfill all

imposed requirements. In the context of this composition,

SDN provides the way to accomplish flexible and adaptive

routing through multiple network functions.

2) Composition and Control—Push Function to Data

Plane: Combining SDN and NFV introduces new design

opportunities; hence, it further increases adaptability. For

instance, network functions can also be directly imple-

mented through SDN by integrating the control logic in

the SDN controller and pushing the VNF functionalities to

the data plane. Consider, for example, the implementation

of a stateless firewall. A pure VNF implementation places

a firewall as a VNF in a data center; all traffic is then

routed to the data center for the firewall VNF processing.

However, firewall rules can also be directly implemented

on the SDN data plane nodes by installing respective OF

rules to block the traffic that matches prescribed condi-

tions, e.g., prescribed port numbers. In this way, the SDN

controller effectively pushes the firewall functionality onto

the SDN data plane nodes. Based on the fine-grained rule

sets applied by an SDN controller, the firewall realization

option can vary for different traffic flows [33].

This SDN realization of VNF functionalities, i.e., the

pushing of functionalities by the SDN controller to the

data plane nodes, is not limited to a static realization.

Instead, the pushed functionalities can be differentiated

and dynamically adapted. For instance, SDN control can

be dynamically used to steer the part of the traffic that

matches a prescribed set of header fields to the data center

for the firewall VNF processing, while the firewall function-

ality for the other part of the traffic is directly implemented

on the data plane. Hence, the SDN control offers extended

adaptability for the implementation of network functional-

ities. This also offers the possibility to adapt the network

design according to changing performance requirements,

e.g., bringing network functionalities closer to the user on

data plane nodes for lower latency or steering traffic to

VNFs in case more processing (CPU) is needed.

3) Composition and Control—Hardware Programming:

Novel concepts, such as programmable data planes, sup-

port the programming of packet processing hardware

and provide additional design options for adaptation. For

instance, P4 provides an abstract model for protocol inde-

pendent programming of the network data plane. P4 can

define packet headers and specify packet parsing and

processing behaviors that extend the adaptability of SDN

data plane devices and VNF data plane pipelines.

The combination of SDN and programmable data planes

provides the opportunity to adapt not only the control

rules/policies of the data plane traffic but also the data

plane pipeline processing behavior itself. This extended

adaptability can be achieved through different approaches.

For example, one approach is to extend the OF controller

with a P4 plug-in. The P4 plug-in enables the controller

to work in conjunction with P4 targets to populate tables

and handle new packets. An example for such an approach

is the activity of OpenDaylight.1 Another approach is to

include an OF agent in the P4 data plane device that acts

as a controller facing agent that is responsible for the map-

ping between OF and P4.2 Such data plane programming

and the integration with SDN control extend the com-

position and control functional primitives of softwarized

networks to offer a wide range of adaptation opportunities.

III. A D A P TAT I O N P O T E N T I A L S

A N D C H A L L E N G E S O F S D N A N D N F V

This section presents an overview of the potential adap-

tation benefits enabled by SDN and NFV as well as the

1https://wiki.opendaylight.org/view/Project_Proposals:P4_Plugin
2https://github.com/p4lang/p4ofagent
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Table 1 Examples of Adaptations With Their Corresponding Support

by the Adaptation Enablers for Softwarized Networks, i.e., SDN and

NFV, and Their Relation to the Three Functional Primitives of Adaptation

(•: Main Target)

corresponding challenges. We organize the adaptation

potentials and challenges according to our three functional

primitives for adaptation: Observation, composition, and

control. Table 1 gives an overview. We highlight these

aspects with selected examples from state-of-the-art adap-

tive networks; we do not aim to provide an exhaustive

survey. General surveys of SDN- and NFV-based concepts

(not necessarily focused on adaptation) can be found

in [1], [11], and [34]–[37].

A. Brief Review of SDN and NFV Adaptation
Potentials

We consider the three functional primitives supporting

adaptation in turn.

1) Observation: Observation includes the following

main networking tasks related to adaptation.

a) Monitoring: SDN and its OF protocol provide ideal

means to collect flow data and monitor network traf-

fic. A logically centralized network control provides the

opportunity to collect entire traces and packet histories

either “out-of-band” by collection through an out-of-band

control channel, e.g., NetSight [38] leverages SDN to trace

entire packet histories (without sampling), or “in-band,”

e.g., CherryPick [39] uses packets to carry information

of SDN paths “in-band” (namely, a subset of links along

the packet trajectory). VNF management systems can

provide additional measurement points inside VNFs that

can potentially enhance the level of detail and the accu-

racy of network monitoring [40], [41]. Software-defined

adversarial trajectory sampling [42] additionally provides

a direct passive measurement method to infer the packet

routes, even in adversarial environments.

b) Event detection: The fast detection and handling of

(link or node) failures was one of the main motivations for

Google’s move to SDN; the logically centralized perspective

avoids the distributed reconvergence and supports the

centralized and, hence, optimized, failover routing [43].

c) Adaptive measurements: Routing flexibilities can

be exploited to assist traffic monitoring. As traffic

characteristics and measurement objectives can dynam-

ically change over time, a fixed placement of traffic

monitors can be suboptimal. While it is not always fea-

sible to dynamically redeploy/reconfigure the measure-

ment infrastructure to cater to the evolving measurement

requirements, an alternative solution may be to strate-

gically route traffic subpopulations over fixed monitors:

the idea of MeasuRouting [44]. MeasuRouting monitors

transit traffic at one or more points in a network. Network

operators can employ MeasuRouting for traffic account-

ing, debugging or troubleshooting, forensics, and traffic

engineering.

2) Composition:

a) Function chaining: Network flows may not only

need to traverse one VNF, e.g., NAT, but multiple VNFs

in a predefined order, whereby multiple functions may

need to be added or removed on demand. For instance,

network traffic should be inspected and blocked before

being translated by a NAT. Function chains incorporate

a wide range of services that are typically provided by

networks through in-network packet processing functions

(e.g., virtualized middleboxes) to applications (such as

data storage or application servers) [11].

b) Function configuration: With the implementation

of network functions in software, VNFs offer great poten-

tial for configuration optimization, even at runtime.

