
Adaptable Visualisation Based On User Needs

Leonel Merino

Software Composition Group, University of Bern — http://scg.unibe.ch

Abstract. Software developers often ask questions about software sys-
tems and software ecosystems that entail exploration and navigation,
such as who uses this component?, and where is this feature imple-
mented? Software visualisation can be a great aid to understanding and
exploring the answers to such questions, but visualisations require exper-
tise to implement effectively, and they do not always scale well to large
systems. We propose to automatically generate software visualisations
based on software models derived from open source software corpora
and from an analysis of the properties of typical developers queries and
commonly used visualisations. The key challenges we see are (1) under-
standing how to match queries to suitable visualisations, and (2) scaling
visualisations effectively to very large software systems and corpora. In
the paper we motivate the idea of automatic software visualisation, we
enumerate the challenges and our proposals to address them, and we
describe some very initial results in our attempts to develop scalable
visualisations of open source software corpora.

1 Introduction

A visualisation has the advantage that it can present in a comprehensive man-
ner a great deal of information, which makes it a good candidate for software
analysis. Analyzing many systems together enables the exploration of trends
and comparisons in software evolution. The users of a visualisation, whether re-
searchers or developers, may differ in their needs. Some of them are going to
be interested in visualising software quality metrics, while others will want to
explore software evolution or maybe to detect code smells. To understand their
specific needs we will build a taxonomy of the user needs. The taxonomy should
define the means that will be provided to the user for interacting with the vi-
sualisation (e.g. to inspect entities, to launch new visualisations based on the
selected entity), and the type of information he is going to receive (e.g. method
attributes, invocation sender). The taxonomy should produce a classification of
user needs, such as most complex methods, extent of polymorphism, method
invocations or class hierarchy length.

1.1 Automatic Software Visualisation

We want to provide a query mechanism to adapt automatically the visualisation
to the specific user needs. The mechanism should provide means to specify the

http://scg.unibe.ch


kind of attributes to be explored (e.g. the kind of entity, the associated properties,
and the corresponding relations). For instance, we could specify that we want
to visualise at a package level a view with the method invocations to others
packages in the system. The mechanism should automatically select the most
appropriate visualisation that satisfies our needs by choosing the right shapes,
colours, layout and navigation. The visualisation should allow the user to explore
and to interact with entities, to inspect them and to launch new visualisations
based on the entity selected. For instance, in a visualisation that shows methods,
classes, packages and systems, if we select a system it could provide means to
launch a new visualisation with the evolution history of the versions of that
system. Although related work supports this kind of interactions, they have to
be specified manually.

1.2 Visualisations for Large Systems and Corpora

From a scalability point of view, one of the most difficult challenges in software
visualisation is representing corpora of software systems. A corpus can contain
hundreds of software systems, so the requirements on memory and processing
power can be much higher than those for visualising individual software systems.
Also the effort involved in generating the visualisation is higher: once a corpus
is downloaded, we have to extract models from all the included systems. By
querying attributes of the model we can extract facts about the systems. The
visualisation should also provide means to navigate and to interact with those
entities and relations.

2 Early results

As a first approach we wanted to cope with the visualisation of large systems
and corpora. Open-source software fits very well this kind of analysis since it
gives us access the source code of complete systems. Qualitas Corpus [4] and
SqueakSource [2] are two available corpora. Pangea [3] is a tool that enables
running language independent analyses on corpora of object-oriented software.
It provides Moose [1] models for Qualitas Corpus and SqueakSource systems
allowing us to create Moose images for every system and interact with them
by running scripts. Qualitas Corpus comprises 112 open source Java systems,
58,557 classes, almost 15 MLOC and 754 versions, while SqueakSource contains
28 Smalltalk systems.

For our visualisation we needed a tool to depict many components in a com-
prehensive manner, in the sense that fine and coarse grained entities can be
distinguished at a sight. Although there are many tools for creating visualisa-
tions of software, not many are suitable for large systems. Even fewer tools can
support visualising many systems at the same time or more than one corpus at
the time.

Figure 1 presents five systems of Qualitas Corpus: AspectJ, ArgoUML,
ANTLR, AOI, Axion comprising more than 1.5MLOC. Since in this example we



wanted to visualise the use of polymorphism at a fine-grained level, a TreeMap
is an appropiate layout. We used red color to indicate the presence of polymor-
phism, this is done by an heuristic that marks as polymorphic the methods of
interfaces that have more than one implementation. We colored every level of
the hierarchy such as method, class and package. The intensity of the color is
related to the number of lines of code involved in their polymorphic methods.

The main issues that we foresee are memory use and processing time. This
visualisation took a bit more than 8 minutes to be rendered and required to load
almost 300MB of Moose models. We implemented this as a proof-of-concept and
we did not do any optimisation yet. Since our intent is to provide a visualisation
of different corpora at the same time we will need to overcome these contraints.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science
Foundation for the project “Agile Software Assessment” (SNSF project No.
200020-144126/1, Jan 1, 2013 - Dec. 30, 2015). This work has been partially
funded by CONICYT BCH/Doctorado Extranjero 72140330.

References

1. Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an Extensible
Language-Independent Environment for Reengineering Object-Oriented Systems.
In Proceedings of CoSET ’00 (2nd International Symposium on Constructing Soft-
ware Engineering Tools), June 2000. URL: http://scg.unibe.ch/archive/papers/
Duca00bMooseCoset.pdf.

2. Adrian Lienhard and Lukas Renggli. Squeaksource — smart monticello repository.
European Smalltalk User Group Innovation Technology Award, August 2005. Won
the 2nd prize. URL: http://scg.unibe.ch/archive/reports/Lien05b.pdf.

3. SCG: Pangea 2.0. URL: http://scg.unibe.ch/research/pangea.
4. E. Tempero, C. Anslow, J. Dietrich, T. Han, Jing Li, M. Lumpe, H. Melton, and

J. Noble. The qualitas corpus: A curated collection of java code for empirical studies.
In Software Engineering Conference (APSEC), 2010 17th Asia Pacific, pages 336
–345, December 2010. doi:10.1109/APSEC.2010.46.

http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/papers/Duca00bMooseCoset.pdf
http://scg.unibe.ch/archive/reports/Lien05b.pdf
http://scg.unibe.ch/research/pangea
http://dx.doi.org/10.1109/APSEC.2010.46


Fig. 1. Visualisation of an heuristic of polymorphism in five systems: AspectJ, Ar-
goUML, ANTLR, AOI, Axion. More than 1.5MLOC at a glance.


	Adaptable Visualisation Based On User Needs

