
27th October 2015

Adaptable Symbol Table Management by

Meta Modeling and Generation of Symbol

Table Infrastructures

Katrin Hölldobler, Pedram Mir Seyed Nazari, and Bernhard Rumpe

Software Engineering

RWTH Aachen University

http://www.se-rwth.de/

Chair of

Software Engineering

RWTH Aachen

University

Slide 2

Motivation

 Many textual software languages share common concepts

• Define model elements

• Refer to model elements defined in the same model as well as in

another model (including loading of models)

• Shadow names that are already defined

 Mechanisms behind those concepts usually are complex and must

be fully understood by language engineer in order to apply them

 Therefore, language workbenches provide mechanisms to

implement those concepts

 The MontiCore language workbench uses so-called symbol tables

Chair of

Software Engineering

RWTH Aachen

University

Slide 3

Symbol Tables

 A symbol table is a data structure that maps names to their

associated information.

 In MontiCore, a symbol table may also represent the semantic meta

model and contain information not directly defined in the model

• e.g., all non-private fields of a Java class including fields of the

super class

Chair of

Software Engineering

RWTH Aachen

University

Slide 4

Contribution

 Language-independent meta model (M3) for symbol tables which is

basis for language-specific symbol tables (M2)

 An integration of the symbol table M3 model and the grammar M3

model, which allows to switch between both models as needed

 The generation of the language specific symbol table and

automatically integration with the grammar model

model

grammar

grammar describing

grammars«M3» meta meta level

«M2» meta level

«M1» model level

system«M0» system level

«instance»

«instance»

«instance»

e.g., CRM-system

e.g., Java class

e.g., for Java

Chair of

Software Engineering

RWTH Aachen

University

Slide 5

Symbols: Named Model Elements

class C {

int f;

C c;

void m() {

int f = g;

while(…) {

int f;

}

}

}

Symbol SymbolKind CD

«M3»

«M2»

«instance»
«instance»

JClassSymbol JClassSymbolKind

JFieldSymbol JFieldSymbolKind
kind 1*

«instance»
«instance»

kind 1*

kind 1*

named
elements

 A symbol represents a named model element and its associated

information

 It may provide information that is not (directly) contained in the

model element

 e.g., all non-private methods of the super class

Chair of

Software Engineering

RWTH Aachen

University

Slide 6

Scopes: Containers for Symbols

class C {

int f;

C c;

void m() {

int f = g;

while(…) {

int f;

}

}

}

if scope

method scope

class scope

*

CD

«M3»«interface»

Scope1

enclosingScope

subs

*

enclosing

0..1Symbol

ScopeSpanningSymbol
0..1

1

spans

 A scope holds a collection of symbol definitions

 Structured hierarchically

 Limits visibility of a symbol

 Some symbols span a scope (scope spanning symbols)

«M2»

«instance»

JClassSymbol

Chair of

Software Engineering

RWTH Aachen

University

Slide 7

Shadowing and Visibility Scopes

class C {

int f;

C c;

void m() {

int f;

while(…) {

int f;

}

}

}

not allowed,
local variable
already defined

shadows
field f

JClassScope

JMethodScope JWhileScope

«instance»

«M2»

«instance»

«instance»

*

CD

«M3»«interface»

Scope1

enclosingScope

subs

*

VisibilityScopeShadowingScope

enclosing

0..1Symbol

 Shadowing scopes may shadow names of enclosing

scopes, visibility scopes may not

Chair of

Software Engineering

RWTH Aachen

University

Slide 8

Symbol References

class C {

int f;

C c;

void m() {

int f;

while(…) {

int f;

}

}

}

refers to
built-in type
“int”

refers to
class “C”

«M2»«instance»

JClassSymbol

JFieldSymbol

JClassSymbolReference

*0..1

definition

«instance»

1

*

reference

«instance»

CD

«M3»

SymbolReferenceSymbol

*0..1

definition

** reference

 A symbol reference refers to a symbol defined elsewhere

either in the same model or another

Chair of

Software Engineering

RWTH Aachen

University

Slide 9

Simplified Grammar M3 Model

 Textual software languages are described by grammars

 Abstract syntax tree is the meta-model

*
*

definedBy 1

* *

JClass@Ann = "class" Name "{" (JField | JMethod)* "}";

JField = type:Name Name ";" ;

(instance of)
Production

(instance of)
Nonterminal(instance of)

Terminal(instance of)
Production

Terminal

Production

Nonterminal Annotation

CD

«M3»

(instance of)
Annotation

Chair of

Software Engineering

RWTH Aachen

University

Slide 10

Composing Grammar and Symbol Table M3 Models

 Language engineer (LE) usually needs both M2 models

 To enable this, we compose the M3 models

 LE can switch between these structures as needed

Symbol
*

CD

«M3»

ScopeSpanningSymbol

0..1

1spannedScope

«interface»

Scope

1enclosingScope

subs

*

VisibilityScopeShadowingScope

kind1

*

SymbolKind

enclosing

0..1

ArtifactScopeSymbolReference

*

*

*

0..1 def

ref

Production

Terminal Nonterminal Annotation
*

*

definedBy 1

*

*
*

* *

* *

Grammr M3-model Symbol Table M3-model

*

Chair of

Software Engineering

RWTH Aachen

University

Slide 11

Generating Language-Specific Symbol Table (M2)

 Language-specific symbol table depends on the language’s

semantic

 Composition of the two M2 models is affected both the grammar

design as well as the symbol table design

 Hence, composition must be conducted manually

 Generative support

• Prerequisite: limit cardinalities to 0..1

• Automatically derive the language-specific symbol table

infrastructure (or parts of it) from the grammar

• Simultaneously integrate it with language-specific grammar

model

• Using annotation mechanism of MontiCore’s grammar

Chair of

Software Engineering

RWTH Aachen

University

Slide 13

Generating Language-Specific Symbol Table

 Mapping via naming convention

• production Prod is mapped to symbol ProdSymbol

JClass@! = "class" Name "{" (JField | JMethod)* "}";

JField@! = type:Name@JClass Name ";" ;

JWhile = "while" "(" ... ")" "{" JField* ... "}";

JClassSymbol JClassSymbolKind

JFieldSymbol JFieldSymbolKind
kind 1*

kind* CD

«M2»

generate

JClassScope
11 spans

*

0..1
JWhileScope

1

*

JClassSymbolReference

*

1

*

0..10..1

Chair of

Software Engineering

RWTH Aachen

University

Slide 14

Conclusion

 Textual software languages share some common concepts, such as

defining and referencing model elements, and name shadowing

 Language-independent meta model for symbol tables first-level

classes, which serves as basis for language-specific symbol tables

 Integration of this the symbol table meta model and the grammar

meta model

 Generating language-specific symbol table infrastructure (or parts of

it) and directly integrating it with the corresponding grammar model