Accordingly, to deliver optimal performance, the right

configuration settings need to be found for varying net-

work conditions. Taking the example of a Mobile RAN,

FlexRAN [45] offers such flexible and tailored network

configuration to meet the prescribed performance require-

ments. FlexRAN pushes the mobile radio processing func-

tions to programmable hardware of individual eNBs, e.g.,

to achieve ultralow latencies, or to a central RAN cloud

serving multiple eNBs, e.g., for extensive processing power.

Hence, an adaptive function configuration can meet perfor-

mance requirements that were previously hardly feasible

with a static configuration.

c) Function resource dimensioning: The performance

of VNFs relies on the available hardware resources. Thus,

to meet the demands of network users, cloud resources

need to be acquired according to the users’ networking

demands. This dimensioning involves two steps: when

designing a VNF and when provisioning VNF chains at

runtime [46]. Resource allocation and dimensioning of

VNFs have been widely evaluated, e.g., a sharing scheme

for cloud computing resources to improve radio cluster-

ing and dynamic radio cooperation in a Cloud-RAN has

been proposed in [47], while compute resource sharing

for RAN functions has been examined in [48]. Gener-

ally, there is a wide range of granularity levels of net-

working resources that can be considered in resource

dimensioning, e.g., fine-grained buffer and link resources,

or more coarse-grained subnetwork resources. Moreover,
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advances in awareness and control of computing and

networking resources, such as CPU pinning, nonuniform

memory access, and single-root input–output virtualiza-

tion, allow a wide range of granularity levels of resource

allocations.

d) Function placement: VNFs may serve many net-

work services, i.e., they may process the network packets

of many network flows. As those flows may originate from

different locations in a network while demanding, e.g.,

strict Quality-of-Service (QoS) guarantees, network func-

tions need to be placed optimally to meet constraints and

reduce costs [49]. As a candidate example of VNFs that

serve a multitude of user flows, [50] evaluates the opti-

mal placement, i.e., the location, of mobile core network

functions with the target objective of minimizing the VNF

deployment cost while satisfying the latency performance

requirements for all user traffic flows.

3) Control: With respect to control, SDN and NFV can

improve the network adaptation in the following main

categories.

a) Traffic engineering: In order to improve the traffic

engineering metrics (e.g., minimizing the maximal link

load), a system administrator or operator may decide to

reroute (parts of) the traffic along different links. For

example, Internet Service Providers may switch between

multiple routing patterns during the day, depending on the

expected load. These patterns may be precomputed offline

or may be computed as a reaction to an external change

(e.g., due to a policy change of a Content Distribution

Provider) [51].

b) Consistent network updates and reconfigurations:

Any dependable network needs to be flexible and support

reconfigurations and updates at runtime, e.g., to improve

traffic engineering, to support maintenance work, or add

and remove services. For example, in order to replace

a faulty router, or to upgrade an existing router, it may

be necessary to temporarily reroute traffic. The ability

to flexibly change routes is also useful to support new

network policies, e.g., in security policies [22].

c) Saving energy: Reacting to current traffic condi-

tions by rerouting traffic and powering down as many

unneeded links and switches as possible can lead to signif-

icant energy savings. For example, ElasticTree [52] relies

on prediction methods to decide which subset of links and

switches to use to obtain significant energy savings.

d) Admitting and embedding services and virtual net-

works: When fully leveraging the available flexibilities,

it is not only possible to flexibly route or deploy net-

work functions, but also to combine the two; emerging

network services, such as service chains or virtual net-

works, can come in various shapes, connecting network

functionality (e.g., middleboxes) by provisioning routes

with prescribed bandwidth. The resulting problems can be

seen as variants of virtual network embedding problems,

Rost and Schmid [53] provide an overview of the com-

plexities of this problem. An overview of admission and

control complexities in SDN virtual networks is provided

in [54].

B. Algorithmic Challenges of SDN and NFV
Adaptations

The increased flexibilities afforded by SDN and NFV not

only bring many potential advantages but also introduce

new challenges. These include implementation related

issues, such as virtualization and isolation, reactiveness,

scalability, as well as optimization problems. The opti-

mization problems relate, in particular, to the decision

phase, as described in Section I and in Fig. 2. As an

example and since they are studied intensively, we con-

centrate on the optimization challenges in this section.

With every additional configuration possibility, the com-

plexity of existing optimization algorithms may double.

Thus, new algorithmic techniques may be required to

fully exploit the new flexibilities, as introduced by SDN

and NFV.

Complexities emerge when aiming to support effi-

cient observation (e.g., sampling strategies with an opti-

mal tradeoff between the overhead of sampling and the

benefits of coverage) and control (e.g., reconfiguring

flows in a network consistently, quickly, and with min-

imal controller interactions). In the following, we con-

sider the functionality of composition to illustrate the

algorithmic challenges arising from the SDN and NFV

adaptations.

In the context of composing network functions,

we currently witness increasing deployments of middle-

boxes, e.g., firewalls, proxies, and traffic optimizers in

computer networks [55]. Moreover, the functions of mid-

dleboxes are increasingly virtualized, making the middle-

box functions available as VNFs. VNFs can be quickly

and flexibly deployed through a variety of computing

infrastructures, e.g., multiaccess edge computing, while

reducing costs. Importantly, over the last few years, innov-

ative new network services have been promoted by indus-

try and standardization organizations [24] by composing

service chains from VNFs [56], [57].

The benefits and technological challenges of composing

complex network services from individual VNFs through

SDN and NFV have been intensely studied. The flexibil-

ities of composition are typically achieved by adaptively

steering traffic through service chains that are flexibly

composed from VNFs. However, much less is known today

about the algorithmic challenges underlying the routing

through such VNFs, which are also referred to as waypoints

in the algorithm theory context. In a nutshell, the under-

lying algorithmic problem is: how to route a flow (of a

certain size) from a given source s to a destination t, via a

sequence of k waypoints (w1, . . . , wk)? The allocated flow

needs to respect capacity constraints and, ideally, be as

short as possible, in terms of the number of hops (to

minimize the bandwidth and/or energy consumption and

minimize latency).
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The waypoint routing problem comes in many different

flavors, e.g., depending on whether a shortest or just a

feasible route needs to be computed, depending on the

number k of waypoints, and depending on the type of

the underlying network, e.g., directed versus undirected,

or Clos versus arbitrary topologies. Moreover, some VNFs

(waypoints), such as security and performance related

waypoints, may or may not be flow-conserving, e.g., a tun-

nel entry point may increase the packet size by adding

an encapsulation header, whereas a wide area network

optimizer may decrease the packet size by compressing the

packet.

In contrast to classic traffic engineering and routing

problems, the basic waypoint routing problem arising from

deep composition comes with a fundamental twist: routes

are not restricted to form simple paths but can rather

form arbitrary walks (i.e., routes that may include links

and nodes repeatedly), as long as capacity constraints

in the underlying network are respected. Indeed, often

feasible routes do not exist if restricted to a simple

path.

However, merely computing a shortest route through a

single waypoint in a capacitated network turns out to be a

nontrivial task. The problem is related to a classic com-

binatorial problem: the disjoint path problem [58], [59]

and the k-cycle problem [60]. Amiri et al. [61] recently

provided an overview of hardness results and algorith-

mic techniques for this problem. It is known that in

some (undirected) networks and for a single waypoint,

shortest routes can be computed efficiently, e.g., using

Suurballe’s algorithm. Waypoints that change the flow size

are, however, more challenging, and directed links make

it hard as well. For multiple waypoints, feasible routes

through a fixed number of waypoints can be computed

in polynomial time. This result follows by a reduction

to a classic result by Robertson and Seymour [62]. For

general k, even on undirected graphs, the decision problem

(whether a feasible route exists) is NP-hard. For multiple

waypoints, the required algorithmic techniques depend

on whether waypoints need to be traversed in a specific

order [63] or not [64].

Another dimension is the flexible deployment of mid-

dleboxes. Emerging flexible networks do not only allow to

steer traffic more flexibly through middleboxes but also

to flexibly deploy middleboxes. However, also the prob-

lem of deploying middleboxes is challenging. Lukovszki

et al. [65] recently showed that the problem is NP-hard

as well. On the positive side, polynomial-time algo-

rithms for an optimized incremental deployment of

middleboxes are possible if one resorts to approxima-

tion algorithms; the problem features a submodular

structure.

Besides these examples, several other optimization prob-

lems arise, e.g., in terms of efficient network updates [22].

Existing algorithms often have in common that they are

oblivious to the actual workload, past performance, or

additional aspects that are not part of the model for which

the algorithms were designed. In Section IV, we will argue

that the data-driven algorithms may provide an interesting

alternative.

IV. E X P L O I T I N G A D A P TAT I O N

P O T E N T I A L S O F S D N A N D N F V:

A D ATA-D R I V E N A P P R O A C H

While software-based and virtualized networks introduce

many flexibilities and optimization opportunities, exploit-

ing these flexibilities is challenging. Indeed, as illustrated

in Section III-B, the judicious exploitation of the flexi-

bilities afforded by softwarized networks based on SDN

and NFV poses hard optimization problems. For instance,

embedding virtual networks and service function chains

is a computationally hard problem [53]; hence, the cor-

responding objective functions are difficult to optimize,

even for computers. Even seemingly simple tasks, such as

computing a shortest route through a given single (vir-

tualized) network function [61], placing a single network

function [65], or deciding which requests to admit [66],

are all hard.

In addition to the computational complexity,

the question arises how accurate our underlying models

actually are; communication networks are complex and

are comprised of many different aspects. For instance,

when combining SDN and network virtualization [67],

requirements change continuously, e.g., in terms of

demands and workloads, and objective functions are

typically complex. This network complexity makes

real-time management almost impossible for human

operators with today’s tools; moreover, the complexity

makes network modeling very challenging.

Hence, new ways for improving existing network man-

agement algorithms are needed. In this section, we argue

that the data-driven approaches provide such an opportu-

nity. First, data-driven approaches facilitate interesting and

fast heuristics that can outperform the existing rigorous

optimization or approximation algorithms. Second, and

more importantly, data-driven approaches adapt to and

optimize for the actual state of the network, as charac-

terized by the network observation data (e.g., workloads,

performance measurements, and interference), rather than

for some hypothetical worst case network state. Thus,

existing theoretical upper bounds on the maximal theoret-

ically possible performance may no longer apply.

This motivates us to explore the use of ML in soft-

warized networks in this section while particularly focus-

ing on the decision phase. In Section IV-A, we outline

how data-driven network operation may lead to “self-

driving” networks. Subsequently, in Section IV-B, we focus

on data-driven ML strategies for improving the solution of

network optimization problems.

Indeed, there is an increasing consensus that the net-

work operations should be supported by data-driven

ML-based models revolving around high-level goals and

a holistic view of the underlying network (see the

surveys [68]–[70] and position papers [14], [71]–[76]).
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Interestingly, we note a particular lack: 1) of investiga-

tions on the adaptation potentials of the combinations of

SDN and NFV in [14], [69], and [72], and 2) thorough

investigations of the increasing complexity of the decision

phase arising from SDN and NFV in [68], [73], and [75].

A. Why Is Data-Based ML Useful for Softwarized
Networks?

ML for networking relies on one main principle: inte-

grating knowledge and experience from the past. Existing

solutions can be seen as data driven, albeit only to a very

limited degree. For instance, existing traffic engineering

approaches are based on current network conditions, such

as the current link utilization. Going further, we argue

for always learning from decisions that have been made

in the past as well as all relevant past and current data

that may be relevant for a given task, e.g., Quality of

Experience (QoE) when conducting routing for QoS-based

measures, such as latency. Consider again a traffic engi-

neering example: suppose that a routing algorithm sees

recurring network conditions while making routing deci-

sions for requests that have also been observed in the

past. A data-driven approach that integrates knowledge

from the past may group the requests into categories

based on applications or IP domains. As a result, appli-

cations from a given domain may follow similar network

paths.

Jiang et al. [77] coined the term data-driven networking

(DDN). Their main argument for DDN is the ability of

computing to process the available large amounts of data.

Hence, in a DDN-based control loop, automatically tuned

algorithms base their decisions on the data collected in

real time. While Jiang et al. [77] do not directly point to

SDN and NFV as enablers, we believe that SDN and NFV

will help facilitate a highly flexible realization of the DDN

paradigm.

One decade ago, Clark [78] actually proposed the

knowledge plane (KP); an entity that integrates intel-

ligence into “the fabric of the Internet itself.” Mestres

et al. [72] have recently revisited the KP concept; in partic-

ular, they wanted to answer the question why the KP has

not yet been fully realized. Their answer was quite simple:

the missing pieces of more flexible network control were

softwarization paradigms, such as SDN and NFV. Hence,

with the advent of flexible softwarization technologies,

they (re)promoted knowledge-defined networking—a par-

adigm relying on SDN, network analytics, and artificial

intelligence (AI). Yao et al. [73] followed up on the KP

concept by proposing NetworkAI: a network architecture

that makes use of SDN, network monitoring technologies,

and reinforcement learning (RL) technologies.

Ayoubi et al. [71] have further pursued this direction.

They outline how ML can be used to cognitively man-

age networks; cognitively, in the sense that architectures

should support autonomic, self-managing network opera-

tion. Ayoubi et al. [71] argue that with the introduction

of SDN and NFV, there is a high potential for new sources

of valuable data, which need to be handled by ML due to

their inherent complexity. The work of Ayoubi et al. [71] is

based on the notion of cognitive networks, as introduced

by Thomas et al. [79]. Cognitive networks are one example

of a system description that explicitly relies on learning and

data gathering to adapt the configurable parameters of a

network [79]. Cognitive networks are primarily applied in

the context of wireless networks and try to overcome the

limitations introduced by layering, i.e., control decisions

in a given layer are based not only on the information

as observed by that layer but also on information from

all layers [79], [80]. In contrast to the preceding stud-

ies, we provide an overarching conceptual framework for

exploiting the different functional primitives of SDN and

NFV for network adaptations.

Wu et al. [76] have extended the notion of

knowledge-defined networking to Knowledge Centric

Networking. Wu et al. [76] considered an IoT scenario,

where ML can extract useful information from sensors at

the edge of the network to reduce the burden in the core

of the network. They propose the usage of SDN together

with ML to deploy and manage network slices.

Latah and Toker [70] have provided an extensive

overview of AI techniques that have been used in the

context of SDN, including various placement problems and

security problems. Xie et al. [69] have provided a compre-

hensive survey on ML techniques applied to SDN without

NFV. Moysen and Giupponi [75] have provided a survey

on self-organized network management, noting that for

self-organizing networks, self-organization should be ana-

lyzed from an end-to-end perspective. Boutaba et al. [68]

have comprehensively surveyed ML for networking.

All these preceding papers differ from this paper in that

we consider the additional degrees of freedom introduced

by SDN and NFV with a strong focus on the decision

phase. We make concrete suggestions on how ML can

help to tackle the increasing complexity of the decision

phase.

Hence, the softwarization of communication net-

works can be seen as an enabler for next-generation,

self-driving networks. Increased automation has the poten-

tial to not only simplify network operations but also

to enable fine-grained optimizations. The fine-grained

optimizations can fully leverage the available network

observation data, rather than relying on predefined

models [14]. Thus, a vision emerges of fully self-driving

networks that continuously measure, analyze, and control

themselves [14], [81]. Before we elaborate on the concept

of self-driving networks, we explain data-driven ML con-

cepts that consider past knowledge.

In particular, SDN and NFV introduce new challenges

with respect to network optimization. With the increasing

decision possibilities due to SDN and NFV, optimization

algorithms are forced to consider high-dimensional opti-

mization problems. These highly complex optimization

problems cannot be solved within reasonable runtimes

Vol. 107, No. 4, April 2019 | PROCEEDINGS OF THE IEEE 721



Kellerer et al.: Adaptable and Data-Driven Softwarized Networks: Review, Opportunities, and Challenges

with the traditional approaches that only consider the

current network state and ignore the knowledge of the

past.

B. ML for Improving SDN/NFV-Related Network
Optimization

This section reviews ML strategies to enhance the three

functional primitives of softwarized networks in support of

adaption.

1) Deep Observation: The large amount of informa-

tion that will be available through deep observation is

a promising opportunity but also poses new challenges

that can be effectively addressed with ML strategies. The

main challenges relate to the efficient acquisition of deep

observation data and the data representation.

Data Acquisition: While the availability of fine-grained

observation data is generally beneficial, the data collection

and transmission to a central entity causes additional

network load. In addition, fine-grained measurements for

all flows in a system at the same time may not be

feasible due to hardware limitations, e.g., the available

ternary content-addressable memory limiting the number

of flow rules [82]. ML can mitigate the additional load by

predicting future states [83], [84] and can provide more

fine-grained data to downstream applications through

learned models than would otherwise be possible [82].

A system can now obtain fine-grained data even for

large networks. Predicted future states can also be used

to detect deviations from expected behaviors and, thus,

potentially be directly used for anomaly, novelty, and fault

detection [85].

Data Representation: Two main challenges in the rep-

resentation of data acquired from deep observations in

softwarized SDN and NFV networks are: 1) reducing the

dimensionality of the observed data and 2) capturing the

spatial relations of the network data. Accordingly, the fol-

lowing paragraphs highlight ML examples which enable

the exploitation of the data becoming available with SDN

and NFV.

Concretely, an input model from one set of network opti-

mization problems should be generalizable and applicable

as input to other similar network optimization problems,

i.e., solutions for small networks could potentially provide

insights for large problem instances. Moreover, the repre-

sentations need to be storage efficient. Simply memorizing

all data without any compression may be infeasible due to

space constraints.

a) Dimensionality reduction: Networks are large sys-

tems, as the consequence data are usually high dimen-

sional. A data point could, for example, be a traffic

matrix with N2 elements or a vector of CPU utilization

of nodes. Often, a compressed representation of the data

can be obtained through representation learning [86].

The goal of representation learning is the transformation

of data into a representation that is more suitable for

classifiers or other predictors. Well-known examples for

such a transformation are principal component analysis,

autoencoders, and convolutional neural networks (CNNs)

for spatial data. Especially, CNNs can extract task-specific

representations by providing an end-to-end differentiable

learning framework. A disadvantage of such techniques is

their black-box behavior. A user generally cannot directly

comprehend the inner workings or interpret the outputs

of such models. This is especially true for representations

learned through neural networks. Interpretable models can

be obtained through the use of probabilistic modeling. The

so-called stochastic block models (SBMs) [87] can extract

compressed representations for relational data that can be

interpreted by humans. The SBM assigns nodes to groups

and models the connectivities among the groups. This

allows the visualization of the network, the role discov-

ery of nodes, and the identification of the organizational

structure of the network. Probabilistic models also provide

a principled way to learn representations through neural

networks [86].

b) Representing relational network data: A main chal-

lenge in the application of ML techniques for the dimen-

sionality reduction of data representations of SDN and

NFV networks is the inherent relational nature of the

networking data, which violates the basic assumptions

of standard ML approaches and makes them difficult to

apply. ML techniques usually operate on vector valued data

under the independent and identically distributed assump-

tion. In contrast, the typical underlying data structures in

networking are graphs. In order to use ML techniques,

such as decision trees, neural networks, or support vector

machines, graphs first have to be transformed into a repre-

sentation that can be used by the ML techniques. Of course,

various data structures exist to represent attributes of

graphs, e.g., the adjacency matrix, where the attributes

of edges and nodes are represented as vectors. However,

such a representation has shortcomings: the network may

change over time in the case of failures or when adding or

removing the nodes in an overlay network—accordingly

the representation, i.e., the input for ML techniques would

have to change. In such a case, an adjacency matrix would

have to change its dimension, i.e., the input of the ML

algorithm would no longer be scale-free. Furthermore,

such representations may not allow for compression; for

instance, an ML algorithm may only require knowledge of

the current number of nodes and edges with enough capac-

ity for making simple feasibility checks when deciding

on the admission of service function chains. Accordingly,

using an adjacency matrix would introduce an information

overhead that is simply not needed.

c) Network graph and node transformations: The

importance of graphs not only in the field of communi-

cation networks but also in other fields, such as sociol-

ogy and biology, has led to a number of techniques and

approaches that are able to transform graphs and nodes

in a graph. To just name a few examples, graph kernels

take a graph and transform it into a (high-dimensional)
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Fig. 3. From graph to feature vector. The feature vector contains

topological attributes, such as average (avg.) node degree, average

betweenness centrality, and number of edges.

Hilbert space [88]. Another concept would be to use topo-

logical feature attributes, such as degree, betweenness,

or closeness centrality, and to put these attributes in a

feature vector [89], [90]. Such representations not only

compress the graph data but also provide a scale-free graph

representation. Fig. 3 shows an example of the procedure

for constructing a graph feature vector, which can be used

as input to an ML algorithm.

Similar to graph representations, different node-

representation concepts have been developed in the graph

and ML research fields. Again, topological node features,

such as the degree or the betweenness centrality of a node,

can represent information about, e.g., the importance of a

node, as shown in Fig. 4.

2) Deep Composition and Deep Control: Deep compo-

sition and deep control in softwarized networks pose

problems with structures akin to conventional opti-

mization problems. Accordingly, we describe in this

section how the ML-based strategies can exploit the

data from deep observation to enhance the decision

phase in Fig. 2, i.e., how can ML-based strategies speed

up the solution finding process or the solution qual-

ity of the composition- and control-related optimization

problems.

Fig. 5 compares the traditional way of solving opti-

mization problems [see Fig. 5(a)] with the ML-enhanced

solution procedure [see Fig. 5(b)]. In Fig. 5(a), prob-

lems are solved by an optimization algorithm. In contrast,

in Fig. 5(b), data available from the previous problem

solutions are fed into an ML component. The ML compo-

nent generates additional information that can be used by

the optimization algorithm to find better solutions faster.

We can distinguish the following use cases for such a

“boosting” approach.

a) Predicting problem feasibility: SDN/NFV-based sys-

tems receive requests, e.g., for virtual networks connecting

Fig. 4. Constructing node feature vector. The box indicates the

node for which a node topological feature vector is constructed.

Features can, for instance, be the node degree, the betweenness

centrality, the eccentricity, or the average neighborhood degree.

Fig. 5. Comparison between traditional and ML-enhanced solution

of optimization problems. The traditional approach neglects

solutions of previous problem instances. ML speeds up the decision

process for composition and control-related optimization problems

by taking into account data from past problem solutions with deep

observation techniques. The advantage of deep observation is that

it provides a means to detect or see changing environments and

inputs. Furthermore, ML techniques can efficiently represent and

store problem instances from the past. Efficient deep composition

and control rely on the ML-advanced solving of optimization

problems. (a) Traditional problem optimization. (b) ML-enhanced

problem optimization.

VNFs or for flow routing, that are arriving or changing

over time. An arriving or changing request may not be

served or adapted at all over time—the request may be

infeasible. Reasons for infeasibility are, for instance, that a

system simply does not have enough remaining capacities

(CPU or data rate) to serve a specific demand. While

predicting feasibility may be trivial in some cases, e.g.,

a network does not have at least one node with enough

remaining capacity to serve a request, there are also cases

in which requests pose high decision complexity due to

their combinatorial nature. For instance, for a function

chain request with n links, it is possible that n − 1 links

can be embedded, while the nth virtual link cannot be

served. Checking such demands for feasibility requires,

in the worst case, the checking of all possible 2n combi-

nations. ML could detect patterns within requests that are

hard to be served [91]; hence, requests could be quickly

rejected. Such quick rejections could potentially avoid

time-intensive modeling and solution tasks of, e.g., optimal

solver software.

b) Predicting objective values: Is it worthwhile to serve

a specific feasible request? Predicting the cost of a network-

ing problem may help to answer this question. Moreover,

in cases where multiple infrastructure providers compete

for hosting requests, quickly evaluating the revenue to cost

relationships of requests can provide a competitive advan-

tage. Aside from such visionary use cases, conventional use
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cases, such as routing, may also benefit from predictions.

A controller that does not explicitly rely on shortest path

routing could simply evaluate a predetermined set of alter-

native paths with predicted costs.

c) (Problem) search space reduction: NFV increases

the placement possibilities of network functions due to

virtualization; any available data center may be a potential

host for a VNF. Accordingly, not only the potential search

space for locations is increasing but also the demand

to make fast decisions for such optimization problems.

VNF users may expect short provisioning times. Indeed,

the time to turn on VNFs is determined, e.g., by the time

to turn on a virtual machine—an action that can be accom-

plished within seconds [92]. While many similar optimiza-

tion problems exist in SDN- and NFV-based networks,

many underlying problems relate to the classical optimiza-

tion tasks: bin packing and set covering. As these problems

are generally hard to solve, ML potentially provides ways

to reveal dependencies between, e.g., the current network

states and the requested VNFs. Thus, locations could be

preexcluded from an algorithm’s search space [93]. Based

on the solutions for past problems, ML could learn models

that guess the probabilities of nodes or links to be used for

a solution. Beside using data and learning models, it has

been demonstrated that exploiting the power of neural

computations yields similar results, i.e., can efficiently

shrink the search space [94]. Fig. 6 illustrates two exam-

ples. In Fig. 6(a), a node is characterized by the probability

that it is selected, e.g., for function placement. A subgraph

preselection containing the likely selected nodes is shown

in Fig. 6(b).

d) Provide initial solutions: Many heuristic and opti-

mal algorithms rely on initial starting solutions. Hence,

if repeating problems appear, such as routing or VNF

chains in SDN and NFV, ML may provide a performance

boost. Based on observations, there may be potential to

construct valuable starting solutions: initial controller or

virtual functions placements, or initial routes, or rule

settings in SDN networks. Such information could be

extracted from the already served demands. Different

angles of learning from problem solutions have been

demonstrated for SDN/NFV-related composition and con-

trol problems [29], [95]. For instance, a neural net-

work predicted initial solutions for a simulated anneal-

ing approach solving the dynamic controller placement

problem [95]. Fig. 6(c) sketches the procedure for function

chaining.

Not directly targeting the SDN/NFV-related use cases,

many concepts have emerged in the ML area, which

promise to improve general and network-specific optimiza-

tion problems. For completeness, we point the reader to

the literature on utilizing deep RL and on recent advances

in the area of deep-RL [96]–[104].

3) Summary: To summarize, SDN and NFV pro-

vide new means of gathering data that are potentially

useful for the decision phase of network adaption.

Fig. 6. From graph nodes to ML input to probabilities. ML predicts

for each node a probability. The probability values can be used and

interpreted for different use cases, e.g., search space reduction,

as shown in (b), or to provide an initial solution, as illustrated in (c).

(a) Node representation: φN�N
S
i
� maps a node into a scale-free

feature representation. This representation serves as input for the

ML algorithm. The ML algorithm outputs a probability value y , which,

e.g., provides the probability of this node being part of a subgraph

for search space reduction or being part of an initial solution.

(b) Search space reduction example: the ML algorithm determines a

subset of nodes (subgraph), which contains nodes with high

potential to be part of an optimization solution. For instance,

the selected nodes should host a network function chain. In the

depicted example, the ML algorithm selects three nodes, and the

optimization algorithm then selects two nodes, e.g., for a function

chain. (c) Initial solution example: based on previously placed

function chains, the ML module provides an initial solution, e.g., for

a function chain (F1 and F2 deployed on the green nodes).

An optimization algorithm, such as simulated annealing, then starts

searching in the vicinity of the given solution. Here, only one node,

then, needs to be replaced.

However, the inherent problems of networks, such as

transmitting data over low-bandwidth or high-delay links

in order to process the state at a centralized location, still

exist when applying ML solutions in the decision phase.

Moreover, all challenges existing in traditional fields of ML

applications also arise when applying ML to networking

problems. For instance, rare events, e.g., flash crowds, can

complicate the ML-based decision making. As such events

occur very rarely, the overall observation data may be

biased. Hence, ML algorithms tend to incorrectly classify

those rare events for the sake of simplicity and high

accuracy. Furthermore, data representations need to scale

freely in case of dynamically changing networks. ML tech-

niques may require special adaptations for their use in
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networking; for example, similar to how CNNs advanced

image classification, specialized neural network structures

may help to solve networking problems.

V. T O WA R D A U T O N O M O U S N E T W O R K S

All examples of deep composition and control have in com-

mon that they are target-driven: operators define specific

goals, such as low latency for their network operations;

ML can speed up algorithms solving such problems. In this

section, we outline a concept called empowerment that we

envision as a promising basis for making networks truly

self-driving. Networks should be equipped with mecha-

nisms that allow them to discover concepts that prepare

them for (i.e., let them adapt to) novel situations, e.g.,

for events or changing objects that were not a priori

hard-wired into their operation by a human (such as

setting a specific objective).

Already today, communication networks are notoriously

difficult to manage. The capabilities emerging with deep

observation, composition, and control will make the net-

work management even harder. The novel concept of

self-driving networks [14] offers an opportunity to escape

this dilemma by utilizing the capabilities of deep observa-

tion, composition, and control to their full effect. In par-

ticular, self-driving networks tightly incorporate measure-

ment and control, i.e., self-driving networks could use the

large amount of information provided by deep observation

to manage the network and to react to external events

through the capabilities provided by deep composition and

control, which are enabled by the SDN and NFV functional

primitives.

While it is presently unclear how exactly self-driving

networks will be designed, it is certain that they will have

to cope with uncertainty, e.g., uncertainty in the arrival

of new flows, uncertainty about the traffic volume of

individual flows, and uncertainty regarding the hardware

availability. Certainly, a desirable property of a self-driving

network is being prepared toward requirements that arise

in the near future. Being prepared can refer to the network

being robust to the environmental changes and open for

new requests (e.g., new flows). The network performance

should not degrade significantly due to small environ-

mental changes, such as slight variations in a routing

matrix, and networks should be able to accommodate a

wide range of new requests at any time. This requires, for

instance, active resource management to avoid resource

fragmentation. With active resource management, net-

works can accept additional requests or reduce the amount

of reconfigurations necessary to cope with new requests.

The rationale is that the network should bring itself into a

state from that it can react faster to new situations. Hence,

self-driving softwarized networks can be regarded as the

ultimate adaptable networks.

A semblance to preparedness is currently

achieved through robust optimization or stochastic

optimization [105], [106]. Robust optimization is

concerned with providing worst case guarantees for

uncertainty in the parameters, represented as sets.

Stochastic optimization can be used in a similar fashion

in cases where the objective function contains noise. Both

approaches prepare the network against environmental

uncertainty, e.g., changes in a routing matrix, but do not

include the active resource management, as illustrated

in [107]. In addition, both require optimization

paradigms, usually a rigorous mathematical model of

the system which should be optimized, where an objective

function usually serves a specific purpose. In contrast,

empowerment may facilitate a way of “improving”

network operations further by not relying on a specific

objective, which is actually the case for unpredictable

future use cases.

A. Empowerment

Empowerment is an information-theoretic measure

motivated by the observation that living organisms strive

for states that give them maximum control or influence

over their environment: Everything else being equal, states

are preferable: 1) which keep as many options open as

possible, or 2) in which actions have the largest influence

on the direct environment [108], [109]. The concept of

empowerment is an attempt to formalize and quantify

the influence that an agent (the entity interacting with

its environment) has in its environment. This contrasts

with current approaches in communication systems, such

as robust/stochastic optimization and general optimization

(which does not include parameter uncertainty).

Empowerment is tightly coupled to the concepts of

embodiment and situatedness of an agent in an envi-

ronment. Situatedness means that the agent has to deal

with sensory and motor contingencies of the environ-

ment. Embodiment means that the agent experiences the

environment directly through its sensors and influences it

through its actuators. Empowerment is then measured as

the mutual information between the actions and the sen-

sory information obtained at a later time step. In particular,

SDN with its centralized view provides great opportunities

for sensing (monitoring through deep observation) the

network in a fashion that has not been available with

legacy technologies.

The interplay of agent and environment can be repre-

sented as a perception–action loop, where the agent influ-

ences the environment through its actuators, and receives

a perception of the resulting environmental state through

its sensors. In addition, the agent can be equipped with

a memory, storing past sensor-motoric data and use it to

make decisions [110]. In networking, actuators could, e.g.,

change the topology or adapt routing weights (through

deep composition and control). Sensors could measure

the QoS, e.g., the perceived packet latency or could—in

an abstract sense—correspond to statistics, e.g., port- or

flow-level statistics (obtained through deep observation),

as shown in Fig. 7. Fig. 8 illustrates the perception–action

loop as a time unrolled Causal Bayesian Network (CBN).

The CBN contains the following random variables:
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Fig. 7. Illustration of self-driving network operating with

empowerment. An agent consists of sensors S, actuators A, and

memory M. The actuators use deep control and composition to

influence the environment that is in state Rt . The environment

transitions into a new state Rt��, which is observed by the agent

through its sensors using capabilities from deep observation.

1) the sensor S taking values s ∈ S;

2) the actuator A taking values a ∈ A;

3) the memory M taking values m ∈ M;

4) the environment R taking values r ∈ R.

Fig. 8 shows that the sensors and actuators are connected

through the environment. An agent selects an action for

the next time step based on the sensory information of

the current time step and possibly past experience that the

agent has stored in its memory. The action influences the

state of the environment, which in turn affects the sensor

input.

The perception–action loop can be understood as a

probabilistic channel, and empowerment E is defined as

the channel capacity between the agent’s actuator At and

sensor St+1

E := C(At → St+1 | Mt) = max
p(at|mt)

I(St+1, At | Mt) (1)

where I(St+1, At | Mt) is the mutual information between

the sensor reading in the next time step St+1 and the

current action At conditioned on the agent’s memory

Mt [108], [110]. Mutual information measures the aver-

Fig. 8. Network showing the dependencies between variables in

the time unrolled perception action loop of an agent with memory.

The variables Rt correspond to the environment (network) states,

the variables St to sensor readings, the variables At to actions, and

the variables Mt correspond to the agent’s memory. This

figure shows that an action depends not only on the current sensor

readings and, thus, environment state but also on the memory the

agent acquired over its lifetime.

age information one can gain about St+1 by observing

At [108]. Thus, empowerment can be understood as a

measure of how much influence an agent has on its envi-

ronment given its actuator, sensor, and, possibly, memory.

If all actions result in the same states, then the agent has no

empowerment, i.e., E = 0. The same holds if the actuators

have no perceivable influence on the environment, e.g.,

when the environment changes randomly. To obtain E > 0,

the effect of the actuators must be perceivable by the

sensors.

Fig. 8 also illustrates the need for a causal model of how

the action At in the current state of the environment Rt

influences the sensor reading St+1 in order to calculate

the empowerment. This model tells the agent how its

actions influence future readings for the actual states of the

environment. Depending on the concrete use case, exist-

ing system dynamics obtained through a control-theoretic

framework can be leveraged. For instance, control theory

has been used to describe the system dynamics of con-

gestion control algorithms [111] and to directly control

flow rates [112]. In settings with highly nonlinear or even

unknown system dynamics, a causal model can be learned

directly from observations by the agent itself [113].

It is important to note that empowerment represents

the potential information flow. The agent calculates how

it could affect the environment and does not necessarily

materialize its potential [114]. A way to act upon empow-

erment could be to greedily select an action resulting in

the state with the highest empowerment.

Empowerment has a number of desirable

properties [110], including the following.

1) Empowerment Is Agent-Centric: Only information

accessible to the agent is used, i.e., samples from the

perception action loop (sensi-motoric data).

2) Empowerment Features Locality: No global knowl-

edge of the environment is necessary.

3) Empowerment Is Well-Defined and Computable:

Due to the channel formulation, standard

information-theoretic quantities and established

methods can be used for its calculation.

4) Empowerment Is Semantically Unbiased: No external

reward system is introduced.

Especially, the last point sets empowerment apart from

the traditional RL approaches [103] and mathematical

optimization. In RL and optimization, the designer has to

define a specific reward signal or objective (e.g., related

to QoS or QoE). Defining a specific objective function is

often nontrivial. The objective may be multidimensional

and potentially depend on many aspects (e.g., on rout-

ing latency and resilience). In contrast, empowerment

depends only on the agent’s embodiment and the envi-

ronment. This makes empowerment readily applicable to

self-driving networks since no extensive environment (net-

work) model is required, and empowerment can be used

to maximize future options. Specific measures, such as

latency or throughput, may be implicitly optimized as
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well [109]. In fact, empowerment was motivated in [109]

in part by the difficulty of crafting problem-specific utility

functions for evolutionary algorithms. Empowerment was

proposed as a universal utility function that implicitly

results in desirable behaviors of the artificial agents.

B. Empowerment and Deep Observation

The empowerment framework relies strongly on the

capabilities provided by deep observation in order to uti-

lize deep composition and control. Only if the changes

introduced into the environment are reflected in the sen-

sory information, then the agent can utilize the empower-

ment framework [108]. SDN and NFV open new interfaces

for deep observation of sensing data that can be used

for improving network operations. However, gathering this

information comes with a cost. Therefore, the question

arises of how much and what information is necessary to

utilize deep composition and control?

The empowerment framework can help in this regard

through sensor evolution [115]. An agent evolves its own

sensors, such that they are suitable for the agent’s envi-

ronment (and the agent’s actuators). For example, evolv-

ing the sensors of an agent constructing communication

networks led to structures that reduced the path length

of routed requests and increased the number of served

requests in the resulting network [107].

C. Empowerment and Deep Composition
and Control

Returning to deep composition and control, as enabled

by SDN and NFV, how can empowerment help to leverage

the additional degrees of freedom introduced by those

concepts? Deep composition and control can execute the

actions of an agent residing in a network environment. The

agent, thus, could execute deep composition actions, e.g.,

place network functions with NFV and reconfigure the net-

work topology, e.g., through optical devices [116], [117],

as well as deep control actions, e.g., route fine-granular

flows with SDN.

1) Empowerment-Based Development: The control of a

network often requires the execution of a sequence of con-

figurations to obtain a specific goal. For example, rerouting

a flow requires a careful scheduling of updates at forward-

ing devices to avoid misconfigurations [118]. Deep control

and composition enable fine-grained configurations. How

can these capabilities be effectively used by a self-driving

network?

Here, empowerment can help by providing a mechanism

to learn sequences of actions, i.e., configurations, that lead

to different outcomes. In this way, a self-driving network

can develop a set of diverse skills that aid network opera-

tion. Since empowerment is not task specific, the learned

skills could then be useful for a range of tasks, thus

allowing the network to adapt more easily to changing

conditions [113], [119].

2) Empowerment-Guided Decision Making: Due to the

versatility of deep observation and control, multiple ways

may exist to realize a specific task. For instance, multiple

paths could be chosen for a specific flow. Here, empow-

erment can serve as a secondary objective to select from

among the possible choices the one choice, which keeps as

many options open as possible. Empowerment is generally

not suited to optimize toward a specific goal. Using it as

a secondary objective, however, could result in decision

making that keeps options open and, thus, improves the

overall performance.

3) Empowerment-Based Preparation: Empowerment

maximizing agents can effectively restructure their

environment to increase the amount of options they have

in the future [108]. In the context of self-driving networks,

the agent could utilize deep composition and control to

reconfigure the network toward a more desirable state. For

example, the self-driving network could reroute specific

flows to increase the number of flows that can additionally

be routed. A state with high empowerment can then be a

good starting point for future requests [107].

In addition, empowerment has the built-in tendency to

avoid “dangerous” situations [114]. In networking, dan-

gerous situations could correspond to network configu-

rations that result in serious performance degradations,

e.g., a configuration leading to significant congestion. Intu-

itively, such a configuration would reduce empowerment;

thus, an empowerment maximizing agent would reconfig-

ure the network to avoid such situations.

D. Remarks

We believe that empowerment is an important building

block toward autonomous and self-driving networks built

with SDN and NFV. In turn, empowerment may actually

be required to fully exploit the opportunities provided by

modern and future technologies, such as SDN and NFV.

While empowerment itself is generally not suited to opti-

mize toward specific objectives, we envision empowerment

as a basic drive of the network that motivates continuous

improvements, which could avoid potentially catastrophic

failures.

VI. C O N C L U S I O N

We have argued that softwarized networks, in general,

and SDN and NFV, in particular, provide the adaptability

that is required for future dependable and highly flexible

communication networks serving our society. We proposed

to structure adaptability around the three functional prim-

itives of SDN/NFV networks, namely, observation, com-

position, and control. We reviewed the algorithmic opti-

mization problems arising from the flexibilities offered by

SDN and NFV. Motivated by the computational hardness

as well as the complex models that make it challenging

to fully exploit such flexible technologies for adaptation,

we argued for the benefits of data-driven decision making,

e.g., decision making based on ML. We proposed a
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conceptual adaptation framework that enhances the func-

tional primitives of SDN and NFV with data-driven decision

making so as to result in deep observation, deep com-

position, and deep control. Finally, we argued that fully

“self-driving” networks may not only be driven by classic

objective functions but also by the amount of flexibility and

“preparedness” they preserve. We posited that empow-

erment is highly promising and requires urgent future

research to fulfill the vision of self-driving networks toward

ultimate adaptable and data-driven softwarized networks.

Future networks are expected to provide even more

adaptation opportunities than the current versions of SDN

and NFV. This increased adaptation flexibility will fur-

ther increase the decision making complexity in deep

observation, deep composition, and deep control. Thus,

the feasibility of decisions/optimization, scalability, and

reactiveness in real time will continue to pose challeng-

ing research questions [19], even with the emergence of

data-driven adaptation and self-driving networks up to

fully empowered networks. In addition to those general

challenges, we identify the following exemplary research

challenges.

1) Adaptation is a process over time. Hence,

time-related questions, such as how fast can

softwarized networks adapt or what are the time

constraints for algorithm executions, need to be

clarified as a basic foundation for research on

adaptation in softwarized networks.

2) At which scale of network sizes do the new concepts

provide meaningful improvements for adaptation?

3) To what extent are adaptation functionalities pro-

vided by the control plane or by the data plane?

4) To what extent can adaptation be supported by new

hardware concepts? Or is network adaptation a pure

software concept?

5) How can system performance be guaranteed based

on adaptation? Can the analysis of adaptable soft-

warized networks be combined with formal meth-

ods? How can deterministic guarantees be provided?

6) How to measure the adaptation potential in relation

to the provided flexibility [6]?

7) How can ML be supported by hardware? ML is great

at data abstraction; however, we also need hardware

that puts efficient implementations into effect.

8) How far can we go with empowerment as a concept

for ultimate self-driving adaptable softwarized net-

works? How do deployments perform in reality?

Overall, we can observe that the study of highly adapt-

able softwarized communication network designs has just

started and is likely to remain a key research problem for

many years to come.
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